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Abstract: Seagrass communities provide critical ecosystem and provisioning services for both 37 

human populations and a wide range of associated species globally. However, it has been 38 

reported that seagrass area is decreasing at a rapid rate in many parts of the world, mostly due to 39 

anthropogenic activities including global change (pollution and climate change). The aim of this 40 

review article is to highlight the range of current tools for studying seagrasses as well as identify 41 

the benefits and limitations of a range of remote sensing and traditional methodologies. This 42 

paper provides a discussion of the ecological importance of seagrass meadows, and recent trends 43 

and developments in seagrass research methods are discussed including the use of satellite 44 

images and aerial photographs for seagrass monitoring and various image processing steps that 45 

are frequently utilised for seagrass mapping. The extensive use of various optical, Radar and 46 

LiDAR data for seagrass research in recent years has also been described in detail. The review 47 

concludes that the recent explosion of new methods and tools available from a wide range of 48 

platforms combined with the recent recognition of the importance of seagrasses provides the 49 

research community with an excellent opportunity to undertake a range of timely research. This 50 

research should include mapping the extent and distribution of seagrasses, identifying the drivers 51 

of change and factors that confer resilience, as well as quantification of the ecosystem services 52 

provided. Whilst remotely sensed data provides an important new tool it should be used in 53 

conjunction with traditional methods for validation and with a knowledge of the limitations of 54 

results and careful interpretation.  55 

 56 

Keywords: Submerged marine vegetation, Coastal ecosystems, Marine environment, Coastal 57 

management.   58 

 59 
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1. Introduction: Seagrass communities and their ecological importance 60 

Seagrass meadows are regarded as some of the most productive ecosystems, together 61 

with salt marshes, mangroves and coral reefs (Costanza et al. 1998; Ward et al. 2016a; Veettil et 62 

al. 2018a,b). Seagrasses occupy lower elevation coastal areas than salt marshes and mangroves 63 

(Short et al. 2007; Fortes 2012; Lima et al. 2020), and as a result are more frequently inundated, 64 

with seagrasses typically located in lower intertidal or subtidal zones. 65 

Seagrasses have a wide global distribution, covering temperate and tropical coastlines 66 

across 6 different bioregions, namely: 1. Temperate North Atlantic (from North Carolina, USA 67 

to Portugal); 2. Tropical Atlantic (both tropical coats of Atlantic, Caribbean Sea, Gulf of Mexico, 68 

Bermuda and the Bahamas); 3. Mediterranean (Mediterranean Sea, the Black, Caspian and Aral 69 

Seas and northwest Africa); 4. Temperate North Pacific (From Korean Coast to Baja, Mexico); 70 

5. Tropical Indo-Pacific (tropical Australia to the eastern Pacific, East Africa, and South Asia); 6. 71 

Temperate Southern Oceans (New Zealand, temperate Australia, South America and South 72 

Africa) (Short et al. 2007) (Figure 1). Seagrass species diversity varies with region, with the 73 

highest diversity found in South East Asia (Green and Short 2003). Two environmental variables 74 

that strongly influence the distribution of seagrasses are sea surface temperature (SST) and 75 

salinity (Chefaoui et al. 2016). Other factors include turbidity, water currents, solar radiation, 76 

nutrients, oxygen and sulphides (McMahon et al. 2014; Glasby et al. 2015). The distribution of 77 

seagrasses in different climate conditions can be species dependent (Short et al. 2007). For 78 

example, key seagrass genera along the tropical coastal areas are: Cymodocea, Enhalus, 79 

Halodule, Halophila, Syringodium and Thalassia; whereas Amphilobis, Phyllospadix, Posidonia 80 

and Zostera dominate in temperate regions; and Thalassodendron and Ruppia have a global 81 

distribution (Short et al. 2007). Due to the influence of various environmental factors on seagrass 82 
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distribution, these species can be considered as excellent bio-indicators of climate change and 83 

ecosystem health (Foden et al. 2013; Fourqurean et al. 2012; Marba et al. 2013).  84 

Seagrasses play an important role as primary producers, as well as providing a habitat 85 

and breeding ground for many marine animals including shrimp, sea urchins and clams, and 86 

endangered species, such as turtles and marine mammals (e.g. dugong and manatee), and 87 

migratory birds (e.g. Egretta spp.) (Bujang et al. 2006; Short et al. 2007; Fortes 2012). 88 

Seagrasses can also act as a buffer between land and marine environments, filtering nutrients and 89 

contaminants from the water column, and reducing turbidity by slowing currents and trapping 90 

suspended sediment particles (Fortes 2012; Potouroglou et al. 2017). Seagrasses also play an 91 

important role in climate change mitigation through rapid rates of carbon sequestration and high 92 

carbon storage capacity, which can be locked away for millennia (McLeod et al. 2011; Duarte et 93 

al. 2013; Duarte and Krause-Jensen 2017). 94 

In addition to their role as carbon sinks, seagrass meadows have historically provided 95 

numerous ecosystem services, directly or indirectly, dating back to the 16
th

 century (Campagne 96 

et al. 2015; Cullen-Unsworth et al. 2014; Nordlund et al. 2016, 2017). A few examples of these 97 

come from centuries old records of seagrass litter being used as bedding, straw substitutes for 98 

thatching stoned roofs in Scotland, and even in agriculture (Urquhart 1824; Willis 1983; 99 

Terrados and Bodrum 2004; Nordlund et al. 2016). Furthermore, small-scale fisheries are largely 100 

dependent on seagrass communities and their role as nursery areas for various economically 101 

valuable fish species and marine invertebrates (Torre-Castro et al. 2014; Unsworth and Unsworth 102 

2016; Nordlund et al. 2017; Vonk et al. 2008; Jones et al. 2018).  103 

Despite the high economic value provided by ecosystem services, seagrass area is in 104 

global decline due to a range of factors including alterations in coastal habitat (Micheli et al. 105 
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2008), eutrophication (Burkholder et al. 2007), invasive algal or plant species (e.g. Caulerpa 106 

taxifolia) (Short et al. 2007), invertebrate grazing (Statton et al. 2015), sea level rise (Saunders et 107 

al. 2013; Garner et al. 2015), climate extremes (Arias-Oritz et al. 2018) and climate change 108 

(Duarte et al. 2018; Lima et al. 2020) and regional climate impacts such as high energy storms 109 

(Orth et al. 2006a; Duarte et al. 2008; Waycott et al. 2009). Seagrass decline is one of the factors 110 

accelerating the broader degradation of marine habitats around the world (Waycott et al. 2009). 111 

Due to the high importance and value of seagrass ecosystem services to global biodiversity, 112 

human well-being and climate change mitigation, it is crucial to understand and acknowledge 113 

research methodologies for evaluating the location, extent and ecosystem health and benefit of 114 

seagrass systems. To date, seagrass monitoring methods have primarily used in-situ approaches 115 

including SCUBA/snorkeling surveys (Gotceitas et al. 1997), ground-based sampling (Moore et 116 

al. 2000), and hovercraft-based mapping (McKenzie 2003). More recently, active and passive 117 

remote sensing approaches have been introduced to estimate the cover and quality of seagrass 118 

habitats (Duffy et al. 2018). Other methods, such as active acoustic remote sensing using side 119 

scan sonar, have also been deployed to quantify seagrass meadow cover (Barrell et al. 2015; 120 

Hossain et al. 2015b), whilst passive spectral sensors on-board platforms such as satellites or 121 

light aircraft have proven useful to quantify seagrass meadow dynamics (e.g. Baumstark et al. 122 

2016; Cunha et al. 2005). However, remote sensing techniques still have limitations to be 123 

overcome, especially regarding spatial resolution, which restrict the focus of studies to 124 

identification and mapping of seagrass areal extent. Even using fine spatial resolution satellite 125 

data, individual seagrass plants or shoots cannot be detected (Stekoll et al. 2006; Valle et al. 126 

2015; Duffy et al. 2018). For this reason, the development of new and scale-appropriate methods 127 
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for quantifying and monitoring changes in seagrass ecosystems remain important, to improve the 128 

way that drivers of change are understood, and allow for improved management.  129 

The aim of this review article is to provide an overview of seagrass research methods in 130 

order to highlight limitations and benefits to using various techniques derived from a range of 131 

remote sensing platforms (spaceborne/airborne/UAV/AUV/boat), including passive and active 132 

methods such as hyperspectral, multispectral, stereoscopic aerial imagery, LiDAR, RADAR and 133 

side scan, and the added benefits of combining these with traditional research methods. 134 

 135 

2. The role of remote sensing in seagrass research 136 

For a global level assessment of various terrestrial and marine ecosystems, field surveys 137 

are too time consuming and expensive. Remote sensing, particularly using spaceborne datasets, 138 

can provide relevant and long-term data for analysing ecosystem changes (Murray et al. 2018). 139 

Spaceborne and airborne remote sensing has been widely used for monitoring and mapping 140 

seagrass ecosystems throughout the world (Chauvaud et al. 1998; Dekker et al. 2007). Recently, 141 

methods for the acquisition and interpretation of optical/acoustic data for the mapping of 142 

seagrass habitats have advanced rapidly (Ferwerda et al. 2007; Hossain et al. 2015b). Remote 143 

sensing applications on seagrass ecosystems can be primary (detection of seagrasses, spatial 144 

coverage, species-level discrimination, biomass detection, growth patterns and degradation) or 145 

secondary (environmental variables influencing seagrasses such as SST, salinity, sea-level rise. 146 

pollution, detection of epiphytes, etc.) (Chauvaud et al. 1998; Dekker et al. 2007; Ferwerda etal. 147 

2007; Hossain et al. 2015b, 2019).  148 

Compared with terrestrial plant ecosystems, seagrass ecosystems are more dynamic and 149 

change significantly over space and time (Frederiksen et al. 2004) and the principle difficulty in 150 
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seagrass remote sensing (particularly when using passive remote sensing systems) arises from 151 

the fact that these are often submerged (Duffy et al. 2018). Despite these difficulties remote 152 

sensing surveys of seagrass ecosystems can be undertaken using terrestrial/underwater 153 

photography and videography, airborne data (including unmanned aerial vehicles - UAVs), and 154 

satellite imagery (Hossain et al. 2015b).    155 

 156 

2.1 Principles of seagrass remote sensing  157 

Many direct remote sensing methods are based on spectral reflectance measures of 158 

chlorophyll and other constituents in leaves (Qiu et al. 2019). Leaf reflectance characteristics are 159 

influenced by surface features, structure and biochemical components of the leaf (Thorhaug et al. 160 

2007). The spectral reflectance of seagrasses and attenuation of the useful portion in the 161 

electromagnetic spectrum (mainly visible [400-700 nm] and infrared radiation [1000-2000 nm]) 162 

by its surrounding aquatic environment are key factors influencing the quality of seagrass remote 163 

sensing (Thorhaug et al. 2006). Electromagnetic radiation (EMR) from the sun (for passive 164 

remote sensing) or the sensor (for active remote sensing) undergoes atmospheric scattering and 165 

underwater attenuation twice for each medium. Large differences in reflectance in visible and 166 

infrared wavelengths are used for discriminating terrestrial plants using optical remote sensing 167 

(Borregaard et al. 2000). However, in the case of submerged seagrass communities, the visible 168 

wavelength penetrates the water column whereas wavelengths beyond 680 nm undergo 169 

significant attenuation (Kirk 1994; Kirkman 1996) and hence the most suitable method while 170 

using optical data is to utilize the differences in spectral reflectance within visible wavelengths 171 

(Dekker et al. 2007). Both atmospheric correction and estimating the water attenuation 172 
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coefficient are necessary for mapping seagrass communities using optical remote sensing data 173 

(Giardino et al. 2019).  174 

In coastal waters, spectral scattering and absorption by phytoplankton, suspended 175 

sediments and dissolved organic substances further restricts the application of remote sensing of 176 

seagrasses (Dekker et al. 1992; Giardino et al. 2019). Underwater absorption of electromagnetic 177 

radiation is principally caused by phytoplankton, organic and inorganic particulates, dissolved 178 

organic materials and water molecules whereas scattering is mainly caused by suspended 179 

(organic/inorganic) sediments (Hossain et al. 2015b). Absorption and scattering increase with 180 

depth through the water column, causing an exponential reduction in light intensity, which 181 

means that the possibility of spectral discrimination of seagrass communities using optical 182 

remote sensing data rapidly decreases with depth (Zimmerman and Dekker 2007).  183 

 184 

2.2 Types of remote sensing data for seagrass research 185 

A wide range of remotely sensed datasets, including aerial, terrestrial and underwater 186 

photography, and satellite imagery have been used for seagrass research in recent decades (e.g. 187 

Mumby et al. 1997; Dekker et al. 2007; Hossain et al. 2015b, 2015c; Hossain and Hashim 2019). 188 

Both active and passive sensors have been employed for data collection in recent years and used 189 

for seagrass research (Ferwerda et al. 2007; Hossain et al. 2015b; Duffy et al. 2018). Various 190 

factors dependent on the objective of the study need to be considered when selecting remotely 191 

sensed data for seagrass research, including: spatial resolution, spectral resolution (e.g. 192 

multispectral and hyperspectral), radiometric resolution, temporal coverage, remote sensing 193 

system (active or passive), platform (e.g. terrestrial, underwater, airborne, spaceborne) and 194 

ranging techniques (e.g. Radar, LiDAR). 195 
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In this paper, we have classified the data used for seagrass research as airborne and 196 

spaceborne remote sensing. However, active remote sensing systems (Radar and LiDAR) are 197 

discussed separately because distinct acquisition and processing techniques are applied while 198 

using these datasets. Furthermore, a separate section is provided to discuss new trends in using 199 

UAVs for seagrass research.  200 

 201 

2.2.1 Seagrass remote sensing using terrestrial and underwater photography/videography  202 

Terrestrial photographs have been traditionally used for documenting coastal areas 203 

(Robbins and Bell 1994). However, due to a number of limitations, very few studies exist on the 204 

use of this method for mapping or monitoring seagrass habitats (e.g. Andrade and Ferreira 2011; 205 

Gonzalez 2015) compared to underwater photography/videography (e.g. Burdick and Kendrick 206 

2001; McDonald et al. 2006). Terrestrial oblique large-scale photography can be used for cost-207 

effective and repeated coverage over short time intervals, even though ground control points 208 

(GCPs) using a GPS tracker are required for image rectification and to create orthogonal views 209 

for mapping seagrass meadows by applying a suitable image classification algorithm (Andrade 210 

and Ferreira 2011). Recently, Alvsvåg (2017) used photographs from a DSLR camera mounted 211 

on an Autonomous Surface Vehicle (ASV) to map seagrass habitats in Hopavågen (Norway).  212 

Underwater photography (Figure 2) and videography are widely used for regional-scale 213 

seagrass habitat studies, including the interrelationship among organisms (Norris et al. 1997; 214 

Burdick and Kendrick 2001; McDonald et al. 2006). Images and/or video can be taken by 215 

SCUBA divers or using remotely operated or autonomous underwater vehicles (AUVs) 216 

(Armstrong et al. 2006), towed or drop-down video (Andrade and Ferreira 2011). Underwater 217 

photography can be used for measuring structural characteristics, such as the number of leaves, 218 
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leaf length, and shoot density (Borg et al. 2006). Underwater videography can also be used for 219 

detecting changes in seagrass cover (e.g. McDonald et al. 2006), characterization of seagrass 220 

habitat (e.g. Haag et al. 2008) and species identification in extremely shallow or clear water 221 

(Norris et al. 1997). AUVs are very time-effective, since they can be used to measure canopy 222 

structure and estimate above-ground biomass using captured stereo imagery (Roelfsema et al. 223 

2015). Furthermore, AUV data can be used for calibrating and validating satellite data 224 

(Roelfsema et al. 2015), as AUV data collection can have spatial and temporal consistency, 225 

repeatability, and be used in deeper waters. AUVs can also capture stereo imagery to measure 226 

canopy structure and to estimate above-ground biomass and can be compared with labour 227 

intensive in situ data collection (Roelfsema et al. 2015). Light-weight AUVs are used effectively 228 

in seagrass research (e.g. Vasilijevic et al. 2014) and the integration of AUV data with high 229 

resolution satellite data (e.g. WorldView-2, IKONOS) can offer high quality, multi-temporal 230 

mapping of seagrass at a species level as well as biomass estimation (Roelfsema et al. 2014). 231 

Tecchiato et al. (2015) successfully utilised underwater photography integrated with sediment 232 

data and geomorphological information to understand the influence of geomorphology and 233 

sedimentary processes on seagrass habitat distribution. Further improvements to underwater 234 

imaging can be achieved by utilising hyperspectral imagery, which can be used as a substitute for 235 

in situ data for species-level identification (Bongiorno et al. 2018; Dumke et al. 2018). Improved 236 

classification techniques are being tested for real-time classification of seagrass meadows using 237 

underwater photography (e.g. Bonin-Font et al. 2018; Martin-Abadal et al. 2018). A summary of 238 

studies that utilise underwater photography and videography is provided in Appendix 1.  239 

 240 

2.2.2 Seagrass remote sensing using aerial photographs and airborne hyperspectral data  241 
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Airborne data, including aerial photographs and videography, have been widely used in 242 

seagrass research (Kendrick et al. 2000; Pasqualini et al. 2001; Frederiksen et al. 2004; Lathrop 243 

et al. 2006; Fletcher et al. 2009; Young et al. 2010). Both passive (photographs, multispectral 244 

and hyperspectral data) and LiDAR data can be obtained from airborne platforms.    245 

Quantitative seagrass mapping using aerial photographs has been widely used (e.g. 246 

Ferguson et al. 1993; Hernández-Cruz et al. 2006; Orth et al. 2006b; Fletcher et al. 2009; Cuttriss 247 

et al. 2013), mainly because the visible wavelength undergoes less attenuation underwater than 248 

other spectra (Kirkman 1996). Simple transformation techniques (e.g. Red Green Blue to 249 

Intensity Hue Saturation) and image thresholding can be used to map seagrass areas from aerial 250 

photographs (Fletcher et al. 2009). Aerial photographs have also been used for long-term 251 

temporal and spatial monitoring of seagrass meadows. For example, Hernández-Cruz et al. 252 

(2006) documented decadal spatial changes in seagrass meadows between 1937 and 2000 in 253 

Puerto Rico. A number of classification techniques, such as on-screen digitizing (Orth et al. 254 

2006b; Murdoch et al. 2007), principal component analysis (PCA) (Ferrat et al. 2003), multi-255 

scale image segmentation and object-oriented image analysis, have been applied to digital 256 

photographs for mapping the extent and density of seagrasses (Lathrop et al. 2006). The accuracy 257 

of time-series seagrass mapping using aerial photographs depends on the mapping methods 258 

applied (Meehan et al. 2005). On-screen digitizing, even though time consuming and depending 259 

on the expertise of the researcher, can provide highly accurate seagrass maps if high resolution 260 

aerial photographs are used. Even with low resolution aerial photography, the spatial distribution 261 

pattern of seagrasses can be estimated (Robbins 1997), particularly where meadows are not 262 

patchy. New image processing techniques, such as linear spectral unmixing, have been applied 263 

recently on aerial photographs to improve seagrass mapping for identifying small seagrass 264 
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patches and masking the bare substrate (Uhrin and Townsend 2016). In shallow marine 265 

environments where red light reaches the seabed, digital aerial photographs can also be used to 266 

differentiate epiphytes (mostly red/brown) from seagrasses (mostly green) (Mount 2006, 2007). 267 

At greater depths a combination of aerial photographs for shallow waters (0-20 m) and side-scan 268 

sonar (SSS) for deep coastal regions (20-50 m) is recommended due to the differences in light 269 

attenuation depth (e.g. Pasqualini et al. 1998; Leriche et al. 2006). Different types (colour, false 270 

colour near-infrared, and black and white) of aerial photographs can also be used for seagrass 271 

mapping in coastal areas with varying depths (e.g. Ferguson et al. 1993; Pasqualini et al. 2001; 272 

Young et al. 2008, 2010).  273 

Even though aerial photographs can be used to discriminate habitat features at a fine 274 

scale, the lack of capacity to record in multiple bands (Hossain et al. 2015b) and dependency on 275 

water quality (Hernández-Cruz et al. 2006) are drawbacks to the use of these data. Furthermore, 276 

photometric variation inherent in aerial photography is a major source of misclassification when 277 

seagrass mapping/classification relies solely on digital image processing techniques (Meehan et 278 

al. 2005; Young et al. 201). Airplane-derived aerial photographs are also expensive to acquire, in 279 

place of these a few recent studies (e.g. Barrel and Grand 2015) used cost-effective methods such 280 

as low altitude, high resolution photographs from balloon-mounted digital camera platforms. 281 

More recent studies have used cost and time-effective UAV-aerial photographs for seagrass 282 

mapping (See section 2.2.6). However, historical records of seagrasses in many regions (e.g. 283 

Rees 1993; Cunha et al. 2005; Meehan et al. 2005) are often only available from aerial 284 

photographs, in which an error margin of up to 20% in quantifying the aerial extent of seagrasses 285 

may still be acceptable where these are the only data available (Meehan et al. 2005).  286 



13 

 

Airborne platforms are commonly used for the acquisition of hyperspectral images (e.g. 287 

AISA+, CASI-2, HyMap, Ocean PHILLS, PRISM), and these have been increasingly used for: 288 

mapping the extent of seagrasses (e.g. Mumby et al. 1997; Dierssen et al. 2003; Bostater et al. 289 

2004; Peneva et al. 2008); species level discrimination (e.g. Ferwerda et al. 2007; Phinn et al. 290 

2008; Dierssen and Russel 2015); estimation of biomass and productivity (Hill et al. 2014); as 291 

well as other factors including water column depth, water quality, bottom types (e.g. Garono et 292 

al. 2004; Garcia et al. 2015; Hossain et al. 2015b) and spectral separation between seagrasses and 293 

other bottom substrates such as algae (e.g. O´Neill et al. 2011; Pe’eri  et al. 2016). Compared to 294 

the use of a field spectroradiometer, airborne hyperspectral data has the advantage of greater 295 

areal coverage. However, for mapping large areas of seagrass meadows, spaceborne 296 

multispectral imagery is preferred due to the high cost per unit area for airborne derived imagery 297 

(Hossain et al. 2015b). For mapping individual seagrass patches using airborne hyperspectral 298 

data, some studies suggest that at least a 3m spatial resolution is required (e.g. Peneva et al. 299 

2008). However, a number of recent studies (e.g. Phinn et al. 2008; Valle et al. 2015) obtained 300 

species-level discrimination and biomass estimation of seagrass using CASI and CASI-2 images 301 

with a spatial resolution of 4m alone or together with QuickBird-2 and Landsat data. Appendix 2 302 

lists a number of studies published in the last two decades using airborne hyperspectral data for 303 

seagrass studies and the mapping techniques used. A few recent studies have also used cost-304 

effective hyperspectral data from UAV platform (e.g. Uto et al. 2017; Manfreda et al. 2018), 305 

which used pattern matching algorithms and vegetation indices for accurate seagrass mapping 306 

improving bot resolution and repeatability.  307 

A number of Vegetation indices, including various modified versions of the normalized 308 

vegetation index (NDVI), have been developed for the automatic discrimination of seagrass 309 
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meadows (e.g. Valle et al. 2015). It is possible to use airborne hyperspectral data with proper 310 

atmospheric correction to estimate detailed pigment composition of seagrass meadows using 311 

vegetation indices, calibrated by hyperspectral field data (spectroradiometer) (e.g. Bargain et al. 312 

2013; Hedley et al. 2016, 2017). Marcello et al. (2018) observed that a combination of 313 

hyperspectral and multispectral data increased the robustness and performance, respectively, of 314 

seagrass mapping when maximum likelihood and support vector machine (SVM) methods were 315 

applied.  316 

Unlike spaceborne data, which has fixed sensor altitudes and orbits, airborne 317 

hyperspectral data can have a variety of deployment altitudes and measurement geometry that 318 

pose significant difficulties in dealing with atmospheric effects (Castillo-López et al. 2017), 319 

particularly for shallow coastal waters with unknown aerosol properties, spatial heterogeneity in 320 

the water column, and sensor artefacts (Zhang et al. 2015). Zhang et al. (2016) recommend an 321 

iterative atmospheric correction in such cases, for monitoring short-term changes in shallow 322 

water environments. However, accuracies in excess of 80% can be obtained without applying 323 

any atmospheric correction methods to airborne hyperspectral data (e.g. Zhang et al. 2013). 324 

Furthermore, water-depth correction algorithms using water absorption and scattering factors 325 

have been found to improve seagrass mapping using hyperspectral data (Lu and Cho 2012).      326 

 327 

2.2.3 Spaceborne remote sensing data for seagrass mapping  328 

Spaceborne remote sensing platforms offer a cost-effective option where higher aerial 329 

coverage is required, when mapping larger, monospecific and continuous seagrass meadows 330 

(Dekker et al. 2007). In recent decades, a large number of sensors with a wide variety of spatial, 331 

spectral and temporal resolutions offer various approaches to seagrass mapping. Even though, 332 
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spaceborne multispectral and hyperspectral data are constrained in highly turbid environments, 333 

with limited applications in optically shallow waters, higher spectral resolutions (for 334 

hyperspectral data) can reduce the number of mixed pixels and are relatively cheaper than 335 

airborne derived data (Hossain et al. 2015b). More wavelengths in the visible region of the EMS 336 

can greatly improve seagrass mapping. A summary of the most recent seagrass studies using 337 

spaceborne multispectral and hyperspectral data with varying spatial resolution is provided in 338 

Appendix 3.  339 

A range of high-resolution multispectral spaceborne data is available from the early 340 

1970s and most have the optical channels required for seagrass mapping (Wicaksono et al. 341 

2017). Recently, a number of high spatial resolution (5 m to 50 cm resolution) multispectral 342 

spaceborne data, such as SPOT-5 (e.g. Pasqualini et al. 2005), SPOT-7 (Siregar et al. 2018), 343 

IKONOS (e.g. Mumby and Edwards 2002; Wabnitz et al. 2008; Howari et al. 2009; Pu and Bell 344 

2017), GeoEye (Chayhard et al. 2018), WorldView-2 (Misbari and Hashim 2014; Reshitnyk et 345 

al. 2014; Roelfsema et al. 2014; Adi 2015; Anggoro et al. 2016; Baumstark et al. 2016; Albert et 346 

al. 2017; Halls and Costin 2016; Hoang et al. 2016; Koedsin et al. 2016; Manuputty et al. 2016; 347 

Martin et al. 2016; Eugenio et al. 2017; Oguslu et al. 2018; Poursanidis et al. 2018), WorldView-348 

3  (e.g. Jadidi and Vitti 2016; Collin et al. 2017), QuickBird (Wang et al. 2007; Albert et al. 349 

2017; Hisabayashi et al. 2018), KOMPSAT-2 (e.g. Kim et al. 2012, 2015; Matta et al. 2014a, 350 

2014b; Choi et al. 2018), RapidEye (e.g. Matta et al. 2014a; Giardino et al. 2016; Li 2018; 351 

Traganos and Reinartz 2018a) and PlanetScope (e.g. Traganos et al. 2017; Wicaksono and 352 

Lazuardi 2018), have been used for mapping of seagrass meadows around the globe.  353 

However, a large number of studies have used medium resolution satellite imagery, such 354 

as Landsat series (e.g. Ferguson and Korfmacher 1997; Dahdouh-Guebas et al. 1999; Meyer 355 
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2008; Wabnitz et al. 2008; Roelfsema et al. 2009; Knudby et al. 2010; Meyer and Pu 2012; Pu et 356 

al. 2012a, 2014; Blakey et al. 2015; Hossain et al. 2015a, 2015c; Kim et al. 2015; Chen et al. 357 

2016; Millán et al. 2016; Müller et al. 2016; Ayustina et al. 2018; Geevarghese et al. 2018; 358 

Hisabayashi et al. 2018; Topouzelis et al. 2018), ASTER (e.g. Pulliza 2004; Castaño-Gallego and 359 

Lozano-Rivera 2006; Dahanayaka et al. 2012; Adi et al. 2013a; Wicaksono and Hafizt 2013; 360 

Shofa 2014; Kim et al. 2015; Wicaksono et al. 2017), ALOS AVINIR-2 (e.g. Firdaus 2011; 361 

Astuti et al. 2012; Adi et al. 2013b; da Silva et al. 2017), CBERS (e.g. Yang and Yang 2009; 362 

Yang and Huang 2011), and Sentinel-2 (e.g. Topouzelis et al. 2016; Fauzan et al. 2017; Hafizt et 363 

al. 2017; Thalib 2017; Thalib et al. 2017; Yanuar et al. 2017; Dattola et al. 2018; Fethers 2018; 364 

Kovacs et al. 2018; Luo 2018; Traganos and Reinartz 2018b; Traganos et al. 2018a, 2018b; 365 

Transon et al. 2018) and these are widely used for seagrass monitoring, particularly where long-366 

term datasets are available. Medium resolution satellite imagery can also be used to estimate 367 

carbon stocks in an inexpensive way (Mashoreng et al. 2018). Similar to SPOT 5, ASTER data 368 

also lack blue wavelength in the spectrum and hence coastal mapping capacity is limited 369 

compared to the data mentioned above (Capolsini et al. 2003), particularly when applying 370 

vegetation indices. Medium resolution multispectral imagery must be acquired at low tide for 371 

accurate mapping of seagrass meadows. 372 

Although the number of publications is limited, several studies have used low resolution 373 

(>100m) spaceborne data, such as MODIS (e.g. Dierssen et al. 2010; Bargain et al. 2012; Adi et 374 

al. 2013b; Downie et al. 2013; Barnes et al. 2014a; Petus et al. 2014a, 2014b, 2016, 2018; Tuya 375 

et al. 2014; York et al. 2015; Phinn et al. 2017; Beck et al. 2018; Carlson et al. 2018; 376 

Champenois and Borges 2018; Perez et al. 2018), AVHRR (e.g. Salas et al. 2000; Amela et al. 377 

2007; Carlson et al. 2018), and MERIS (e.g. Lunetta et al. 2009; Roman et al. 2010; Adi et al. 378 
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2013b; Saulquin et al. 2013; Matta et al. 2014b; Roman and Dupouy 2014; Zucchetta et al. 379 

2016), for large-scale seagrass research. These data were mostly used for understanding 380 

biochemical, physical and other environmental variables associated with seagrass meadows (e.g. 381 

Amela et al. 2007; Madrinan et al. 2010; Peirano et al. 2011; Madrinan and Fischer 2013; York 382 

et al. 2015; Phinn et al. 2017) rather than estimating their spatial extent due to the low spatial 383 

resolution. Some studies (e.g. Bargain et al. 2012) used vegetation indices such as the ARVI 384 

(Atmospherically Resistant Vegetation Index) developed by Kaufman and Tanre (1992) for 385 

seagrass studies, which is derived from MODIS data. These vegetation indices were found to be, 386 

on average, four times less sensitive to atmospheric effects when compared with NDVI (Bargain 387 

et al. 2012).      388 

Although it is more common to use airborne hyperspectral data for seagrass mapping, 389 

spaceborne hyperspectral data, such as Hyperion (e.g. Lee et al. 2005; Pu et al. 2010, 2012; Li et 390 

al. 2012; Yuan 2012; Meyer 2013; Pu and Bell 2013; Zhao et al. 2013; Kisevic 2015) and 391 

Hyperspectral Imager for the Coastal Ocean (HICO) (Cho et al. 2013, 2014, 2016; Garcia et al. 392 

2014a, 2014b, 2015; Adi 2015; Huang and Cho 2016; Jay et al. 2018), have been employed for 393 

detailed spectral characterization of seagrass meadows as well as the assessment of surrounding 394 

environments. NASA’s ongoing HyspIRI mission is also expected to have a number of 395 

applications in seagrass monitoring and mapping (Lee et al. 2015) with its 30 m spatial 396 

resolution. A key limitation of the available hyperspectral data is their limited application in 397 

highly turbid environments and/or deeper ocean areas (Hossain et al. 2015b).  398 

 399 

2.2.4 Seagrass studies using LiDAR, Laser scanners and Sonar 400 
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In recent years airborne LiDAR and terrestrial laser scanners (TLS) have been used to 401 

detect alterations to seagrass habitat characteristics, particularly 3D analysis (e.g. Hannam and 402 

Moskal 2015; Corbi et al. 2018; Collings et al. 2019). Although costs are typically higher than 403 

most satellite data, bathymetric LiDAR has good capabilities for high resolution seagrass 404 

mapping due to its greater water penetration compared to higher wavelengths. Recently, sound 405 

navigation and ranging (Sonar) systems, including multi-beam echosounders, have also been 406 

employed for mapping and classification of seagrass meadows (e.g. Komatsu et al. 2003; Asada 407 

et al. 2005; Lefebvre et al. 2009; Hamana and Komatsu 2016), even though complex post-408 

processing algorithms are required for data extraction. Different algorithms for processing 409 

LiDAR data for seagrass mapping include maximum likelihood classification (Tulldahl and 410 

Wikström 2012) and object-oriented image classification (Parrish et al. 2016). Parrish et al. 411 

(2016), using object-oriented methods, obtained a user’s accuracy of 100% and producer’s 412 

accuracy of 82% in eelgrass mapping using LiDAR data. Using airborne Hawk Eye LiDAR, 413 

even with the limited application in high turbidity areas, Chust et al. (2010) obtained an accuracy 414 

between 84.5% and 92.1% in coastal habitat mapping. LiDAR data taken from a 415 

tripod/vehicle/boat/underwater can also be used for small-scale seagrass surveys (Hannam 2013; 416 

Hannam and Moskal 2015; Corbi et al. 2018). Terrestrial Laser Scanning devices provide an 417 

accurate method for monitoring coastal areas that are subjected to erosion characterized by the 418 

accumulation of seagrass berm (Corbi et al. 2018).    419 

Airborne LiDAR data, usually taken from a helicopter, aeroplane or drone, have been 420 

widely used for bathymetric surveys to identify the location and extent of seagrass meadows 421 

(Brock et al. 2006; Wang and Philpot 2007; Chust et al. 2008, 2010; Valle et al. 2011, 2014; 422 

Collin et al. 2012; Tulldahl and Wikström 2012; Pan et al. 2014; Zavalas et al. 2014; Ishiguro et 423 
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al. 2016; Parrish et al. 2016; Webster et al. 2016; Webster 2017; Collings et al. 2019). Chust et 424 

al. (2008) observed higher accuracy in coastal habitat mapping using LiDAR data compared to 425 

multispectral imagery. Full waveform bathymetric LiDAR can also be used to classify different 426 

types of seagrasses (Pan et al. 2014). A combination of both LiDAR and multispectral data (e.g. 427 

WorldView-2) further improves the accuracy of coastal habitat mapping (Chust et al. 2008; 428 

Collings et al. 2019). Zavalas et al. (2014) used a combination of LiDAR and underwater 429 

videography for mapping marine algal and seagrass communities. Webster et al. (2016) and 430 

Webster (2017) used a MPIX RCD30 camera, which can be used to capture NIR and RGB 431 

imagery co-aligned with LiDAR sensor (500 kHz for NIR and 35 kHz for Green) and can be 432 

directly georeferenced. Multispectral LiDAR data has been proved its capabilities in assessing 433 

structurally complex coastal habitat (Collin et al. 2012). Airborne LiDAR surveys have also been 434 

used to map seagrass meadows studded with coral reefs (Brock et al. 2006) as well as for 435 

modelling suitable habitat for seagrass meadows (Valle et al. 2011). Ishiguro et al. (2016) used a 436 

combination of airborne LiDAR bathymetry data and aerial photographs for the successful 437 

classification of seagrass meadows. Such studies using LiDAR data have helped the scientific 438 

communities in understanding anthropogenic and climatic stresses on seagrass communities (Al-439 

Nasrawi et al. 2018) and projecting future distribution of seagrasses under global warming and 440 

sea level rise (Valle et al. 2014). O´Hare et al. (2018) and Ventura et al. (2018) mentioned that 441 

UAV’s with LiDAR sensors have a high potential to improve plant-sediment studies in aquatic 442 

environments, further developing on those in other coastal environments (Chadwick 2011; Ward 443 

et al. 2013, 2016b).  444 

 445 

2.2.5 Seagrass remote sensing using Radar imagery 446 
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Radar remote sensing has been used in a small number of studies, particularly for the 447 

study of seagrass bed structure (Adolph et al. 2018; Gade et al. 2018). Although general 448 

detection of seagrasses was nearly impossible, the elevated structures of sediments induced by 449 

the seagrass cover can be mapped by the diffusely elevated backscatter values of Synthetic 450 

Aperture Radar (SAR) (Adolph et al. 2018). Seagrasses enhance radar backscattering due to high 451 

local surface roughness (even though they lay flat on the ground at low tide) (Gade et al. 2018), 452 

and it is possible to apply a combination of structural analysis and unsupervised (ISODATA) 453 

classification to SAR data for mapping seagrass beds (Adolph et al. 2018). Seagrass meadows 454 

produce characteristic surface structures, different from green algae or diatoms, and merging 455 

SAR data with multispectral data can be efficient in understanding the surface roughness 456 

information and sediment types of seagrass meadows (Adolph et al. 2018). Combining Sentinel-457 

1 SAR with Sentinel-2 time series imagery and using NDVI statistic parameters showed an 458 

improvement in seagrass mapping accuracy, with an overall accuracy of 77.7% and Kappa 459 

coefficient of 0.75 (Luo 2018). Furthermore, bare soil can be separated from seagrass meadows 460 

using SAR such as TerraSAR-X, which provides complimentary information to optical imagery 461 

(Dehouck et al. 2011). Available SAR data for seagrass bed mapping include: TerraSAR-X, 462 

TanDEM-X, COSMO-SkyMed, Sentinel-1 and Radarsat-2.   463 

 464 

2.2.6 Application of UAVs in seagrass research 465 

The use of UAVs for coastal ecosystem research (Figure 3), including seagrasses, 466 

mangroves, saltmarshes, and coral reefs, is a new trend and a number of recent studies used 467 

visible, thermal and infrared cameras on UAVs (Duffy et al. 2018; Konar and Iken 2018; 468 

Villoslada et al. 2020). Notable advantages of using UAVs compared to aircraft, ships or satellite 469 



21 

 

platforms, are low operational costs, high operational flexibility and high spatial resolution 470 

(Matese et al. 2015). Furthermore, UAVs are operated at a lower altitude and the disadvantage of 471 

cloud cover, particularly in the tropics, while acquiring optical imagery can be avoided. Since the 472 

images are taken from low altitudes, atmospheric absorption and other effects in a UAV derived 473 

image are negligible compared to satellite data (Lomax et al. 2006). Although, images obtained 474 

from UAVs have a clear advantage in terms of spatial resolution, the distinction of the species is 475 

still only possible for exposed or shallow monospecific seagrass beds (Duffy et al. 2018). An 476 

obvious disadvantage for UAV platforms compared to satellite platforms is the lower areal 477 

coverage, particularly where meadows have monospecific species composition (high resolution 478 

imagery is not required in this case) and detailed structural and morphological features are not 479 

required. A list of the most recent seagrass studies utilising UAV platforms is given in Appendix 480 

4.          481 

  The use of UAV platforms for seagrass mapping and monitoring has become more 482 

sophisticated in recent years. Advances in technology are now focussing on light weight sensors 483 

with multispectral, hyperspectral and LiDAR systems on UAVs (Uto et al. 2017; Manfreda et al. 484 

2018). Multispectral satellite images combined with data taken from UAV produced high quality 485 

maps of seagrass meadow in some cases. For example, Topouzelis et al. (2016) used a 486 

combination of Sentinel-2 imagery and UAV-based data for seagrass mapping in Lesvos Island 487 

in Greece. To avoid problems with surface water reflections, sun glint correction using polarised 488 

filters can be utilised (Muslim et al. 2019) or image acquisition can be done in the morning and 489 

evening (Chayhard et al. 2018). 490 

 491 

3. Seagrass research methods: traditional vs. remote sensing  492 
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Seagrass meadow distribution mapping using remotely sensed data has predominantly 493 

been undertaken using aerial photographs or satellite imagery (Ferwerda et al. 2007). However, 494 

the previously discussed limitations of remote sensing (i.e. atmospheric effects and underwater 495 

attenuation of EMR) must still be overcome.  496 

Species-level discrimination of seagrasses using traditional methods is mainly conducted 497 

by physical collection of samples and measuring morphological features (e.g. stem length, 498 

flower), which can be costly and time consuming (Short et al. 2007). To undertake this using 499 

remote sensing methods requires the inclusion of spectral features of pigments (chlorophyll-a 500 

and chlorophyll-b) within visible wavelengths (Fyfe 2003), as the relative concentrations of 501 

pigments (and hence the spectral reflectance) vary within species. Few studies (e.g. Fyfe 2003; 502 

Pu et al. 2012; Casal et al. 2013) have utilized the differences in photosynthetic pigment content, 503 

which in turn results in differences in the spectral reflectance for different seagrass species. One 504 

of the difficulties in using this method, is the bias caused by the pigments contained in epiphytes 505 

(Zimmerman and Dekker 2007) or other associated plant communities. However, high spectral 506 

resolution data can be employed to solve this problem to some extent (Ferwerda et al. 2007). 507 

Moreover, spectral reflectance of the same species at different wavelengths may vary with depth 508 

and seasonality (Fyfe 2003). This indicates that traditional methods to collect and discriminate 509 

seagrass samples must be done at the initial stage to create spectral libraries, which in turn can be 510 

used to map species distribution. Spectral libraries can be created using hyperspectral data (e.g. 511 

Pu et al. 2012; Casal et al. 2013) or in situ measurements using a spectroradiometer (e.g. Fyfe 512 

2003; Thorhaug et al. 2007).     513 

Robbins and Bell (1994) classified seagrass communities based on spatial structure and 514 

pattern at three different levels as: (1) meadow, which has a contiguous areal distribution with 515 
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varying per cent cover composition, (2) bed, which has a contiguous areal distribution with 516 

similar per cent cover composition, and (3) patch, which is a small and discrete clump of 517 

seagrass or gap. Compared to species-level discrimination of seagrasses, this information (spatial 518 

structure and pattern) can be obtained more easily with multispectral imagery (Lathrop et al. 519 

2006). 520 

Other traditional seagrass research methods include a number of constituents/steps that 521 

can be done or improved using remove sensing, such as: seagrass abundance and depth 522 

distribution, biomass, growth and production measurement, photosynthetic rates, algal epiphytes, 523 

animal associates and seagrass decomposition (Short and Coles 2001; Krause-Jensen et al. 2004). 524 

Additionally, a number of environmental parameters used in seagrass research, such as sediment 525 

type and water quality of seagrass habitats, can also be evaluated using remotely sensed data 526 

(Hossain et al. 2015b).  527 

 528 

3.1. Seagrass distribution, cover and biomass  529 

Seagrass meadows can be found in diverse environments with varying salinity, turbidity 530 

and depth levels (Short and Coles 2001). Traditional methods of estimating seagrass distribution 531 

use pre-recorded grid patterns or a combination of transects and sampling points (McKenzie et 532 

al. 2001), which is time consuming with associated high costs (Short and Coles 2001). However, 533 

mapping the occurrence of seagrasses can be done accurately with remotely sensed imagery. In 534 

fact, seagrass distribution mapping using remotely sensed data has been undertaken since the 535 

mid-20
th

 century (Kelly 1980) using photographs taken from balloons, aircraft or a spacecraft, 536 

suggesting that a range of acquisition platforms can be used in mapping seagrass parameters 537 

(Hossain et al. 2015b). The success of remote sensing methods is highly dependent on the 538 
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spatial/spectral resolution of the data, accuracy (e.g. accuracy in georeferencing) and mapping 539 

methods (Short and Coles 2001). Satellite images with high spatial resolution can be used to map 540 

areas occupied by seagrasses more effectively than low spatial resolution data but the spatial 541 

coverage of a high resolution data is often lower than that of low or medium resolution data (e.g. 542 

single Landsat data scene covers 34,000 km
2
 whereas a SPOT panchromatic tile covers only 543 

60km
2
. The same problems arise when using aerial photographs – the use of fine spatial 544 

resolution aerial photographs requires a large number of frames where large areas are covered 545 

(Short and Coles 2001). Seagrass distribution changes have been estimated using NDVI derived 546 

from multispectral visible-infrared satellite data (e.g. Landsat, SPOT) calibrated using in situ 547 

spectroradiometric data (e.g. Barille et al. 2010).  548 

Hossain et al. (2015b) suggest that depth (e.g. intertidal, shallow subtidal, deep subtidal) 549 

and water clarity (clear or turbid) are the principal factors that need to be considered when using 550 

remote sensing to map seagrass parameters such as: distribution, percentage cover, species 551 

composition and biomass. Data acquisition platform is also an important factor in mapping 552 

seagrass parameters: space borne, aerial or boat (Hossain et al. 2015b).            553 

There are many traditional ways of assessing seagrass cover, with the most common 554 

method of non-destructive estimation being in-situ visual assessment of percentage cover using 555 

predetermined quadrats (Duarte and Kirkman 2001). However, this methodology only includes 556 

estimations of cover at specific points and does not evaluate the spatial variation of seagrass 557 

cover within the meadow. In recent years, seagrass cover and change detection has been 558 

estimated using a range of active and passive remote sensing systems with various resolutions 559 

(high - Pu and Bell 2017; Chayhard et al. 2018; Dattola et al. 2018; Hisabayashi et al. 2018; 560 

Kovacs et al. 2018; Su and Huang 2019; medium - Yang and Huang 2011; Shofa 2014; 561 



25 

 

Wicaksono et al. 2017; Ayustina et al. 2018; Dattola et al. 2018; Siregar et al. 2018 and low - 562 

Phinn et al. 2017; Beck et al. 2018; Carlson et al. 2018; Petus et al. 2018). Various active boat-563 

mounted acoustic sensors, e.g. SSS, side beam echo sounder (SBES), multi beam echo sounder 564 

(MBES), and acoustic Doppler current profiler (ADCP) (Warren and Peterson 2007; Micallef et 565 

al. 2012; Montefalcone et al. 2013; Greene et al. 2018; McIntyre et al. 2018; Held and Deimling 566 

2019), have also been used for mapping seagrass cover. Although, many studies have estimated 567 

seagrass cover using remotely sensed data, the majority are still reliant on field measurements for 568 

estimating shoot density and canopy height (e.g. Gullstrom et al. 2006).  569 

Traditional seagrass biomass estimation involves both destructive and non-destructive 570 

sampling of leaves and shoots within a number of quadrats (Short and Coles 2001). Destructive 571 

sampling involves actual removal of the above (leaves and sheaths) and belowground (roots and 572 

rhizomes) parts of the seagrass within each quadrat. On the other hand, non-destructive sampling 573 

can be undertaken using photographs or video images of the quadrats with known biomass to 574 

visually estimate biomass (Short and Coles 2001). As these methods involve extensive field 575 

work with destructive sampling, newer methods have recently been applied using remote sensing 576 

tools. Estimation of seagrass biomass can be done using multispectral/hyperspectral data, 577 

particularly using the visible bands (Armstrong 1993; Phinn et al. 2008) and their correlation 578 

with the actual biomass of the seagrasses. Aboveground biomass can also be estimated using the 579 

quantitative relationship between NDVI from SPOT imagery and dry weight of leaves (Barille et 580 

al. 2010).  581 

Recently, a large number of active remote sensing data from aircraft or UAVs have been 582 

used for mapping seagrass cover. These airborne sensors are mainly LiDAR (Tulldahl and 583 

Wikström 2012; Pan et al. 2014; Zavalas et al. 2014; Ishiguro et al. 2016; Parrish et al. 2016; 584 
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Webster et al. 2016; Webster 2017; Collings et al. 2019), hyperspectral sensors like CASI-2, 585 

PHILLS and HyMap (Dierssen et al. 2003; Garcia et al. 2015; Valle et al. 2015; Pan et al. 2016; 586 

Castillo-López et al. 2017) or photographs (Frederiksen et al. 2004; Lathrop et al. 2006; Fletcher 587 

et al. 2009; Young et al. 2010; Uhrin and Townsend 2016).    588 

 589 

3.2. Seagrass growth measurement  590 

Growth measurement in seagrasses at different levels (e.g. shoots, whole plant, and 591 

population level) is best done by either direct (marking leaves, rhizomes and shoots) or indirect 592 

(reconstruction of past growth from plant anatomical patters) methods (Short and Coles 2001). In 593 

addition to leaf and rhizome growth, additional calculations, such as stem growth, leaf 594 

elongation, root growth, rhizome elongation, and shoot plastochrone interval may be required for 595 

detailed growth measurements (Short and Coles 2001). Even though leaf marking methods have 596 

been applied to a number of species (e.g. Cymodocea nodosa, Enhalus acoroides, Halophila 597 

ovalis), a number of issues were reported related to the growth forms of various seagrasses 598 

(Short and Coles 2001). Gaeckle and Short (2001) reported that comparison of leaf marking 599 

methods in Zostera marina indicated that direct weight measurement of new tissue can introduce 600 

significant errors in leaf growth. Furthermore, different growth forms of seagrasses may require 601 

different marking methods (Short and Coles 2001). This method demands a number of logistic 602 

facilities and hence is expensive in implementation.   603 

Even though traditional methods for quantifying seagrass growth can provide very 604 

accurate data, they are highly time consuming and difficult to produce large-scale quantitative 605 

maps (Ferguson et al. 1993; Su and Huang 2019). Remote sensing methods can be applied to 606 

indirectly measure growth patterns of seagrass meadows as they are modular plants exhibiting 607 
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clonal growth patterns (Baumstark 2018). Retrospective mapping of seagrass distribution can 608 

provide accurate indirect assessment of trends in growth and decline. Time series analysis of 609 

datasets, such as the Landsat series, has already proven to be effective in monitoring long-term 610 

growth patterns of seagrasses (Lyons et al. 2010; 2013; Pu et al. 2014). For example, Vidyan 611 

(2018) used a combination of Landsat data and Nearmap high resolution imagery for estimating 612 

the seagrass growth pattern, extent and biomass in Cockburn Sound in Western Australia. 613 

Baumstark (2018) used high resolution WorldView-2 data acquired in 2011 and 2013 to estimate 614 

seagrass growth near the Indian River Lagoon in Florida. A combination of ALOS satellite 615 

imagery acquired between 2008 and 2009 and in situ data collected between 2011 and 2012 have 616 

been used by Rustam et al. (2013) for measuring growth rates and productivity dynamics of 617 

Enhalus acoroides in Pari Island, Indonesia. However, it has to be noted that remote sensing 618 

methods can only evaluate dynamic changes in seagrass extent/distribution/growth patterns, 619 

actual growth rates cannot be measured.  620 

 621 

3.3. Photosynthesis in seagrass meadows  622 

Due to their photosynthetic activity, seagrasses are considered as important producers in 623 

marine environment (Duarte and Chiscano 1999). Seagrass photosynthetic efficiency is also 624 

considered as an indicator of broader coastal ecosystem health (Fonseca et al. 2003). Laboratory 625 

measurement of seagrass photosynthesis is extremely intrusive, as the plants need to be removed 626 

from their natural environment and a high degree of manipulation is required (Silva et al. 2009). 627 

One of the oldest and simplest ways to quantify photosynthetic activity of plant is to measure the 628 

O2 evolved (Silva et al. 2009). In situ measurement of seagrass photosynthesis can be evaluated 629 

using submersible pulse-amplitude modulated (PAM) fluorometers (e.g. Beer and Björk 2000). 630 
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Silva et al. (2008) used an infrared gas analysis (IRGA) technique for measuring photosynthesis 631 

in seagrasses by a continuous measurement of dissolved CO2 flux using incubation chambers 632 

connected to an analyser at the surface. Even though in-situ measurement of seagrass 633 

photosynthesis is not as exhaustive as laboratory analysis, and control of experimental conditions 634 

is limited, these at least provide results representative of natural conditions (Silva et al. 2009).  635 

One of the possible remote sensing methods to measure photosynthesis in seagrass 636 

meadows is by studying the relationships between spectral reflectance (using a spectroradiometer 637 

or other sensors) and photosynthesis, which has been applied to terrestrial plants (e.g. Richardson 638 

and Berlyn 2002). However, underwater light attenuation properties may restrict the applicability 639 

of this method. This method can also be restricted by depth and the physical and chemical 640 

properties of water. Zimmerman (2003) proposed a two-flow bio-optical model for predicting 641 

downwelling spectral irradiance distributions, which is a robust tool for the measurement of 642 

photosynthesis in seagrasses as a function of water quality, depth, canopy structure, and leaf 643 

orientation. A remote sensing approach for the indirect measurement of photosynthesis in 644 

seagrasses can be based on the changes in pCO2/acidification, salinity or chlorophyll 645 

concentration, which can be obtained from airborne/spaceborne sensors (discussed in section 4). 646 

Acoustic methods for photosynthesis measurement are preferred by some authors (e.g. Hermand 647 

2004a, 2004b). Wilson et al. (2012) observed that high frequency acoustic methods perform 648 

better in estimating seagrass photosynthesis compared to low frequency. The photochemical 649 

response index (PRI), which is a measure of photosynthetic radiation use efficiency (PRUE) 650 

(Thorhaug et al. 2006), is another option to be explored further for photosynthesis measurement 651 

of seagrasses using remote sensing.  652 

 653 
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3.4. Seagrass associated species (epiphytes and epifauna)   654 

Epiphytes are commonly associated with seagrasses and can be an indicator of excessive 655 

nutrients in the marine ecosystem (Teng et al. 2013) having a negative impact on seagrass 656 

environments. Epiphytes are traditionally assessed by sampling individual shoots or visual 657 

estimation within quadrats (Kendrick and Lavery 2001). Quantifying algal epiphytic biomass is 658 

important in assessing changes in biomass due to eutrophication (Kendrick and Lavery 2001). 659 

The preferred method for determining epiphyte biomass is dry weight and ash free dry weight 660 

(Kendrick and Lavery 2001). Studies on epiphyte productivity are used to determine the relative 661 

contribution of epiphytes to total meadow production and to understand the contribution of 662 

epiphyte production to higher trophic levels (Pollard and Kogure 1993). 663 

In general, species or community level discrimination of seagrass meadows and 664 

associated vegetation, even though difficult, is theoretically possible using hyperspectral data 665 

(Mutanga and Skidmore 2004). For example, Dierssen and Russel (2015) used hyperspectral data 666 

(Portable Remote Imaging Spectrometer – PRISM) for the assessment of the hyperspectral 667 

properties of the macroalgae Sargassum and the seagrass Syringodium filiforme in Greater 668 

Florida Bay. Drake et al. (2003) developed a model that yielded a robust and positive 669 

relationship between epiphyte biomass and its absorption of photons and a strong negative 670 

relationship between epiphyte biomass and spectral photosynthesis of seagrass hosts.  671 

Field sampling methods for the study of seagrass-associated fauna, such as those species 672 

living within the bottom sediments (infauna) and those living in the canopy or seabed (epifauna), 673 

include: hand-held corers, suction samplers, deep water sampling, and grabs and box corers for 674 

infauna and: small beam net to suction samplers and deep water samplers for epifauna (Guzman 675 

and Grizzle 2001). Large and mobile epibenthos, including fish, crabs and shrimps), require 676 
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more sophisticated mechanical assistance such as adequately sized boats and underwater cameras 677 

(Edgar et al. 2001).  678 

Remote sensing methods for studying seagrass-associated fauna are more complex than 679 

those for seagrass-associated flora. Teng et al. (2013) used hyperspectral data from a 680 

spectrophotometer to investigate epifauna cover on seagrass blades using the N-FINDR 681 

algorithm for spectral analysis. Indirect methods could include using remotely sensed data to 682 

evaluate changes in the foliar structure of seagrasses as a result of invertebrate grazing (Nakaoka 683 

2005), which can be differentiated from foliar changes resulting from other factors such as 684 

natural decomposition based on spectral properties.  685 

 686 

4. Secondary applications of remote sensing in seagrass research  687 

In addition to the direct measurement of seagrass distribution, cover and biomass, remote 688 

sensing applications have been widely applied to measure water quality, light penetration, 689 

sediment type and other physical parameters (e.g. temperature, salinity, pH, water currents, 690 

waves and turbulence) in seagrass meadows (Dekker et al. 2007; Daud et al. 2019; Gumusay et 691 

al. 2019). Knowledge concerning environmental conditions within seagrass meadows is 692 

important to understand the spatial distribution and the relationship with environmental variables 693 

(Roelfsema et al. 2013; Daud et al. 2019; Lima et al. 2020). Remote sensing data from multiple 694 

sources can be used to analyse some of the aforementioned environmental variables. For 695 

example, Nezlin et al. (2005) used SeaWiFS imagery to analyse the extent of sediment plumes. 696 

Seagrass growth is highly dependent on sea surface temperature, suspended sediment and 697 

salinity (in order), with optimal seagrass growth occurring in ideal temperature and salinity 698 

conditions, dependent on species, with low suspended sediment concentrations (Daud et al. 699 
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2019). Radar remote sensing is another option for measuring environmental variables, such as 700 

ocean currents and tides, wave height, surface wind speed and direction, which are important for 701 

seagrass communities (Hossain and Hashim 2019).   702 

 703 

4.1. Suspended sediments 704 

Water quality and other environmental variables, including suspended and dissolved 705 

sediment concentrations, have been monitored in seagrass environments using remote sensing 706 

data by applying linear and non-linear algorithms (Ferwerda et al. 2007; Devlin et al. 2015; Han 707 

et al. 2016; Petus et al. 2016). Current satellite imagery have a high enough spatial and spectral 708 

resolution for monitoring sediment plumes, which is a key factor influencing light availability in 709 

coastal and estuarine regions based on surface reflectance differences due to varying turbidity 710 

conditions (Barnes et al. 2015). The analysis of coastal waters, however, is complex, due to the 711 

presence of organic and inorganic sediments, microorganisms, phytoplankton and water currents 712 

(Pozdnyakov et al. 2005). Landsat data has been widely used in shallow water remote sensing for 713 

monitoring suspended sediments (e.g. Harrington et al. 1992; Brivio et al. 2001; Thiemann and 714 

Kaufmann 2002; Barnes et al. 2015; Veettil and Quang 2018), while other spaceborne data with 715 

comparable spatial resolution to Landsat, such as ASTER, have also been used for the estimating 716 

suspended solids in coastal waters (e.g. Kishino et al. 2005). Low resolution satellite data such as 717 

AVHRR (Ruhl et al. 2001) or MODIS (Hu et al. 2004; Devlin et al. 2012; Schroeder et al. 2012; 718 

Petus et al. 2014b; Kumar et al. 2016) or VIIRS (Han et al. 2016) have been used successfully 719 

for analysing suspended sediment concentrations in estuarine and coastal water environments. 720 

Most of these studies were based on the establishment of empirical relationships between in situ 721 

observations and remote sensing data for estimating suspended solids. Airborne microwave data 722 



32 

 

can also be employed for estimating sediment plumes in marine environments. For example, 723 

Burrage et al. (2003) used airborne data from the scanning low frequency microwave radiometer 724 

(SLFMR) for mapping plumes and salinity by applying regression methods in the Great Barrier 725 

Reef. Zhang et al. (2002) used a combination of Landsat and spaceborne microwave data (ERS2 726 

SAR data) for surface water quality estimation in the Gulf of Finland. Aerial images, combined 727 

with satellite data, have also been used in some studies (e.g. Devlin and Brodie 2005; Devlin and 728 

Schaffelke 2009) for estimating the extent of sediment plumes. For small areas with detailed 729 

observations on turbidity and sediment plumes in seagrass environments, even though expensive, 730 

high resolution airborne data such as portable remote imaging spectrometer (PRISM) can be 731 

used effectively (Fichot et al. 2016). However, for understanding sediment dynamics at the 732 

seabed, seagrass sediment coring is recommended where specific horizons can be dated (e.g. 733 

210
Pb, 

14
C) (Ward et al. 2014).  734 

 735 

4.2. Light penetration  736 

One of the variables that determines the percentage of light penetrating the water column 737 

and available for seagrasses is the diffuse attenuation of solar light (Kd m
-1

), which can be 738 

measured using remote sensing data such as MODIS imagery (Barnes et al. 2014a). Spaceborne 739 

ocean colour sensors, such as the Coastal Zone Color Scanner (CZCS) and SeaWiFS, can be 740 

used to estimate light penetration in the water column based on the blue-to-green reflectance 741 

ratio (Gattuso et al. 2006). However, in practice, such relationships may not be straight forward 742 

in coastal waters with high suspended particle concentrations (two main contributors of light 743 

attenuation in coastal waters are phytoplankton and suspended particles). Hill et al. (2014) used 744 
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airborne hyperspectral data for the evaluation of light availability and biomass of seagrass 745 

environment in Saint Joseph’s Bay in Florida.  746 

 747 

4.3. Ocean temperature  748 

For the measurement of sea surface temperatures (SST), which is an important variable 749 

for seagrass habitat, spaceborne datasets such as AVHRR (1 km) or MODIS (250 m) imagery 750 

can be used (Esaias et al. 1998), even though these data have a coarse spatial resolution. SST 751 

measurements using split window techniques have been found to be superior to that of using 752 

single spectral channel or a pair of windows in separate spectral regions (Stramma and Cornillon 753 

1986) by reducing the impact of atmospheric transmittance and water vapour content in the 754 

algorithms (Sobrino et al. 1993). Non-linear SST algorithms using AVHRR provide similar 755 

accuracies under a wide range of environmental conditions (Li et al. 2001). Another widely used 756 

satellite data is from the Geostationary Operational Environmental Satellites (GOES 8/9) 757 

launched by NOAA (Wu et al. 1999). For SST measurements, ship-based sensors such as 758 

Atmospheric Emitted Radiance Interferometer (AERI) have been used with accuracy less than 759 

0.1
o
C (e.g. Smith et al. 1996). It is worth to note that SST retrieval from space in most of the 760 

ocean areas are sampled from polar orbiting satellites at most twice a day and that surface diurnal 761 

variability studies rely on the extrapolation of in situ measurements at depth (Gentemann and 762 

Minnett 2008). However, the ocean surface responds to changes in fluxes of heat and momentum 763 

rapidly and the diurnal variability at the ocean surface can be quite different from heating at 764 

depth (Gentemann and Minnett 2008). Scanning radiometers, such as the Advanced Along-Track 765 

Scanning Radiometer (AATSR) and Advanced Microwave Scanning Radiometer (AMSR-E), 766 

have been observed to have accuracies comparable to in situ data (O’Carroll et al. 2008), 767 
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although AATSR only functions well in cloud-free environments, whereas microwave 768 

measurements can be used in all weather conditions (Hosoda 2010). Even though microwave 769 

remote sensing studies have higher accuracies compared with infrared measurements, sea surface 770 

wind correction still remains a problem (Hosoda 2010). For regional applications with diurnal 771 

cycle SST information, NASA has developed a Short-term Prediction and Research Transition 772 

(SPoRT) program based on 1km MODIS data (Haines et al. 2007).         773 

 774 

4.4. Ocean salinity 775 

Under a changing climate, variations in ocean salinity occur due to the melting of polar 776 

ice caps and sea ice (Wadhams and Munk 2004; Stammer 2008) that may affect seagrass 777 

meadow health and photosynthetic abilities (Sandoval-Gil et al. 2012) from regional to global 778 

scales. It has been reported that the spectral reflectance of seagrass meadows have been altered 779 

due to changes in salinity (Thorhaug et al. 2006), which can be explored using remotely sensed 780 

data. Optical and microwave remote sensing can be used to estimate salinity in marine 781 

environments. For example, Daud et al. (2019) estimated salinity conditions and suspended 782 

sediments in Banten Bay in Indonesia using Sentinel-2 data by applying simple band math 783 

algorithms and the normalized mean value error of the results were less than 10% for all the 784 

estimated variables (salinity and suspended sediments). Geiger (2011) applied ANN methods to 785 

MODIS data for ocean salinity measurements in the mid-Atlantic. Salinity from satellite data can 786 

be estimated indirectly based on the coefficient of coloured dissolved organic matter (aCDOM) 787 

(Bai et al. 2013). Ocean colour monitoring satellite sensors, such as SeaWiFS, have been used 788 

successfully for ocean salinity mapping (Binding and Bowers 2003). Microwave data have also 789 

been widely used for salinity mapping in seagrass environments. The European Space Agency 790 
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(ESA) has designed and launched (November 2009) a satellite sensor – Soil Moisture and Ocean 791 

Salinity (SMOS) – specifically for mapping soil moisture and ocean salinity (Font et al. 2013). 792 

Some researchers (e.g. Hernandez et al. 2015) mentioned that the SMOS instrument has a better 793 

performance for salinity mapping (r = 0.57) than NASA’s Aquarius (r = 0.52), which has been 794 

designed to understand the oceanic thermohaline circulation related to interannual climate 795 

variability (Koblinsky et al. 2003). Airborne microwave radiometers, such as Scanning Low-796 

Frequency Microwave radiometer (SLFMR) and the Salinity, Temperature, and Roughness 797 

Remote Scanner (STARRS), perform better in mapping sea surface salinity, especially in 798 

estuarine and coastal environments (Klemas 2011).   799 

 800 

4.5. Coastal ocean acidification 801 

Ocean acidification has been linked to increases in photosynthetic rates in seagrasses due 802 

to the increase in concentration of aqueous CO2 as a primary carbon source, and dissolved 803 

inorganic carbon species as bicarbonate ions (Garrard and Beaumont 2014; Repolho et al. 2017). 804 

Although some studies suggest an increase in organic carbon sequestration rates by seagrasses 805 

under acidic conditions (Palacios and Zimmerman 2007; Hall-Spencer et al. 2008; Fabricius et 806 

al. 2011; Russell et al. 2013; Garrard and Beaumont 2014; Mazarrasa et al. 2018) others report a 807 

substantial decrease (Martínez-Crego et al. 2014; Repolho et al. 2017).  808 

Furthermore, recent studies (e.g. Unsworth et al. 2012; Hendricks et al. 2014; Koweek et 809 

al. 2018; Bergstrom et al. 2019) have suggested that the presence of seagrass communities can 810 

mitigate the negative effects of ocean acidification on marine ecosystems. Several studies have 811 

used remote sensing methods to monitor ocean acidification (Balch et al. 2007; Gledhill et al. 812 

2008) and Sun et al. (2012) applied five variables (air-sea CO2 fluxes, total alkalinity, suspended 813 
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calcite (particulate inorganic carbon), particulate organic carbon and calcification rates) from 814 

remote sensing data to indirectly estimate ocean acidification (Takahashi et al. 2014). In 815 

addition, since ocean acidification is directly linked to global calcification rates, estimation of 816 

calcification rates from satellite data can also be used as a proxy for ocean acidification (Balch et 817 

al. 2007; Moses et al. 2009). Recent studies, such as Land et al. (2015) and Sabia et al. (2015) 818 

discussed the application of salinity information from satellite data for the assessment of ocean 819 

acidification.  820 

 821 

4.6. Water currents and waves 822 

Ocean currents influence pollination processes, sedimentation rates and sediment 823 

geochemistry of seagrass ecosystems (Koch and Verduin 2001). Seagrass directional 824 

characteristics depend on wave direction – seagrass leaves tend to flap back and forth in wave-825 

dominated habitats, whereas the leaves tend to bend in the direction of tidal waves in tide-826 

dominated habitats (Koch and Verduin 2001). Turbulence affects carbon and nutrient transfer 827 

and dispersion of pollen, seeds and spores in seagrass habitats (Koch and Verduin 2001). Air-sea 828 

turbulent fluxes are important in the exchange of momentum, heat and gas between atmosphere 829 

and ocean (Bourassa et al. 2010). Therefore, monitoring ocean currents and waves using remote 830 

sensing platforms can be useful in understanding seagrass distribution, reproduction and 831 

sedimentary cycles.   832 

Ocean surface currents can be measured indirectly from spaceborne data using physical 833 

models involving the variables such as sea surface height, surface winds and sea surface 834 

temperature (Dohan and Maximenko 2010). Other methods, such as using surface velocity 835 

measured from buoys transmitted to satellite sensors or tracking of surface features and use of 836 
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Doppler shift in radar fields from SAR, have also been used (e.g. Dohan and Maximenko 2010). 837 

High frequency (HF) radar systems, such as Ocean Surface Current Radar (OSCR), provide 838 

periodic, two-dimensional vector estimates of surface currents (Chapman et al. 1997; Shrira et al. 839 

2001; Klemas 2012). Furthermore, microwave data can also be used to estimate ocean currents 840 

indirectly from other variables such as SST (Isern-Fontanet et al. 2006). Klemas (2012) 841 

mentioned that ocean currents from infrared remote sensing data can be studied by tracking the 842 

movement of thermal and colour features in the ocean.  843 

Microwave remote sensing provides information on ocean surface roughness, showing 844 

surface waves by analysing backscatter radiation (Goldstein et al. 1994; Pearce and Pattiaratchi 845 

1997). In addition to spaceborne data, airborne sensors can also be used to study ocean surface 846 

waves. For example, Dugan et al. (2001) used an airborne optical sensor called Airborne Remote 847 

Optical Spotlight System (AROSS), which can also be mounted on a UAV, for measuring 848 

surface waves from time-series imagery.    849 

 850 

4.7. Marine eutrophication using remote sensing  851 

Nutrient pollution is a key driver of eutrophication and algal blooms within coastal 852 

waters (Lapointe et al. 2015). Eutrophication influences seagrass meadows in different ways, for 853 

example, Raffaelli (1999) observed that seagrasses in Scottish coastal areas were replaced by 854 

green algae following eutrophication. Increases in green algae reduce light penetration in coastal 855 

waters thereby reducing seagrasses photosynthetic capabilities and growth rates (Ferreira et al. 856 

2011). In other words, seagrasses were observed to have been replaced by fast growing 857 

competitors like microalgae and macroalgae during the initial stages of eutrophication (Waycott 858 

et al. 2009).  859 
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Eutrophic conditions can be studied using remotely sensed data by examining the growth 860 

of phytoplankton (by estimating the chlorophyll content) (Bagheri and Dios 1990). Lee et al. 861 

(2004) found that the ratio of leaf nitrogen to leaf mass can be considered as a sensitive and 862 

consistent indicator of early eutrophication. Measurement of nitrates, phosphates and other 863 

nutrients can also be estimated using spaceborne and airborne data (Veettil and Quang 2018). 864 

Cauwer et al. (2004) used spring mean and maximum chlorophyll-a concentrations from satellite 865 

data (MODIS, SeaWiFS, MERIS) for estimating the eutrophication status with coastal waters in 866 

Belgium. Large-scale marine trophic conditions, such as in the Mediterranean Sea, have been 867 

studied using SeaWiFS (Acker et al. 2005; D’Ortenzio and d’Alcala 2009) or MODIS data 868 

(Allen et al. 2008) or a combination of both (Banks et al. 2012). Airborne multispectral or 869 

hyperspectral data, such as AVIRIS, can be effectively used for retrieving marine water 870 

constituents and estimating eutrophication (Bagheri et al. 2005). For small-scale eutrophication 871 

measurement based on chlorophyll-a data from space, Landsat TM data has been used since 872 

1980s (e.g. Bagheri and Dios 1990). Coastal Zone Color Scanner Experiment (CZCS), which is 873 

the first spaceborne instrument specifically made for the measurement of ocean colour, has been 874 

used for eutrophication monitoring in coastal areas based on mapping the extent of algal blooms 875 

(Blondeau-Patissier et al. 2014).    876 

The key challenges in using remote sensing data for eutrophication studies is the 877 

improvement of algorithms applied and refining the detection limits in different oceanic and 878 

coastal environments (Blondeau-Patissier et al. 2014). It is essential to consider the effects of 879 

water temperature, turbidity, solar radiation and bathymetry to understand spatio-temporal 880 

patterns of algal blooms and eutrophication (Blondeau-Patissier et al. 2014). In order to estimate 881 

coastal eutrophication from remote sensing datasets, proper cloud masking schemes need to be 882 
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applied to improve the accuracy (Banks and Melin 2015). For example, Barnes et al. (2014b) 883 

aggregated the Landsat TM 30 m pixels to 240 m pixel to increase the signal-to-noise ratio and 884 

applied a MODIS-like atmospheric correction approach for estimating water quality, which was 885 

found to have improved the accuracy.  886 

 887 

5. Discussion 888 

Seagrass ecosystems are important coastal environments currently under threat 889 

throughout their global range (Orth et al. 2006a; Waycott et al. 2009; Jones and Unsworth 2016; 890 

Unsworth et al. 2017; Jones et al. 2018). As they cover relatively large areas, sometimes poorly 891 

accessible for field research, remote sensing is an alternative tool for mapping and monitoring 892 

these ecosystems (Pham et al. 2019). This review has highlighted the significant contributions of 893 

remote sensing datasets and various techniques applied to seagrass research, while comparing 894 

their use and accessibility to traditional, in-situ, methods. Ecologists and managers can use the 895 

information acquired by high spatial resolution maps to provide invaluable information about 896 

seagrass ecology and environmental health to be used for the management of protected areas and 897 

understanding of biodiversity, functioning, services, and future sustainability of seagrass, 898 

particularly in areas with reported seagrass decline (Koedsin et al. 2016; Giardino et al. 2017; 899 

Pham et al. 2019). 900 

Overall, it has been demonstrated that high spatial resolution data can be used to improve 901 

seagrass classification accuracy (Sagawa et al. 2010; Meyer et al. 2010; Lu and Cho 2012; 902 

Tamondong et al. 2013; Saunders et al. 2015; Barrell et al. 2015; Pham et al. 2019). However, 903 

medium to high spatial resolution data, such as the Landsat time-series, have been most widely 904 

used for monitoring these ecosystems at larger scales (Meyer et al. 2010; Knudby and Nordlund 905 
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2011; Ferreira et al. 2012; Borfecchia et al. 2013; Hogrefe et al. 2014; Kim et al. 2015). 906 

Moreover, active remotely-sensed data, such as SAR and LiDAR, have been used to ensure 907 

higher performance in mapping and monitoring of seagrass ecosystems than some low resolution 908 

space borne data (Hogrefe et al. 2014; Duffy et al. 2018), while multi-temporal high spatial 909 

resolution images have been used to monitor changes in specific areas (Tuxen et al. 2011; Pu and 910 

Bell 2017). The incorporation of multi-resolution and multi-source (SAR, multispectral, and 911 

LiDAR) data may be used as a tool to improve accuracy (Pham et al. 2019). For example, 912 

research efforts have been made to expand the use of optical sensors, such as multispectral and 913 

hyperspectral datasets, in combination with different traditional methods for mapping and 914 

monitoring seagrass ecosystems (Qiu et al. 2019; Giardino et al. 2019). However, more attention 915 

seems to have been paid to the more advanced, or the hybrid, remote sensing methods using a 916 

combination of multi-source and multi-temporal datasets (Pham et al. 2019).  917 

Although multi-spectral imagery has emerged as a popular dataset for seagrass mapping, 918 

the limited number of spectral bands may lead to a low accuracy of single species detection 919 

(Lyons et al. 2011; Paulose et al. 2013). For this reason, hyper-spectral imagery has been widely 920 

combined with physical-based models and various classification algorithms to improve the 921 

accuracy of seagrass detection in complex water environments (Koedsin et al. 2016). Generally, 922 

the semi-analytical method using hyper-spectral imagery allows a higher mapping accuracy than 923 

the empirical approach (Roelfsema et al. 2014). However, it requires an intensive spectral library 924 

of different bottom curves as the input for the classification algorithm, which implies an 925 

expensive field sampling and storage of the library in the case of large-area and mixed bottom 926 

type site monitoring (Roelfsema et al. 2014; Traganos and Reinartz 2018c; Duffy et al. 2018; 927 
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Gereon et al. 2018). In addition, hyper-spectral sensors usually have a small coverage and 928 

require on-demand flights for specific geographic regions (Pham et al. 2019).  929 

It should be noted, however, that the remote sensing processes vary depending on the 930 

environmental conditions of the study area (i.e., depth, tidal level, etc.), highlighting the need to 931 

conduct prior field research to appropriately interpret and validate remote sensing data obtained 932 

(Short and Coles 2001; Howari et al. 2009; Phinn et al. 2008; Lyons et al. 2011; Koedsin et al. 933 

2016). In the near future, more advanced sensors, such as SAR and LiDAR, and novel machine 934 

learning approaches and deep learning methods should be used for mapping and monitoring 935 

seagrass ecosystems. Therefore, focus should be placed on the development and selection of 936 

state-of-the-art machine learning algorithms for mapping and monitoring in future studies.  937 

 938 

6. Conclusions and future research 939 

Despite the fact that seagrass meadows function as primary producers, mitigate climate 940 

change through carbon sequestration, and provide a habitat for a wide variety of marine plant and 941 

animal species, there has been a decline in global seagrass cover and hence it is important to 942 

understand meadow location, distribution and health in a cost-effective way with a greater 943 

geographical cover.  944 

Recently, a large number of active and passive remote sensing approaches have been 945 

used to estimate various parameters associated with seagrass communities, such as plant cover 946 

and habitat quality. Such methods can provide relevant and long-term data for analysing seagrass 947 

ecosystem change. Seagrass ecosystem information that can be evaluated using remote sensing 948 

are: presence of seagrass, extent, species composition, seagrass-associated communities, stem 949 

health, biomass, temporal ecosystem changes, ecosystem services, and environmental quality. 950 
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Various types of remote sensing data that can be used to analyse seagrass ecosystem data include 951 

terrestrial and underwater photography/videography, aerial photographs and airborne 952 

hyperspectral data, spaceborne multispectral and hyperspectral data, LiDAR, Laser scanners, 953 

Sonar, Radar, and data from UAVs/AUVs.    954 

There are also a number of environmental parameters that influence seagrass ecosystem 955 

location and ecological health that can be evaluated using remotely sensed data, in particular: 956 

suspended sediments, light penetration, ocean temperature, ocean salinity, coastal ocean 957 

acidification, and marine eutrophication.  958 

Even though remote sensing can be used for a wide variety of applications in seagrass 959 

research, there are limitations to be overcome regarding spatial, spectral and radiometric 960 

resolution and environmental factors such as depth, turbidity, phytoplankton and pollution. 961 

Unlike terrestrial plant ecosystems, seagrass communities are often submerged and hence there 962 

are limitations to apply landscape techniques using remote sensing methods to seagrasses. While 963 

using optical data, only visible wavelengths pass through water column and can be used for 964 

mapping seagrass communities and both atmospheric correction and water column attenuation 965 

coefficients must be applied. Furthermore, spectral discrimination of seagrass communities using 966 

optical data becomes difficult with increase in depth due to absorption and scattering.  967 

A combination of multi-type, multi-source of remotely sensed datasets combining remote 968 

sensing and field data are most effective in understanding the broader aspects of seagrass 969 

ecosystems. For example, a combination of multispectral optical data and SAR data can be 970 

helpful in discriminating seagrass meadows and green algae based on surface roughness 971 

information and sediment types. Recent advancements in data and decreases in costs of UAVs 972 

and AUVs provide an excellent opportunity to obtain fine scale data concerning seagrass 973 
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meadow structure, function, location, and species diversity, although this is best combined with 974 

field data. In order to improve data quality from UAVs, polarized filters can be used for sun glint 975 

correction. High spatial resolution hyperspectral data from spaceborne sensors with fixed sensor 976 

altitude and orbit may reduce the coast of image acquisition and processing compared to airborne 977 

data having a variety of deployment altitudes and measurement geometry. Various classification 978 

algorithms and physical-based models are being developed resulting in improved accuracy for 979 

seagrass mapping. There has historically been a paucity of studies on seagrasses compared with 980 

related ecosystems such as mangroves, salt marshes or coral reefs that offer a similar range of 981 

ecosystem services. However, in light of the growing interest in seagrasses, particularly 982 

concerning ecosystem service provision it should be noted that there are a range of remote 983 

sensing techniques and platforms that can be used to study these vital ecosystems. Variations in 984 

estimations of extent and distribution of seagrasses are much greater than those for related 985 

coastal systems. The authors, therefore would like to encourage a range of studies from extent 986 

and distribution mapping, to carbon sequestration and storage to ecosystem health utilising a 987 

range of methods, including those highlighted in this review, in order to fill the gap in knowledge 988 

of seagrass systems at local, regional and global scales.   989 
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