
Journal Pre-proof

Improving Predicted Mean Vote with Inversely Determined Metabolic
Rate

Sheng Zhang, Yong Cheng, Majeed Olaide Oladokun, Yuxin Wu,
Zhang Lin

PII: S2210-6707(19)32186-9

DOI: https://doi.org/10.1016/j.scs.2019.101870

Reference: SCS 101870

To appear in: Sustainable Cities and Society

Received Date: 24 July 2019

Revised Date: 9 September 2019

Accepted Date: 29 September 2019

Please cite this article as: Zhang S, Cheng Y, Olaide Oladokun M, Wu Y, Lin Z, Improving
Predicted Mean Vote with Inversely Determined Metabolic Rate, Sustainable Cities and
Society (2019), doi: https://doi.org/10.1016/j.scs.2019.101870

This is a PDF file of an article that has undergone enhancements after acceptance, such as
the addition of a cover page and metadata, and formatting for readability, but it is not yet the
definitive version of record. This version will undergo additional copyediting, typesetting and
review before it is published in its final form, but we are providing this version to give early
visibility of the article. Please note that, during the production process, errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal
pertain.

© 2019 Published by Elsevier.

https://doi.org/10.1016/j.scs.2019.101870
https://doi.org/10.1016/j.scs.2019.101870


 

1 

 

Improving Predicted Mean Vote with Inversely Determined 

Metabolic Rate  

 

Sheng Zhang1, Yong Cheng2, 3, Majeed Olaide Oladokun1, Yuxin Wu2, 3, Zhang Lin4* 

(1Department of Architecture and Civil Engineering, City University of Hong Kong, 

Hong Kong, China 

2Joint International Research Laboratory of Green Buildings and Built Environments, 

Ministry of Education, Chongqing University, Chongqing, China 

3School of Civil Engineering, Chongqing University, Chongqing, China  

4Division of Building Science and Technology, City University of Hong Kong, Hong 

Kong, China 

*Corresponding author. Tel.: +852 34429805; Fax: +852 34420443; E-mail: 

bsjzl@cityu.edu.hk) 

 

Highlights 

 Metabolic rate is inversely determined to improve PMV. 

 Effects of physiological adaptation on metabolic rate are taken into account.  

 Variable metric algorithm reduces deviation between PMV and thermal sensation 

vote. 

 Proposed PMV is a grey-box model using model calibration.  

 Proposed PMV outperforms original PMV and machining learning based PMV. 
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Abstract 

Inaccurate thermal comfort prediction would lead to thermal discomfort and energy 

wastage of overcooling/overheating. Predicted Mean Vote (PMV) is widely used for 

thermal comfort management in air-conditioned buildings. The metabolic rate is the 

most important input of the PMV. However, existing measurements of the metabolic 

rate are practically inconvenient or technically inaccurate. This study proposes a 

method to improve the PMV for the thermal sensation prediction by inversely 

determining the metabolic rate. The metabolic rate is expressed as a function of the 

room air temperature and velocity considering the effects of the physiological 

adaptation, and inversely determined using an optimizer (variable metric algorithm) to 

reduce the deviation between the PMV and thermal sensation vote. Experiments in 

environmental chambers configured as a stratum ventilated classroom and an aircraft 

cabin and field experiments in a real air-conditioned building from the ASHRAE 

database validate the proposed method. Results show that the proposed method 

improves the accuracy and robustness of the PMV in the thermal sensation prediction 

by more than 52.5% and 41.5% respectively. Essentially, the proposed method 

develops a grey-box model using model calibration, which outperforms the black-box 

model using machine learning algorithms.   

Keywords: Predicted Mean Vote; Metabolic rate; Physiological adaptation; Inverse 

determination; Model calibration; Grey-box model 

1. Introduction 

Thermal comfort is the condition of mind that expresses satisfaction with the thermal 

environment [1]. Indoor thermal comfort also significantly affects building occupants’ 

health and productivity [2]. To provide thermal comfort, air conditioning systems are 

widely used in modern buildings. However, the air conditioning systems account for a 

large portion of energy consumption [3, 4]. An accurate thermal comfort evaluation is 
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the premise of the proper design and operation of the air conditioning systems [5]. 

Biases in the thermal comfort evaluation would cause problems of thermal discomfort, 

large initial and operation costs, and low energy efficiency [2, 6].  

Predicted mean vote (PMV) is the most widely used thermal comfort evaluation model 

for the energy-efficient thermal comfort management of air-conditioned buildings [1, 2, 

5, 7]. For example, Hwang and Shu [8] investigated the building envelope regulations 

of glass façade buildings on thermal comfort and energy saving using a PMV-based 

comfort control. Zhang et al. [9, 10] optimized the room air temperature of stratum 

ventilation to maximize energy efficiency with the desired thermal comfort level (i.e., 

the desired PMV value/range). Xu et al. [11] proposed a PMV-based event-trigger 

mechanism to improve building energy efficiency under uncertainties. However, the 

deficiency of PMV has been evidenced by compared with the subjective thermal 

sensation votes [2, 12]. The PMV could overestimate or underestimate the thermal 

sensation [13-16]. Humphreys and Nicol [17] confirmed that the biases in PMV 

exceeded 0.25 scale frequently and reached as much as one scale through meta-analysis. 

Such large biases indicate the PMV could fail to predict the thermal sensation.  

The deficiency in the PMV for the air-conditioned buildings is mainly explained by the 

errors in its inputs [2]. The PMV calculation requires the inputs of four environmental 

variables (i.e., air temperature, mean radiant temperature, air velocity and relative 

humidity) and two occupants-related variables (i.e., the metabolic rate and clothing 

insulation) [1]. Among the six variables, sensitivity analysis reveals that the metabolic 

rate plays the most important role in determining the PMV [18-20]. The high sensitivity 

of PMV to the metabolic rate has been demonstrated that changing the metabolic rate 

by ±10% resulted in a variation in PMV from -0.16 scale to 0.14 scale [18]. It has been 

experimentally confirmed that an accurate input of the metabolic rate can efficiently 

improve the PMV for the thermal sensation prediction [12, 13, 19, 21].  

However, when calculating the PMV for practical applications, the metabolic rate is 

normally estimated roughly from the tables given by standards (e.g., the activity diary 

in ASHRAE 55 [1] or ISO 8996 [22]) with relatively low accuracy [23]. The activity 
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diary defines a fixed metabolic rate for a given activity. But, for a given activity, the 

metabolic rate is a variable because it is also affected by body characteristics (e.g., 

genders, ages, ethnicities and body compositions) and related to the environmental 

parameters due to the physiological adaptation [24-26]. Luo et al. [27] experimentally 

found that the metabolic rate was high at low air temperature and low at high air 

temperature to mitigate the cold and hot discomfort. Fanger commented that a 

researcher might rate a typical office task as 1.2 met which in fact was 0.9 met [2]. Luo 

et al. [23] found that the metabolic rate of sitting varied around from 1 met to 3 met in 

literature. The metabolic rate is probably the most fundamental but least accurately 

assessed variable in the thermal comfort research and practice [28].  

The measurement technologies of the metabolic rate generally include the direct 

calorimetry and indirect calorimetry [28]. The direct calorimetry measures the total 

amount of heat released directly from the body to the environment with complex 

equipment and complicated operations [29]. Because of its inconvenience, the direct 

calorimetry is seldom used in thermal comfort research and practice [22]. The indirect 

calorimetry calculates the metabolic rate from the inhaled oxygen and exhaled carbon 

dioxide [30]. Since the indirect calorimetry requires people to wear uncomfortable 

masks, it is also inconvenient for practical applications [26, 31]. Recently, wearable or 

portable devices have been developed to measure the mean blood pressure [12] or heart 

rate [19] for the metabolic rate calculation. But, their accuracy requires to be improved 

for thermal comfort evaluation [32]. Both the practical convenience and technical 

accuracy are imperative requirements for the development of new measurement 

technologies of the metabolic rate [28].  

Considering the importance of the metabolic rate to the PMV and the challenges in the 

accurate measurement of the metabolic rate, this study proposes a method to improve 

the PMV for thermal sensation prediction by inversely determining the metabolic rate, 

which requires no measurements on the metabolic rate. The proposed method will be 

introduced in detail in Section 2.1, and validated by the experiments in environmental 

chambers configured as a stratum ventilated classroom (Sections 2.2 and 3.1) and an 

aircraft cabin (Sections 2.3 and 3.2), and field experiments in a real air-conditioned 
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building from the ASHRAE database (Section 3.3). Four advantages of the proposed 

method for the convenient implementation in practice, as well as the further 

improvement of PMV for future studies, are discussed in Section 4.  

2. Methodology  

2.1 Method for PMV improvement  

The proposed method mainly includes three parts (Figure 1). Part 1 is to develop a 

surrogate model of the PMV. It is assumed that the mean radiant temperature is the 

same as the room air temperature, which is acceptable for the most indoor thermal 

environment [1, 33]. The relative humidity is assumed to be a fixed value, i.e., 50% [34, 

35]. The clothing insulation could be obtained from tables in standards. For example, 

the typical summer clothing insulation of Hong Kong according to ASHRAE 55 is 0.57 

clo [33, 36]. Thus, given different room air temperatures, room air velocities and 

metabolic rates, the associated PMVs can be calculated according to ASHRAE 55 [1]. 

Based on the data of the room air temperatures, room air velocities, metabolic rates and 

the calculated PMVs, the PMV is modelled as a polynomial function of the room air 

temperature, room air velocity and metabolic rate using multiple regression (i.e., 𝑓1 in 

Figure 1). The procedure of the PMV calculation given in ASHRAE 55 [1] is 

computationally inconvenient due to the complicated heat transfer process [11, 37]. 

The obtained surrogate model of the PMV is polynomial and computationally efficient 

[9]. The computationally efficient surrogate model of the PMV benefits the repeated 

calculations of the PMV in Part 2 of Figure 1.  
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Note: PMV is the Predicted Mean Vote; TSV is the thermal sensation vote; 𝑇𝑟 is the 

room air temperature (°C); 𝑉𝑟 is the room air velocity (m/s); M is the metabolic rate 

(met); 𝑓1 and 𝑓2 denote the functions; a, b, c are the constants; i is the 𝑖𝑡ℎ data 

and the total data number is k; Subscript opt indicates the optimal value.  

Fig.1. Method for PMV improvement based on inversely determined metabolic rate. 

Part 2 shown in Figure 1 determines the metabolic rate inversely. For a given activity, 

the metabolic rate is expressed as a function of the room air temperature and velocity in 

Equation 1, which is explained as follows. The indoor thermal environment (e.g., the 

room air temperature and velocity) can be the driver of thermal adaptations [27, 38, 39]. 

Luo et al. [27] correlated the metabolic rate to the room air temperature using a 

quadratic model when the room air temperature varied in a wide range from around 

16°C to 32°C, and for the general thermal environment in an air-conditioned indoor 

environment the metabolic rate was approximately correlated to the indoor air 

temperature linearly. Schweiker and Wagner [25] also found that a linear model was 
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adequate to quantify the relationship between the metabolic rate and the environment 

parameter. The linear relationship between the metabolic rate and the indoor air 

temperature is resulted from the physiological adaptation. Using the information 

entropy analysis of a large database, Jing et al. [40] found that the physiological 

adaptation was linearly related to the indoor air temperature approximately. Since the 

air velocity (> 0.2 m/s) also has cooling effects [41] and is encouraged for the thermal 

preference and energy saving [6], Equation 1 correlates the metabolic rate to both the 

room air temperature and velocity linearly. Equation 1 is also consistent with Fanger 

and Toftum [5]. Fanger and Toftum [5] linearly correlated the metabolic rate to the 

PMV. Since the PMV can be approximately linearly correlated to the room air 

temperature and velocity [9], the metabolic rate can be linearly correlated to the room 

air temperature and velocity.  

𝑀 = 𝑎𝑇r + 𝑏𝑣r + 𝑐                                                         1    
   

where a, b and c are the three constant coefficients; M is the metabolic rate (met); 

𝑇r is the room air temperature (°C); 𝑣r is the room air velocity (m/s).  

With the determined values of a, b and c, Equation 1 and the surrogate model of the 

PMV (i.e., 𝑓1 in Figure 1) together can be used to calculate the PMV by inputting the 

room air temperature and velocity. The direct determination of Equation 1 requires the 

metabolic rate but it is challenging practically to measure the metabolic rate accurately 

(Section 1). It is proposed that a, b and c in Equation 1 can be inversely determined 

using an optimizer to minimize the deviation between the PMV and thermal sensation 

vote. The optimizer searches the optimal values of a, b and c to achieve the least square 

difference between the PMV and thermal sensation vote (Equation 2). Optimization 

algorithms, e.g., the generic algorithm and variable metric algorithm, can be used in the 

optimizer to locate the trials of a, b and c. In this study, the variable metric algorithm is 

adopted because of its good convergence and particular efficiency for 

small-and-moderate-size dense problems [42, 43]. The variable metric algorithm fits 

the objective (i.e., Equation 2) to a quadratic function of all independent variables (i.e., 

a, b and c), and then the quadratic function is differentiated and set to zero to locate the 

trials of a, b and c. More details about the variable metric algorithm can be found in 
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Klein (2018) [42]. 

 

where e is the square difference; 𝑖 indicates the 𝑖𝑡ℎ experiment and k experiments in 

total are used for quantifying a, b and c; PMV is the Predicted Mean Vote; TSV is the 

thermal sensation vote.  

In Part 3, the metabolic rate in the surrogate model of the PMV (i.e., 𝑓1 in Figure 1) is 

represented by the room air temperature and velocity (Equation 1) with the optimal 

values of a, b and c determined in Part 2. As a result, the PMV is given as a function of 

the room air temperature and velocity (i.e., 𝑓2 in Figure 1), and termed as the proposed 

PMV. The proposed PMV is further validated by experiments independent from those 

used for the inverse determination as shown in Part 2. The mean absolute error 

(Equation 3) and the standard deviation of the absolute errors (Equation 4) are used to 

evaluate the accuracy and robustness of the PMV for the thermal sensation prediction 

respectively. A smaller mean absolute error and a smaller standard deviation of the 

absolute errors indicate that the PMV is more accurate and more robust respectively 

[44].  

 

where 𝑗 is the 𝑗𝑡ℎ experiment; 𝑚 is the number of experiments; MAE is the mean 

absolute error; |𝑃𝑀𝑉j − 𝑇𝑆𝑉j| is the absolute error of the Predicted Mean Vote (PMV) 

compared with the thermal sensation vote (TSV); 𝑆𝐷 is the standard deviation of the 

absolute errors. 

It should be noted that the proposed PMV based on the inversely determined 

metabolic rate is specific for a given type of activity. For different activity types, the 

proposed procedure needs to be repeated to re-develop the PMV. Thus, the proposed 

method can be regarded as the calibration of the activity diary in ASHRAE 55 [1]. 
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That activity diary determines a specific value of the metabolic rate for a specific 

activity type. In recent practice, for operation management of one indoor environment, 

one activity type is generally adequate, e.g., 1.1 met for office buildings and institution 

buildings [1]. Thus, given an indoor environment, the proposed procedure generally 

does not need to be repeated for different activity types. 

It should also be noted that the proposed PMV is essentially a grey-box model. It takes 

the advantages of the physical model of human body heat transfer included in the PMV 

given by ASHRAE 55[1], and uses the data-driven method to inversely determine the 

metabolic rate for the accuracy improvement of the PMV. The proposed method is 

similar to the model calibration for existing buildings [45]. The model calibration 

(also known as calibrated simulation) refers to the process of tuning input parameters 

of the model to decrease the deviation between the model prediction and the 

real-monitored data [46]. Some input parameters (e.g., thermal resistance and 

capacitance, heat loss coefficient, equipment power density, and fan efficiency and 

pressure rise) in the building energy model are important to the model accuracy but 

are challenging to be measured accurately [47]. Generally, the model calibration 

conducts sensitivity analysis first to identify the most important parameters to the 

building energy performance, and then determines the identified parameters inversely 

to minimize the error in the building energy prediction [45-47]. Since only the effects 

of the most important input parameters are considered, the model calibration reduces 

the model error efficiently, but is unable to eliminate the model error [45-47]. 

Similarly, the proposed method aims to reduce the deviation between the PMV and the 

thermal sensation vote by inversely determining the metabolic rate (the most important 

input to the PMV [18-20]), and it is unable to make the PMV equal the thermal 

sensation vote. 

When implementing the proposed method, data of the room air temperature, room air 

velocity, and thermal sensation vote need to be collected (Figure 1). Compared with the 

data-driven thermal comfort models using machine learning algorithms, e.g., 

classification tree model, Gaussian mixture model, support vector machine, random 

forest and Q-learning algorithm [48-50], the proposed method requires fewer data and 
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thus is more efficient and convenient to be implemented. Machine learning based 

thermal comfort models are getting more and more attention for two reasons: Firstly, 

they take thermal comfort as a black box and do not require looking into the 

complexities of thermal comfort; secondly, they have been proven to obtain high 

prediction accuracy. However, as black-box models, they generally require a big 

database to train the models for sufficient accuracy [49]. In contrast, the proposed PMV 

is a grey-box model. It takes the advantages of the PMV given by ASHRAE 55, which 

is based on the physical model of human body heat transfer [1]. With the help of the 

included physical model, the grey-box model requires fewer data to train the model 

compared with the black-box [51, 52]. The advantages of the proposed method over the 

machine learning based thermal comfort models are further discussed in Section 4. 

2.2 Experiments in environmental chamber configured as stratum ventilated 

classroom 

Stratum ventilation is an energy-efficient air distribution for small-to-medium sized 

rooms [33]. It supplies cooled air directly into the occupied zone from the side 

walls/columns (Figure 2). An air layer of fresh air is formed in the breathing zone so 

that stratum ventilation can efficiently provide air quality [9]. Around the head level, 

the room air temperature is lowest and the room air velocity is the highest. The 

synergistic cooling effects of the low room air temperature and high room air velocity 

on the most sensitive body part of thermal comfort (i.e. head) make stratum ventilation 

provide thermal comfort efficiently [9]. Compared with mixing ventilation, stratum 

ventilation can save energy for cooling annually by at least 44% [53]. Moreover, due to 

the elevated supply air temperature (higher than 20°C) [54], stratum ventilation is 

particularly compatible with solar cooling systems (e.g., absorption cooling and ejector 

cooling) to utilize the solar energy efficiently [55]. Although the thermal environment 

of stratum ventilation is vertically non-uniform [9], it has been experimentally 

validated that PMV at the height of 1.1 m above the floor can be used for the thermal 

sensation prediction for sedentary occupants [33].  Jo
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Note: E and S indicate the exit louver and supply diffuser respectively; M denotes the 

measurement point at the height of 1.1m above the floor. 

Fig.2. Configuration of environmental chamber: Stratum ventilated classroom [9]. 

The environmental chamber of the stratum ventilated classroom is located at City 

University of Hong Kong. It has dimensions of 8.8 m (length) × 6.1 m (width) × 2.4 m 

(height) and serves 16 students in two rows. The conditioned air is supplied from the 

four diffusers S1-S4 on the front wall at the height of 1.3 m above the floor and 

exhausted from the four lovers E1-E4 on the rear wall at the same height. Four 

measurement points M1-M4 of the room air temperature and velocity are evenly 
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6
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distributed in the occupied zone at the height of 1.1 m above the floor. The mean room 

air temperature and velocity at the four measurement points are used for the calculation 

of the PMV (Section 2.1).  

SWEMA omnidirectional hot-wire anemometers are used to measure the air 

temperature and velocity. The measurement accuracy for the air temperature is ±0.2°C 

between 10°C and 40°C, and that for the air velocity is ±0.02 m/s between 0.07 m/s and 

0.5 m/s and ±0.03 m/s between 0.5 m/s and 3 m/s. The supply airflow rate is the sum of 

the measurements at the four diffusers S1-S4 by an ALNOR balometer capture hood 

EBT731 with a measurement accuracy of ±3% of the reading. Students of City 

University of Hong Kong are recruited for the subjective surveys of the thermal 

sensation. The thermal sensation is assessed in terms of the 7-point scale of ASHRAE 

55 [1]: -3 cold, -2 cool, -1 slightly cool, 0 neutral, +1 slightly warm, +2 warm and +3 

hot. The students wear typical summer clothing (i.e., short-sleeved shirts, long trousers, 

underwear, socks and shoes) with the clothing insulation of 0.57 clo according to 

ASHRAE 55 [1]. For each case (Table 1), the experiment is repeated for two or three 

times and thus there are at least 32 students participating in the subjective surveys. The 

mean value of their votes of thermal sensation is used as the thermal sensation vote of 

that case.  

Nine cases (Series 1 in Table 1) are designed for the development of the proposed PMV 

(i.e., Dataset 1 in Figure 1). For generalization, the 9 cases cover a wide range of the 

thermal environment with the supply airflow rate from 7 ACH to 15 ACH and room air 

temperature between around 23.5°C and 28°C [54]. The resulted room air velocity is 

around from 0.1 m/s to 0.3 m/s. Ten more cases (i.e., Series 2 in Table 1) are designed to 

validate the proposed PMV further (i.e., Dataset 2 in Figure 1). In the 10 cases, the 

supply airflow rate varies from 7 ACH to 17 ACH and the room air temperature is from 

around 25°C to 26.5°C. The resulted room air velocity ranges from around 0.1 m/s to 

0.3 m/s. Thus, the thermal environment of Series 2 is covered by Series 1 and 

generally thermally comfortable. For all the cases, the indoor air quality is acceptable 

which is indicated by the reasonable indoor CO2 concentration [54]. More details 

about the experiments can be found in Zhang et al [9].  
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Table 1. Supply airflow rate (𝑉s), room air temperature (𝑇r) and room air velocity (𝑣r) 

in environmental chamber configured as stratum ventilated classroom.  

Cases 
𝑉s 

(ACH) 

𝑇r 
(°C) 

𝑣r 

(m/s) 

Series 1 

1 7 23.9 0.08 

2 10 23.7 0.13 

3 15 23.6 0.21 

4 7 26.4 0.08 

5 10 26.4 0.19 

6 15 26.2 0.29 

7 7 28.1 0.08 

8 10 27.8 0.20 

9 15 28.2 0.30 

Series 2 

10 7 26.5 0.08 

11 8 26.2 0.12 

12 10 25.7 0.19 

13 11 26.0 0.21 

14 13 26.3 0.20 

15 13 26.0 0.23 

16 15 26.3 0.25 

 17 15 24.8 0.25 

 18 17 26.1 0.30 

 19 17 25.4 0.31 

 

2.3 Experiments in environmental chamber configured as aircraft cabin 

To validate the proposed method further, the experiments in an environmental chamber 

configured as an aircraft cabin [34] are selected from the literature for two reasons. 

Firstly, the data are adequately detailed for the development and validation of the 

proposed PMV, covering a wide range of the thermal condition (with the room air 

temperature from 22°C to 28°C and the room air velocity from around 0.05 m/s to 0.9 
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m/s in Table 2). Secondly, the heating mode is concerned (with the clothing insulation 

of 1.23 clo) while Section 2.2 focuses on the cooling mode. It is a three-row aircraft 

cabin with 18 seats simulating an Airbus A320 aircraft (Figure 3). It has dimensions of 

4.9 m (length) ×3.9 m (width) × 2.35 m (height) and is located at Chongqing University. 

The air is supplied from the nozzles above the occupants. The relationship between the 

supply airflow rate and the room air velocity around the occupants can be estimated by 

Equation 5 [34, 56].  

 𝑣r = 0.56𝑉s + 0.05                                                         5  
 

where 𝑣r is the room air velocity around the occupants (m/s); 𝑉s is the supply 

airflow rate (L/s).  

 

Note: 1 is the aircraft cabin; 2 is the nozzle; 3 is the static pressure tank; 4 is the air 

return outlet; 5 is the valve; 6 is the fan; 7 is the bypass valve; 8 is the air conditioning 

unit; 9 is the fresh air inlet; 10 is the air supply inlet; 11 is the exhausted air outlet.  

Fig.3. Configuration of environmental chamber: Aircraft cabin [34].  

LSI (BSU102) is used to measure the air temperature and velocity. The measurement 

accuracy for the air temperature is ±0.1°C between -25°C and 150°C, and that for the 

air velocity is ±0.04 m/s between 0 m/s and 1 m/s. Students of Chongqing University 

are recruited for the subjective surveys of thermal sensation under the sedentary activity. 

The thermal sensation is assessed by the 7-point scale of ASHRAE 55 [1].  

For each case (Table 2), 40 students participate in the subjective surveys, and the mean 

1111
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value of their votes of thermal sensation is used as the thermal sensation vote of that 

case. Nine cases (Series 3 in Table 2) are used for the development of the proposed 

PMV. Seven cases (Series 4 in Table 2) are used for the further validation of the 

proposed PMV. For both Series 3 and 4, the supply airflow rate is from 0 L/s to 1.5 L/s 

and the room air temperature is from 22°C to 28°C. The resulted room air velocity is 

from around 0.05 m/s to 0.9 m/s. More details of the experiments are found in Wu et al 

[34].   

Table 2. Supply airflow rate (𝑉s), room air temperature (𝑇r) and room air velocity (𝑣r) 

in environmental chamber configured as aircraft cabin. 

Cases 
𝑉s 

(L/s) 

𝑇r 
(°C) 

𝑣r 

(m/s) 

Series 3 

20 0.0 22 0.05 

21 0.5 22 0.33 

22 1.5 22 0.89 

23 0.0 26 0.05 

24 0.5 26 0.33 

25 1.5 26 0.89 

26 0.0 28 0.05 

27 0.5 28 0.33 

28 1.5 28 0.89 

Series 4 

29 1.0 22 0.61 

30 1.0 26 0.61 

31 1.0 28 0.61 

32 0.0 24 0.05 

33 0.5 24 0.33 

34 1.0 24 0.61 

35 1.5 24 0.89 
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3. Results 

3.1 Environmental chamber configured as stratum-ventilated classroom 

The original PMV [1] with the typical summer clothing (i.e., 0.57 clo) is modelled as 

Equation 6 by the room air temperature, room air velocity and metabolic rate (i.e., 𝑓1 in 

Figure 1). Equation 6 is applicable to the general thermal environment (PMV from -1 to 

1) for classroom and office activities under cooling mode, with the room air 

temperature from 23°C to 29°C, room air velocity from 0.05 m/s to 0.6 m/s and 

metabolic rate from 0.9 met to 1.3 met [1]. Equation 6 is determined with a coefficient 

of determination (R2) of 0.99. The terms in Equation 6 with p-values higher than 0.05 

indicating statistical insignificance are removed (e.g., 𝑣r𝑀) [9]. Thus, Equation 6 is 

statistically significant and reliable. Figure 4 shows that Series 1 (Table 1) covers a 

wide thermal condition with the thermal sensation vote from around -1 to 0.75. Based 

on the experimental data of Series 1, the proposed PMV is developed as Equation 7 

using the proposed method (Section 2.1).  

𝑃𝑀𝑉 = 1.7199𝑣r
2 − 4.2082𝑀2 − 0.0441𝑇r𝑣r − 0.3062𝑇r𝑀 + 0.6604𝑇r

− 1.6561𝑣r + 19.4698𝑀 − 24.1733                                                      (6) 

𝑃𝑀𝑉p,SV =  0.0011𝑇r
2 +  0.4437𝑣r

2 − 0.1956𝑇r𝑣r + 0.3073𝑇r + 4.3290𝑣r

− 8.6710                                                                                                         (7) 
 

where 𝑃𝑀𝑉p,SV is the proposed PMV (Predicted Mean Vote) for the environmental 

chamber configured as the stratum ventilated classroom (Figure 2); 𝑀 is the metabolic 

rate (met); 𝑇r is the room air temperature (°C); 𝑣r is the room air velocity (m/s). 
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Fig.4. Comparisons of original PMV (𝑃𝑀𝑉o), proposed PMV (𝑃𝑀𝑉p) and thermal 

sensation vote (TSV): Stratum ventilated classroom. 

Figure 5 shows with the metabolic rate assumed to be 1.1 met [34], the original PMV 

from ASHRAE 55 [1] generally overestimates the thermal sensation, with a function 

between the original PMV and thermal sensation vote above the diagonal function of y 

= x. The R2 of the function between the original PMV and thermal sensation vote is less 

than 0.9 (i.e., 0.85). Thus, the original PMV can be further improved. In contrast, the 

proposed PMV is almost at the diagonal function of y = x with the thermal sensation 

vote, and the R2 is high at 0.98, indicating that the proposed PMV accurately and 

robustly predicts the thermal sensation. Figure 4 shows for both Series 1 and Series 2, 

the proposed PMV is generally closer to the thermal sensation vote as compared with 

the original PMV. The maximal error of the original PMV is 0.45 scale (Case 10), while 

that of the proposed PMV is reduced to 0.12 scale (Case 9). Overall, compared with the 

original PMV, the proposed PMV improves the accuracy and robustness in the thermal 

sensation prediction by 69.5% and 77.9% respectively by reducing the mean absolute 

error (Equation 3) from 0.19 scale to 0.06 scale and the standard deviation of the 

absolute errors (Equation 4) from 0.16 scale to 0.04 scale respectively.  
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Fig.5. Original PMVs (𝑃𝑀𝑉o) and proposed PMVs (𝑃𝑀𝑉p) corresponding to thermal 

sensation votes (TSV): Environmental chamber configured as stratum 

ventilated classroom. 

3.2 Environmental chamber configured as aircraft cabin 

The original PMV [1] with the winter clothing (1.23 clo) is modelled as Equation 8 (i.e., 

𝑓1 in Figure 1). Equation 8 covers a wide thermal environment with the room air 

temperature from 22°C to 28°C, room air velocity from 0.05 m/s to 0.9 m/s and 

metabolic rate from 0.8 met to 1.5 met [34]. The p-values of the terms included in 

Equation 8 are all less than 0.05 indicating statistical significance. And R2 of Equation 8 

is 0.99. Thus, Equation 8 is statistically accurate. Figure 6 shows that the thermal 

sensation vote of Series 3 (Table 2) varies from around -1.5 to 2, indicating a wide 

range of thermal condition. Based on Series 3, the proposed PMV for the aircraft cabin 

is developed as Equation 9 using the proposed method (Section 2.1).  

PMV = 0.9488𝑣r
2 − 3.0344𝑀2 − 0.2138𝑇r𝑀 + 0.1549𝑣r𝑀 + 0.4656𝑇r

− 1.8956𝑣r + 13.9087𝑀 − 16.3918                                                (8) 

𝑃𝑀𝑉p,aircraft =  −0.0152𝑇r
2 +  0.6159𝑣r

2 + 0.1541𝑇r𝑣r + 1.0170𝑇r − 5.9140𝑣r

− 14.7300                                                                                                      (9) 
 

where 𝑃𝑀𝑉p,aircraft is the proposed PMV for the environmental chamber configured 
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as the aircraft cabin (Figure 3); 𝑀 is the metabolic rate (met); 𝑇r is the room air 

temperature (°C); 𝑣r is the room air velocity (m/s). 

  

Fig.6. Comparisons of original PMV (𝑃𝑀𝑉o), proposed PMV (𝑃𝑀𝑉p) and thermal 

sensation vote (TSV): Environmental chamber configured as aircraft cabin. 

It can be seen from Figure 6 that the original PMV (with metabolic rate of 1.1 met [34]) 

would lead to a large error in the thermal sensation prediction, particularly in the cold 

thermal environment with the thermal sensation vote less than -0.5 (i.e., Cases 22, 29, 

and 35). In contrast, for both Series 3 and Series 4 (Table 2), the proposed PMV 

improves the thermal sensation prediction generally. For example, the errors in the 

thermal sensation prediction by the original PMV for Cases 22 in Series 3, and Cases 29 

and 35 in Series 4 are 1.04 scales, 0.80 scale, and 0.69 scale respectively, while those by 

the proposed method are zero scale, 0.1 scale and 0.14 scale respectively. Overall, 

compared with the original PMV, the proposed PMV improves the accuracy in the 

thermal sensation prediction by 52.5% with the mean absolute error (Equation 3) 

reduced from 0.36 scale to 0.17 scale, and improves the robustness in the thermal 

sensation prediction by 54.1% with the standard deviation of the absolute errors 

(Equation 4) reduced from 0.28 scale to 0.13 scale.  
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3.3 Field study in real air conditioned building  

Data from the ASHRAE database, i.e., RP-884 50_EXL, are used to demonstrate the 

advantage of the proposed PMV. RP-884 50_EXL refers to the field experiments in an 

air-conditioned building in the hot season of the tropical savanna climate zone. 

RP-884 50_EXL includes 40 different thermal conditions, and for each thermal 

conditions around 18 subjective surveys are collected (with 703 subjective surveys in 

total). After excluding the outliers using the box-plot method, the original PMV and 

thermal sensation vote from RP-884 50_EXL are presented in Figure 7. The thermal 

conditions in the air-conditioned building are generally cold with the thermal 

sensation vote less than 0. However, the original PMV overestimates the thermal 

condition which is above the diagonal function of y = x. The proposed PMV is 

determined as Equation 10. Compared with the original PMV, the proposed PMV 

improves the accuracy and robustness in the thermal comfort prediction by 58.4% (with 

the mean absolute error reduced from 0.66 to 0.27) and 41.5% (with the standard 

deviation of the absolute errors reduced from 0.28 to 0.16) respectively.  

𝑃𝑀𝑉p,RP−884 50_EXL =  0.0031𝑇r
2 +  1.2570𝑣r

2 − 0.0622𝑇r𝑣r + 0.1915𝑇r  

−0.0277𝑣r − 7.3300                                                        (10) 
 

where 𝑃𝑀𝑉p,RP−884 50_EXL refers to the proposed PMV for the real air-conditioned 

building from the ASHRAE database RP-884 50_EXL.   
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Note: Data of TSV and original PMV (𝑃𝑀𝑉𝑜) are from ASHRAE database, i.e., 

RP-884 50_EXL; and the support vector machine with linear kernel function is used 

as the machine learning algorithm. 

Fig.7. Variations of proposed PMV (𝑃𝑀𝑉p), machine learning based PMV and original 

PMV (𝑃𝑀𝑉o ) with thermal sensation vote (TSV): A real air-conditioned 

building. 

4. Discussion 

The proposed PMV is convenient for practical applications for four reasons. Firstly, it 

does not require the measurement of the metabolic rate (Sections 2 and 3). Secondly, 

the proposed PMV is computationally efficient. The calculation of the original PMV is 

complicated because it is non-linear and iterative [2]. The complicated calculation 

would hinder the practical applications, particularly for the control of the supply air 

parameters where the thermal environment needs to be evaluated frequently [10, 11, 

57]. To use the PMV for control, methods like piecewise linearization and fuzzy PMV 

have been proposed [11, 37]. The proposed PMV (e.g., Equations 7, 9 and 10) is the 

simple polynomial function of the room air temperature and velocity. The simple 
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polynomial function is the most computationally efficient model [5, 10]. Thirdly, the 

proposed PMV can be expressed by the room air temperature and supply airflow rate 

which can be conveniently measured/monitored in practice [10]. The elevated room air 

velocity (> 0.2 m/s) plays an important role in thermal comfort [1]. However, it is 

challenging to measure the room air velocity accurately in engineering applications [9]. 

Since the room air velocity can be correlated to the supply airflow rate (e.g., Equation 5) 

[9, 34, 58], the proposed PMV can be transferred to be a function of the room air 

temperature and supply airflow rate, e.g., Equation 11 for the environmental chamber 

configured as the aircraft cabin.  

𝑃𝑀𝑉p,aircraft =  −0.0152𝑇r
2 +  0.1931𝑉s

2 + 0.0863𝑇r𝑉s + 1.0250𝑇r − 3.2770𝑉s

− 15.0200                                                                                                    (11) 
 

where 𝑃𝑀𝑉p,aircraft is the proposed PMV (Predicted Mean Vote) for the environmental 

chamber configured as the aircraft cabin (Figure 3); 𝑇r is the room air temperature (°C); 

𝑉s is the supply airflow rate (L/s). 

Fourthly, as explained in Section 2.1, the proposed PMV is a grey-box model, and 

thus requires less training data for sufficient accuracy compared with the black-box 

model using machine learning algorithms. The black-box model requires a large 

database for sufficient accuracy. Taking the field study in Section 3.3 as an example, 

among the machine learning algorithms of the linear regression models, regression 

trees, support vector machines and Gaussian process regression models [58], the 

support vector machine (with linear kernel function) is selected for developing the 

machine learning based PMV because of its highest accuracy (Figure 7). Compared 

with the machine learning based PMV, the proposed PMV improves the accuracy and 

robustness in the thermal comfort prediction by 23.9% (with the mean absolute error 

reduced from 0.36 to 0.27) and 41.7% (with the standard deviation of the absolute 

errors reduced from 0.28 to 0.16) respectively. These results confirm that compared 

with the machine learning based model, the proposed PMV, as a grey-box model, 

requires fewer data to realize sufficient accuracy. 

The proposed method can also be extended to inversely determine the other 
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occupants-related parameter for the PMV calculation, i.e., the clothing insulation, 

which is also difficult to be measured accurately in practice [17]. It should be noted 

that although the above results show that the proposed method effectively improves 

PMV for the thermal sensation prediction, more efforts are required to improve PMV 

further. As explained in Section 2.1, using the model calibration [45-47], the proposed 

method aims to reduce the error of PMV and is unable to eliminate the error of PMV 

(Figures 4, 6 and 7). There are mainly two ways to improve PMV for the thermal 

sensation prediction, i.e., accurately determining the inputs and modifying the model 

itself [2]. The proposed method can be regarded as the efforts of accurately 

determining the inputs. There are some existing efforts of modifying the model itself, 

e.g., the extended PMV [5] and the adaptive PMV [59]. It is recommended for future 

studies to develop a method combining the two ways to further improve PMV for the 

thermal sensation prediction.  

5. Conclusions  

This study proposes a method to improve the PMV for thermal sensation prediction 

based on the inversely determined metabolic rate. Firstly, the original PMV of 

AHSRAE 55 is modelled as a function of the room air temperature, room air velocity 

and metabolic rate using multiple regression. Secondly, the metabolic rate is 

considered as a function of the room air temperature and velocity due to the 

physiological adaptation, and inversely determined using an optimizer (the variable 

metric algorithm) to reduce the deviation between the PMV and thermal sensation vote. 

Thirdly, the proposed PMV is obtained by replacing the metabolic rate in the original 

PMV using the room air temperature and velocity.  

Experiments in environmental chambers configured as a stratum ventilation classroom 

and an aircraft cabin and field experiments in a real air-conditioned building from the 

ASHRAE database have been used to demonstrate the effectiveness of the proposed 

PMV. Results show that compared with the original PMV, in terms of the thermal 

sensation prediction for both cooling and heating modes, the proposed PMV reduces 

the mean absolute error and the standard deviation of the absolute errors by more than 
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52.5% and 41.5% respectively.  

The proposed PMV is convenient for practical applications for four reasons: 1) it does 

not need to measure the metabolic rate; 2) it is computationally efficient; 3) it can avoid 

the measurement of the room air velocity when the elevated room air velocity (> 0.2 

m/s) is concerned; and 4) as a grey-box model, the proposed PMV requires less training 

data for sufficient accuracy when compared with the black-box model (the machine 

learning based PMV). Due to the improved accuracy and robustness and ease of 

implementation, the proposed PMV can contribute to the thermal comfort management 

for low energy buildings. 
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