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Abstract 40 

The aims of this study were to determine the changes in early (50-, 100-, 150-, 200-, 250 ms) 41 

and maximal isometric force production, in response to a four-week period of moderate load 42 

resistance training (60-82.5% one repetition maximum [1RM]), followed by a four-week period 43 

of high load (80-90% 1RM) resistance training. Thirty-four subjects (age 19.5 ± 2.8 years; 44 

height 1.72 ± 0.08 m; body mass 69.9 ± 11.4 kg; maximal power clean 0.92 ± 0.03 kg.kg-1) 45 

participated in this study. Only trivial to moderate (0.2-2.7%, d = 0.00-0.88) and non-significant 46 

(p > 0.05) changes in early isometric force production were observed in response to the 47 

moderate load training period, while very large (9.2-14.6%, d = 2.71-4.16), significant (p ≤ 48 

0.001) increases in early isometric force production were observed in response to high load 49 

training. In contrast, there was a very large, significant increase in PF across the moderate 50 

load phase (7.7 ± 11.8%, d = 2.02, p = 0.003), but only a moderate significant increase in PF 51 

(3.8 ± 10.6%, d = 1.16, p = 0.001) across the high load phase. The results of this study indicate 52 

that high load multi-joint resistance training, that follows moderate load training, results in 53 

superior increases in early multi-joint force production, compared to the changes observed 54 

after moderate load resistance training. 55 

 56 

 57 

 58 

 59 
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INTRODUCTION 60 

Maximal strength has been reported to be important for, and strongly associated with, 61 

performance in athletic tasks (7, 33). Moreover, increases in force production, as a result of 62 

strength training, have been shown to result in improvements in athletic performance (40, 43). 63 

While maximal strength may serve as the foundation for improving various athletic 64 

performance capabilities, previous literature has indicated that the ability to rapidly produce 65 

high levels of force is one of the most important characteristics of an athlete’s performance (2, 66 

4), due to a limited duration for the production of force during athletic activities (47). For 67 

example, during high velocity sprinting, foot contact times can be much less than 250 ms, with 68 

a progressive decline in contact time as velocity increases (27, 37, 50), reaching contact times 69 

as low as 80 ms when running at velocities >11 m.s-1 (47).  70 

Maximal and rapid force production can be reliably measured during isometric assessments, 71 

commonly using single joint setups (10, 21), although variability is greatest at the shortest time 72 

periods (i.e. force at 50 ms) (21). Such single joint measures, however, are not closely 73 

associated with performance in functional and athletic tasks (9, 38). In contrast, multi-joint 74 

assessments of isometric force, especially the isometric mid-thigh pull (IMTP), are closely 75 

related to performance in dynamic athletic tasks, including short-distance sprint speed (46, 76 

49), change of direction speed (41, 46) and jump performance (23, 49). Additionally, force at 77 

specific time points, assessed using the IMTP, has been related to  sprint (49), jump (49) and 78 

weightlifting (7) performances, in addition to maximal back squat strength (48). Interestingly, 79 

while peak force (PF) (12, 17-19) and force at specific time points, derived using the IMTP, are 80 

generally highly reliable (17-19), measures of rate of force development (RFD) have shown 81 

varied levels of reliability; partially attributed to the method used to calculate RFD (e.g. mean 82 

vs. peak RFD and RFD across different epochs) (22), and the threshold used to identify the 83 

onset of the pull (17).  84 

The findings of numerous studies indicate that resistance training results in increased PF, force 85 

at specific time points and RFD during single joint isometric assessments (1, 3, 24). While 86 

many of these studies state that ‘heavy’ or ‘high’ loads were used during the intervention, the 87 
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majority of the interventions used repetition ranges (6-15) and loads (60-80% one repetition 88 

maximum [1RM]) associated with hypertrophy training (i.e. moderate load) (1, 3, 5). Such 89 

training interventions reduce the ecological validity of these studies as they were not training 90 

specifically to achieve the desired goal (i.e. strength). Andersen et al. (5) observed differential 91 

adaptive responses in early phase (≤100 ms) RFD, where there was a reduction in RFD, 92 

compared to late phase (≥200 ms) RFD, which increased, during isometric knee extension, 93 

after 14 weeks of resistance training. It should be noted however, that the highest loads used 94 

during this intervention included 6-8 RM loads, for the last ~3 weeks, with lower loads 95 

preceding this. Cormie et al. (14, 16) reported different adaptive responses to high- (75-90% 96 

1RM) and low-load (≤30% 1RM) training on power production during a countermovement 97 

jump, with greater improvements in performance in the high-load group.  The latter two studies 98 

only compared two different training loads between two different groups and did not compare 99 

such training loads used consecutively as they would be commonly prescribed. While this 100 

approach clearly addressed the researchers questions it does mean that application in a real-101 

world environment may be limited. To the authors’ knowledge, differences in the effects of 102 

moderate- (60-82.5% 1RM) and high-load (80-90% 1RM) resistance training, in the sequence 103 

that they would normally be used (a period of moderate load, followed by a period of high load 104 

training, in-season), on PF and force at specific time points during multi-joint isometric 105 

assessments, are currently unknown.  106 

The aims of this study were to 1) determine in PF and early multi-joint isometric force 107 

production (50-, 100-, 150-, 200-, 250 ms), in response to a four-week period of moderate load 108 

(60-82.5% 1RM) training and a subsequent four-week period of high load (80-90% 1RM) 109 

training, in-season; 2) compare the changes between the two training phases. It was 110 

hypothesized that both phases of training would result in increased isometric force production 111 

at specific time points, but that the moderate load training would result in the greatest increases 112 

in early isometric force production due to the requirement for rapid force production and higher 113 

movement velocities during such training. It was also hypothesized that isometric PF would 114 

increase at the end of each phase, but that the greatest increase would be observed after the 115 
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high load training phase. The results of this study should provide strength and conditioning 116 

coaches with information regarding the in-season force production adaptations to two different 117 

resistance training loading paradigms. 118 

 119 

METHODS 120 

EXPERIMENTAL APPROACH TO THE PROBLEM 121 

To determine the effect of two, four-week periods of training on multi-joint early isometric force 122 

production (50-, 100-, 150-, 200-, 250 ms) and to compare the differences in changes in early 123 

isometric force production and PF between moderate- (60-82.5% 1RM) and high load (80-90% 124 

1RM) training, a within-subjects repeated measures design was utilized. The time points were 125 

selected to represent time frames commonly reported for different athletic tasks, including 126 

striking (50 ms), contact times during maximal sprint speed (100-, 150 ms) and contact times 127 

during sprint acceleration (200-, 250 ms) (4, 27, 37, 50). 128 

All subjects (n = 34) performed baseline testing (week 0), which was repeated after the initial 129 

four-week mesocycle (moderate load) (week 5) and repeated after the second four-week 130 

mesocycle (high load) (week 10) (Figure 1). A subset of subjects (n = 20) were assessed twice 131 

at baseline (48-72 hours apart), to determine the reliability of the dependent variables. All 132 

testing and training occurred in-season, at the same time of day, with subjects asked to 133 

maintain their normal dietary intake, sport specific training and to avoid strenuous exercise for 134 

at least 48 hours prior to testing. 135 

 136 

 137 

[***Insert figure 1 here***] 138 

 139 

 140 

 141 
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 142 

Subjects 143 

Male professional youth soccer players (n = 11) and collegiate athletes (n = 23) from a variety 144 

of sports (rowing, field hockey, soccer) volunteered to participate in this investigation (age 19.5 145 

± 2.8 years; height 1.72 ± 0.08 m; body mass 69.9 ± 11.4 kg; power clean 0.92 ± 0.03 kg.kg-146 

1). A priori statistical power calculations, using G*Power (version, 3.1.9.2) (20) indicated that 147 

for a statistical power of ≥0.90 at an alpha level of p ≤0.05 a sample size of n≥21 was required. 148 

All subjects provided written informed consent, or parental assent as appropriate, the study 149 

was approved by the Institutional Review Board, in line with the Declaration of Helsinki. 150 

Subjects were all experienced (>1-year, 2-3 x week) and competent in each of the lifts 151 

performed in the interventions, as determined by a qualified (certified strength and conditioning 152 

coach [CSCS] with the National Strength and Conditioning Association and accredited strength 153 

and conditioning coach [ASCC] with the United Kingdom Strength and Conditioning 154 

association) strength and conditioning coach. 155 

 156 

PROCEDURES 157 

Prior to testing, subjects performed a standardized warm up consisting of 10 body weight 158 

squats, 10 forward and 10 reverse lunges, and 5 submaximal countermovement jumps. 159 

Although all participants were familiar with testing procedures as part of their 'normal' 160 

monitoring and training, further familiarization and warm up trials were performed prior to the 161 

maximal effort trials, as described below. 162 

 163 

Isometric Mid-thigh Pull  164 

For the IMTP, previously described procedures were used (11, 23). Briefly, using a portable 165 

IMTP rig (Fitness Technologies, Perth, Australia), an immovable cold rolled steel bar was 166 

positioned at a height that replicated the start of the second pull phase of the clean for each 167 

individual, with the bar fixed above the force platform to accommodate subjects of different 168 

sizes and proportions. This posture resulted in knee and hip angles of 144.3 ± 4.3˚ and 145.6 169 
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± 4.4˚ respectively, with individual joint angles were recorded and standardized between 170 

testing sessions (11, 19, 23). Once the bar height was established, the subjects’ stood on the 171 

force platform with their hands strapped to the bar (11, 23).  172 

 173 

Each participant performed three warm-up trials, one at 50%, one at 75% and one at 90% of 174 

the subject’s perceived maximum effort, each separated by one minute of rest. Once body 175 

position was stabilized (verified by watching the participant and force trace), the participants 176 

were given a countdown of “3, 2, 1, Pull”. Any obvious pre-tension was not permitted prior to 177 

initiation of the pull, with the instruction to pull against the bar “and push the feet into the ground 178 

as fast and hard as possible” which has previously been reported to produce optimal testing 179 

results (26). Each IMTP trial was performed for approximately five seconds, and all participants 180 

were given strong verbal encouragement during each trial. Participants performed three 181 

maximal IMTP trials interspersed with two minutes of rest between trials. If PF during all trials 182 

did not fall within 250 N of each other, the trial was discounted and repeated after a further two 183 

minutes of rest, in line with previous recommendations (11, 23). All participants completed 184 

three successful trials within 3-5 maximal efforts. 185 

Vertical ground reaction force data for the IMTP was collected using a portable force platform 186 

sampling at 1000 Hz (Kistler Instuments, Winterthur, Switzerland), interfaced with a laptop 187 

computer and specialist software (Bioware 3.1, Kistler Instruments, Winterthur, Switzerland) 188 

that allows for direct measurement of force-time characteristics. Raw unfiltered, force-time data 189 

was exported for subsequent analysis in a bespoke Excel spreadsheet (11). 190 

 191 

1-RM Power Clean 192 

The 1RM power clean performances were determined based on a standardized protocol (35).  193 

Briefly, subjects performed warm-up power clean sets using progressively increasing sub-194 

maximal loads prior to performing a maximal attempt, with a progressive increase in loading 195 

during the maximal attempts. Any power clean repetition caught >90° knee flexion was ruled 196 

as an unsuccessful attempt, by a qualified (CSCS, ASCC) strength and conditioning coach. 197 
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 198 

Data Analysis 199 

The maximum forces recorded from the force-time curve during the IMTP trials were reported 200 

as PF and subsequently ratio scaled (PF / body mass). The onset of force production was 201 

defined as an increase in force greater than five standard deviations of force during the period 202 

of quiet standing (17), and subsequently force at 50- (F50), 100- (F100), 150- (F150), 200- 203 

(F200) and 250 ms (F250) were also determined and ratio scaled (force / body mass). All force 204 

data represented net force (maximum force – body weight). Data taken forward for statistical 205 

analyses were based on the mean of the three trials.  206 

 207 

INTERVENTION 208 

Subjects initially performed a four-week, moderate load mesocycle (Table 1) followed by a 209 

testing week and a further four-week, high load mesocycle (Table 2). The loads prescribed for 210 

all weightlifting derivatives were based on the subjects’ 1RM power clean. The loads 211 

prescribed for the remaining exercises were based on predicted 1RM loads from the subject’s 212 

previous 5RM performances as determined at the end of their previous phase of training. The 213 

volume load during the second session of each week was reduced as this was the session 214 

closest to the subjects’ day of competition. As this period of training was ‘in-season’ prescribed 215 

loads ensured that the subjects could perform all repetitions without reaching momentary 216 

muscle failure, which is likely to induce additional fatigue and does not appear to increase 217 

strength or power more than when not reaching failure (30, 34). 218 

All training sessions were supervised by the same qualified (CSCS, ASCC) strength and 219 

conditioning coaches, to ensure consistency of technique, coaching, encouragement and 220 

exercise sequence. In addition, subjects were instructed to use maximal intent, and complete 221 

the concentric phase of the exercises ‘as explosively as possible’, irrespective of the load, to 222 

ensure maximal intent (8). Subjects performed no other resistance training during the 223 

intervention and performed between 3.5-4.5 hours of conditioning and skill-based training per 224 

week, across 2-3 sessions, depending on their individual competition schedules.  225 
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 227 

[***Insert table 1 here***] 228 

 229 

 230 

 231 

[***Insert table 2 here***] 232 

 233 

 234 

 235 

 236 

Statistical Analyses 237 

Normality of all data was determined via Shapiro-Wilk’s test, with all variables normally 238 

distributed (p > 0.05). Baseline measures were compared to determine between-session 239 

reliability, using two-way random effects model intraclass correlation coefficients (ICC) and 240 

95% confidence intervals. The magnitude of the ICC were interpreted as low (<0.30), moderate 241 

(0.30-0.49), high (0.50-0.69), very high (0.70-0.89), nearly perfect (0.90-0.99), and perfect (1.0) 242 

(29). Percentage coefficient of variation (%CV) were also calculated to determine the between 243 

session variability, with <10% being considered acceptable (13). In addition, t-tests were 244 

performed, and Cohen’s d effect sizes calculated to determine if there were any significant or 245 

meaningful differences between baseline testing sessions. 246 

A series of repeated measures analyses of variance (ANOVA) were performed to determine 247 

differences in dependent variables pre- to post-training phase, with Bonferroni post hoc 248 

analysis to determine differences pre- to mid-intervention (moderate load phase) and mid- to 249 
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post intervention (high load phase). In addition, further t-tests were performed to determine if 250 

there were any differences in the percentage change for the moderate- and high load phases, 251 

for each variable. An a priori alpha level was set at p ≤0.05. Further, the magnitude of any 252 

changes were determined via the calculation of effect sizes (Cohen’s d), classified as trivial 253 

(≤0.19), small (0.20 – 0.59), moderate (0.60 – 1.19), large (1.20 – 1.99), and very large (2.0 – 254 

4.0) (28). All statistical analyses were performed using SPSS (Version 23. IBM, New York, 255 

NY).  256 

 257 

Results 258 

Reliability of all IMTP variables was very high to nearly perfect (ICC = 0.863-0.951) between 259 

sessions (Figure 1), with acceptable variability (CV = 3.46-7.95%). Furthermore, differences 260 

between sessions were trivial (d = 0.002-0.13) and non-significant (p >0.05). 261 

 262 

 263 

[***Insert figure 1 here***] 264 

 265 

 266 

Sphericity was assumed via Mauchly’s test for all variables. There were significant (p < 0.001, 267 

power ≥ 0.978) increases in F50, F100, F150 and F200 across the entire duration of the 268 

intervention. The results of post-hoc analysis highlighted a small, non-significant increase (0.7 269 

± 12.5%) in F50 across the moderate load phase (d = 0.53, p = 1.000; 15.07 ± 0.37 N.kg-1 vs. 270 

15.27 ± 0.39 N.kg-1), although there was a very large, significant increase (13.2 ± 17.4%) 271 

across the high load phase (d = 4.16, p = 0.001; 15.27 ± 0.39 N.kg-1 vs. 17.00 ± 0.44 N.kg-1) 272 

(Figure 2). Similarly, there was a trivial, non-significant increase (0.9 ± 14.4%) in F100 across 273 

the moderate load phase (d = 0.00, p = 1.000; 19.01 ± 0.67 N.kg-1 vs. 19.01 ± 0.63 N.kg-1), 274 
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while in contrast there was a very large, significant increase (14.6 ± 21.7%) across the high 275 

load phase (d = 3.55, p = 0.002; 19.01 ± 0.63 N.kg-1 vs. 21.49 ± 0.76 N.kg-1) (Figure 2). F150 276 

also showed a small and non-significant increase (2.7 ± 13.7%) across the moderate load 277 

phase (d = 0.54, p = 1.000; 23.49 ± 0.95 N.kg-1 vs. 24.00 ± 0.91 N.kg-1), while there was a very 278 

large, significant increase (14.6 ± 21.7%) across the high load phase (d = 3.05, p = 0.004; 279 

24.00 ± 0.91 N.kg-1 vs. 26.81 ± 0.93 N.kg-1) (Figure 2). 280 

 281 

[***Insert figure 2 here***] 282 

  283 

 284 

Post-hoc analysis also highlighted a small, non-significant increase (2.5 ± 13.7%) in F200 285 

across the moderate load phase (d = 0.49, p = 1.000; 26.80 ± 0.95 N.kg-1 vs. 27.25 ± 0.88 286 

N.kg-1), while in contrast there was a very large, significant increase (10.9 ± 17.6%) across the 287 

high load phase (d = 2.77, p = 0.001; 27.25 ± 0.88 N.kg-1 vs. 29.74 ± 0.92 N.kg-1) (Figure 3). 288 

Only a small, non-significant increase (2.0 ± 12.4%) in F250 occurred across the moderate 289 

load phase (d = 0.33, p = 1.000; 28.20 ± 0.92 N.kg-1 vs. 28.49 ± 0.81 N.kg-1), although there 290 

was a very large, significant increase (9.2 ± 15.2%) across the high load phase (d = 2.71, p = 291 

0.002; 28.49 ± 0.81 N.kg-1 vs. 30.81 ± 0.90 N.kg-1). PF also increased significantly (p < 0.001, 292 

power = 0.963) across the duration of the study. In contrast to the time specific force variables, 293 

there was a very large, significant increase (7.7 ± 11.8%) in PF across the moderate load 294 

phase (d = 2.02, p = 0.003; 35.70 ± 1.17 N.kg-1 vs. 38.05 ± 1.16 N.kg-1), but only a moderate 295 

and significant increase (3.8 ± 10.6%) across the high load phase (d = 1.16, p = 0.001; 38.05 296 

± 1.16 N.kg-1 vs. 39.50 ± 1.34 N.kg-1) (Figure 3). 297 

 298 

[***Insert figure 3 here***] 299 
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 300 

Discussion 301 

The aims of this study were to compare the changes in early (50-, 100-, 150-, 200-, 250 ms) 302 

and peak isometric force production, after four weeks of moderate load training and after four 303 

weeks of high load training. In contrast to the hypotheses, only trivial to small increases were 304 

observed in response to the moderate load training period, while large increases in early force 305 

production were observed in response to the high load training period. Also, in contrast to our 306 

hypotheses, PF increased to a greater extent across the moderate load training phase (7.7%) 307 

compared to the high load training phase (3.8%). During the moderate load training phase only 308 

trivial to small increases (0.7-2.7%) in early force production were observed, while very large 309 

increases in in early force production (9.2-14.6%) occurred across the high load phase.  310 

In contrast to the moderate load phase, early force production showed very large increases 311 

during the high load training phase. While beyond the scope of this study, such adaptations 312 

may be as a result of increases in motor neuron recruitment, firing frequency, myosin heavy 313 

chain isoform composition and sarcoplasmic reticulum calcium kinetics, in line with previous 314 

findings (2). Although very large increases in early force production occurred, only moderate 315 

increases (3.8%) in isometric PF were found, which were greater than the smallest detectable 316 

difference (1.3%) previously reported for this assessment (12). It must be acknowledged that 317 

that the adaptations experienced in the first block of training likely influenced adaptations to 318 

the second block, which may be expect based on the phase potentiation observed during 319 

periodized training, especially with a reduction in volume during the high load phase. In 320 

addition, James et al. (31) previously suggested that there may be a delayed training effect for 321 

weaker, less experienced lifters, which may explain some of the individual variation in the 322 

results of this study (Figures 2 & 3). This is further explained by the model proposed by Minetti 323 

(36) where large changes in rapid force production in stronger athletes are likely a result of 324 

timing, whereas in weaker athletes these are likely due to increases in cross sectional area 325 

and strength. 326 
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Assessment and development of rapid force production, across such time-points, are important 327 

in the context of the time constraints of a variety of athletic tasks, with field sports requiring 328 

force to be produced over shorter durations as sprint speed increases (27, 37, 47, 50). In 329 

addition, ground contact times are generally <250 ms during jumping tasks, such as long jump 330 

(~120 ms) and high jump (140-190 ms) (47). The results of this study indicate that, high load 331 

resistance training results in increased rapid multi-joint force production, similar to the findings 332 

of numerous investigations that have demonstrated increases in RFD and force at specific 333 

time-points during single-joint isometric assessments (1-3, 5, 24, 25). In addition, Bazyler et 334 

al. (6) reported similar adaptations in rapid force production characteristics in response to high 335 

load multi-joint strength training (85-92% 1RM).  336 

This study is not without limitations; for example, while the loads used for the exercises are 337 

within the ‘normal’ ranges recommended for this type of training. More recently, however, 338 

researchers have suggested during weightlifting pulling derivatives higher loads (≥100% 1RM) 339 

to maximize force and RFD and lower loads (≤60% 1RM) to maximize power and movement 340 

velocity (44, 45). It is also worth noting that there was clear variability in the individual 341 

responses to the training stimulus, as illustrated in figures 3 and 4, which may be due, in part, 342 

to range in relative strength (1RM PC = 0.65 – 1.36 kg.kg-1) levels prior to participating in the 343 

study. Such variability in responses to training have also recently been reported with subjects 344 

divided in to responders and non-responders (39), while other researchers have also reported 345 

differential adaptations between week and strong athletes (15, 31, 32). In addition, some of 346 

the individual variation evident in the results of this study (Figures 3 & 4) may be explained by 347 

the individual demands of competition and sport-specific trainings, as this study was conducted 348 

in-season.  349 

While the sequence of training phases was not randomized, and a cross-over design was not 350 

used, moderate loads followed by high loads was used to ensure ecological validity, as this is 351 

recommended as standard practice in the training and development of athletes (42). Future 352 

research, however, should consider a cross-over design, possibly across a series of three or 353 

four mesocycles to determine the potential effect of such training procedures, to determine 354 
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whether the current practices are optimal. Additionally, a cross-over design may allow 355 

researchers to determine the effect of a moderate load phase preceding a high load phase has 356 

on the adaptations in the subsequent adaptations during the high load phase.  357 

 358 

Practical Application 359 

The findings of the study illustrate the benefits of training with high loads, with the intention to 360 

move quickly, to enhance early force production. These results also demonstrate that higher 361 

movement velocities associated with moderate load training do not result in greater 362 

adaptations in rapid force production when compared to the high loads, which results in a lower 363 

movement velocity. Based on the results of this study, it is suggested that coaches and athletes 364 

focus on higher load (>80% 1RM) training, using multi-joint exercises, including squats and 365 

weightlifting derivatives, when the aim is to increase rapid force production, but that this is 366 

preceded with an appropriate period of moderate load training, which may facilitate the 367 

adaptations observed during the high load phase. Appropriate phasing of these loads may 368 

result in preferential adaptations, in terms of rapid force production.  369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 
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Table and Figure Legends 531 

Table 1: Moderate load (60-82.5% 1RM) training sessions, weeks 1-4. 532 

Table 2: High load (80-90% 1RM) training sessions, weeks 6-9. 533 

 534 

Figure 1: Reliability (intraclass correlation coefficients and 95% confidence intervals) of force-535 
time variables. 536 

Figure 2: Comparison of percentage change in early force production a) force at 50 ms, b) 537 
force at 100 ms, c) force 150 ms, between periods of training. 538 

Figure 3: Comparison of percentage change in early force production a) force at 200 ms, b) 539 
force at 250 ms, and c) peak force between periods of training. 540 

 541 
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Figures & Tables 561 

 562 

Figure 1: Reliability (intraclass correlation coefficients and 95% confidence intervals) of force-time 563 
variables  564 
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 569 

Table 1: Moderate load (60-82.5% 1RM) training sessions, weeks 1-4 570 
Mesocycle 1: Day 1 
Exercise Week 1 Week 2  Week 3 Week 4 
Back Squat  3 x 5 @ 75% 3 x 5 @ 80% 3 x 5 @ 82.5% 3 x 5 @ 67.5% 
Power Clean 3 x 5 @ 75% 3 x 5 @ 80% 3 x 5 @ 82.5% 3 x 5 @ 67.5% 
Push Press 3 x 5 @ 70% 3 x 5 @ 72.5% 3 x 5 @ 75% 3 x 5 @ 60% 
Nordic Lowers 2 x 3 BW 3 x 3 BW 3 x 3 BW 3 x 3 BW 
Mesocycle 1: Day 2 
MTPC 3 x 5 @ 60% 3 x 5 @ 65% 3 x 5 @ 70% 3 x 5 @ 55%  
RDL 3 x 5 @ 70% 3 x 5 @ 75% 3 x 5 @ 77.5% 3 x 5 @ 65% 
Push Press 3 x 5 @ 60% 3 x 5 @ 65% 3 x 5 @ 70% 3 x 5 @ 55%  
Sets x Repetitions @ 1RM% 
MTPC – Mid-thigh Power Clean 
RDL – Romanian Deadlift 
BW = Body Weight 

 571 
 572 

Table 2: High load (80-90% 1RM) training sessions, weeks 6-9 573 
Mesocycle 2: Day 1 
Exercise Week 1 Week 2  Week 3 Week 4 
Power Clean 3 x 3 @ 82.5% 3 x 3 @ 85% 3 x 3 @ 90% 3 x 3 @ 75% 
Push Press 3 x 3 @ 80% 3 x 3 @ 82.5% 3 x 3 @ 85% 3 x 3 @ 75% 
Back Squat  3 x 3 @ 85% 3 x 3 @ 87.5% 3 x 3 @ 90% 3 x 3 @ 75% 
Nordic Lowers 2 x 3 BW 3 x 3 BW 3 x 3 BW 3 x 3 BW 
Mesocycle 2: Day 2 
MTPC 3 x 3 @ 80% 3 x 3 @ 82.5% 3 x 3 @ 85% 3 x 3 @ 70% 
RDL 3 x 3 @ 80% 3 x 3 @ 85% 3 x 3 @ 87.5% 3 x 3 @ 70% 
Push Press 3 x 3 @ 80% 3 x 3 @ 82.5% 3 x 3 @ 85% 3 x 3 @ 70% 
Sets x Repetitions @ 1RM% 
MTPC – Mid-thigh Power Clean 
RDL – Romanian Deadlift 
BW = Body Weight 

 574 


