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ABSTRACT: 

Magnetohydrodynamic (MHD) materials processing is becoming increasingly popular in the 21st 

century since it offers significant advantages over conventional systems including improved 

manipulation of working fluids, reduction in wear and enhanced sustainability. Motivated by these 

developments, the present work develops a mathematical model for Hall and Ion slip effects on 

non-Newtonian Casson fluid dynamics and heat transfer towards a stretching sheet with a 

convective heating boundary condition under a transverse magnetic field. The governing 

conservation equations for mass, linear momentum and thermal (energy) are simplified with the 

aid of similarity variables and Ohm’s law. The emerging nonlinear coupled ordinary differential 

equations are solved with an analytical technique known as the differential transform method 

(DTM). The impact of different emerging parameters is presented and discussed with the help of 

graphs and tables. Generally aqueous electro-conductive polymers are considered for which a 

Prandtl number of 6.2 is employed. With increasing Hall parameter and ion slip parameter the flow 

is accelerated whereas it is decelerated with greater magnetic parameter and rheological (Casson) 

fluid parameter. Skin friction is also decreased with greater magnetic field effect whereas it is 

increased with stronger Hall parameter and ion slip parameter values.  

 

KEYWORDS: Hall current; ion slip; thermal slip; heat transfer; electro-conductive polymer 

processing; differential transform method (DTM). 

 

NOMENCLATURE  

�̃�, �̃� Velocity components 

𝑥, 𝑦 Cartesian coordinates  

�̃� Pressure 

Re Reynolds number 

�̃� Time 

𝑃𝑟 Prandtl number 

�̅� Mean absorption coefficient 
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𝐵𝑖  Biot number 

𝐉 Current density 

�̃�𝑤 Sheet temperature 

�̃�∞ Free stream temperature  

𝑀 Hartmann (magnetic) number  

𝐁 Magnetic field 

𝑅𝑑 Radiation parameter 

GREEK SYMBOLS 

�̅� Thermal conductivity  

𝓇 Stress tensor 

𝛽 Casson viscoplastic fluid parameter 

𝜔𝑒 Cyclotron frequency 

𝜏𝑒 Electron collision time 

𝛽𝑖 Ion slip parameter 

𝛽𝑒 Hall parameter 

�̅� Stefan-Boltzmann constant 

𝜇 Dynamic viscosity of the Casson fluid  

𝜃 Temperature profile 

𝜎 Electrical conductivity 

𝜑 Stream function 

𝑐𝑝  Specific heat 

𝜈 Kinematic viscosity of the Casson fluid 

 

 

 

1.INTRODUCTION 

Industrial materials fabrication frequently features non-Newtonian fluid flows from a 

heated surface which may be stretched or contracted [1]. Examples include plastic sheet synthesis, 

polymer extrusion, food stuff manufacturing (chocolate, toffee etc), floating glass production, 

biopolymer packaging rolls, spray coating etc. In many applications a convectively heated surface 
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is used and special thermal boundary conditions must be employed in mathematical models [2,3]. 

Additionally, the constitution of manufactured materials is strongly influenced by skin friction, 

stretching rates of the sheet and the rate of heat transfer to the sheet.  Various authors have therefore 

investigated the non-Newtonian fluid flow with heat transfer from stretching surfaces. The 

associated boundary value problems have also been studied with diverse numerical and analytical 

methods. Hayat and Sajid [4] investigated analytically and numerically the heat transfer with the 

axisymmetric flow of second-grade fluid through a stretching sheet. They discussed two cases, 

namely the prescribed surface heat flux and prescribed surface temperature scenario. Nadeem et 

al. [5] examined the non-orthogonal stagnation point flow with heat transfer of a second grade 

viscoelastic nanofluid towards a stretching sheet. Latiff et al. [6] used MAPLE shooting quadrature 

to study the time-dependent bioconvection micropolar slip flow, heat and mass diffusion from 

expanding/contracting sheets. Hayat et al. [7] presented homotopy analysis method (HAM) 

solutions for transient stretching sheet flow, heat and mass transfer in a chemically reactive third-

grade viscoelastic fluid (HAM). Bég et al. [8] used an electrothermal network simulation code to 

study the time-dependent natural convection boundary layer flow from a stretching sheet in a 

Darcy-Forchheimer medium saturated with Walters-B elastico-viscous liquid. These studies all 

confirmed the significant modification in transport phenomena induced by rheological behavior.   

Heat transfer under the influence of magnetic field is also an important area of modern 

technology and features in “green” energy systems, blood flow control, liquid metal processing, 

nuclear energy plasma control, electromagnetic casting and also electro-conductive (magnetic) 

materials synthesis. Magnetic polymers are a special sub-branch of magnetic materials which 

combine the electrical conductivity features of metals with the non-Newtonian and adaptive 

characteristics of polymers [9]. Such materials provide a new level of sophistication for smart 

coating systems [10, 11]. To simulate the manufacture of these fluids, mathematical models must 

combine magnetohydrodynamics (MHD) and rheology and often powerful numerical techniques 

are required to solve the resulting conservation equations. The use of these advanced multi-

physical fluid dynamics models can significantly improve fabrication processes for such materials 

and leads to an optimization of quality control, in particular, for heat and mass transfer. With 

judicious use of an applied magnetic field the polymer constitution and performance can be 

manipulated and furthermore flow instabilities may be suppressed and homogeneity sustained in 

products. Many investigators have simulated magnetic polymer flows with heat and mass diffusion 
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in stretching sheet (extrusion) flows. Gupta et al. [12] used a variational finite element code to 

analyze the magnetic micropolar stretching sheet thermal convection flow in the vicinity of a 

stagnation point. Kumar et al. [13] used MATLAB routines to simulate transient magnetic non-

Newtonian nanofluid convective heat transfer from an extending sheet with Joule heating and 

Stokes couple stress rheological model. Vasu et al. [14] used homotopy and generalized 

differential quadrature methods to study magnetized bioconvection of a viscoplastic (Casson) fluid 

from a stretching surface. Prasad et al. [15] used Runge-Kutta quadrature to compute the influence 

of variable viscosity on magnetized viscoelastic fluid flow with heat transfer from a stretching 

surface, noting that the skin friction coefficient decreases due to the increment in a magnetic field.  

In high-temperature fabrication of polymers [16], radiative heat transfer arises in addition 

to thermal conduction and thermal convection. To simulate radiative flux often an algebraic flux 

approximation is popular and some examples include the Rosseland diffusion model, Hamaker six 

flux model, Milne-Eddington model, Schuster-Schwartzchild model and Traugott P1 flux model. 

In multi-physical coating flows, the Rosseland model has been shown to be reasonably accurate 

for high optical thicknesses. Although it does not allow optical thickness or spectral effects to be 

simulated, it does provide a mechanism for evaluating the relative role of thermal conduction and 

thermal radiation flux. Radiative heat transfer using the Rosseland model in transport from 

stretching surfaces has therefore received considerable attention for both Newtonian and non-

Newtonian fluids and also magnetic and non-magnetic scenarios. Uddin et al. [17] studied 

radiative heat flux impact on nanofluid stretching sheet flow with a Buongiorno nanoscale model. 

Combined magnetohydrodynamic and radiative effects were considered by Abo-Eldahab and El 

Gendy [18] for variable viscosity flow towards a stretching sheet. Hayat et al. [19] studied variable 

thermal conductivity and thermal radiation effects on Jeffrey viscoelastic three-dimensional 

stretching sheet flow. Hayat et al. [20] considered the influence of Joule heating and thermal 

radiation of third-grade fluid from an extending surface. Bhatti et al. [21] used a successive 

linearization method to study the impact of thermal relaxation and thermal radiation on magnetic 

polymer stretching flow with a Maxwell viscoelastic model. Further studies have used the Carreau 

rheological model [22] and the Williamson model [23].  

In magnetohydrodynamic materials processing, in addition to the customary transverse 

static magnetic field which induces a Lorentzian retarding force, multiple other phenomena can 

arise. These include alternating magnetic fields, Alfven waves, magnetic leakage, magnetic 
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induction, magnetic dipoles, Hall currents and ion slip currents [24]. Under stronger magnetic 

fields both Hall and ion slip currents may become significant.  The former relates to a secondary 

(cross) flow being induced in the regime and also decreases medium electrical conductivity. The 

latter concerns the presence of partial ionization in liquids (or gases) and reduces the electrical 

conductivity of the fluid. Both Hall and ionslip currents have been studied by several researchers 

in the context of engineering MHD flows and observed to influence the magnitude and direction 

of the current density and consequently the impact of the magnetic body force. Bég et al. [25] 

studied oblique magnetic field and Hall current effects on rotating MHD flow in a channel 

containing a porous medium. Pal et al. [26] presented perturbation solutions for the impact of Hall 

current and thermal radiation on oscillatory mixed convection flow of a rotating micropolar. 

Ramesh et al. [27] studied the influence of hydrodynamic slip and Hall currents on non-Newtonian 

dusty fluid peristaltic pumping in a magnetic field. Attia et al. [28] presented power series solutions 

for transient two-phase hydromagnetic viscous flow in a pipe with Hall and ion slip effects. In the 

area of stretching sheet flows, Shateyi and Motsa [29] employed a Chebyshev pseudo-spectral 

collocation scheme to compute the boundary layer flow, heat and mass transfer in transient 

magnetohydrodynamic flow from a stretching sheet. Ion slip effects on non-Newtonian magnetic 

convection flow were examined by Choudhury and Dar [30] who noted the significant 

modification in velocity field with stronger ion slip. Further studies of Hall current and ionslip in 

magnetohydrodynamics have been communicated by Zueco et al. [31] for isothermal channels and 

Bég et al. [32] for non-isothermal stretching flow with Ohmic heating. 

A close inspection of the literature indicates that thus far the combined impact of Hall and 

ion slip effects with heat transfer on magnetohydrodynamic Casson fluid flow from a stretching 

surface with thermal slip and thermal radiation, has not been considered. The governing flow 

problem is modeled with the help of Ohms law, mass, momentum and thermal energy conservation 

equations. The transformed ordinary differential equation boundary value problem is solved 

analytically with the Differential transform method (DTM). Validation with numerical quadrature 

(ND Solve routine in MATHEMATICA symbolic software) is included. The impact of selected 

magnetic, thermal and non-Newtonian parameters on velocity, temperature, skin friction and heat 

transfer- rates is visualized graphically and interpreted at length. The simulations are relevant to 

magnetic polymer processing technologies [33]. This paper is organized as follows: Sec. (1) 

presents a detailed introduction and problem justification. Sec. (2) deals with the mathematical 



6 
 

 
 

formulation of the problem. Sec. (3) describes the solution methodology. Sec. (4) is devoted to 

graphical and numerical results.   

 

2.MATHEMATICAL FORMULATION 

Let us consider the magnetohydrodynamic (MHD) viscous, incompressible, steady-state boundary 

layer flow and thermal convection heat transfer in an electro-conductive polymer from a stretching 

sheet at the stagnation point 𝑦 = 0. The Casson (viscoplastic) fluid model is utilized. An external 

magnetic field 𝐵0 is applied while the induced magnetic field is ignored due to small magnetic 

Reynolds number. Electron pressure is negligible. Magnetic field is sufficiently strong to generate 

a Hall current which gives rise to a secondary (cross flow) and also mobilize ion slip. A Cartesian 

coordinate system is adopted in which 𝑥 −axis is taken along the direction of the sheet and 𝑦 −axis 

is considered normal to it as shown in Fig. 1. �̃�𝑤  denotes the temperature at the sheet and the 

temperature in the free stream is �̃�∞. The polymer is assumed to be optically dense and a radiative 

flux is applied transverse to the sheet. 

 

Figure 1. Physical model for magnetic non-Newtonian stretching flow. 

The rheological equation of state for an isotropic and incompressible Casson (viscoplastic) fluid 

[34-36] is:  

𝓻𝒊𝒋 =

{
 
 

 
 𝟐ℇ𝒊𝒋 (𝝁𝒃 +

𝓹𝒚

√𝟐𝚷
) , 𝚷𝒄 < 𝚷,

𝟐ℇ𝒊𝒋 (𝝁𝒃 +
𝓹𝒚

√𝟐𝚷𝒄
) ,𝚷𝒄 > 𝚷,

 (1) 

Radiative flux, Qr 

y=0 

Hall current  
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where ℇ𝑖𝑗 is the component of the deformation rate, Π is the product of the deformation rate and 

Π𝑐 is the critical value of the plastic dynamic viscosity. The governing boundary layer equations 

for the regime can be written as [34] 

∂�̃�

∂𝑥
+
∂�̃�

∂𝑦
= 0, (2) 

�̃�
∂�̃�

∂𝑥
+ �̃�

∂�̃�

∂𝑦
= 𝜈 (1 +

1

𝛽
)
∂2�̃�

∂𝑦2
+ 𝐉 × 𝐁, (3) 

�̃�
∂�̃�

∂𝑥
+ �̃�

∂�̃�

∂𝑦
= �̅�

∂2�̃�

∂𝑦2
−

1

𝜌𝑐𝑝

∂𝑄𝑟
∂𝑦

, (4) 

The nonlinear radiative heat flux can be written following the Rosseland diffusion approximation 

as follows [18-23]:  

𝑄𝑟 = −
16�̅��̃�3

3�̅�

𝜕�̃�

𝜕𝑦
. (5) 

The generalized form of Ohm's law with Hall and ion-slip effect can be written as:  

𝐉 = 𝜎(𝐄 + 𝐕 × 𝐁) −
𝜔𝑒𝜏𝑒
𝐁

(𝐉 × 𝐁) −
𝜔𝑒𝜏𝑒𝛽𝑖
𝐁𝟐

[(𝐉 × 𝐁) × 𝐁]. (6) 

where 𝛽𝑒 = 𝜔𝑒𝜏𝑒 is the Hall parameter. The wall and free stream boundary conditions are imposed 

as: 

�̃� = 𝑎𝑥,−𝑘
𝜕�̃�

𝜕𝑦
= ℎ(�̃�𝑤 − �̃�), at 𝑦 = 0,  (7) 

�̃� → 0, �̃� → 0, �̃� → �̃�∞ at 𝑦 → ∞. (8) 

The stream function (𝜑) can be defined as:  

�̃� =
𝜕𝜑

𝜕𝑦
, �̃� = −

𝜕𝜑

𝜕𝑥
. (9) 

Introducing the following similarity transformation variables:  
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𝜁 = √
𝑎

𝜈
 𝑦, 𝑅𝑑 =

4�̅��̃�3

𝜌𝑐𝑝�̅�
, �̃� = 𝑎𝑥𝜑,𝑀2 =

𝐵0
2𝜎

𝑐𝜌
, �̃� = −√𝑎𝜈𝑓, 𝜃 =

�̃�−�̃�∞ 

�̃�𝑤−�̃�∞
, 𝑃𝑟 =

𝜈

�̅�
, 𝐵𝑖 =

ℎ

𝑘
√
𝜈

𝑎
, �̅� =

𝑘

𝜌𝑐𝑝
.  

(10) 

and using Eqn. (8) in to Eq. (1) to Eq. (7), leads to:  

(1 +
1

𝛽
) 𝑓′′′−𝑓′2 + 𝑓𝑓′′ −

𝑀2(1 + 𝛽𝑖𝛽𝑒)

(1 + 𝛽𝑒𝛽𝑖)2 + 𝛽𝑒2 
𝑓′ = 0, (11) 

(
1

𝑃𝑟
+
4

3
𝑅𝑑) 𝜃

′′ + 𝑓𝜃′ = 2𝜃𝑓′. (12) 

Their corresponding boundary conditions are:  

𝑓(0) = 0, 𝑓′(0) = 1, 𝑓′(∞) → 1, (13) 

𝜃′(0) = 𝐵𝑖(𝜃(0) − 1), 𝜃(∞) → 0. (14) 

Here all parameters have been defined in the notation. It is worth mentioning that the above results 

can be reduced to Newtonian fluid by taking 𝛽 → ∞ as a special case of our study. The physical 

quantities of interest for the governing flow problem are skin friction coefficient and local Nusselt 

number which in dimensionless form are defined as [34]: 

𝐶𝐹 = 𝐶𝑓Re𝑥
1/2 

= (1 +
1

𝛽
)𝑓′′(0), 𝑁𝑢𝑟 =

𝑁𝑢𝑥

Re𝑥
1/2 

= − (1 +
4

3
𝑅𝑑) 𝜃

′(0), (15) 

where 𝐶𝐹 and 𝑁𝑢𝑟 are the dimensionless skin friction coefficient and Nusselt number, respectively 

whereas Re𝑥 = �̃�𝑤𝑥/𝜈 is the local Reynolds number.  

 

3. DIFFERENTIAL TRANSFORM SOLUTIONS 

To solve the derived coupled nonlinear ordinary differential equations (11) and (12) under 

boundary conditions (13) and (14), a numerical or semi-analytical/numerical scheme is required. 

Many such techniques are available including the variational iteration method (VIM), homotopy 

analysis method (HAM), generalized differential quadrature (GDQ) etc. The differential transform 

method (DTM) method introduced by Zhou [37] is an alternative approach and is a very powerful 

technique for nonlinear problems. It has been employed in recent years to simulate a variety of 

viscous flow problems including peristaltic viscoelastic pumping [38], swirling Von Karman 
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hydromagnetic flow [39], polymer sheet stretching [40] and viscous hypersonic aerodynamics 

[41]. The transformation for the nth derivative of a function in a single variable can be described 

as  

𝔽(𝑛) =
1

𝑛!
(
𝑑𝑛𝕗

𝑑𝜉𝑛
)
𝜉=𝜉0

, (16) 

where 𝕗(𝝃) is the original function and 𝔽(𝒏) is the transformed function and its inverse function 

can be defined as:  

𝕗(𝑛) = ∑𝔽(𝑛)(𝜉 − 𝜉0)
𝑛

∞

𝑛=0

. (17) 

The basics theme of the differential transform method is obtained using Taylor series expansion 

and in real applications, the function 𝕗(𝒏) is defined by finite series which maybe expressed as 

follows: 

𝕗(𝑛) ≅ ∑𝔽(𝑛)(𝜉 − 𝜉0)
𝑛

𝑀

𝑛=0

. (18) 

The value of 𝑴 depends upon the convergence of the series. Now applying DTM to Eqns. (11)-

(14), we have: 

𝕗[𝑛 + 3] = ∑
−𝕗[𝑛]𝕗[𝑛−𝑟+2](𝑛−𝑟+1)(𝑛−𝑟+2)

(1+
1

𝛽
)(𝑛+1)(𝑛+2)(𝑛+3)

𝑛
𝑟=0 +

∑
𝕗[𝑟+1]𝕗[𝑛−𝑟+1](𝑟+1)(𝑛−𝑟+1)

(1+
1

𝛽
)(𝑛+1)(𝑛+2)(𝑛+3)

𝑛
𝑟=0 +

(𝑛+1)𝕗[𝑛+1]

(1+
1

𝛽
)(𝑛+1)(𝑛+2)(𝑛+3)

𝑀2(1+𝛽𝑖𝛽𝑒)

(1+𝛽𝑒𝛽𝑖)
2+𝛽𝑒

2 
.  

(19) 

𝕘[𝑛 + 2] =
2𝕘[𝑛](𝑛+1)𝕗[𝑛+1]−𝕗[𝑛](𝑛+1)𝕘[𝑛+1]

(𝑛+1)(𝑛+2)(
1

𝑃𝑟
+
4

3
𝑅𝑑)

.  (20) 

The appropriate form of the boundary conditions is: 

𝕗[0] = 0, 𝕗[1] = 1, 𝕗[2] =
𝛼

2
, 𝕘[1] = −𝐵𝑖(1 − 𝕘[0]), 𝕘[1] = 𝛾. (21) 

Here 𝜶 and 𝜸 are constants. To validate the DTM solutions the entire boundary value problem has 

also been solved with the ND Solve routine in Mathematica software. This employs a shooting 

technique. The comparison of Differential Transform Method (DTM) and ND Solve solutions is 
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given in Table 1 for skin friction coefficient and Nusselt number. Generally, very close correlation 

is achieved and confidence in the DTM solutions is therefore justifiably high. In these solutions 

radiative heat transfer, magnetic body force, Hall and ionslip current effects are all present.  

Aqueous electro-conductive polymers are considered for which a Prandtl number of 6.2 is 

employed.  With increasing Hall parameter and ion slip parameter the skin friction is increased i.e. 

the flow is accelerated whereas it is decelerated with greater magnetic parameter. Average Nusselt 

numbers are elevated with increasing Prandtl number and also with increasing radiative parameter. 

Table 2 further shows the numerical comparison between the present DTM results and the 

previously published results of Gorla and Sidawi [43] (𝛽 → ∞,𝑀 = 0  i.e. Newtonian, non-

magnetic) and Abolbashari et al. [34] (𝑀 = 0 i.e. non-magnetic), and close correlation is achieved 

in both cases. Confidence in the DTM solutions is therefore justifiably high. 

 

Table 1: Comparison between numerical and analytical results for skin friction coefficient (𝐶𝐹) and Nusselt 

number (𝑁𝑢𝑟) for various values of 𝑃𝑟 , 𝑅𝑑 , 𝑀, 𝛽𝑒 and 𝛽𝑖 

 

𝑀 𝛽𝑒 𝛽𝑖 𝑃𝑟 𝑅𝑑  𝐶𝐹 (DTM) 𝐶𝐹 (NDSolve) 𝑁𝑢𝑟(DTM) 𝑁𝑢𝑟(NDSolve) 

1 0.2 0.2 6.2 0.2 −1.7460 −1.7460   

2     −2.4820 −2.4820   

3     −3.3704 −3.3704   

 0.5    −1.6472 −1.6472   

 1    −1.5585 −1.5585   

 1.5    −1.5145 −1.5145   

  0.6   −1.6419 −1.6419   

  1.2   −1.5637 −1.5637   

  1.6   −1.5345 −1.5345   

   3    0.4977 0.4977 

   4    0.5065 0.5065 

   10    0.5246 0.5246 

    0.5   0.6278 0.6278 

    0.8   0.7316 0.7316 

    1   0.7969 0.7969 

 

Table 2: Comparison between present results and previously published results for 𝑓′′(0).  
 

 Gorla and Sidawi [43] Abolbashari et al. [34] 

𝛽 → ∞,𝑀 = 0 𝑀 = 0 

-1.01435 -0.74127 

Present results -1.01435 -0.74127 
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4.NUMERICAL RESULTS AND DISCUSSION 

This section elucidates the graphical results and discussion for the influence on velocity and 

temperature distributions with the different physical parameters arising in the governing flow 

problem i.e. Hartmann number 𝑀 , Hall parameter 𝛽𝑒 , Ion slip parameter 𝛽𝑖 , Biot number 𝐵𝑖 , 

rheological (Casson) fluid parameter 𝛽 , Prandtl number 𝑃𝑟  and radiation parameter 𝑅𝑑 , 

respectively. For this purpose, Fig. (2) to Fig. (8) are sketched. As noted earlier, the case for a 

Newtonian fluid can be retrieved by taking 𝛽 → ∞. Moreover, the presents results can be reduced 

to the results obtained by Abolbashari et al. [27] by taking 𝑀 = 𝛽𝑖 = 𝛽𝑒 = 0 i.e. non-magnetic 

case neglecting Hall and ion slip effects. It is further of note that Pr = 6.2 is prescribed. The 

polymers considered are aqueous-based so that the dominant thermophysical properties are water-

controlled. They still feature rheological viscoplastic features but the Prandtl number is 

approximately that of conventional water. Such magnetic polymers are more easily adopted in 

certain coating applications and can further be better controlled using magnetic fields than denser, 

cross-linked polymers which possess much higher Prandtl numbers (~100). Commercial examples 

include the Aqualon™ aqueous polymer family 

   

 
Figure 2. Velocity profile for different values of 𝑀  when 𝑃𝑟 = 6.2, 𝑅𝑑 = 0.5, 𝛽𝑒 = 0.2, 𝛽𝑖 =
0.2, 𝐵𝑖 = 0.5, 𝛽 = 1.   
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Figure 3. Velocity profile for different values of 𝛽𝑒  when 𝑃𝑟 = 6.2, 𝑅𝑑 = 0.5,𝑀 = 1, 𝛽𝑖 =
0.2, 𝐵𝑖 = 0.5, 𝛽 = 1.   

 

 
Figure 4. Velocity profile for different values of  𝛽𝑖  when 𝑃𝑟 = 6.2, 𝑅𝑑 = 0.5,𝑀 = 1, 𝛽𝑒 =
0.2, 𝐵𝑖 = 0.5, 𝛽 = 1.   
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Figure 5. Velocity profile for different values of 𝛽 when 𝑃𝑟 = 6.2, 𝑅𝑑 = 0.5,𝑀 = 1, 𝛽𝑒 =
0.2, 𝛽𝑖 = 0.2, 𝐵𝑖 = 0.5.   
 

 
Figure 6. Temperature profile for different values of 𝐵𝑖  when 𝑃𝑟 = 6.2, 𝑅𝑑 = 0.5,𝑀 = 1, 𝛽𝑒 =
0.2, 𝛽𝑖 = 0.2, 𝛽 = 1.   
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Figure 7. Temperature profile for different values of 𝑃𝑟  when 𝑅𝑑 = 0.5,𝑀 = 1, 𝛽𝑒 = 0.2, 𝛽𝑖 =
0.2, 𝐵𝑖 = 0.5, 𝛽 = 1.   

 
Figure 8. Temperature profile for different values of 𝑅𝑑  when 𝑃𝑟 = 6.2,𝑀 = 1, 𝛽𝑒 = 0.2, 𝛽𝑖 =
0.2, 𝐵𝑖 = 0.5, 𝛽 = 1.   

 

Fig. (2) to Fig. (5) shows the velocity distribution with transverse coordinate for various values of 
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Hartmann number 𝑀,  Hall parameter 𝛽𝑒  , ion slip parameter 𝛽𝑖  and fluid parameter 𝛽. Fig. (2) 

indicates that when the Hartmann number 𝑀 increases, there is a strong deceleration induced in 

the boundary layer flow. The Lorentz body force in the momentum eqn. (11) is a linear term, 

−
𝑀2(1+𝛽𝑖𝛽𝑒)

(1+𝛽𝑒𝛽𝑖)
2+𝛽𝑒

2 
𝑓′ and is retarding to the flow. This damps the velocity but even at maximum 

Hartmann number i.e. for the strongest applied magnetic field (M = 4), no flow reversal is 

generated. Momentum boundary layer thickness in the magnetic polymer is therefore increased 

with greater Hartmann number. Evidently significant flow control is achievable with appropriate 

selection of the magnetic field strength and furthermore a homogenous velocity distribution is 

achieved throughout the boundary layer.  For the case M = 0, magnetic field effects are eliminated, 

and the polymer is electrically non-conducting and achieves a maximum flow acceleration.  

We also note that in aqueous magnetic polymer dynamics, M = 1 to 2 is a strong magnetic field 

range [33]. Exceeding this range may induce molecular dissociation effects, magnetic induction 

etc. At M = 1 the magnetic body force is of the same order as the viscous force and this is a strong 

magnetic field scenario for aqueous polymer processing. In other applications, this may be weak 

e.g. pulsed MHD power, where M ~ 4 corresponds to strong magnetic field which is required in 

for example seeded potassium fluid media to generate Hall currents. However, in aqueous polymer 

processing the threshold is much lower and Hall currents are mobilized at much lower applied 

magnetic fields. This is why we considered M = 2 as the maximum strength case and generally 

used M = 1 as the standard case for simulations. The present simulations have therefore used data 

based on real industrial studies e.g. [33].  

Fig. (3) and Fig. (4) illustrate that with increasing Hall parameter 𝛽𝑒 and ion slip parameter 𝛽𝑖 the 

reverse effect is generated in the velocity distribution as observed for increasing Hartmann 

number. Strong flow acceleration is produced indicating that the modification in electrical 

conductivity associated with Hall current (cross flow) and ion slip phenomena enhances velocity 

magnitudes. Therefore, maximum velocity is attained with high values of these parameters and the 

momentum boundary layer thickness is reduced considerably. Similar observations have been 

reported by Pal et al. [26] and Shateyi and Motsa [29]. The quadratic terms in the denominator in 

the Lorentz body force term  i.e. (1 + 𝛽𝑒𝛽𝑖)
2 + 𝛽𝑒

2 are strongly elevated with increasing 𝛽𝑒 and 𝛽𝑖 

values which effectively depletes the magnitude of the Lorentz force. This generates flow 

acceleration since there is a lower impedance due to magnetic field acting on the flow, as noted by 

Cramer and Pai [24] and later confirmed by Zueco et al. [31]. The enhancement in velocity 
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magnitudes with greater Hall and ion slip effect (and associated decrease in momentum boundary 

layer thickness) is however less dramatic than the depletion in velocity with greater Hartmann 

number, as also emphasized by Ramesh et al. [27] and Bég et al. [32]. There is evidently a complex 

inter-play between magnetic field, ion slip and Hall currents and careful selection of these 

parameters is required in practical materials processing operations as noted by Davidson [9].  

Fig. (5) depicts the response in velocity profiles to a change in Casson viscoplastic parameter, 𝛽. 

With increasing 𝛽, the flow is strongly decelerated throughout the boundary layer transverse to the 

sheet surface. Minimum velocity is associated with the Newtonian case (𝛽 → ∞) for which the 

momentum boundary layer thickness is maximized. The deceleration in the Casson flow is due to 

the necessity of a yield stress to be attained prior to viscous flow initiation in viscoplastic, shear-

thinning polymers. The viscoplastic parameter in the momentum eqn. (11), modifies the shear term 

f /// in the momentum boundary layer Eqn. (11) with an inverse factor, 1/𝛽, and effectively assists 

momentum diffusion for small values of 𝛽.  This leads to a thinning in the hydrodynamic boundary 

layer and associated acceleration; however, at very high values of Casson parameter (infinity is 

taken to be 𝛽 = 103). the reverse effect is induced i.e. marked deceleration. Significant deviation 

in viscoplastic flow and Newtonian flow is observed.  

Fig. (6) to Fig. (8) illustrate the temperature profiles for various values of thermal Biot number 

𝐵𝑖 , Prandtl number 𝑃𝑟 and radiation parameter 𝑅𝑑. The constant wall temperature can be obtained 

by taking 𝜃(0) = 1 for large values Biot number 𝐵𝑖 . It can be seen from Fig. (6) that an increment 

in thermal Biot number 𝐵𝑖  creates an increment in heat transfer coefficient and this results in an 

enhancement in the temperature distribution. Thermal Biot number appears in the wall boundary 

condition in Eqn. (13) i.e. 𝜃′(0) = 𝐵𝑖(𝜃(0) − 1). Maximum enhancement clearly manifests at the 

wall (sheet surface) and progressively decays further from the wall. Attention has been confined 

to the thermally-thick case i.e. Bi > 0.1 for which temperature distribution is not constant 

throughout the fluid body (since this represents real magnetic polymers [10]). Constant 

temperature is only achieved for the thermally-thin case i.e. Bi<0.1. Asymptotically smooth values 

are achieved in the free stream indicating that a sufficiently large infinity boundary condition has 

been prescribed in the DTM solution. Fig. (7) illustrates the evolution in temperatures with Prandtl 

number 𝑃𝑟 . It can be noticed from this figure that an increment in Prandtl number 𝑃𝑟  causes a 

reduction in the temperature distribution. Polymers with lower Prandtl numbers possess higher 

thermal conductivities (magnetic polymers benefit from metallic doping which strongly enhances 



17 
 

 
 

thermal conductivity [11]). This encourages thermal conduction in the fluid and elevates 

temperatures. However larger Prandtl numbers imply a reduced thermal conductivity which will 

suppress heat diffusion in the polymer and will significantly reduce temperatures. Thermal 

boundary layer thickness will therefore be decreased with increasing Prandtl number. Prandtl 

number also expresses the ratio of momentum diffusivity to thermal diffusivity. When Prandtl 

number 𝑃𝑟 = 1 then energy diffusion and viscous (momentum) diffusion rates are equivalent as 

are the momentum and thermal boundary layer thicknesses. It can be noticed from Fig. (8) that 

increasing radiation parameter 𝑅𝑑 enhances the temperature profile and thermal boundary layer 

thickness. This parameter feature sin the augmented diffusion term in the energy conservation 

Eqn. (12) i.e. (
1

𝑃𝑟
+
4

3
𝑅𝑑) 𝜃

′′ . 𝑅𝑑 =
4�̅��̃�3

𝜌𝑐𝑝�̅�
,  and embodies the relative contribution of thermal 

radiation heat transfer to thermal conduction heat transfer. For Rd = 0 radiative flux vanishes. As 

Rd increases the Casson magnetic polymer regime is progressively energized via radiation and 

temperatures are strongly boosted. The most dramatic impact is nearer the wall although the 

temperature elevation is sustained some distance from the wall. Evidently in mathematical models 

of high-temperature materials processing of magnetic polymers, the neglection of radiative heat 

transfer will significantly under-predict temperatures. It is important to include radiative effects 

albeit with simple algebraic flux models and in this regard the Rosseland model does capture the 

modification in temperatures quite reasonably. Similar observations have been made in Lu et al. 

[26] and Bég et al. [29]. 

 

5. CONCLUSIONS 

In this article, stimulated by further investigating multi-physical magnetic polymer manufacturing 

processes, a mathematical model has been developed for viscoplastic magnetohydrodynamic flow 

from a stretching sheet with radiative heat transfer, Hall and Ion slip effects. The Casson model 

has been adopted. A convective wall thermal boundary condition has also been considered. The 

dimensionless momentum and energy boundary layer equations have been solved with a powerful 

analytical technique known as the differential transform method (DTM). Validation of solutions 

with the ND Solve routine in Mathematica symbolic software has been conducted. The 

computations have shown that: 

(i)Increasing Hartmann number (magnetic field parameter) retards the flow whereas increasing 

Hall parameter and ion slip parameter enhance the velocity magnitudes.  
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(ii) Increasing thermal Biot number and radiation parameter both elevate the temperature 

distribution whereas increasing Prandtl number suppresses temperatures.  

(iii)Increasing Casson viscoplastic parameter significantly decelerates the flow and leads to a 

thickening in the momentum boundary layer.  

(iv) Considerable digression in results is noted between Newtonian 

(𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐶𝑎𝑠𝑠𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝛽 → ∞) and non-Newtonian (finite values of Casson 

parameter) cases indicating that rheology of electro-conductive polymers is essential for inclusion 

in robust mathematical models.  

 

The differential transform method (DTM) is found to be very stable and adaptive for resolving 

nonlinear magnetic materials processing transport phenomena problems. Future studies will 

examine double-diffusive convection flows and other non-Newtonian (e.g. micropolar) models and 

will be reported soon.  
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