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ABSTRACT 

A theoretical and computational study of MHD natural convection in an isotropic non-Darcian 

porous medium saturated with electrically conducting helium gas in an enclosure in the 

presence of heat generation is presented. A Brinkman extended Darcy-Forchheimer model is 

employed and the working fluid is assumed to be incompressible. The model is non-

dimensionalised and converted into pressure-velocity form. The Harlow-Welch marker and 

cell (MAC) finite difference technique is employed to solve the nonlinear boundary value 

problem via pressure-vorticity coupling. A parametric investigation of the influence of Grashof 

number (Gr), Hartmann magnetic number (Ha), Darcy number (Da), and the internal heat 

generation parameter () on streamline and isotherm distributions with Prandtl number (Pr) is 
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0.71 (Helium) is conducted. The variation in local Nusselt number along the left and right walls 

of the computational 2D enclosure is also studied. Validation house-computational numerical 

MATLAB code is tests are included. Local Nusselt number is elevated at both left and right 

walls with greater Darcy number (higher medium permeability) and Grashof number.  

However, with greater internal heat generation, local Nusselt number magnitudes are enhanced 

at the left (cold) wall only but suppressed at the right (hot) wall.  Increasing magnetic field 

reduces local Nusselt number at both left and right walls. With increasing magnetic field, the 

single vortex is strongly distorted and skewed towards the top left and lower right corners of 

the enclosure. Temperature contours at the left and right wall are however less intense with 

greater magnetic field effect. The simulations are of relevance to hybrid electromagnetic 

gaseous fuel cells, magnetic field control of filtration processes and porous media materials 

processing systems. 

KEY WORDS: Magnetohydrodynamics, Helium, Internal heating; non-Darcy porous media; 

finite difference solution; nonlinear convection; Grashof number; hybrid fuel cells. 

NOMENCLATURE 

A aspect ratio (L/H)  

B uniform magnetic field vector (Tesla) 

Bo magnitude of B (Tesla)  

Cp isobaric specific heat (J/kgK)  

Da Darcy number 

g acceleration due to gravity (m/s2) 



Gr Grashof number 

H height of enclosure (m) 

Ha  Hartmann hydromagnetic number 

J electrical current density (Amperes/m2) 

K permeability of the porous medium (m2) 

L length of enclosure (m) 

Nu Nusselt number 

p hydrodynamic pressure (Pa) 

Pr Prandtl number 

q heat flux (w/m2) 

q’’’ volumetric internal heat generation rate (W/m3) 

Ra Rayleigh number  

RaI Internal Rayleigh number 

t time (s) 

T temperature (K) 

u x-directionvelocity (m/s) 

U dimensionless u velocity 

V field velocity vector (m/s) 



v y-directionvelocity (m/s) 

V dimensionless v velocity 

x  co-ordinate parallel to base of enclosure (m) 

X dimensionless x co-ordinate 

y co-ordinate perpendicular to base of enclosure (m) 

Y dimensionless y co-ordinate 

Greek symbols  

 dimensionless time  

 electrical conductivity of fluid (Siemens/m) 

 thermal expansion coefficient of fluid (/K) 

 electric potential (Volts) 

 dynamic viscosity of fluid (kg/ms) 

 kinematic viscosity of fluid (m2/s) 

 fluid density at reference temperature (kg/m3) 

 thermal diffusivity of fluid-saturated porous medium ((m2/s) 

 dimensionless temperature 

 stream function 



 vorticity function  

Subscripts and Superscripts 

( )H Hot wall (right of enclosure) 

( )C Cold wall (left of enclosure)   

1. INTRODUCTION 

Transport in porous media continues to find extensive applications in medicine, energy 

systems, chemical process engineering and geosciences. These studies include both fluid flow 

and also convective heat and mass transfer in permeable materials arise in for example solar 

absorber collector systems [1], foam processing [2], geothermal power [3], borehole heat 

exchangers [4], wavy surface hybrid heat transfer devices [5, 6], biomechanics [7], gastric bio-

transport [8], bio-fuel cells [9] and industrial filtration [10]. In a number of technologies, flow 

and heat transfer in enclosure (cavities) are of particular interest including modern fuel cell 

technologies and materials fabrication (crustal growth etc). Engineers have therefore examined 

extensively natural convection flows in enclosures filled with porous media, both 

experimentally and also with a variety of modelling approaches. Both isotropic and anisotropic 

media have been analysed by a variety of researchers. Martins-Costa et al. [11] applied a 

continuous theory of mixtures and a control volume numerical method to compute the natural 

convection flow in a two-dimensional fluid-saturated porous cavity. Saleh and Hashim [12] 

used a finite difference technique and Darcy model to simulate the impact of a conductive 

boundary on free convection flow in a square porous enclosure with internal heating 

proportional to a power of temperature difference. They observed that at very low Rayleigh 

number (buoyancy parameter), the heat transfer across the cavity remain stable for any values 

of the thermal conductivity ratio and also that temperature is enhanced more markedly with 



substantial internal heating than via a conductive solid wall. Increasing value thermal 

conductivity ratio and/or decreasing the thickness of solid wall can increase the maximum fluid 

temperature. Siddheshwar and Siddabasappa [13] investigated the thermoconvective stability 

in a fluid-saturated sparsely packed porous medium with local-thermal-non-equilibrium 

(LTNE) effect. They deployed free–free, adiabatic and rigid–rigid, adiabatic boundary 

conditions for the vertical walls and stress-free, isothermal and rigid–rigid, isothermal 

boundary combinations for the horizontal walls. They showed that the onset of convection is 

faster in a shallow enclosure followed by that in square and tall enclosures. They also computed 

the influence of Brinkman number and the inter-phase heat transfer coefficient on onset of 

convection showing that these parameters delay it. Basak et al. [14] utilized a Darcy model and 

finite element technique to simulate the impact of uniform and non-uniform heating of the base 

wall on natural convection flows within isosceles triangular enclosures filled with a porous 

medium. They showed that at small Darcy number (dimensionless permeability parameter), the 

heat transfer is primarily due to conduction at any value of Prandtl number, whereas with higher 

Darcy number convection is found to be the dominant heat transfer mechanism and circulation 

cell structures are more strongly influenced. They also observed that average Nusselt number 

for the base wall is double that of either inclined wall. Chen et al. [15] computed the natural 

convection in a square porous cavity with two different local thermal models (local thermal 

equilibrium model and the local thermal non-equilibrium model) using a spectral method with 

Chebyshev–Gauss–Lobatto collocation points. They presented detailed simulations for 

streamlines and isotherms for various Rayleigh number, inter-phase heat transfer coefficient, 

and thermal conductivity ratio values. Song and Viskanta [16] simulated the free convection 

flow in a rectangular enclosure partially filled with an anisotropic porous medium as a model 

of the mushy region flow characteristics on the interacting flows of the melt pool and mushy 

zone in alloy solidification. They employed volume-averaged conservation equations and a 



Darcy formulation.  Further studies include Bég et al. [17] who used MAPLE quadrature and 

variational finite element methods to compute the swirling heat transfer in natural convection 

from a rotating conical body to a high permeability anisotropic porous medium. They showed 

that the tangential flow is accelerated whereas the swirl flow and temperature are reduced with 

increasing swirl Darcy number and tangential Darcy number. 

 

Since porous media are generally heterogenous in nature and feature randomly distributed pore 

spaces, simpler approaches have been deployed to simulate transport through such media. 

These include the Darcy model (refs [11]-[17]) which applies to steady flow through porous 

media and assumes the flow rate is proportional to the applied pressure gradient. However, 

when the porosity of the porous medium is close to unity and the regime is highly permeable, 

the flow of fluid is curvilinear, and curvature of the path gives rise to an inertia effect. As the 

inertia force increases relative to the viscous force, the streamlines become more distorted and 

drag increases more rapidly with velocity. An inertial drag term is therefore required and the 

Darcy-Forchheimer model is often used. As the velocity increases, Reynolds number is within 

the range 1 10− ; however, this transition is not from laminar to turbulent. However, in this 

regime of Reynolds number, a change from linear drag to non-linear drag is observed. If 

quadratic drag is incorporated it leads to a decelerate in flow in the porous regime [18]. The 

boundary layers around the pores become more pronounced and an “inertial core” appears with 

higher Forchheimer (nonlinear) drag effect. The developing of these “core” flows external to 

the boundary layers accounts for the non-linear relationship between pressure drop and flow 

rate. A number of Darcy-Forchheimer studies have been reported in recent years in a large 

spectrum of applications in porous media transport including heat transfer. Bég et al. [19] 

computed the two-phase hemodynamic flow and convection heat transfer in a vertical channel 



containing a Darcy-Forchheimer porous medium with the Zhou differential transform method 

(DTM). They showed that Darcy drag force which arises from the viscous contribution to stress 

at the solid particle boundaries, exerts progressively less resistance with increasing 

permeability (i.e. Darcy number) owing to a depletion in porous fibers. They also confirmed 

that inertial effects due to the porous medium are experienced via the quadratic drag term i.e. 

Forchheimer term which does not explicitly involve viscosity but does arise from viscosity 

action, mediated by the inertial effects affecting the distribution of pressure which also 

contributes to the stress at the solid boundary i.e. channel wall. They further showed that 

Nusselt numbers at the channel wall are considerably modified with both Darcian and 

Forchheimer drag force terms. Chandra and Satyamurty [20] simulated the natural convective 

flow in an anisotropic fluid filled porous rectangular enclosure with end-to-end temperature 

difference using a Brinkman extended non-Darcy flow model and successive accelerated 

replacement (SAR) scheme. They observed that average Nusselt number is elevated with 

permeability ratio whereas it is suppressed with thermal conductivity ratio. They also showed 

that Darcy number significantly influences the average Nusselt number. Kumar and Topin [21] 

investigated the influence of flow properties of the geometrical characteristics of metal foams 

in the porosity range of 80–95% with a non-Darcy foam matrix model and 3-D direct numerical 

simulations at pore scale up to Reynolds numbers of 500. They computed the permeability in 

the Darcy regime, delineating this from the permeability associated with the inertia regime 

(Forchheimer effect), including good correlation with experimental results. Umavathi and Bég 

[22] deployed a Runge–Kutta quadrature and a shooting method to compute the thermosolutal 

dissipative convection flow in an open two-dimensional vertical channel containing a porous 

medium saturated with reactive Newtonian fluid and mixed (Robin) boundary conditions. They 

showed that Nusselt number at the right wall is depleted with higher thermal Grashof number, 

concentration (solutal) Grashof number and Brinkman number, whereas it is enhanced with 



chemical reaction parameter, porous medium (Darcian) parameter and Forchheimer inertial 

(quadratic drag) parameter; the opposite trends are observed at the left wall. They further 

showed that strong flow retardation is induced with Forchheimer drag. Sultana and Hyder [23] 

used a finite element method to investigate the natural convection in a porous medium wavy 

walled enclosure comprising two isothermal vertical wavy walls and two adiabatic top and base 

walls. They presented streamline and isotherm distributions for a Prandtl number of unities, 

Darcy number varying from 0.01 to infinity (purely fluid regime), Rayleigh numbers up to 10 

million and various aspect and surface waviness ratios. Baytas̨ [24] analysed the steady state 

natural convection in a square non-Darcy porous enclosure using a two‐temperature model of 

microscopic heat transfer (thermal non‐equilibrium model) for the heat transfer between the 

fluid and the solid phases with heat generation present in the solid phase. Baytas̨ and Baytas̨ 

[25] studied the natural convection in a differentially heated enclosure with heat-generating 

porous non-Darcy layer on the inner walls for different internal and external porosity-scaled 

thermal conductivity ratio, Rayleigh numbers, Darcy numbers, solid-/fluid-scaled heat transfer 

coefficient and porous layer thickness.  They observed that internal heat generation intensifies 

thermal convection for high values of the ratio of internal Rayleigh number to external 

Rayleigh number. Baytas̨ et al. [26] examined the thermo-solutal convection between a 

saturated porous layer and an overlying fluid layer in a non-Darcian permeable enclosure (as a 

model of thermal insulation systems) for the cases where the interface contains a step and also 

when the interface between the fluid and porous layer is horizontal.  

Rashad et al.,[51] studied double diffusive unsteady free convective liquid flow in porous 

medium inside a square cavity with distinct boundary conditions with an impaction of chemical 

reaction and thermal radiation, the thermal radiation enhancement results rise of Nusselt 

number and decrement of Sherwood number but an opposite phenomenon noticed in both the 

parameters when chemical reaction parameter raised. Rashad et al. [52] studied convective heat 



propagation of hybrid nanofluid packet in a triangular enclosure with uniform magnetic effect 

and heat flux at its bottom. While the inclined wall maintained cool and the rest of the side 

walls thermally-insulated. Based on heater size and its position impact of several parameters 

like Rayleigh number, Hartman number, volume fraction and heat generation parameters are 

investigated. A low-level natural convection observed for the rising values of volume fraction 

of the nanofluid. Mansour et al. [53] presented an analysis of entropy generation and MHD free 

convective Cu-Al2O3 water nanofluid flow and heat expansion in a porous square enclosure 

heated and cooled differentially by source and sink. In their conclusion high rate of heat 

expansion observed when Cu included in the nanoparticles. Abdel-Nour et al. [54] studied 

MHD free convection of hybrid nanofluid (Al2O3-Cu/water) in a square cavity with porous 

medium.  In their numerical results high heat transfer observed for the increment of Ra values 

and reverse phenomenon noticed for the rising values of Ha.  For high Ra and Ha values flow 

cell also strengthened.  Rashad et al. [55] Studied MHD free convection and heat propagation 

of Cu-water nanofluid with in an inclined square enclosure under porous medium with an 

impact of heat source, sink and location.  Investigation results reveals decrement of Nusselt 

number for the rising values of Hartman number and nanofluid volume fraction. The best heat 

source, sink and locations are also identified with the consideration of thermal and magnetic 

effects. Ahmed et al. [56] studied MHD free convection nanofluid by considering two heating 

modes within a fined triangular cavity with porous field.  Based on the height, location and 

width of the fin impact of parameters like Hartmann number, nanoparticle volume fraction, 

heat generation/absorption parameters on fluid motion and heat transfer are studied.  Fluid flow 

decreased with the increment of height of the fin in addition to this heat transfer also raised 

with the increment of height and width of the fin. Ahmed [57] discussed mixed convection 

flow in in a non-Darcy porous enclosure with bejan’s heatlines approach. They are found that, 

for the low values of the Richardson number, the forced convection plays a dominant role in 



the flow region. Ahmed et al. [58] addressed significance of heat generation on free convection 

and heat transfer of nanofluids flow inside wavy enclosures filled with saturated porous 

medium. They are found that the heat transfer rate is an increasing function in both undulation 

number and the wavy contraction ratio. Mansour et al. [59] studied numerical investigation of 

laminar mixed convection cooling of heat source embedded on the bottom wall of an enclosure 

filled with nanofluids. 

In recent years with the thrust for sustainable energy and fuel systems, engineers have explored 

a variety of different technologies for fuel cells. These include non-flammable gases e.g. 

helium and magnetohydrodynamics (MHD) which involves the interaction of applied magnetic 

fields with viscous electrically conducting fluids. Although significant progress has been made 

in hydrogen fuel cells; however, it has the disadvantage of being reactive and flammable and 

can lead to serious corrosion problems for enclosure boundaries. Helium is however very 

unreactive, can be deployed to achieve an inert atmosphere for delicate situations and is also 

non-toxic. Li et al. [27] explored the use of helium fluidized fuel cells in direct carbon 

conversion. They observed good current–voltage characteristics, impressive power densities 

and successful conversion of carbon in the flue stream. Magnetohydrodynamic effects in 

partially ionized helium have been confirmed by Devoto and Li [28]. Further study of the 

thermofluid characteristics of magnetic helium-based fuel cells is therefore of some interest. 

This is particularly important in terms of improving thermal management of existing fuel cell 

technologies [29, 30].  Important preliminary work in this regard has been communicated 

recently by Kanawkal and Othman [31] and much earlier by Guidotti [32]. The accurate 

performance of hydromagnetic fuel cells requires comprehensive laboratory testing and also 

numerical simulations of nonlinear viscous electrically conducting flows in enclosures and 

other geometries. Maqbool et al. [33] studied Lorentzian magnetic body force effects on 

unsteady rotating duct flows with a non-Newtonian working fluid and Fourier series. 



Magnetohydrodynamic flows in porous media have also garnered some attention with regard 

to hybrid fuel cell applications. Bég et al. [35] deployed an efficient finite difference technique 

(Keller’s box method) to compute the hydromagnetic natural convection flow from a rotating 

metallic cone in anisotropic permeable media with a Darcy formulation. Jiang et al. [36] used 

a finite volume numerical method to simulate the natural thermomagnetic heat transfer of air 

in a porous cubic enclosure with an electric coil inclined around the vertical axis. They 

computed the mean Nusselt number on the hot boundary and showed that Lorentzian magnetic 

force and coil inclination significantly enhance heat transfer and damp the velocity. Begum et 

al. [37] used a finite difference method to study the free and forced magneto-convection in a 

non-Darcy porous medium enclosure saturated with copper-water nanofluid under oblique 

magnetic field. They showed that with increasing inclination and strength of the magnetic field, 

thermal convection is damped significantly. Iliuta and Larachi [38] computed the two-phase 

pressure drop and the total liquid holdup in hydromagnetic trickle bed reactors with a Kozeny–

Carman approach. Alloui et al. [39] used a finite element code to compute the electromagnetic 

natural convection in a horizontal shallow porous cavity with uniform heat flux on the 

horizontal walls and adiabatic vertical walls. They studied the onset of convection and finite 

amplitude convection rolls for a variety of thermal Rayleigh numbers, Hartmann numbers, 

current intensity ratios and cavity aspect ratio.  

In the present study we develope a MAC (marker and cell) algorithm [40] to simulate heat 

generating MHD flow in a square enclosure containing a high permeability non-Darcy porous 

medium saturated with electrically conducting Helium gas. A local thermal equilibrium (LTE) 

approach is used, and the Brinkman-Forchheimer extended Darcy model is employed for 

porous medium hydrodynamic drag effects [37, 41]. The non-dimensional boundary value 

problem is solved in pressure-velocity form. Extensive visualizations of the impact of Grashof 

number (Gr), Hartmann magnetic number (Ha), Darcy number (Da), and the internal heat 



generation parameter () on streamline and isotherm distributions, with Prandtl number (Pr) 

constrained as 0.71 (Helium) are presented. The variation in local Nusselt number at the left 

and right walls of the enclosure is also studied. Validation and grid-independence tests are 

included. Local Nusselt number is elevated at both left and right walls with greater Darcy 

number (higher medium permeability) and Grashof number.  However, with greater internal 

heat generation, local Nusselt number magnitudes are enhanced at the left (cold) wall only but 

suppressed at the right (hot) wall.  Increasing magnetic field reduces local Nusselt number at 

both left and right walls. With increasing magnetic field, the single vortex is strongly distorted 

and skewed towards the top left and lower right corners of the enclosure. Temperature contours 

at the left and right wall are however less intense with greater magnetic field effect. The 

simulations are of relevance to hybrid electromagnetic gaseous fuel cells, magnetic field 

control of filtration processes and porous media materials processing systems. 

2. ELECTROMAGNETIC CONVECTIVE NON-DARCY MODEL 

Fig. 1 represents the two-dimensional square enclosures with opposing thermal boundary 

conditions. The enclosure of the left (cold) and right (hot) walls are uniform temperatures, TC 

and TH respectively are imposed while the top and bottom walls are considered thermally 

insulated. The mathematical model is developed for the natural convective systems based on 

the following assumptions. 

• Fluid is assumed to be incompressible and Newtonian. 

• The no-slip boundary condition is assumed at the solid boundaries. 

• The fluid flow is assumed to be laminar and two dimensional. 

• The generalized form of the momentum balance equations based on the Brinkman-

Forchheimer extended Darcy model is considered. 



• The thermo-physical properties of the fluid except the density variation in the buoyancy 

term are considered to be constant. The Boussinesq approximation is invoked to relate 

the variation of density with temperature in the body force term. 

• The temperature of the fluid phase is equal to the temperature of the solid phase in the 

case of the porous bed and the local thermal equilibrium (LTE) is applicable. 

• Radiation, viscous dissipation and joule heating effects are negligible. 

Bases on the above assumptions the equations (mass, primary momentum, secondary 

momentum and energy) can be shown to take the form [60]: 
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Here 2 denotes the Laplacian operator. The prescribed boundary conditions at the four walls 

of the enclosure (spatial and temporal) are as follows: 

𝐴𝑡 𝑡 = 0: 𝑢 = 𝑣 = 𝑇 = 0         (5) 

𝑢 = 𝑣 = 0, 𝑇 = 𝑇𝐻  𝑥 = 𝐿 (𝑟𝑖𝑔ℎ𝑡 𝑤𝑎𝑙𝑙)       (6) 

𝑢 = 𝑣 = 0, 𝑇 = 𝑇𝐶 𝑎𝑡 𝑥 = 0 (𝑙𝑒𝑓𝑡 𝑤𝑎𝑙𝑙)       (7) 
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= 0, 𝑦 = 𝐻 (𝑢𝑝𝑝𝑒𝑟 𝑤𝑎𝑙𝑙)        (9) 



Proceeding with the analysis, a set of dimensionless parameters is invoked to normalize the 

nonlinear primitive boundary value problem defined by Eqns. (1)-(9). Defining:  
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Introducing these transformations, the conservation equations with new dependent variables U, 

V,  emerge as follows, in vorticity formulation, with the Forchheimer (quadratic) drag 

coefficient prescribed as Fc= (1.75/ √150) [41], and mass conservation automatically satisfied: 
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The transformed conditions prescribed at the four boundaries now become (ignoring pressure 

terms): 

𝐴𝑡 𝜏 = 0: 𝑈 = 𝑉 = 𝜃 = 0         (14)  

𝑈 = 𝑉 = 0, 𝜃 = −1 𝑎𝑡𝑋 = 0          (15)  



𝑈 = 𝑉 = 0, 𝜃 = 1 𝑎𝑡𝑋 = 1           (16)  

𝑈 = 𝑉 = 0,
𝜕𝜃

𝜕𝑌
= 0 𝑎𝑡 𝑌 = 0 𝑎𝑛𝑑 𝑌 = 1        (17)  

A local Nusselt number i.e. non-dimensional heat transfer rate at the boundary can be 

introduced. For the right (hot) vertical wall of the fuel cell enclosure this takes the form: 

0

0

TT

TT

H −

−
=  

𝑁𝑢 =
𝑞𝐻

𝑘(𝑇𝐻−𝑇𝐶)
= −

1

2
[

𝜕𝜃

𝜕𝑋
]𝑋=1        (18)  

The corresponding average Nusselt number, designated by Nuav, may be computed as follows: 

1

0

1

2
avNu dY

X


= −

            (19) 

3. COMPUTATIONAL FINITE DIFFERENCE MAC SOLUTION  

The eqns. (11)-(17) are converted into conservative weak form and solved with a Harlow-

Welch MAC finite difference code. A stable, convergent solution is achieved utilizing a 

staggered grid system. The streamline patterns within the enclosure are employed with stream 

function and the projection method is adopted for the momentum equation. The stream function 

is computed with:  

,U V
Y X

  
= = −
 

         (20) 

This is solved by the well-known iterative Gauss Seidel method. Further details are given in 

[42]-[45]. Using the weak conservative form of the two-dimensional momentum and heat 

conservation equation a grid meshing procedure is deployed. Since a square enclosure is 

considered (L= H i.e. aspect ratio = 1) a uniform structured mesh of density 80 X 80 is 

implemented which produces grid-independent solutions.  



First order explicit time integration discretization of present investigation as follows 

Now Solve the intermediate velocity as follows 

2 2

2 1 1 75

150

n

n U U U U V
U U t U V U U

X Y Da Da

   + 
= −  − + + − −  

    

** .
(21) 
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**

.
Ha

 (22) 

After obtaining the intermediate velocities, we need to solve the following Pressure Poisson 

Equation (PPE) 

The PEE equation is  

2 1 1n U V
P

t X Y

+   
 = + 

   

** **

        (23) 

The corrected velocities are obtained with the corrector step as given below 

1

1

n

n P
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+

+  
= −   

 

**
          (24) 
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The temperature calculated as follows  

1 21
n

n n U V
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( ) ( )

Pr Pr
   (26) 

Convergence criteria for computer codes is assumed to be 



1 810n n + −−           (27) 

where γ could be any one of the non-primitive flow variables (U, V, T), n denotes iteration 

umber. The following steps are employed to solve the discretized equations. 

Step 1: To calculate the intermediate velocities we solve momentum equations eq. (21) and 

eq. (22) in discretized form first. 

Step 2: Using the computed intermediate velocities, Successive Over-Relaxation (SOR) 

method is used to solve PPE eq. (23). 

Step 3: The final velocity values can be obtained by the computed intermediate velocities and 

pressure in step 2 and step 3. 

Step 4: Using the velocity values calculated in step 4, the thermal transport equations eq. 

(26)) in discretized for are solved to compute temperature in the computational region. 

Verification of the accuracy of the MAC solutions is achieved by benchmarking with the non-

magnetic, non-porous (purely fluid) solutions available in Vahl Davis [46] (second order 

central finite difference technique), Manzari [47] (explicit finite element) and Wan et al. [48] 

(quasi-wavelet-based discrete singular convolution (DSC) technique with Shannon kernel and 

Galerkin finite element method). The comparisons are shown in Tables 1 and 2and the 

associated data isPr = 0.71, Ha = = 0(absence of magnetohydrodynamic effect and internal 

heat generation) and Da→ (infinite permeability i.e. purely fluid enclosure regime). Very 

good correlation is achieved between the MAC solutions with an 80X80 mesh and [46]-[48]. 

The grid differencing design (80 x 80) is visualized in Fig. 2. 

4. MAC NUMERICAL RESULTS FOR GENERAL MODEL  

A detailed parametric study of the influence of the influence of Grashof number (Gr), 

Hartmann magnetic number (Ha), Darcy number (Da), and internal heat generation parameter 



()  on streamline and isotherm distributions has been conducted. In all simulations Prandtl 

number (Pr) is prescribed as 0.71 (electrically conducting Helium at 100 Celsius [27, 28]). The 

contour plots are illustrated in Figs. 3 a, b -20 a, b. Additionally graphs for local Nusselt 

number distributions at the left and right walls of the enclosure are given in Figs. 21 a, b to 24 

a, b. As noted earlier the Forchheimer coefficient is prescribed as Fc= 
1.75

√150
 which corresponds 

to high permeability, sparsely packed porous media [41]. 

Figs. 3a, b- 5a, b presents the contour plots for a variation in Grashof number (Gr). In all plots 

Gr>>0 implying significant thermal convection currents are present in the enclosure fuel cell. 

For all Gr a solitary circulation zone is computed. Fig. 3a, b shows that there is a single 

symmetric vortex (circulation zone) and the isotherms are parallel to the vertical boundaries i.e. 

undistorted. With increasing Grashof number (Fig. 4a,b) the single cell becomes warped 

towards the upper left corner and lower right corners of the enclosure; the isotherms are also 

markedly skewed towards the upper region of the left wall (cold) i.e. they are non-parallel to 

the vertical walls. At highest Grashof number (Fig. 5a, b) the skewness in the single cell is 

exacerbated and streamlines are compressed further in the top left and lower right corners, 

expanding in the other two corners of the cavity. A much more prominent distortion in 

isotherms is observed with a constriction induced in the top left and lower right corners and a 

relaxation in the upper right and lower left corners. Increasing thermal buoyancy relative to 

viscous forces in the enclosure (Grashof number expresses the ratio of these two body forces) 

substantially modifies the vortex structure and heat distribution in the cavity. Asymmetrical 

behaviour is generated in both velocity and temperature fields in the electroconductive Helium 

gas with increasing thermal buoyancy, even in the absence of heat source effect (  =  0) and 

for very low permeability (Da = 0.0001). 



Figs. 6a, b – 10a, b displays the influence of internal heat source parameter () on streamline 

and isotherm distributions. With weak heat generation ( =1) i.e. in Fig. 6a,b, a slight warping 

of the single vortex cell towards the upper left enclosure corner is observed and some distortion 

in isotherms again towards the upper left corner. Isotherms are more closely clustered towards 

the cold left wall and become increasingly dispersed as we progress towards the right wall 

(hot). With increasing heat source effect ( = 2) i.e. in Fig. 7 a, b, there is a progressive skewing 

in the single vortex towards the upper left corner and streamlines are denser towards the left 

cold wall. Isotherms also intensify towards the left wall and expand notably in the right half 

space of the enclosure, distorting increasingly towards the upper left corner. This pattern is 

further amplified with  = 3 i.e. in Fig. 8 a, b, leading to a slight elongation in the vortex in the 

vertical direction and vanishing isotherms in the vicinity of the right hot wall. With  = 4 i.e. 

in Fig. 9 a, b, the single vortex is again expanded vertically, warped further diagonally and the 

isotherm closest to the right hot wall bifurcates. The isotherm bifurcation is further developed 

for  = 5 i.e. in Fig. 10 a, b and the single cell is increasingly compressed towards the left cold 

wall. Heat generation therefore exerts a considerable influence on thermal and momentum 

characteristics of the electrically conducting Helium in the fuel cell enclosure.  

Figs. 11a, b – 14 a, b illustrates the streamline and isotherm distributions for various Darcy 

number (Da). Although Forchheimer drag is present, it is not explicitly varied and all porous 

media drag effects are simulated via Darcy number (which appears both in the Darcian linear 

drag and quadratic drag denominators i.e. −
1

𝐷𝑎
𝑈, −

1.75

√150

𝑈√𝑈2+𝑉2

√𝐷𝑎
 terms in the primary 

momentum Eqn. (11) and −
1

𝐷𝑎
𝑉 , −

1.75

√150

𝑈√𝑈2+𝑉2

√𝐷𝑎
  terms in the secondary momentum Eqn. 

(12)). Clearly as Da is enhanced all drag components are reduced since the matrix offers 

progressively decreasing impedance to the Helium gas flow. With increasing Darcy number 

(i.e. a tenfold rise in permeability) from Da = 0.0001 (Fig. 11a, b) to 0.001 (Fig. 12a, b) a 



strong distortion is computed in both isovels (streamlines) and isotherms. The single cell is 

stretched along the diagonal from the top left corner to the lower right corner of the enclosure 

i.e. is skewed and asymmetric. Isotherms are also and biased towards the left cold wall with 

closer clustering in this vicinity and an expansion away from the right hot wall. However, with 

subsequent increase in Da (Fig. 13 a, b) to 0.01 the single vortex is elongated in the x-direction 

i.e. stretched laterally, although it is larger towards the cold left wall. A stronger compression 

of isotherms is observed towards the left cold wall and a sigmodial distribution emerges from 

the top left to the lower right enclosure corners. Isotherms become significantly separated in 

the central core of the enclosure although some clustering appears towards the right hot wall. 

At highest Darcy number (Fig. 14a, b) with Da = 0.1, there is however a substantial 

modification in the skewness of the vortex cell which is distorted now towards the lower left 

corner and upper right corner; it is strongly asymmetric with a larger zone towards the lower 

left wall and a constricted tilted zone towards the upper right wall. Isotherms are increasingly 

sigmoidal in topology and expand in the central core with intensification at the left cold and 

right walls. The boundary layer structure is significantly modified at the right and left walls 

with greater permeability effect. This is also characteristic of Forchheimer effects as noted by 

Dybbs and Edwards [49]. The Brinkman extended Darcy-Forchheimer model also captures 

vorticity diffusion effects at the boundaries. The pore scale convective inertial effects 

contributing to the form drag lead to a substantial alteration of the velocity field and exacerbate 

the macroscopic region in which the pore scale velocity gradients are large. Forchheimer drag 

simulates the strong inertial flow regime in porous media hydrodynamics. This pertains to the 

regime where the pore Reynolds number based on a consideration of the particle or pore 

diameter, is greater than or equal to unity. At this point the model departs from the purely 

Darcian or viscous-dominated classical porous media transport physics. It is also pertinent to 



note that for the value of Fc specified, vortex formation associated with higher Reynolds 

numbers (greater than 250) has not been considered.  

Figs. 15a, b – 20a, b visualizes the impact of magnetic body force parameter on streamline and 

isotherm distributions. The Lorentzian magnetic body force, -Ha2𝑉,  arises only in the 

secondary momentum Eqn. (12) and acts in the reverse y direction, since the magnetic field 

acts along the x-axis.  Hartmann Number, 0B H
Ha




= signifies the relative contribution of 

Lorentzian magnetic drag force to viscous hydrodynamic force. In all the plots Ha > 1 i.e., 

magnetic force exceeds viscous resistance. At Ha = 5 (Fig. 15a, b) an asymmetrical laterally 

elongated single cell is computed with a larger zone towards the left wall and a narrower zone 

towards the right wall. Isotherms are also sigmoidal in nature from the top left corner to the 

lower right corner and some clustering is present at the left and right walls. With progressive 

increase in Ha to 10 (Fig. 16a, b), 25 (Fig. 17a, b) there is a warping in the vortex towards the 

upper left corner and lower right corner and the asymmetry is reduced somewhat.  With yet 

greater magnetic field intensity for Ha = 30 (Fig. 18a, b), 35 (Fig. 19a, b) and 50 (Fig. 20a, b) 

the vortex is increasingly stretched in the diagonal direction from the upper left to the lower 

right corner and symmetrical in nature. The isotherms at the left and right walls become 

increasingly parallel to these boundaries and expand in the core region. With greater magnetic 

field, a larger amount of work has to be utilized to drag the electroconductive Helium gas 

against the action of the vertical Lorentzian drag force. This supplementary work used is 

dissipated as thermal energy and this elevates temperatures in the cavity.  

Figs. 21a, b- 24a, b displays the distributions of local Nusselt number (Nu) with vertical 

coordinate at both the left (cold) and right (hot) walls with all key parameters again for the case 

of Prandtl number Pr = 0.71 (ionized Helium). As with all other graphs the thermal diffusivity 

therefore exceeds the momentum diffusivity in the regime (Pr< 1). Figs. 21a, b shows that 



with higher Grashof number i.e. increasing thermal buoyancy (natural convection) effect, 

although Nu is initially reduced for small values of Y (i.e. closer to the base wall), some distance 

upwards along the cold left wall, a significant increase in local Nusselt number is generated.  

Conversely at the right hot wall, although there is a strong elevation in local Nusselt number 

for most of the distance along the wall, at high Y values this trend is reversed and Nusselt 

number is found to be slightly reduced. At low Grashof number (Gr = 2x104) the local Nusselt 

number is constant along both left and right walls i.e. unaffected by location along the wall. 

Figs. 22 a, bindicate, that greater Hartmann number, Ha, i.e. increasing magnetic field reduces 

local Nusselt number at both left and right walls. However, while Nu is a maximum at the top 

of the left wall, it is a minimum at the top of the right wall. Maximum Nu is observed at the 

base of the right hot wall and minimum Nu computed at the base of the left cold wall. All 

maxima correspond to the electrically non-conducting Helium gas case i.e. Ha =0. Heat transfer 

rates to the left and right walls are therefore differently influenced with increasing magnetic 

field strength. Although heating is induced within the enclosure with stronger magnetic field 

(see Figs. 15a, b – 20a, b), this manifests in a suppression of thermal energy migrating to both 

vertical boundaries. Figs. 23a, b demonstrates that, with greater internal heat generation, local 

Nusselt number magnitudes are enhanced at the left (cold) wall only but suppressed at the right 

(hot) wall. These patterns are sustained for all locations along either wall. Finally Figs. 24 a,b 

show that with greater Darcy number (higher medium permeability), although there is an initial 

reduction in  Nu at the left cold wall, this is quickly superseded by a very strong elevation in 

local Nusselt number, a short distance from the base of the enclosure. Local Nusselt number at 

the right hot wall, although initially decreased near the top of the right wall, is subsequently 

considerably enhanced with increasing Darcy number at all other locations along the wall all 

the way to the enclosure base. Permeability of the enclosure fuel cell therefore substantially 



modifies the heat transfer rate to the vertical boundaries, and this may be exploited in fuel cell 

designs [27, 29, 30].  

 

5.CONCLUSIONS 

Motivated by exploring new hybrid designs for magnetohydrodynamic (MHD) ionized gas 

porous media fuel cells, an analytical and numerical study of natural magneto-convection in an 

isotropic non-Darcian porous medium saturated with electrically conducting Helium in a two-

dimensional enclosure with heat source is presented. A Brinkman-extended Darcy-

Forchheimer model is employed and the medium is assumed to be homogenous and non-

deformable. The non-dimensional mass and primary and secondary momentum conservation 

equations and boundary conditions imposed at the four sides of the enclosure are converted to 

vorticity form and solved with a Harlow-Welch marker and cell (MAC) finite difference 

technique. Verification of the accuracy of the MAC code is achieved with comparison with 

previous studies for air in the absence of magnetic field and porous media effects. Mesh-

independence tests are also conducted. The simulations have shown that: 

(i) With increasing Grashof number (thermal buoyancy) the skewness in the single 

vortex cell is amplified and streamlines are compressed further in the top left and 

lower right corners, expanding in the other two corners of the cavity. A strong 

distortion in isotherms is also observed with a constriction induced in the top left 

and lower right corners and a relaxation in the upper right and lower left corners. 

Furthermore, local Nusselt number is elevated at both left and right walls with 

higher Grashof number.  

(ii) With greater internal heat generation, the single vortex is expanded vertically, and 

the isotherm closest to the right hot wall bifurcates, with clustering of isotherms 



towards the left cold wall. Local Nusselt number magnitudes are enhanced at the 

left (cold) wall whereas they are reduced at the right (hot) wall and this behaviour 

at both walls is sustained for all locations. 

(iii) At lower Darcy number (low medium permeability) the single cell is stretched along 

the diagonal from the top left corner to the lower right corner of the enclosure i.e. 

is skewed and asymmetric and isotherms are also and biased towards the left cold 

wall with closer clustering in this vicinity. At high Darcy number however the 

skewness of the vortex cell is adjusted towards the lower left corner and upper right 

corner; it is strongly asymmetric with a larger zone towards the lower left wall and 

a constricted zone towards the upper right wall. Isotherms are increasingly 

sigmoidal in topology at higher Darcy number and expand in the central core with 

intensification at the left cold and right walls and Forchheimer effects markedly 

modify the boundary layer structure at both vertical boundaries. Increasing Darcy 

number (higher medium permeability), initially decreases local Nusselt number at 

the left cold wall (closer to the base of the enclosure), but shortly thereafter produces 

a considerable elevation in local Nusselt number. Local Nusselt number at the right 

hot wall, although initially decreased near the top of the right wall, is subsequently 

considerably enhanced with increasing Darcy number at all other locations along 

this wall. 

(iv) At lower Hartmann numbers (weaker magnetic field), an asymmetrical laterally 

elongated single cell is computed with a larger zone towards the left wall and a 

narrower zone towards the right wall. Isotherms are also sigmoidal in nature from 

the top left corner to the lower right corner and some clustering is present at the left 

and right walls. However, with higher Hartmann number, a significant distortion is 

induced in the vortex cell towards the upper left corner and lower right corner and 



the asymmetry is reduced; isotherms are also intensified at the left wall with 

stronger magnetic field. Increasing magnetic field additionally depletes local 

Nusselt number at both left and right walls. 

(v) The present MAC code has revealed some interesting thermal fluid characteristics 

for hybrid fuel cells. However, attention has been confined to rigid boundaries. 

Future studies may examine wavy sinusoidal boundaries and efforts in this regard 

will be communicated imminently.  
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FIGURE CAPTIONS. 

 

Fig 1: Physical model for hybrid electromagnetic Helium porous medium fuel cell enclosure 

Figure 2: Uniform finite difference mesh for square enclosure (hybrid fuel cell geometry) 

Fig. 3 a) Streamlines and b) Isotherms for Gr = 2X104, Pr = 0.71; Ha = 5; Da = 0.0001 and 

  =  0 

Fig. 4 a) Streamlines and b) Isotherms for Gr = 2 X 105, Pr = 0.71; Ha = 5; Da = 0.0001, and 

  =  0 

Fig. 5 a) Streamlines and b) Isotherms for Gr = 2X106, Pr = 0.71, Ha = 5, Da = 0.0001 and 

  =  0 

Fig 6 a) Streamlines and b) Isotherms for Gr = 2X 105, Pr = 0.71, Ha = 5, Da = 0.0001 and 

  =  1 

Fig. 7a) Streamlines and b) Isotherms for Gr = 2X 105, Pr = 0.71, Ha = 5, Da = 0.0001 and 

  =  2 

Fig. 8 a) Streamlines and b) Isotherms for Gr = 2X105, Pr = 0.71, Ha = 5, Da = 0.0001 and 

  =  3 

Fig. 9 a) Streamlines and b) Isotherms for Gr = = 2X105; Pr = 0.71, Ha = 5, Da = 0.0001, 

and   =  4 

Fig. 10a) Streamlines and b) Isotherms for Gr = 2X105; Pr = 0.71; Ha = 5; Da = 0.0001 and 

  =  5 

Fig 11a) Streamlines and b) Isotherms for Gr = 2X 105,  Pr = 0.71,  Ha = 5,   =  1 and Da = 

0.0001. 



Fig 12 a) Streamlines and b) Isotherms for Gr = 2 X105, Pr = 0.71, Ha = 5,   =  1 and Da = 

0.001 

Fig 13a) Streamlines and b) Isotherms for Gr = 2 X105, Pr = 0.71, Ha = 5,   =  1 and Da = 

0.01 

Fig 14a) Streamlines and b) Isotherms for Gr = 2 X 105, Pr = 0.71, Ha = 5,   =  1 and Da = 

0.1 

Fig 15a) Streamlines and b) Isotherms for Gr = 2X105, Pr = 0.71,   =  1, Da = 0.01 and Ha 

= 5 

Fig 16 a) Streamlines and b) Isotherms for Gr = 2X105, Pr = 0.71,   =  1, Da = 0.01 and Ha 

= 10 

Fig 17a) Streamlines and b) Isotherms for Gr = 2X105, Pr = 0.71,   =  1, Da = 0.01 and Ha 

= 25 

Fig 18a) Streamlines and b) Isotherms for Gr = 2X105, Pr = 0.71,   =  1, Da = 0.01 and Ha 

= 30 

Fig 19a) Streamlines and b) Isotherms for Gr = 2X105, Pr = 0.71,   =  1, Da = 0.01 and Ha 

= 35 

Fig 20a) Streamlines and b) Isotherms for Gr = 2X105, Pr = 0.71,   =  1, Da = 0.01 and Ha 

= 50 

Fig. 21 Local Nusselt number for a) left cold wall, b) right hot wall with Pr = 0.71, Ha = 5, Da 

= 0.0001,  =1 for different Grashof (thermal buoyancy) numbers (Gr) 

Fig. 22 Local Nusselt number for a) left cold wall, b) right hot wall with Gr = 2X105, Pr = 

0.71, Da = 0.01,  = 1 for different Hartmann magnetic numbers (Ha) 



Fig. 23 Local Nusselt number for a) left cold wall, b) right hot wall with Pr = 0.71, Ha = 5, 

Da = 0.0001, Gr =2X105 for different internal heat source parameters () 

Fig. 24 Local Nusselt number for a) left cold wall, b) right hot wall with Pr = 0.71, Ha = 5,   

=1, Gr =2X105 for different Darcy numbers (Da) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TABLES 

Table. 1. Grid independence and validation for Average Nusselt number (Nu) with Pr= 0.71 

 

Ra 

 

Nu 

 

Ref. [46] 

(central 

finite 

differences) 

 

Ref. [47] 

(explicit 

finite 

elements) 

 

Ref. [48] 

FEM 

 

Present  

study 

40X40 

Present  

study 

80X80 

Present  

study 

120X120 

Present  

study 

160X160 

104 Average 2.243 2.084 2.254 2.2526 2.2455 2.2444 2.2442 

 

Table. 2. Comparison of Average Nusselt number (Nu) with Pr = 0.71 

 

Ra 

 

Nu 

 

Ref. [46] 

(central finite 

differences) 

 

Ref. [47] 

(explicit finite 

elements) 

 

Ref. [48] 

FEM 

(discrete singular 

convolution and 

Galerkin method) 

Present study 

(MAC) 

103 Average 1.12 1.074 1.117 1.1185 

104 Average 2.243 2.084 2.254 2.2526 

105 Average 4.52 4.3 4.598 4.5907 

106 Average 8.8 8.743 8.976 8.9905 

 

 

 

 

 

 

 

 

 

 



 

FIGURES 

 

Fig 1: Physical model for hybrid electromagnetic Helium porous medium fuel cell enclosure 

 

 

Figure 2: Uniform finite difference mesh for square enclosure (hybrid fuel cell geometry) 

 

 



 

Fig. 3 a) Streamlines and b) Isotherms for Gr = 2X104, Pr = 0.71; Ha = 5; Da = 0.0001;  =  0 

 

 

 

 

Fig. 4 a) Streamlines and b) Isotherms for Gr = 2 X 105, Pr = 0.71; Ha = 5; Da = 0.0001;  =  0 

 

 

 



 

Fig. 5 a) Streamlines and b) Isotherms for Gr = 2X106, Pr = 0.71, Ha = 5, Da = 0.0001,  =  0 

 

 

 

 

 
 

 

Fig 6 a) Streamlines and b) Isotherms for Gr = 2X 105, Pr = 0.71, Ha = 5, Da = 0.0001,  =  1 

 

 

 



 

 

 

Fig. 7a) Streamlines and b) Isotherms for Gr = 2X 105, Pr = 0.71,  Ha = 5,  Da = 0.0001 and   =  2 

 

 

 

 

 

 

 
 

 

 
 

Fig. 8 a) Streamlines and b) Isotherms for Gr = 2X105, Pr = 0.71, Ha = 5, Da = 0.0001 and   =  3 

 

 



 
 

 

 

Fig. 9 a) Streamlines and b) Isotherms for Gr = = 2X105; Pr = 0.71; Ha = 5; Da = 0.0001;  =  4 

 

 
 

 

 

 

 

 

 

 
 

Fig. 10a) Streamlines and b) Isotherms for Gr = 2X105; Pr = 0.71; Ha = 5; Da = 0.0001;  =  5 

 

 

 

 



 
 

 

 

Fig 11a) Streamlines and b) Isotherms for Gr = 2X 105; Pr = 0.71; Ha = 5;  =  1; Da = 0.0001. 

 

 

 
 

 

 

Fig 12 a) Streamlines and b) Isotherms for Gr = 2 X105, Pr = 0.71, Ha = 5,   =  1, Da = 0.001 

 

 

 

 

 



 
 

 

 

Fig 13a) Streamlines and b) Isotherms for Gr = 2 X105, Pr = 0.71, Ha = 5,   =  1, Da = 0.01 

 

 

 

 

 

 

 

 

 
 

 

Fig 14a) Streamlines and b) Isotherms for Gr = 2 X 105, Pr = 0.71, Ha = 5,   =  1,Da = 0.1 

 

 



 
 

Fig 15a) Streamlines and b) Isotherms for Gr = 2X105, Pr = 0.71,   =  1, Da = 0.01, Ha = 5 

 

 

 

 

 

 

Fig 16 a) Streamlines and b) Isotherms for Gr = 2X105, Pr = 0.71,   =  1, Da = 0.01, Ha = 10 

 

 

 

 

 



 

 

 

 

Fig 17a) Streamlines and b) Isotherms for Gr = 2X105, Pr = 0.71,   =  1, Da = 0.01, Ha = 25 

 

 

 

 

 

Fig 18a) Streamlines and b) Isotherms for Gr = 2X105, Pr = 0.71,   =  1, Da = 0.01, Ha = 30 

 

 

 

 



 
 

 

 

Fig 19a) Streamlines and b) Isotherms for Gr = 2X105, Pr = 0.71,   =  1, Da = 0.01, Ha = 35 

 

 

 

 

 

 

 

Fig 20a) Streamlines and b) Isotherms for Gr = 2X105, Pr = 0.71,   =  1, Da = 0.01,  Ha = 50 

 

 



 

a) Left wall 

 

b) Right wall 

 

Fig. 21 Local Nusselt number for a) left cold wall, b) right hot wall with Pr = 0.71, Ha = 5, Da 

= 0.0001,  =1 for different Grashof (thermal buoyancy) numbers (Gr) 



 

a) Left wall 

 

b) Right wall 

 

Fig. 22 Local Nusselt number for a) left cold wall, b) right hot wall with Gr = 2X105, Pr = 

0.71, Da = 0.01,  = 1 for different Hartmann magnetic numbers (Ha) 



 

 

a) Left wall 

 

b) Right wall  

Fig. 23 Local Nusselt number for a) left cold wall, b) right hot wall with Pr = 0.71, Ha = 5, 

Da = 0.0001, Gr =2X105 for different internal heat source parameters () 



 

 

 
a) Left wall  

 
 

b) Right wall  

Fig. 24 Local Nusselt number for a) left cold wall, b) right hot wall with Pr = 0.71, Ha = 5, 

  =1, Gr =2X105 for different Darcy numbers (Da) 


