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Abstract 
 

A theoretical model for steady non-isothermal convective heat transfer in non-Newtonian magnetized 

micropolar gas flow from a non-linear stretching/contracting wall in the presence of strong magnetic 

field is presented, as a simulation of an MHD (magnetohydrodynamic) Hall energy generator. 

Subsonic flow is considered, and compressibility effects neglected. The strength of the magnetic 

field which is applied in the general case obliquely to the wall is sufficient to invoke the collective 

effects of Hall current and Ohmic heating (Joule dissipation). Viscous heating is also included in the 

energy balance. Deploying similarity transformations, the governing equations are normalized into 

nonlinear ordinary differential equations with associated boundary conditions. The non-linear 

boundary value problem thus posed is then solved computationally with Nachtsheim-Swigert 

iteration technique along with the fourth-fifth order Runge-Kutta integration method (RKM). 

Verification of solutions is obtained with the semi-analytical Homotopy analysis method (HAM). 

Further validation is conducted with the semi-numerical Adomian Decomposition Method (ADM). 

In both cases excellent agreement is obtained with the Runge-Kutta shooting quadrature solutions. 

Additional validation is conducted with earlier Newtonian studies in the absence of micropolar, Hall 

current and dissipation effects. The influence of local Grashof number, local Hartmann number, 

Eringen microrotational parameter, Eringen coupling vortex parameter, Prandtl number and Eckert 

number on non-dimensional velocity components (primary, secondary and angular) and temperature 

within the boundary layer are graphically illustrated and interpreted at length. Furthermore, the 

effects of the thermophysical (e.g. non-isothermal power law index), electromagnetic parameters 

(e.g. Hall parameter) and geometric parameter (wall extension/contraction parameter) on the skin-

friction coefficient (i.e. primary and secondary shear stress and wall couple stress) and surface heat 

transfer rate (Nusselt number) are evaluated. The study is relevant to near wall transport phenomena 

in novel MHD Hall power generators.     
 

Keywords: Hall MHD power generators, Non-isothermal; Ohmic dissipation; Eringen 

micropolar gas dynamics; numerical solutions.  

 

 

1. Introduction 

MHD (magnetohydrodynamics) has garnered significant attention in renewable energy 

systems for a plethora of applications including space travel [1], ocean resources [2, 3], coal-

fired power stations [4] and materials processing [5]. In novel designs for Mars missions [6] 

engineers have established that the ionization sheath encapsulating the spacecraft can be 
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diminished markedly via MHD power generation, since the strength (and therefore 

damaging impact) of the ionization sheath is largely suppressed in key zones as electrons 

and ions are re-directed by the magnetic field and harvested at the electrodes. The re-

directed energy can be channelled into powering the vehicle. Since atmospheres generally 

contain debris and suspensions (cosmic dust), they exhibit certain non-Newtonian effects. 

The fluids extracted and employed in MHD re-direction systems therefore cannot be 

analysed as merely Newtonian (Navier-Stokes) viscous fluids. Although numerous non-

Newtonian models exist for simulating complex shear stress-strain characteristics of 

working fluids in these proposed MHD devices, including Oldroyd-B [7], Maxwell [8], 

Jefferys [9] and power-law models, they all neglect micro-structural features of the fluids i.e. 

suspended particle spin. They are also generally restricted to liquids and not applicable to 

gaseous media. The spin effect can exert a profound influence on generator efficiency and 

heat transfer rates. In the 1960s a new branch of fluid dynamics was pioneered by the late 

A.C. Eringen, an engineering professor at Princeton University, USA. Micro-morphic fluid 

dynamics or “micro-fluids” [10] were introduced to mimic the gyratory motions of 

suspended particles. The initial theory was extremely complex, involving six times as many 

balance equations as in the classical Navier-Stokes theory. Eringen [11] therefore developed 

a specialized version of microfluids termed micropolar fluids. These fluids could simulate 

non-deformable micro-constituents and exhibited a constitutive equation with a non-

symmetrical stress tensor. These fluids respond to micro-rotational motions and spin inertia, 

and therefore can support couple stress and distributed body torque which are not achievable 

with the classical Navier-Stokes equations or the viscoelastic flow models. Micropolar fluid 

theory was subsequently applied to many branches of rheology including physiological 

fluids (blood containing corpuscles), colloidal suspensions, paints, liquid crystal 

suspensions, concentrated silica particle suspensions, oils containing very fine suspensions, 

industrial contaminants containing toxic chemicals, lubricants, organic/inorganic hybrid 

nano-composites and coastal sediments. The present study aims to further extend the 

applications to magnetic energy generators, an area which has not received significant 

attention from the viewpoint of micropolar gas dynamics. A great advantage of micropolar 

theory (which has been extensively validated experimentally see e.g. [12]) is that it can 

retrieve Newtonian model solutions as a very special elementary case. It also lends itself 

extremely well to boundary layer phenomena and is therefore ideal for simulating near wall 

flows in MHD ducts. A comprehensive review of over nearly five decades of theoretical and 

computational studies of micropolar flow, heat and mass transfer has been provided in the 

monograph by Bég et al. [13], the first work to do so. Some important studies of micropolar 

propulsion flows include Guram and Smith [14] who studied stagnation point flow of a 

micropolar fluid with strong and weak interactions. Gorla and Takhar [15] investigated the 

boundary layer flow of a micropolar fluid on a rotating axisymmetric surface with a 

concentrated heat source. Char and Chang [16] analyzed the effect of wall conduction on 

laminar natural convection heat transfer of micropolar fluids along a vertical flat plate. 

Takhar et al. [17] employed a finite element method for the flow and heat transfer in the 

micropolar fluid between two porous disks. El-Arabawy [18] carried out an analysis to study 

the effect of suction and injection on the flow and heat transfer characteristics for a 

continuous moving plate in a micropolar fluid in the presence of radiation. Hassanien et al. 

[19] found that, compared with Newtonian fluids, micropolar fluids enhance the skin friction 

and reduce heat transfer rate. Bég et al. [20] investigated boundary layer flow of micropolar 

fluids with double-diffusive convection from a spherical body. Damesh et al. [21] presented 

a numerical investigation of the natural heat transfer problem of a micropolar boundary layer 

flow near a vertical surface with constant heat flux. Bég et al. [22] used a homotopy method 

to simulate the squeezing hydrodynamics of a magnetized micropolar lubricant in a shock 
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absorber system. Zueco et al. [23] analyzed the boyancy-driven micropolar propulsion in a 

vertical tube. Rahman [24] analyzed electric conductivity effects on a micropolar fluid flow 

from an oblique permeable flat plate in a permeable medium. Sherief et al. [25] considered 

the unsteady motion of an incompressible micropolar fluid filling a half-space bounded by a 

horizontal suddenly mobilized infinite plate.  Numerous magnetohydrodynamic transport 

problems of micropolar fluids have also been reviewed in Bég [26] including subsonic and 

supersonic micropolar magneto-gas dynamic flows.  

In the above-mentioned studies, the effect of Hall current has not been taken into 

consideration. Elie et al. [27] stressed the importance of incorporating Hall effects in 

thermosyphonic (and other) MHD propulsion systems e.g. those exploiting electrolyte 

working solutions, and observed that the Hall parameter, which is a property of the fluid of 

the electrolyte liquid, may attain very high values if not controlled and manifest in a 

significant loss in power output at the electrodes due to electron drift in the fluid leading to 

generation of current in an axial direction at the expense of the current flowing in the 

transverse direction between the electrodes. Several investigations have therefore addressed 

Hall current effects in magnetohydrodynamic transport, and an extensive review is provided 

in Bég et al. [28].  Aurangzaib and Shafie [29] investigated the effects of Soret and Dufour 

on combined heat and mass transfer in magnetic mixed convection in porous media with 

heat source, chemical reaction, Hall current and also radiative flux effects. Ferdows et al. 

[30] presented a similarity solution for the heat transfer flow considering slip conditions 

along with Hall and ion-slip currents. Bég et al. [31] employed a network simulation 

electrothermal code to simulate rotating plasma flow with Hall current in a porous medium. 

Kumar and Chand [32] presented a theoretical analysis of an unsteady hydromagnetic free 

convection flow of viscoelastic fluid through porous media. Ghosh et al. [33] obtained 

analytical and computational solutions for Maxwell displacement current and Hall current 

effects on rotating oblique magneto-hydrodynamic flow, considering ionized hydrogen as 

the propellant. Raju [34] studied unsteady magnetohydrodynamics flow of an electrically 

conducting fluid between two horizontal parallel non-conducting plates, where the lower one 

is stretching sheet and the upper one is oscillating porous plate in the presence of a 

transverse magnetic field and the effects of Hall current. Bég et al. [35] used multiple finite 

difference algorithms (Keller box and Nakamura tridoagonal) to compute the two-

dimensional non-isothermal, magnetohydrodynamic free convection boundary layer flow 

and heat transfer in a non-linear permeable material with Hall currents, ion slip, viscous 

heating and Ohmic dissipation effects. Ghara et al. [36] analyzed the unsteady MHD Couette  

flow of a viscous fluid between two infinite non-conducting horizontal porous plates with 

the both Hall currents and ion-slip. Hayat and Hendi [37] reported homotopy solutions for 

double-diffusive reactive magnetized three-dimensional axisymmetric flow of a viscous 

fluid between radially stretching sheets with Hall and ion-slip currents and thermal and 

magnetic dissipation. Motsa and Shateyi [38] considered Hall and variable thermal 

diffusivity effects on magnetomicropolar reactive heat, and mass transfer with suction 

through a porous medium using successive linearization method (SLM) together with a 

Chebyshev collocation method. 
 

Thusfar  to the authors’ knowledge, the magnetohydrodynamic transport of micropolar fluid 

from an extending wall with Hall current and viscous/Ohmic dissipation has not been 

considered in the engineering science literature. The present article studies this problem and 

employs a variety of numerical algorithms to solve the resulting non-dimensional multiple 

degree non-linear coupled boundary value problem. Careful appraisal of Hall and other 

effects on the three-dimensional flow is addressed. The study is relevant to novel MHD 
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propulsion systems for space travel and may also find applications in naval and marine 

MHD energy conversion utilizing micropolar conducting gases. 

 

2. Mathematical formulation  

We consider steady, incompressible and electrically conducting, micropolar fluid (ionized 

plasma) flow and heat transfer in the near-wall zone of an MHD Hall generator. A schematic 

describing the fundamentals of MHD generators is shown in Fig. 1a. The wall considered is 

non-linearly stretching and orientated along the x-direction. The flow under consideration is 

also subjected to a strong transverse magnetic field B0 of constant intensity along the y-axis, 

as illustrated in Fig 1b.  

 

 

Fig 1a: MHD energy generation [Bég et al. [28]] 

 

Fig 1b. Model for nonlinear MHD Hall generator micropolar flow 

 

The velocity component u on a stretching sheet is proportional to its distance from the 

leading edge of the boundary layer. Generally, Hall current influences an electrically 

conducting fluid in the presence of a magnetic field. The effect of Hall current gives rise to a 

force in the z-direction, which induces a crossflow in the z-direction and hence the flow 
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becomes three-dimensional. We assume that all the fluid properties are isotropic and 

constant. The conservation equations for generalized transient flow of incompressible 

micropolar fluids are [11, 13]: 

0, =V                                                                                          (1) 
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where V  is the velocity vector, v  is the micro-rotation (micro-element angular i.e. spin 

velocity) vector,  is the fluid density, j  is the micro-gyration parameter, p is the fluid 

pressure, ,  ,     are the coefficients of the viscosities and 
1,  m  are coefficients of the vortex 

and shear viscosity, respectively. The parameters,
1,  ,  ,   and m    are subject to the 

following thermodynamic constraints: 
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Under the usual boundary layer and Boussinesq approximations, the governing equations in 

an (x, y, z) coordinate system for the MHD flow under consideration can be extracted and 

modified accordingly. Here Eqns. (5-8) are derived by reducing the full vector equations (1-

3) and only retaining the relevant terms for the current problem based on boundary layer and 

Boussinesq approximations (as already stated) and adding any relevant supplementary terms 

e.g. viscous heating and Hall currents. Only the spin (micro-rotation) in the x-y plane is 

retained and therefore only a single angular momentum (micro-rotation) equation is required 

(and not the three that feature in the general micropolar model [11]). The emerging equations 

effectively amalgamate the models given in [24] and [30] as stated below: 
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The initial and boundary conditions are 

w, 0, 0, 0, at 0

0, 0, 0, as
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Here positive or negative n indicates acceleration or deceleration of the wall from the 

entry point (origin) whereas n=0 is the case of a stationary wall, respectively, (u, v, w) are the 

fluid velocity components in the x, y, z - directions respectively, N is the micro-element 
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micro-rotation, T is the temperature, )(
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currents along the x-and z-axis respectively,  is the electric conductivity of micropolar fluid, 

e  is the viscosity of fluid, 0B  is the uniform magnetic field strength, eem = is the Hall 

parameter and  cos= where  is the angle between the direction of the strong uniform 

magnetic field 
→

B and the plane transverse to the plate (the latter is assumed to be electrically 

non-conducting),  is the kinematic viscosity,  is the volumetric coefficient of thermal 

expansion,  is the fluid density, K is the Eringen vortex viscosity, G1 is the Eringen spin 

gradient viscosity,   is the thermal conductivity of the fluid, Cp denotes the specific heat at 

constant pressure and A and  are constants. Numerical solutions of the primitive boundary 

value problem defined by Eqns. (5)-(10) generally necessitate computationally rigorous codes 

e.g. finite difference or finite element. They also yield only very general information 

regarding the flow fields and preclude the opportunity to invoke dimensionless parameters 

which can provide detailed understanding of the thermophysical and magnetic field effects. It 

is therefore pertinent to transform the coordinate system to a non-dimensional one and this is 

achieved readily via non-similar transformations, simultaneously eliminating one of the 

independent variables and reducing the partial differential equation system into an ordinary 

differential one. Introducing the following transformation variables. 
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Therefore. the transformed equations using the above parameters are converted to a ninth 

order ordinary differential boundary value problem defined by:  
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The corresponding initial and boundary conditions contract to: 

0, 1, 0, 0, 1 at 0

0, 0, 0, 0 as
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Here, ( ) 2/wGr g T T x U = − is the local Grashof number, 2

0 /eM B x U =  is the local 

magnetic body force parameter (Hartmann number) in which 0 /B B x=  is the scaled magnetic 

field strength, 1

1 /nG G Bx K−=  is the micro-rotational parameter, 1 1 /N K = is the material 

(Eringen coupling) parameter, Pr /pC = is the Prandtl number and ( )2 / p wEc U C T T= −  is 

the Eckert number. The Grashof, magnetic and micro-rotational parameters are local similarity 
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parameters which are required in the non-dimensionalization of the model. This is a perfectly 

valid approach which has been used by many scientists in heat transfer and magnetofluid 

dynamics. It retains the requisite validity of the physics and solutions presented in our paper 

are locally autonomous (i. e.  independent of information from other streamwise locations) as 

noted by Sparrow and Yu [39]. 

The parameters of engineering interest for MHD energy generators include the wall skin-

friction components for the primary and secondary velocities, and the local Nusselt number 

(Nu). The wall skin-friction components wx  and wz  for the primary and secondary velocities 

respectively are given by: 
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Hence the skin-friction coefficients fxC  and fzC  for the primary and secondary velocities 

respectively, i.e. primary and secondary shear stress, are given by: 
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Now the local Nusselt number is given by 
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Thus, from the above definition we have ( )0fC fx
 , ( )0gC fz

  and ( )0 −xNu . 

 

3. Numerical computation with shooting scheme  
 

The numerical solutions of the non-linear differential equations (12) to (15) under the 

boundary conditions (16) have been performed by applying a hybrid shooting quadrature 

method namely the Nachtsheim and Swigert [40] iteration technique (guessing the missing 

values) along with a fourth-fifth order Runge-Kutta-Fehlberg iteration scheme. We have 

chosen a step size 01.0=  to satisfy the convergence criterion of 10-5 in all cases. The value 

of   has been found to each iteration loop by  +=  . MAPLE 17 symbolic software 

is employed to execute the computations via the “dsolve” library [41]. This approach has 

been extensively implemented in recent years and speedily solves very strongly nonlinear 

problems including magnetized nanofluid flow [42] and bioconvection slip flows [43]. A 

Runge–Kutta–Fehlberg algorithm is employed which utilizes a collocation method in which a 

finite-dimensional space of candidate solutions is selected (usually, polynomials up to a 

certain degree) and a number of points in the domain (called collocation points), and a 

http://en.wikipedia.org/wiki/Polynomial
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solution selected which satisfies the given equation at the collocation points. The algorithm is 

adaptive since it adjusts the quantity and location of grid points during iteration and thereby 

constrains the local error within acceptable specified bounds. In the current problem, the 

asymptotic boundary conditions given in Eqn. (16) are replaced by a finite value of 8. The 

choice of infinity must be selected judiciously to ensure that all numerical solutions approach 

the asymptotic values correctly. The selection of a sufficiently large value for infinity is 

absolutely critical in sustaining the desired accuracy in boundary layer flows and is a 

common pitfall encountered in numerous studies. The stepping formulae used to solve Eqns. 

(12)-(15) under conditions (16) with this computational shooting algorithm are given below 

[44]:  
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Here y  denotes fourth order Runge-Kutta phase and z  is the fifth order Runge-Kutta 

phase. An estimate of the error is achieved by subtracting the two values obtained. If the error 

exceeds a specified threshold, the results can be recalculated using a smaller step size. The 

approach to estimating the new step size is shown below: 
1/4

old
new old

1 1 5
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h
h h
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4. Validation with homotopy analysis method 
 

Since no practical benchmark exist in the literature for the present general model, we 

seek verification of solutions via two alternate techniques. The first of these, namely the 

Homotopy analysis method (HAM) has rapidly grown into a powerful alternative to 

traditional finite difference or finite element methods and is equally applicable to nonlinear 

systems of partial or ordinary differential equations. Liao [45] employed developed HAM 

via homotopy in topology to generate a general analytical-numerical method for nonlinear 
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problems. The validity of HAM is independent of whether or not there exist small 

parameters in the considered equation(s). Therefore HAM can overcome the foregoing 

restrictions of perturbation methods. In recent years, HAM has been successfully employed 

to solve many types of non-linear problems in engineering sciences including rotating 

nanofluid dynamics [46], acoustical vibration [47] and swirling aerodynamics [48]. 

Denoting f=F, g=G, h=H and =N, in HAM we write the initial guesses and linear 

operators as:  

0 1( ,) eF  −= − +    
0( ) ,G e  −=      0 ( ) ,H e  −=     0 ( ) ,N e  −=                          (31a) 

3

3
,F

d F dF
L

d d 
= −

2

2G

d G
L G

d
= − ,

2

2H

d H
L H

d
= − ,

2

2N

d N
L N

d
= − ,                                      (31b) 

with the following properties: 

( ) ( )

( ) ( )

1 2 3 4 5

6 7 8 9

0, 0,

0, 0,

F G

G N

L C C e C e L C e C e

L C e C e L C e C e

   

   

− −

− −

+ + = + =

+ = + =
                                                             (32) 

here ( )1 9iC i = −  are arbitrary constants. Let  0, 1q  represent an embedding parameter 

and , , ,F G H N  denote the nonzero auxiliary linear operators and construct the following 

zeroth order deformation equations: 

( )1 q− fL ( ) ( )0
ˆ ;F q F  −

 = Fq *

FN ( )ˆ ;F q 
                                                                (33) 

( )1 q−
GL ( ) ( )0

ˆ ;G q G  −
 

 = Gq *

GN ( ) ( )ˆ ˆ; , ;G q F q  
 

                                             (34) 

( )1 q− HL ( ) ( )0
ˆ ;H q H  −

   = Hq
*

HN  ( ) ( )ˆ ˆ; , ;H q F q  
  ,                                        (35) 

( )1 q− NL ( ) ( )0
ˆ ;N q N  −

   = Nq
*

NN  ( ) ( )ˆ ˆ; , ;N q F q  
  ,                                         (36) 

The transformed boundary conditions are non-linear operators may then be defined. 

Taylor expansions of the approximations are then conducted, and auxiliary parameters are 

properly selected to achieve fast convergence of these series. The resulting problems at the 

mth order deformation are then formulated with associated boundary conditions and 

eventually a general solution of the Eqns. (12)-(15) is achieved in which ( )*

mF  , 

( )*

mG  , ( )*

mH   and ( )*

mN   are the particular solutions and the constants are to be 

determined by the boundary conditions. HAM achieves an analytical solution of the problem 

in series form. An important consideration is convergence of the series solution given by 

HAM which depends strongly upon auxiliary parameters , ,F G H and N . These 

parameters provide a convenient mechanism for adjusting and controlling the convergence 

region and convergence rate of the series solution. Therefore, in order to select appropriate 

values for these auxiliary parameters, the so called , ,F G H  and N curves are computed 

at 20th order approximations to guarantee exceptional accuracy and is therefore adopted in all 

HAM numerical computations. The comparison of solutions via shooting quadrature and 

HAM is provided in Tables 1-9. 
 

5. Validation with ADM and published results  

As further verification of the shooting solutions, the boundary value problem has again 

been solved with another code, ADMicro, employing ADM, a different semi-numerical 

technique which employs Adomian polynomials to achieve very accurate solutions which 
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may be evaluated using symbolic packages such as MATLAB. ADM has been used 

successfully by the authors in recent years to simulate magnetized lubrication problems [49] 

and viscoelastic extrusion flows [50]. ADM [51] deploys an infinite series solution for the 

unknown functions i.e. f, g, h and , in Eqns (12)-(16) and utilizes recursive relations. The 

present ordinary differential nonlinear boundary value problem (BVP) is re-written using the 

standard operator, following Shamshuddin et al. [52]: 

Lu Ru Nu g+ + =                                                                                                                   (37) 

where u is the unknown function, L is the highest order derivative (assumed to be easily 

invertible), R is a linear differential operator of order less than L, N designates the nonlinear 

terms, and g is the source term. Applying the inverse operator L−1 to both sides of eqn. (37) 

and using the given conditions we obtain: 

( ) ( )1 1u v L Ru L N− −= − −                                                                                                        (38) 

where ν represents the terms arising from integrating the source term g and from the auxiliary 

conditions. ADM defines the solution u by the series: 

0

n

n

u u


=

=                                                       (39) 

The solution for the non-linear terms is: 

0

n

n

N A


=

=                                                       (40) 

Here An are the Adomian polynomials which are evaluated via the following relation [49]: 

0 0

1

!

n
i

n in
i

d
A N u

n d







= =

  
=   

  
                                                    (41) 

If the nonlinear term is expressed as a nonlinear function f(u), the Adomian polynomials are 

arranged into the form: 

( )0A f u=                                                       (42) 

( ) ( )1

1 1 0A u f u=                                                                            (43) 

( ) ( ) ( ) ( )1 22

2 2 0 1 0

1

2!
A u f u u f u= +                                                    (44) 

( ) ( ) ( ) ( ) ( ) ( )1 2 33

3 3 0 1 2 0 1 0

1

3!
A u f u u u f u u f u= + +                                                  (45) 

The components u0, u1, u2... are then determined recursively by using the relation: 

0

1 1

1 0k k k

u v

u L Ru L A k− −

+

=

= − − 
                                                                                                (46) 

where u0 is referred to as the zeroth component. An n-components truncated series solution is 

finally obtained as: 

0

n i

n

S u


=

= .                                                      (47) 

Computations in MATLAB on an Octane SGI desktop workstation (dual processor) take 

seconds to perform and an accuracy of 10-5 is achieved throughout. The numerical values 

proportional to the skin-friction coefficients and the Nusselt-number are given in Tables 1-9 

for different values of the thermo-physical, magnetic and micropolar (rheological) parameters 

for all three methods employed (RKM, HAM and ADM). The correlation is excellent. The 

tables bear testimony to the excellent accuracy of RKM as compared with other techniques. 

Confidence in all three algorithms is therefore justifiably high and this data provides a robust 

benchmark for future studies. To further confirm the accuracy of all three numerical solvers 
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employed, a supplementary verification has been conducted. The present model reduces 

exactly to that of Gorla and Sidwai [53] when M = 0 (non-magnetic), N1 = 0 (micropolar 

effects negated), Ec = 0 (viscous heating ignored), Grashof number ( )Gr  = 1, Hall parameter 

( )m =0, n =0 (linear stretching), G =0 (micro-rotation neglected),  = 0 (isothermal) for Pr = 

0.7.  Equations (13) and (14) are neglected to correlate the model with [53]. Excellent 

agreement is achieved between all three methods and the Nakamura finite difference 

numerical solutions of Gorla and Sidawi [53], as shown in Table 10. This confirms beyond 

doubt the accuracy of our computations. 

 
 

Table 1: Comparison of RKM, HAM and ADM numerical solutions for various Hartmann numbers (M) with 

N1=0.2, Gr =5.0, G = 2.0, Pr =0.72, Ec = 0.3, m=1.0, n=1.0, =0.02 and  =1.0. 
M ( )0f   

(RKM) 

 

( )0f   

(HAM) 

 

( )0f   

(ADM) 

 

( )0g  

(RKM) 

 

( )0g  

(HAM) 

 

( )0g  

(ADM) 

 

( )0h  

(RKM) 

 

( )0h  

(HAM) 

 

( )0h  

(ADM) 

 

( )0 −  

(RKM) 

 

( )0 −  

(HAM) 

 

 

( )0 −  

(ADM) 

 

-1 1.3897 1.3898 1.3896 -0.5486 

 

-0.5485 -0.5487 0.0419 0.0418 0.0420 0.8470 0.8471 0.8472 

0 1.2398 1.2399 1.2397 0.0000 

 

0.0000 0.0000 0.0456 0.0455 0.0457 0.6979 0.6980 0.6978 

1 1.0178 1.0179 1.0177 0.3929 

 

0.3927 0.3930 0.0630 0.0629 0.0631 0.5530 0.5531 0.5529 

3 0.5257 0.5256 0.5258 0.9014 

 

0.9015 0.9016 0.1057 0.1056 0.1058 0.2968 0.2969 0.2967 

5 0.0512 0.0513 0.0511 1.2005 

 

1.2004 1.2006 0.1457 0.1456 0.1458 0.0953 0.0954 0.0952 

7 -0.3812 -0.3813 -0.3811 1.3905 1.3904 1.3906 0.1803 0.1802 0.1805 0.0548 0.0549 0.0547 

 

 

 

 
Table 2: Comparison of RKM, HAM and ADM numerical solutions for various Eringen coupling parameters 

(N1) with M=3.0, Gr =5.0, G = 2.0, Pr =0.72, Ec = 0.3, m=1.0, n=1.0, =0.02 and  =1.0. 
N1 ( )0f   

(RKM) 

 

( )0f   

(HAM) 

 

( )0f   

(ADM) 

 

( )0g  

(RKM) 

 

( )0g  

(HAM

) 

 

( )0g  

(ADM) 

 

( )0h  

(RKM) 

 

( )0h  

(HAM) 

 

( )0h  

(ADM) 

 

( )0 −  

(RKM) 

 

( )0 −  

(HAM) 

 

 

( )0 −  

(ADM

) 

 

0.2 0.5257 0.5256 0.5258 0.9014 0.9015 0.9015 0.1057 0.1056 0.1058 0.2968 0.2970 0.2969 

0.5 0.5419 0.5420 0.5218 0.9023 0.9022 0.9021 0.1052 0.1051 0.1053 0.2967 0.2968 0.2966 

1.0 0.5692 0.5693 0.5691 0.9037 0.9036 0.9035 0.1045 0.1044 0.1046 0.2966 0.2965 0.2965 

2.0 0.6260 0.6261 0.6259 0.9068 0.9067 0.9069 0.1029 0.1028 0.1030 0.2962 0.2961 0.2963 

4.0 0.7488 0.7489 0.7487 0.9126 0.9128 0.9127 0.0998 0.0997 0.0999 0.2949 0.2950 0.2948 

8.0 1.0493 1.0494 1.0492 0.9226 0.9227 0.9225 0.0942 0.0941 0.0943 0.2877 0.2876 0.2879 

 

 
Table 3: Comparison of RKM, HAM and ADM numerical solutions for various Grashof numbers (Gr) with 

M=3.0, N1=0.2, G = 2.0, Pr =0.72, Ec = 0.3, m=1.0, n=1.0, =0.02 and  =1.0. 

Gr ( )0f   

(RKM) 

 

( )0f   

(HAM) 

 

( )0f   

(ADM) 

 

( )0g  

(RKM) 

 

( )0g  

(HAM) 

 

( )0g  

(ADM) 

 

( )0h  

(RKM) 

 

( )0h  

(HAM) 

 

( )0h  

(ADM) 

 

( )0 −  

(RKM) 

 

( )0 −  

(HAM) 

 

 

( )0 −  

(ADM) 

 0.0 -1.6452 -1.6451 -1.6453 0.4835 0.4834 0.4836 0.3188 0.3189 0.3187 0.2507 0.2508 0.2509 

1.0 -1.1814 -1.1813 -1.1814 0.6025 0.6023 0.6026 0.2638 0.2639 0.2637 0.3153 0.3152 0.3151 

2.0 -0.7424 -0.7423 -0.7425 0.6932 0.6931 0.6933 0.2188 0.2189 0.2189 0.3292 0.3291 0.3291 

3.0 -0.3144 -0.3143 -0.3146 0.7705 0.7704 0.7705 0.1784 0.1782 0.1783 0.3264 0.3262 0.3263 

5.0 0.5257 0.5256 0.5257 0.9014 0.9013 0.9015 0.1057 0.1059 0.1056 0.2968 0.2967 0.2969 

8.0 1.7744 1.7742 1.7745 1.0626 1.0625 1.0627 0.0081 0.0080 0.0082 0.2181 0.2180 0.2180 

10 2.6102 2.6103 2.6101 1.1555 1.1554 1.1556 -0.0521 -0.0520 -0.0522 0.1505 0.1504 0.1503 
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Table 4: Comparison of RKM, HAM and ADM numerical solutions for various micro-rotation parameters (G) 

with M=3.0, N1=0.2, Gr = 5.0, Pr =0.72, Ec = 0.3, m=1.0, n=1.0, =0.02 and  =1.0. 

G ( )0f   

(RKM

) 

 

( )0f   

(HAM

) 

 

( )0f   

(ADM

) 

 

( )0g  

(RKM) 

 

( )0g  

(HAM) 

 

( )0g  

(ADM) 

 

( )0h  

(RKM) 

 

( )0h  

(HAM) 

 

( )0h  

(ADM) 

 

( )0 −  

(RKM) 

 

( )0 −  

(HAM) 

 

 

( )0 −  

(ADM

) 

 

1.0 0.5278 0.5277 0.5279 0.9009 0.9008 0.9009 0.1170 0.1171 0.1169 0.2976 0.2975 0.2977 

2.0 0.5257 0.5256 0.5258 0.9014 0.9013 0.9014 0.1057 0.1058 0.1056 0.2968 0.2967 0.2969 

4.0 0.5233 0.5232 0.5234 0.9016 0.9015 0.9016 0.0805 0.0806 0.0804 0.2962 0.2961 0.2964 

8.0 0.5210 0.5208 0.5211 0.9017 0.9016 0.9018 0.0548 0.0549 0.0547 0.2960 0.2959 0.2961 

16.0 0.5192 0.5191 0.5193 0.9016 0.9015 0.9014 0.0343 0.0344 0.0342 0.2959 0.2958 0.2961 

 

 
Table 5: Comparison of RKM, HAM and ADM numerical solutions for various Prandtl numbers (Pr) with 

M=3.0, N1=0.2, Gr = 5.0, G=2.0, Ec = 0.3, m=1.0, n=1.0, =0.02 and  =1.0. 

Pr ( )0f   

(RKM) 

 

( )0f   

(HAM) 

 

( )0f   

(ADM) 

 

( )0g  

(RKM) 

 

( )0g  

(HAM) 

 

( )0g  

(ADM) 

 

( )0h  

(RKM) 

 

( )0h  

(HAM) 

 

( )0h  

(ADM) 

 

( )0 −  

(RKM) 

 

( )0 −  

(HAM) 

 

 

( )0 −  

(ADM

) 

 

0.72 0.5257 0.5256 0.5258 0.9014 0.9013 0.9015 0.1057 0.1056 0.1058 0.2968 0.2969 0.2967 

2.0 0.1992 0.1991 0.1993 0.7675 0.7673 0.7677 0.1836 0.1835 0.1838 0.5093 0.5092 0.5091 

3.7 -0.0241 -0.0240 -0.0242 0.6949 0.6947 0.6950 0.2218 0.2217 0.2220 0.6879 0.6881 0.6878 

7.0 -0.2519 -0.2518 -0.2520 0.6346 0.6344 0.6348 0.2516 0.2515 0.2518 0.9095 0.9097 0.9094 

10.0 -0.3694 -0.3693 -0.3695 0.6087 0.6085 0.6088 0.2639 0.2640 0.2641 1.0431 1.0430 1.0430 

 

 

 
Table 6: Comparison of RKM, HAM and ADM numerical solutions for various Eckert numbers (Ec) with 

M=3.0, N1=0.2, Gr = 5.0, G=2.0, Pr = 0.72, m=1.0, n=1.0, =0.02 and  =1.0. 

Ec ( )0f   

(RKM) 

 

( )0f   

(HAM) 

 

( )0f   

(ADM) 

 

( )0g  

(RKM

) 

 

( )0g  

(HAM

) 

 

( )0g  

(ADM) 

 

( )0h  

(RKM) 

 

( )0h  

(HAM) 

 

( )0h  

(ADM) 

 

( )0 −  

(RKM) 

 

( )0 −  

(HAM) 

 

 

( )0 −  

(ADM) 

 0.003 0.3261 0.3262 0.3259 0.8460 0.8459 0.8461 0.1388 0.1389 0.1387 0.6066 0.6065 0.6068 

0.3 0.5257 0.5258 0.5256 0.9014 0.9013 0.9015 0.1057 0.1058 0.1056 0.2968 0.2967 0.2969 

1.0 1.5533 1.5534 1.5532 1.1245 1.1244 1.1246 -0.0436 -0.0437 -0.0435 -1.2828 -1.2827 -1.2829 

2.0 5.3200 5.3201 5.3199 1.5760 1.5759 1.5761 -0.4029 -0.4030 -0.4028 -9.1118 -9.1117 -9.1119 

2.5 8.0972 8.0973 8.0971 1.7896 1.7895 1.7897 -0.5917 -0.5918 -0.5916 -16.7787 -16.7790 -16.7789 

 
 
 

Table 7: Comparison of RKM, HAM and ADM numerical solutions for various Hall current parameters (m) 

with M=3.0, N1=0.2, Gr = 5.0, G=2.0, Pr = 0.72, Ec=0.3, n=1.0, =0.02 and  =1.0. 

m ( )0f   

(RKM

) 

 

( )0f   

(HAM) 

 

( )0f   

(ADM) 

 

( )0g  

(RKM) 

 

( )0g  

(HAM) 

 

( )0g  

(ADM) 

 

( )0h  

(RKM) 

 

( )0h  

(HAM) 

 

( )0h  

(ADM) 

 

( )0 −  

(RKM) 

 

( )0 −  

(HAM) 

 

 

( )0 −  

(ADM

) 

 

0.2 0.1709 0.1710 0.1708 0.2789 0.2788 0.2788 0.1182 0.1183 0.1182 0.0546 0.0544 0.0547 

0.5 0.2814 0.2815 0.2813 0.6200 0.6201 0.6219 0.1152 0.1151 0.1150 0.1310 0.1311 0.1311 

1.0 0.5257 0.5258 0.5256 0.9014 0.9015 0.9013 0.1057 0.1058 0.1056 0.2968 0.2969 0.2969 

1.5 0.7272 0.7273 0.7271 0.9437 0.9438 0.9436 0.0942 0.0943 0.0941 0.4263 0.4264 0.4264 

2.0 0.8679 0.8680 0.8678 0.8918 0.8919 0.8917 0.0838 0.0839 0.0837 0.5102 0.5103 0.5104 
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Table 8: Comparison of RKM, HAM and ADM numerical solutions for various wall distention parameters (n) 

with M=3.0, N1=0.2, Gr = 5.0, G=2.0, Pr = 0.72, Ec=0.3, m=1.0,  =0.02 and  =1.0. 

n ( )0f   

(RKM) 

 

( )0f   

(HAM) 

 

( )0f   

(ADM) 

 

( )0g  

(RKM) 

 

( )0g  

(HAM

) 

 

( )0g  

(ADM

) 

 

( )0h  

(RKM) 

 

( )0h  

(HAM) 

 

( )0h  

(ADM) 

 

( )0 −  

(RKM) 

 

( )0 −  

(HAM) 

 

 

( )0 −  

(ADM

) 

 

-0.6 3.1897 3.1896 3.1898 1.8043 1.8042 1.8044 -0.0867 -0.0866 -0.0868 2.1437 2.1438 2.1436 

-0.3 1.7510 1.7511 1.7512 1.1183 1.1181 1.1184 0.1401 0.1400 0.1402 1.6947 1.6949 1.6946 

0.0 1.0560 1.0561 1.0562 0.9539 0.9538 0.9537 0.1840 0.1839 0.1841 1.4433 1.4432 1.4432 

0.3 0.6427 0.6428 0.6425 0.8761 0.8760 0.8762 0.1888 0.1887 0.1889 1.2839 1.2838 1.2838 

0.6 0.3650 0.3651 0.3652 0.8292 0.8291 0.8293 0.1830 0.1829 0.1831 1.1724 1.1725 1.1723 

1.0 0.1084 0.1085 0.1082 0.7887 0.7886 0.7888 0.1712 0.1711 0.1713 1.0663 1.0664 1.0662 

2.0 -0.2659 -0.2658 -0.2658 0.7325 0.7324 0.7326 0.1427 0.1426 0.1428 0.9062 0.9063 0.9061 

3.0 -0.9062 -0.9061 -0.9061 0.7018 0.7017 0.7019 0.1213 0.1212 0.1214 0.8151 0.8152 0.8150 

 
 

Table 9: Comparison of RKM, HAM and ADM numerical solutions for various non-isothermal power-law 

index parameters () with M=3.0, N1=0.2, Gr = 5.0, G=2.0, Pr = 0.72, Ec=0.3, m=1.0, n=1.0 and  =1.0. 

n ( )0f   

(RKM) 

 

( )0f   

(HAM) 

 

( )0f   

(ADM) 

 

( )0g  

(RKM) 

 

( )0g  

(HAM) 

 

( )0g  

(ADM

) 

 

( )0h  

(RKM) 

 

( )0h  

(HAM) 

 

( )0h  

(ADM) 

 

( )0 −  

(RKM) 

 

( )0 −  

(HAM) 

 

 

( )0 −  

(ADM) 

 -1.0 1.2266 1.2267 1.2265 1.0599 1.0598 1.0597 0.0024 0.0023 0.0022 -0.8039 -0.8040 -0.8041 

-0.5 0.7707 0.7708 0.7706 0.9615 0.9616 0.9614 0.0680 0.0681 0.0682 -0.0953 -0.0952 -0.0954 

0.0 0.5331 0.5332 0.5330 0.9033 0.9035 0.9032 0.1045 0.1046 0.1047 0.2847 0.2846 0.2849 

0.5 0.3791 0.3792 0.3790 0.8630 0.8631 0.8629 0.1287 0.1288 0.1288 0.5461 0.5460 0.5463 

1.0 0.2672 0.2673 0.2671 0.8327 0.8328 0.8326 0.1464 0.1465 0.1463 0.7495 0.7494 0.7497 

2.0 0.1084 0.1085 0.1082 0.7887 0.7888 0.7886 0.1712 0.1713 0.1711 1.0663 1.065 1.068 

 

 

Table 10: Comparison between present results and previously published results for 

dimensionless skin friction, f //(0). 

Gorla and 

Sidawi [53] 

RKM  HAM ADM 

-1.01435 -1.01434 -1.01436 -1.01434 

 

 

6. Numerical results and discussion 

In all graphical plots we have adopted RKM solutions. The maximum value of  to each 

group of parameters M, N1, Gr, m, G, Pr, Ec,   and n has been determined when the values 

of the unknown boundary conditions at 0=  do not change in the computational loop and an 

error less than 10-5 is achieved. In order to verify the effects of the step size  , we have run 

the code for our model with three different step sizes as ,01.0= 005.0=  and ,001.0= in 

each case we have found excellent agreement among them as shown in Figs 2 to 5. For the 

purpose of discussing the results of the flow field represented in the Fig 1, the numerical 

computations are presented in the form of non-dimensional primary velocity and secondary 

velocity, angular velocity (micro-rotation) and temperature functions. As demonstrated in the 

above model, the angle between the direction of the strong uniform magnetic field and the 

plane transverse to the plate is zero i.e.,  = 0o, hence the value of the parameter   is 

prescribed as unity. In a separate study the effect of oblique magnetic field is examined [54]. 

Extensive numerical computations have been conducted for variation of the other 9 
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parameters arising in the mathematical model, namely magnetohydrodynamic body force 

parameter ( )M ,micropolar material parameter 1( )N , Grashof number ( )Gr , Hall parameter ( )m  

micro-rotational parameter ( )G , Prandtl number (Pr) , Eckert number ( )Ec , non-isothermal 

power-law index ( ) and non-linear wall geometric parameter ( )n . The distributions for the 

primary velocity, secondary velocity, angular velocity (micro-element spin) and temperature 

functions are displayed in Figs. 6 – 41.  

Figs. 6-9 illustrate the effects of magnetic field parameter M. M has evidently a 

suppressive effect on primary velocity profiles as well as angular velocity profiles exposed in 

Figs. 6, 8. Micro-rotation and primary velocity are therefore strongly damped with greater 

positive magnetic field parameter (M) owing to the Lorentzian drag force components which 

appear as respectively, ( )







+

++
− gmf

m

M

n





2211

2
and ( )








−

+
−

+
− gfm

m

M
gfn

n





2211

2
in the 

primary (12) and secondary momenta conservation equations (13). Close inspection of these 

forces reveals that the primary Lorentzian body force is negative and therefore impedes the 

flow, whereas the secondary Lorentzian body force is in fact positive and is assistive to 

secondary momentum development (when M >0). The strong coupling of the micro-rotation 

eqn. (14) to the primary momentum equation (12) via the f − term in the former and the 

hN − 1  term in the latter is responsible for the damping of the micro-rotation with magnetic 

field- it is an indirect effect transferred from the initial suppression in primary velocity (as 

observed in Fig 6) to the subsequent depletion in angular velocity (as seen in Fig. 8). Greater 

regulation (i.e. deceleration) of the primary flow and spin of micro-elements is therefore 

attained with stronger magnetic field.  We note that despite the inhibiting effect of magnetic 

field on the primary flow, flow reversal is never induced (primary velocity remains positive 

even with very strong magnetic field). The classical velocity shoot near the generator wall is 

also captured in the computations (fig. 6). Overall the implications for MHD generator 

performance is that subtle adjustments can be achieved in performance via the modification 

in transverse magnetic field ( 2

0 /eM B x U = ) since M is linearly directly proportional to 

Bo. Velocity values can be fed into formulae for flow rate and efficiency and then optimal 

systems designed. Asymptotically smooth solutions are obtained for all M values as shown by 

the gradual descent of all profiles with large  values, confirming the prescription of an 

adequately large infinity boundary condition. Figs 7 and 9 indicate that the secondary 

velocity (cross flow) is substantially accelerated with greater positive M values and 

temperature is also enhanced significantly for positive M.  However, with negative M the 

reverse trend is observed. The case of M <0 corresponds to a reversal in the direction of 

application of the magnetic field. Rather than being directed towards the plate, it is orientated 

away from the plate. This causes the boundary layer to be dragged and manifests in a 

retarding influence in the secondary flow i.e. g (fig. 7) as opposed to an acceleration in the 

primary flow i.e. f   (fig. 6). The secondary flow is so impeded that backflow is induced as 

observed in fig. 7. The acceleration in the micro-rotation (h) as witnessed in fig. 8, is 

principally induced via the acceleration in the primary translational flow ( f  ). The 

enhancement in temperatures (fig. 9) with positive M is attributable to the dissipation in 

kinetic energy expended in dragging the micropolar gas against the action of transverse 

magnetic field (for M > 0 the field is inhibiting, for M < 0 it is assistive). This supplementary 

work manifests in the addition of thermal energy to the gas which causes a rise in 

temperature. Another interesting feature of figs 6-9 is that peak primary velocity is always 

close to the wall (and migrates closer to it with greater magnetic field). 
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Fig. 6: Distribution of primary velocity profiles 

for M. 

Fig. 7: Distribution of secondary velocity 

profiles for M. 
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Fig. 2: Distribution of Primary 

velocity profiles for   

Fig. 3: Distribution of Secondary 

velocity profiles for   
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Fig. 4: Distribution of Microrotation 

profiles for   

Fig. 5: Distribution of Temperature 

profiles for   
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Fig. 8: Distribution of angular velocity profiles 

for M. 

 

Fig. 9: Distribution of temperature profiles for 

M. 
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Fig. 10: Distribution of primary velocity 

profiles for N1. 

 

Fig. 11: Distribution of secondary velocity 

profiles for N1. 
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Fig. 12: Distribution of angular velocity for N1. Fig. 13: Distribution of temperature for N1. 
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Fig. 14: Distribution of primary velocity 

profiles for Gr. 

 

Fig. 15: Distribution of secondary velocity 

profiles for Gr. 
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Fig. 16: Distribution of angular velocity 

profiles for Gr. 

Fig. 17: Distribution of temperature for Gr. 
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Fig. 18:  Distribution of primary velocity for m. Fig. 19: Distribution of cross velocity for m. 
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Fig. 20: Distribution of angular velocity for m. Fig. 21: Distribution of temperature for m. 
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Fig. 22: Distribution of primary velocity for G. 

 

Fig. 23: Distribution of cross velocity for G. 
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Fig. 24: Distribution of angular velocity profiles 

for G. 

Fig. 25:  Distribution of temperature profiles for 

G. 
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Fig. 26: Distribution of primary velocity profiles 

for Pr. 

 

Fig. 27: Distribution of secondary velocity 

profiles for Pr. 
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Fig. 28:  Distribution of angular velocity for Pr. Fig. 29: Distribution of temperature for Pr. 
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Fig. 30: Distribution of primary velocity for 

Ec. 

Fig. 31: Distribution of secondary velocity for 

Ec. 
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Fig. 32: Distribution of angular velocity 

profiles for Ec. 

 

Fig. 33: Distribution of temperature profiles for 

Ec. 
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Fig. 34: Distribution of primary velocity 

profiles for  . 

 

Fig. 35: Distribution of secondary velocity 

profiles for  . 
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Fig. 36: Distribution of angular velocity 

profiles for  . 

Fig. 37: Distribution of temperature profiles 

for . 
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Fig. 38:  Distribution of primary velocity 

profiles for n. 

 

Fig. 39: Distribution of secondary velocity 

profiles for n. 
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Fig. 40: Distribution of angular velocity 

profiles for n. 

Fig. 41: Distribution of temperature profiles for 

n. 

 

However maximum secondary velocity and angular velocity (micro-rotation) are attained 

further from the wall. The latter is related to the physical space available to micro-elements 

which is diminished near the wall and the magnitudes of secondary and angular velocity are 

respectively one and two orders lower than the primary velocity. Temperature is always a 

maximum at the wall itself (fig. 9). 

Figs. 10-13 depict the influence of micropolar material parameter (N1) on the flow 

characteristics. This parameter features solely in the primary momentum equation (12), via 

the so-called “Eringen coupling term”, - N1h / which couples eqn. (12) with the micro-rotation 

equation (14). There is a separate coupling term in eqn. (14) connecting the primary velocity 

field to the angular velocity field, viz the f − term (a negative body force). Evidently this is a 

negative body force term and therefore an increase in N1 will deplete the primary field further 

from the wall where greater gyratory motions can be sustained by micro-elements (close to 

the wall the reverse influence will be exerted). In consistency with this, fig. 10 demonstrates a 

strong reduction in primary velocity with greater N1 values, a trend which is sustained into 

the free stream, far from the wall. The micropolar parameter, 1 1 /N K = embodies the ratio of 

Eringen vortex viscosity to Newtonian kinematic viscosity. For cases where N1 =0, vortex 
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viscosity vanishes (K1 →0) and the micropolar gas reduces to a Newtonian gas (equation (14) 

also vanishes). For N1 > 0 with progressively larger values of N1, the concentration of micro-
elements is elevated significantly, and rotary motions will be inhibited (fig. 12). The coupling 

parameter will have the same influence on the primary (f /) and angular velocity (h) fields – 

they are both boosted near the wall whereas further from the wall, after a critical distance, 

they are depressed. The influence of micropolar rheology on the gas flow is therefore non-

trivial and the computations demonstrate that spin of suspended particles (micro-elements) 

should not be neglected in realistic (albeit laminar) gas dynamics simulations for MHD 

power generators. The depletion in primary momentum with greater N1 values (stronger 

micropolarity of the gas) is also sustained by the secondary (cross) flow, as observed in fig. 

11, where significant deceleration is computed in particular at some distance from the wall in 

g values. However, neither primary nor secondary flow reversal is generated as testified to by 

the consistently positive values of both velocity components in Figs. 10 and 11. A very weak 

decrease in temperature ( ) accompanies a significant increase in micropolar material 

parameter (N1), as depicted in Fig. 13. The thermal boundary layer thickness is therefore 

weakly reduced with greater micropolarity of the gas. Conversely primary and secondary 

momentum boundary layer thicknesses, and indeed micro-rotation boundary layer thickness 

will all be increased with greater values of N1. The absence of N1 in the energy (thermal) 

boundary layer equation (15) results in a very weak sensitivity of the thermal field to 

micropolar parameter; any influence is felt via the direct effect of micropolar vortex viscosity 

on the primary velocity and this in turn affects the secondary velocity. Both velocity fields 

are coupled to the energy equation (15) and the result is a minor one on temperatures. 

Figs 14-17 present the evolution of primary, secondary and angular velocity component 

and temperature with buoyancy parameter (Gr). Gr is taken to be positive to represent 

cooling of the plate by free convection currents. It arises in the buoyancy term, Gr, in the 

primary momentum equation and thereby couples the primary velocity field with the 

temperature field (eqn. 15). Although linear in nature, it has a profound influence on the 

thermo-fluid dynamics processes. Primary velocity is evidently (fig. 14) boosted substantially 

near the wall (a velocity overshoot is again observed) and for some distance into the 

boundary layer transverse to the wall. At a critical distance from the wall, however, the 

influence of increasing Gr becomes inhibitive - it decelerates the primary flow, and this is 

maintained into the free stream. The influence of free convection currents decays further from 

the wall and this leads to retardation in the flow. Gr embodies the relative influence of the 

thermal buoyancy force to the viscous hydrodynamic force. For Gr > 1 the thermal buoyancy 

effect dominates viscous effects. A similar response for secondary velocity (g) is computed in 

fig. 15. The crossflow velocity is significantly accelerated in close proximity to the wall and 

additionally thereafter; although the converse effect arises as with primary velocity, the 

critical point where this occurs is somewhat displaced closed to the wall than for the primary 

flow. Flow deceleration, with greater Grashof number, is therefore experienced for a greater 

proportion of the region transverse to the wall for the secondary velocity than for the primary 

velocity. Fig. 16 reveals that although initially there is a weak retardation in the angular 

velocity (micro-rotation) component, h, very quickly the effect of increasing Grashof number 

becomes assistive to the spin of micro-elements - h values are markedly elevated throughout 

the majority of the boundary layer regime and attain asymptotically a non-zero value in the 

free stream. Peak micro-rotation however consistently arises quite soon in the boundary layer 

generally before transverse coordinate ( ) attains a value of 2. The temperature function ( ) 

is strongly enhanced near the wall with greater Gr values. Thermal boundary layer thickness 

is therefore increased. However, for 1  ,the contrary behavior is exhibited in fig. 17 and 

temperatures are found to be suppressed with greater Grashof numbers.  
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Figs. 18-21 depict the variation in micropolar gas flow variables with Hall current 

parameter (m). A weak acceleration in primary velocity (fig. 18) accompanies a large 

elevation in m, primarily in the vicinity of the wall. Further towards the free stream this trend 

is reversed, and deceleration is caused in the primary flow. This behavior is very different to 

that encountered in fully developed channel flows (see [54] for example) where consistent 

retardation in primary flow is induced with Hall current. Secondary (cross flow) velocity is 

affected enormously by the Hall current parameter m as observed in Fig. 19. As elaborated 

earlier the supplementary body force arising in the primary momentum equation (12) due to 

the Hall effect, viz ( )







+

++
− gmf

m

M

n



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, for M> 0 will be negative. This will be 

impeded primary flow. However, in the secondary momentum (cross flow) conservation 

equation (13) the Hall body force term, viz ( )

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is effectively positive 

for M>0. This serves to aid the cross flow and manifests in substantial cross flow 

acceleration. It is further noteworthy that despite the m2 term appearing in the denominator in 

both body forces, the dominant effect is encapsulated in the numerator component 

terms, fm  , which are directly proportional to m.  The secondary velocity peak values are 

also fond to migrate further from the wall (plate) with increasing Hall parameter. In both figs 

18, 19 backflows never arise, irrespective of the magnitude of Hall parameter. This implies 

that generator efficiency can be sustained even under high Hall effect scenarios, albeit in the 

secondary flow. Micro-rotation (h) is also revealed in Fig. 20 to be assisted with greater Hall 

effect- angular velocity magnitudes are strongly enhanced and maximized much closer to the 

wall than to the free stream. A very minor reduction in micro-rotation arises as we approach 

the free stream. Overall however Hall current encourages the rotary motions of micro-

elements. Temperature (Fig. 21) is very strongly suppressed with greater Hall current (m) 

consistently throughout the boundary layer region. The appropriate term in eqn. (15) is the 

Ohmic dissipation term, viz ( )







+

++

22

22
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11

2
gfEc

m
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
. Although the term is positive, the 

inverse square relationship with Hall parameter results in a significant depression in 

temperatures. Thermal boundary layer thickness is therefore also reduced. Again, the smooth 

decay of profiles in all the plots demonstrates that correct infinity boundary conditions have 

been imposed in the numerical computations. 

Figs. 22-25 present the distributions for primary and secondary velocity, angular velocity 

and temperature distributions, respectively, with variation in the micro-rotational parameter 

K

BxG
G

n 1
1

−

= .  This parameter is also known as the Eringen spin gradient viscosity parameter. 

In the formulation employed for the angular momentum balance i.e. eqn. 14, the bulk spin 

torque term is neglected since an order of magnitude analysis [55] confirms that bulk spin 

viscosity is swamped by spin gradient viscosity effects.  This parameter is always associated 

with the angular i.e. micro-rotation acceleration term (h//) in the angular momentum balance, 

viz, ( )( )1 / 2G n h+ . In the limit of G →0 couple stresses vanish, and the angular momentum 

equation is eliminated i.e. micro-structural effects vanish. Evidently the nature of G is that it 

dominates the micro-rotation distributions, and this is confirmed in fig. 24 where with 

elevation in G a dramatic deceleration is induced in angular velocity. In short, the micro-

element gyratory motions are inhibited with greater spin gradient viscosity. The influence of 

G on primary and secondary velocity and also temperature profiles is trivial (figs. 22, 23, 25). 

These observations have also been reported in different micropolar transport problems by 

Gorla et al. [56], Hayat et al. [57] and more recently by Prasad et al. [58]. 
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Figs. 26-29 present the evolution of micropolar gas flow characteristics with Prandtl 

number (Pr). Pr describes the relative influence of momentum and thermal diffusivities. Low 

Pr gases correspond to low density gases; higher Pr values are associated with denser 

micropolar gases and fluids. Since the present model is focused on gas flow, Pr = 0.72 has 

been prescribed in all the graphs, unless otherwise indicated. Here we address the additional 

cases of micropolar gases which may also be utilized in MHD power generators. Pr also 

defines the relative effectiveness of momentum diffusion in the velocity boundary layer to 

heat diffusion in the thermal boundary layer. These phenomena are of the same order of 

magnitude for the special case when Pr = 1. For Pr < 1 (e.g. 0.72) heat will diffuse at a 

significantly faster rate than the momentum. For Pr> 1, momentum will diffuse faster than 

the heat through the regime. The working fluid is a micropolar gas. Micropolar theory is not 

restricted to liquids. It is a generic theory which also applies to gases. Therefore, the Prandtl 

number Pr = 0.7 is a good approximation for the micropolar gas. Any fluid possessing 

viscosity (which included gases) can be modelled with micropolar mechanics. The 

micropolar theory is formulated significantly differently from conventional non-Newtonian 

models e.g. viscoelastic which focus on shear-stress relations and are applicable generally to 

polymeric or physiological liquids only and not gases. With greater Pr values figs 26, 27 and 

29 reveal that primary and secondary velocity are both decreased markedly, and temperature 

is also strongly reduced. Primary and secondary boundary layer thicknesses are therefore 

increased whereas thermal boundary layer thickness is decreased. Conversely the micro-

rotation (fig. 28) is found to be increased initially with greater Prandtl number near the wall; 

however further from the wall the angular velocity magnitudes are noticeably depressed with 

greater Prandtl number. Generally cooling is therefore achieved with higher Prandtl numbers 

and both primary and secondary flow is controlled better. With higher Prandtl number there 

is a much sharper descent in temperature profiles from the wall whereas the descent is much 

more gradual at low Prandtl number. 

Figs. 30-33 illustrate the response in primary and secondary velocity, angular velocity 

and temperature functions to Eckert number (Ec). Ec expresses the relationship between the 

kinetic energy in the flow and the enthalpy difference. It therefore represents the conversion 

of kinetic energy into internal energy by work done against the viscous fluid stresses. 

Although this parameter is often used in high speed compressible flow, for example in rocket 

aerodynamics at very altitude, it has significance in high temperature incompressible flows, 

which are encountered in energy systems etc. Positive Eckert number implies cooling of the 

wall and therefore a transfer of heat to the fluid. Convection is enhanced. We observe that 

both primary and secondary flows are accelerated (Figs. 30, 31). Angular velocity (Fig. 32) is 

also enhanced significantly with greater Eckert number demonstrating that with greater 

viscous heating the micro-element rotary motions are intensified. The proportion of kinetic 

energy dissipated as heat manifests also with a strong elevation in temperature (Fig. 33). 

Thermal boundary layer thickness is therefore considerably increased with higher Eckert 

number.  

Figs. 34-37 illustrate the response in primary and secondary velocity, angular velocity 

and temperature functions to non-isothermal power-law index parameter (). This parameter 

relates to the variation in wall temperature and features in a single term in the energy 

equation (thermal boundary layer equation) i.e. eqn. (15), namely   f
n


+

−
1

2
. For  > 0 

the wall temperature increases with distance from the leading edge. For  < 0, wall 

temperature is reduced with distance from the leading edge. The case  = 0 corresponds to an 

isothermal wall. In the primitive equation (10)  arises in the wall thermal boundary condition 

as 
AxTTT +== w ; however, following normalization of the equations it is featured only in 
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the thermal transport equation (15). Primary and secondary velocities are both observed to be 

enhanced significantly with negative  values and conversely both velocity components are 

depressed with positive  values (figs. 34, 35). Therefore, wall cooling is assistive to primary 

and secondary flow whereas wall heating is inhibitive. The contrary response is computed for 

micro-rotation (fig. 36) at least initially and close to the wall; further from the wall however 

negative power-law index is again observed to accelerate the flow whereas positive power-

law index induces retardation in angular velocity. Temperatures are observed to be 

consistently boosted with greater negative  values whereas they are strongly suppressed with 

positive  values. A significant temperature overshoot is also observed for  = -1.0, close to 

the wall. 

Figs. 38-41 finally display the micropolar gas flow characteristics with various wall 

distention parameters (n). This parameter arises throughout all the boundary layer equations 

(12)-(15). Generally, with greater negative n values, corresponding to deceleration of the wall 

(contraction), primary and secondary velocity components, micro-rotation and temperature 

are all substantially increased. With greater positive n values (decelerating stretching wall), 

the contrary behavior is generally computed. All the flow characteristics peak near the plate; 

however, after some distance from the wall the influence of negative/positive n values is 

reversed. Once again asymptotically smooth decays to the free stream are achieved for all 

distributions. 
 

7. Conclusions 

In the present paper, the effects of Hall current and viscous and Joule (Ohmic) 

electromagnetic dissipation on the non-isothermal micropolar boundary layer flow and heat 

transfer from a nonlinear stretching/contracting surface permeated by a strong magnetic field 

have been studied. The model is representative of near-wall Hall MHD power generator 

flows utilizing electrically conducting micropolar gaseous working fluids. The governing 

momentum and energy equations have been transformed to a system of non-linear ordinary 

differential equations by employing the appropriate coordinate transformations. The resulting 

nonlinear, multi-degree, boundary value problem has been solved numerically with an 

efficient Runge-Kutta shooting algorithm. Validation of solutions has been achieved with 

both the Homotopy analysis method (HAM) and Adomian decomposition method (ADM), 

both semi-numerical approaches achieving excellent correlation. A parametric study of the 

influence of the emerging thermophysical and magnetohydrodynamic parameters, namely 

Hartmann number ( )M ,Eringen vortex viscosity parameter 1( )N , Grashof number ( )Gr , Hall 

parameter ( )m , microrotational parameter ( )G ,Prandtl number (Pr) , Eckert number ( )Ec , non-

isothermal power-law exponent ( ) and wall stretching/contraction parameter ( )n  on the 

primary, secondary velocity (momentum), angular velocity (microrotation) and temperature 

profiles has been conducted. The present computations have revealed that the Hartmann 

magnetic body force parameter very effectively controls the heat transfer characteristics, 

Grashof number (buoyancy parameter) has a significant effect on all velocity fields and 

temperature and Hall current generally accelerates the secondary (cross) flow. Furthermore, it 

is found that increasing micro-rotational (Eringen spin gradient viscosity) parameter 

primarily suppresses angular velocity, increasing Eckert number strongly elevates all velocity 

functions (primary, secondary and angular) and heats the boundary layer, and 

stretching/contracting parameter (non-linear wall geometric) parameter substantially modifies 

all thermofluid characteristics. The present simulation has been confined to steady-state flow. 

Future investigations will consider transient [59] effects which are also of relevance to MHD 

Hall generators and will be reported imminently.  
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