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Abstract: This study investigates adaptive thermal comfort in air conditioned classrooms 

in Hong Kong. A field survey was conducted in several typical classrooms at the City 

University of Hong Kong. This survey covered objective measurement of thermal 

environment parameters and subjective human thermal responses. A total of 982 student 

volunteers participated in the investigation. The results indicate that students in light 

clothing (0.42 clo) have adapted to the cooler classroom environments. The neutral 

temperature is very close to the preferred temperature of approximately 24°C. Based on 

the MTSV ranging between -0.5 and +0.5, the comfort range is between 21.56°C and 

26.75°C. The lower limit is below that of the ASHRAE standard. Of the predicted mean 

vote (PMV) and the University of California, Berkeley (UCB) model, the UCB model 

predictions agree better with the mean thermal sensation vote (MTSV). Also, the 

respective fit regression models of the MTSV versus each of the following: operative 

temperature (Top), PMV, and UCB were obtained. This study provides a better 

understanding of acceptable classroom temperatures.  

Keywords: Classroom; Air conditioned; Thermal adaptation; Thermal sensation; 
Prediction models  
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Adaptation is defined as “the gradual lessening of the human response to repeated 

environmental stimulation” [1], and mainly consists of three processes: physiological 

adaptation (adjusting body temperature, sweating, etc.), psychological adaptation 

(expectation and preference) and behavioral adaptation (adjusting clothes, operating 

windows, using fans, etc.)[2]. Different from the PMV model, adaptive comfort model 

emphasizes the effect of human, i.e. the interaction between human and the ambience, 

which can extend comfort range [3]. This explains why people have moderate sensation 

in an extreme thermal environment. 

In many previous investigations, the adaptive thermal comfort was analyzed and the adaptive 

models were developed based on the data from naturally ventilated (NV) buildings in different 

climatic zones [4-8]. They were supposed to be applied to NV buildings. To date, only limited 

studies explore adaptation in the mechanically conditioned environments. As emphasized 

by Schweiker et al. [4], more studies were quite needed. de Dear et al. [6] analyzed the 

discrepancy between the predicted mean vote (PMV) and Actual Mean Vote (AMV) in 

the air conditioned environment and found only behavioral adaptation. The study of 

Humphrey [7] believed that deviation results from physical, physiological and 

psychological factors. To explore adaptation in air conditional environment, Yang et al. 

[8] undertook a series of experiments in a well-controlled chamber and found that 

occupants who had resided long time in regions with hot and humid climate in summer 

perceived hot (or extreme) condition as less extreme due to psychological adaptation. 

Also, the psychological adaptation can neutralize occupants’ actual thermal sensation. 

Brager and de Dear [3] also agreed with this opinion, while Liu et al. [9] insisted that 

physiological adaptation exerted more influence than the other two processes after 

conducting series of field trials both in China and U.K. 

In a typical office space, the steady-state thermal sensation would be correlated with 

the PMV against the operative temperature or the effective temperature. A neutral 

temperature can be obtained at the intercept of a linear regression line with the 

temperature axis [10, 11]. This is the perceived temperature by an occupant in a space 

that offers a “neutral feeling of thermal sensation” and the occupant votes neither the 

“warm” nor “cool” side. A semantic differential scale of evaluation on thermal sensation 

has been widely adopted in many thermal comfort studies, with the results adopted in 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

developing design criteria have been widely used in many air-conditioned office 

buildings in Hong Kong [12]. 

Recently, the Hong Kong government promotes 25.5 °C for AC office environment in 

general. Besides encouraging the occupants to dress in lighter clothing, an AC design 

tactic is to increase air movement to allow high room temperature setting in summer [13-

16]. The preceding analysis, particularly in Hong Kong, revealed that most of the 

investigations focus on the office buildings. However, the energy consumption of 

educational buildings, as one of kind of general building, has dramatically increased. 

However, while most of the earlier studies were mainly carried out in offices, few studies 

are on educational buildings. Similarly, a host of thermal comfort investigations 

considered natural ventilation with less consideration for mechanically conditioned 

classrooms. Nevertheless, in Hong Kong, nearly all the classrooms are ventilated by 

HVAC systems with low-temperature set-points [17, 18]. Therefore, it is imperative to 

carry out field surveys of characteristic adaptive thermal comfort in AC classrooms for 

better insight into the temperature set-points for thermal comfort, which is beneficial for 

the optimization control of Heating Ventilation and Air Conditioning (HVAC) systems. 

    This paper, therefore, investigates occupants’ adaptation to the air conditioned 

university classrooms in Hong Kong.  A field survey was carried out in the mechanically 

conditioned classroom in Hong Kong from August to October in 2015, which is located 

in Southern China and characterized by the hot and humid climate in the summer. In this 

study, the environmental parameters, including air temperature, relative humidity, air 

velocity, and mean radiant temperature were measured. Also, the study conducted 

subjective survey wherein occupants were asked to answer thermal comfort 

questionnaires. Based on the survey data, two thermal comfort models, the UCB [19] and 

PMV [20] models, were validated. Finally, the neutral temperature and thermal comfort 

range in Hong Kong classrooms were obtained and analyzed to provide a suitable 

reference for evaluating the thermal environment and optimizing the control of HVAC 

systems for Hong Kong classrooms. 

2. Methodology  

2.1  Hong Kong climate 
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Hong Kong is located at latitude 22o18’N and longitude 114o10’E, according to the 

climatological method of classification, the weather of Hong Kong is classified as 

“Humid Subtropical Climate.” [21]The spring season is short, and the change of light fog 

is high. In summer, i.e., between May and September, the weather is mainly hot and 

humid with showers or occasional thunderstorms. The region witnesses decrease in 

relative humidity between October and December. Figure 1 shows the mean monthly 

variation of temperature and relative humidity in Hong Kong. As shown, nearly all of the 

average monthly relative humidity exceeded 70%. In summer, all the three mean months’ 

temperature is higher than 28 °C. Therefore, the diurnal and year round temperature 

profiles render the opportunities for adaptive comfort tempertaure (ACT) control instead 

of operating the air-conditioning systems to meet the usual single set-point of either 

23 °C for high grade buildings, 24 °C for average buildings or 25 °C for government 

buildings [17]. 

2.2 The surveyed buildings 

The study involved field surveys that were conducted in Hong Kong, in Southern 

China. The study was comprised of two major parts. The first part was an objective 

measurement, including onsite indoor thermal environment monitoring. For the second 

part, occupants provided their subjective answers to the thermal comfort questionnaires. 

The onsite investigations procedure was similar to that of previous field studies [22, 23]. 

The measurement points were set base on the ASHRAE 55-2013 [24] and ISO standard 

7730 [25]. All the data and survey results were analyzed using SPSS 17.0 with a 

significant level of 0.05.  

This field investigation was conducted in several typical classroom mock-ups with the 

central air-conditioning system at the City University of Hong Kong. The classroom was 

located in a fully enclosed environmental chamber served by ceiling diffusers for general 

cooling and dehumidification, which were controlled by a central cooling system. 

Because most previous studies were conducted with mixing ventilation, the room air 

distribution employed was mixing ventilation for easy comparison. Figure 2 presents the 

setup of a typical classroom.  The subjects were seated conducting typical academic 

tasks without talking. The classroom was kept in steady conditions during the survey 

which lasted for over half an hour. 
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2.2 Measurement and questionnaire 

In this study, the measured physical parameters include the air temperature, globe 

temperature, and air velocity.  In term of the ASHRAE 55-2013 [24] and ISO7730 [25] 

requirements for seated occupants, thermal parameters were measured and recorded at 

0.6 m height. Mean radiant temperature (Tmrt), and the operative temperature was 

calculated according to ISO Standard 7726-2002 [26]. 

 The mean radiant temperature (Tmrt) for forced convection was calculated from the 

measured Tg, Va, Ta, globe emissivity (εg, assumed to be 0.95) and diameter (D, 

approximately 150 mm) [24-26]: 

���� = {��� + 273� + ���.�×���×���.�
���×��.� � × ��� − ��}�/� − 273                       (1) 

The operative temperature (Top), which considers the impact of air temperature, 

mean radiation temperature and air velocity on thermal comfort, was calculated by the 

following equation [24]: 

Top = (Ta + Tmrt )/2                                                                                                             (2) 

Two kinds of instruments, omnidirectional hot-wire anemometers and ultrasonic 

anemometer, were employed to measure the thermal parameters. They were proved to be 

capable of accurately and efficiently measuring indoor thermal parameters [27]. The 

range and accuracy of the instrument were shown in Table 1. 

The clothing insulation cannot be measured for most routing engineering applications. 

The ASHRAE Handbook affords a list clothing insulation of individual garments 

commonly worn. The insulation of an ensemble is estimated from the individual values 

using a summation formula [26] as follows: 

"#$ = 0.835("#$),+
+

+ 0.161																																																																																																		(3)	 

While "#$),+ is the effective insulation of garment	1, and "#$, as before, is the insulation for 
the entire ensemble. A simpler and nearly accurate summation formula [28] as follows: 

"#$ = ("#$),+
+

																																																																																																																									(4)		 
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The ASHRAE Handbook [24] gives insulation with acceptable accuracy for typical 

indoor clothing. Thus, based on survey clothing information data, the clothing insulation 

value was estimated using Equation (4). 

    All measurements were taken in steady states.  Every field survey lasted 40 minutes. 

The test procedure consists of two parts. In the first part, every subject was required to 

stay in a transition room for learning the information to understand the questionnaires for 

10 minutes. And then, the subjects were required to enter and stayed in the typical 

classroom to conduct the experiment, for lasting 30 minutes. After the first 20 minutes in 

the typical classroom, the subjects started to answer the questionnaire. Thus, the whole 

procedure lasted near about 40 minutes, depending on how fast a subject filled the 

questionnaire. During the field survey, the subjects were told to bring their own reading 

material or choose any reading materials provided by the research staff during the test 

(Figure 1). The thermal environmental parameters were recorded after the instruments 

attained steady values. Then the subjects were asked to complete the questionnaires. 

Because little variations existed in the microclimatic parameters during the experiments, 

the average values were used for analysis. The questionnaires were mainly comprised of 

two parts. The first part mainly asked for the subjects’ anthropometric information such 

as age, gender, weight, height, and type of clothes. In the second part, standard questions 

about thermal sensation in response to the room condition were asked. The subjects were 

asked to provide their responses to the thermal environment in accordance with the 

ASHRAE thermal sensation scale (-3 = cold, -2 = cool, -1 = slightly cool, 0 = neutral, 1 = 

slightly warm, 2 = warm, 3 = hot). Also, thermal preference was asked in the 

questionnaire to enhance the accuracy of responses in the evaluation of thermal 

environment. A three–point scale method (preferring cooler, no change, or warmer) was 

adopted.  The subjects were required to make only one choice from the scale for each of 

the questions. 

 2.3 Subjects 

   A total of 946 healthy undergraduate students were recruited in this survey. Table 2 

provides the anthropometric information of the subjects. The subjects, who were all born 

in and grew up in Hong Kong, have been studying in the surveyed building for more than 
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one year. This implied that the subjects had adapted to the indoor thermal environment in 

Hong Kong.  

2.4 Thermal comfort models 

2.4.1 PMV 

    As the most common thermal sensation model used, the PMV was derived from 
steady-state heat balance of a human body [20]. Based on experimental data, the equation 
for the PMV was reported as follows: 

PMV = (0.303e-0.036M+0.028)×[(M-W)-3.05×10-3{5733-6.99(M-W)-Pa}-0.42{(M-W)-
58.15}-1.7 ×10-5M(5867-Pa)-0.0014M(34-ta)-3.96×10-8fcl[(tcl+273)4-(tr+273)4]-fclhc(tcl-ta)]  
(5) 

    Where, M is the energy output from body (W/m2); W is the using energy of body 

(W/m2); Pa is the partial vapor pressure in the air; ta is the air temperature (°C); fcl is the 

proportion of dressed and undressed part of body; tr is the mean radiant temperature (°C); 

tcl is the clothing surface temperature (°C); and hc is the thermal convection (W/m2.k); 

    The PMV model can predict a mean judgment of the thermal environment from a 

broad cross-section of people by the seven-point comfort scale. 

2.4.2 UC-Berkeley model 

    Due to some observed limitations of the PMV comfort model, successive research 

resulted in comprehensive thermal sensation and comfort model for a broad range of 

environments efforts [19, 29, 30].  The model was developed based on vast experimental 

data in the controlled environmental chamber at the University of California-Berkeley, 

upon which the model name (UC-Berkeley) was derived. The model contained local 

sensation and comfort for each body segment as well as the whole body sensation and 

comfort. The local thermal sensation model for individual body parts was derived by 

regression of skin and core temperatures against thermal sensation votes of human 

subjects and comprised two sections: a static portion and a dynamic portion [31, 32]. 

    The UCB model predicts local thermal sensation with four inputs: local skin 

temperature, mean skin temperature representing the whole body thermal state and time 

derivatives of skin and core temperature representing the response to transient conditions. 

Also, the whole body sensation has two forms [31, 32] – ‘No-opposite sensation’ and 

‘opposite-sensation’ – that depends on whether there is any body part that feels 
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significantly opposite to the other regions. Hence, the UCB model includes all the major 

effects that have been observed in human responses to thermal environments. The 

structure and the regression coefficients of the model are all available, and it is the first 

model that addresses human responses to simultaneous asymmetrical and transient 

thermal conditions. 

3. Results  
3.1  Indoor thermal parameters 

    The room air temperature and relative humidity were recorded and compared with the 

thermal comfort zone of ASHRAE 55-2013 [24]. Figure 3 shows the indoor thermal 

environmental conditions. In the investigated building, the air conditioning system is 

used to control the thermal environment in comfort zone according to the ASHRAE 

Standard 55-2013 [24]. However, the thermal environment was cooler as most of the 

points exceeding the thermal comfort zone for clothing insulation of 0.5 clo,  

concentratingin the zone for clothing insulation of 1.0 clo, which indicated that the 

thermal comfort in air-conditioned classrooms in Hong Kong was much cooler, rather 

than warmer. Previous studies also found that because of the training in the cooler indoor 

thermal environment, the subjects adapted and felt comfortable [17, 18].  Chan found 

that 60% of the workstations in Hong Kong air–conditioned offices were on the cool side 

[33]. Therefore, energy consumption could be reduced by setting higher room air 

temperatures.  

3.2  Clothing insulation  

 Clothing is an important factor in achieving thermal comfort at a different temperature. 

The optimal temperature in an office space located away from the perimeter zone is 

mainly a function of the occupant’s clothing, of which the selection is influenced by the 

thermal environment [20]. Therefore, the clothing pattern of subjects has a high 

correlation with indoor and outdoor temperatures. Figure 4 showed the variation of the 

clothing insulation with the operative temperature. It was noted that most of the clothing 

insulations concentrated in the range between 0.3 and 0.6 clo. The mean clothing 

insulation is approximately 0.425 clo, which was similar to the results of some previous 

investigations [34, 35], the clothing insulation was maintained at a relatively stable level, 

approximately 0.45 clo. Also, from Figure 4, although subjects changed their clothing 
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level to achieve comfort at different operative temperature, no significant correlation was 

found between the clothing insulation and operative temperature in air conditioning 

buildings. In this study, the subjects wore light clothes for adjsuting thermal comfort. 

The clothing insulation of most of the subjects was around 0.42 clo. 

3.3  Thermal sensation vote 

    The mean thermal sensation votes (MTSV) are the subjects actual thermal sensations 

collected during field survey investigation. The predicted mean vote (PMV) [20] is a 

widely used model to predict human thermal comfort. Based on extensive chamber 

experiments, a newer thermal comfort model, UC-Berkeley (UCB) thermal comfort 

model, were developed and reported to predict the overall thermal sensation and local 

thermal sensation [19]. To examine whether these three indicators show good agreement, 

Figure 5 presents the comparisons among the PMV and UCB models, the MTSV and Top. 

Simple linear regression analyses were performed on the PMV and UCB model 

predictions and MTSV values against Top. The results, shown in Figure 5, indicate strong 

positive correlations between the two thermal comfort models and Top. Their 

relationships were obtained as shown in Equations (6) to (8). The correlation coefficients 

of these indices were found as R2 = 0.774, R2 = 0.992, and R2 = 0.89, respectively for 

MTSV, PMV, and UCB model. Therefore, it is reasonable to use Top as the main 

indicator for analysis of the thermal sensation limit, which is applied in ASHRAE 

Standard 55-2013 [24] and ISO 7730 [25]. 

MTSV = 0.198Top – 4.789 (R2 = 0.774)                                                                            (6) 

PMV = 0.371Top – 9.765 (R2 = 0.992)                                                                               (7) 

UCB = 0.186Top – 4.663 (R2 = 0.89)                                                                                 (8) 

    In Figure 5, the results showed that there were significant deviations between the 

MTSV and PMV, especially at low Top, which indicates that the PMV model 

underestimated the actual thermal sensation, similar to findings of several previous 

studies. However, when Top was around 27 °C, the PMV model could predict the actual 

thermal sensation accurately. Comparing the deviation between the MTSV and UCB 

predictions, the difference is insignificant. Most of the scatters of the UCB data 

overlapped with the points of MTSV. Both regression lines are approximately parallel. 
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The slope of the UCB regression line is 0.186, close to that of MTSV of 0.198. Therefore, 

the prediction of UCB agreed well with the actual thermal sensation votes of the subjects. 

    Thermal neutral temperature is defined as the operative temperature that mostly 

corresponds to a mean thermal sensation vote of zero [5]. By using the linear regression 

models shown in Equations (6) to (8), the neutral Top of the three thermal comfort models 

was computed and shown in Figure 5. They were found to be 24.14 °C, 25.02 °C, and 

26.35 °C for MTSV, UCB, and PMV respectively. By comparing the discrepancies 

between the actual neutral Top and the predictive one, it was found that the actual neutral 

temperature was much closer to that of the UC-Berkeley model with a deviation of about 

0.8 °C, whereas the neutral Top of PMV was much higher, by 2.21 °C, than that of the 

actual value.  Therefore, the PMV model overestimates the neutral Top of air-

conditioning buildings in Hong Kong. On the contrary, the UC-Berkeley model predicts 

the neutral Top well.   

    The acceptable temperature range was determined when MTSV varied between -0.5 to 

0.5, corresponding to the acceptable conditions for about 90% of people as 

recommended by ASHRAE 55 [24]. 

    Further, the relationship between MTSV and Top for the classroom was used to derive 

comfort zone limits for 80% satisfaction. As defined in ASHRAE 55 [24], comfort zone 

refers to conditions falling within and including the PMV ranging from -0.5 to +0.5. In 

Figure 4, in the range from -0.5 to +0.5, the acceptable temperature ranges of MTSV, 

UCB, and PMV models are between 21.65 – 26.75 °C, 22.25 – 27.45 °C, and 25.0 – 

27.45 °C, respectively. Similar to the results of the neutral Top, the differences between 

the PMV and the other thermal indicators were large. The acceptable temperature range 

of the PMV was narrower than that of MTSV or of UCB. The subjects adapted the 

indoor thermal environment in Hong Kong due to training. The adaptation of thermal 

sensation has also been proved in many previous investigations [9, 36]. Thus, the 

acceptable Top was obviously wider than that of the PMV. Also, the acceptable Top range 

of MTSV was almost identical to the comfort temperature range suggested by the UC-

Berkeley model. 

3.4 Thermal preference  
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It is not enough to describe an existing environment as comfortable or uncomfortable. 

Using regression of collected data, it is possible to obtain the temperature at which 

subjects are thermally neutral, hence to determine the neutral Top. This investigation also 

considered the answers to the question of thermal preferences (cooler (-1), no change (0) 

and warmer (+1)) given by the subjects. Figure 6 shows that the percentage of the 

“warmer” choice decreases with rising of the Top, while the percentage of the “cooler” 

choice increases with the elevation of the Top. Based on the point of intersection, the 

preferred Top was determined. It was found to be 24.58 °C, very close to the neutral Top 

of 24.14 °C.  

    The adaptation to the climate on human thermal comfort has been previously proved, 

especially in tropical climate [36]. The influence of thermal experience on the occupants’ 

expectations regarding the indoor conditions, which can be short-term, due to the 

prevailing weather, or long-term, relate to the general climate they are used to [37]. 

Based on the data, Figure 7 presents, variations of the percentage of “no change” with 

MTSV. The range of 80% of the subjects choosing “no change” in the surveyed indoor 

thermal environment was much narrower than the predictions of PMV-PPD [20]. The 

acceptable comfort range of MTSV was from -0.34 to 0.04, which indicated that the 

subjects preferred to stay in the cooler indoor environment.  

3.5 Adaptation thermal comfort model 

    From the preceding analysis, the PMV model needs certain modifications to predict the 

actual thermal sensation. Thus, Bin method with a width of 0.5 °C Top was applied to the 

MTSV, PMV, and UCB.  For each Bin MTSV, PMV and UCB values were predicted, 

and the scatter points were shown in Figure 8. Through fitted regression, the simple 

models of MTSV with PMV, and MTSV with UCB were determined. The models were 

as shown in Equations (9) and (10). : 

MTSV = 1.05 UCB + 0.185 (R2 = 0.916)                                                                         (9) 

MTSV = 0.131 PMV2 + 0.667PMV + 0.382 (R2 = 0.966)                                             (10) 

    The regression models drawn from data across all sample subjects were statistically 

significant. The fitting quality was guaranteed by the determination of R2, for which the 

value of R2 = 0.983. Especially, there is a strong positive linear relationship between 
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MTSV and UCB model value. Figure 8 shows that the regression line of the PMV model 

was much higher than that of the UCB model. The comparison between the two fitted 

lines indicated that the UCB model accurately predicts the actual thermal sensations. 

4. Discussion  

4.1 The neutral temperature and preferred temperature  

    Room air conditioning (AC) systems influence indoor temperature. As room AC 

system consumes significant amounts of energy, higher indoor temperature set-point 

remains an energy savings opportunity. However, such elevated indoor temperature 

should not exceed the upper limit of the comfort range [38]. A previous study [39] have 

shown that an increased indoor temperature set-point of about 1~2 °C in summer can 

save about 6-10% of the electric energy. Therefore, it is necessary to determine the 

neutral and/or preferred temperature by building users.   

    The thermal neutral temperature corresponds to the temperature at which subjects vote 

neutral thermal sensations. Regression analysis was applied to determine the thermal 

neutral temperature from the thermal sensation data. All subjects were divided into two 

groups according to their preference for “warmer” or “cooler.” Based on the previous 

investigations, the neutral temperatures in different locations were summarized in Table 3. 

As could be seen from Table 3, neutral temperatures are measured by several kinds of 

temperature metrics, including Top, Ta, Effective temperature (ET*), and Tg. Comparing 

different kinds of temperature, Top is mostly applied in the evaluation of thermal 

neutrality. In some popular standards [24, 25], the operative temperature Top, as a thermal 

comfort index, is widely used to evaluate thermal comfort. Therefore, the present study 

investigated the effects of the neutral operative temperature. Previous studies reported 

that the respective minimal and maximal neutral operative temperature were 21.4 °C and 

30.4 °C respectively. However, most of the neutral operative temperatures concentrated 

in the range between 24°C and 27°C. In the current study, the reported neutral operative 

temperature of 24.14 °C, goes in tandem with some previous investigations reported 

widely across tropical and subtropical climates in the world [40-50]. The primary reason 

probably is the climate of Hong Kong is similar.  

    Also, to confirm comfort temperature, the preferred temperature was also analyzed in 

some previous investigations [22, 39, 43, 47, 49]. Comparison between the preferred 
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temperature and neutral temperature revealed insignificant differences. Most of the 

differences were higher by 0.5 °C. In this study, the preferred temperature is higher than 

the neutral temperature by 0.44 °C, resulting in a value of 24.58 °C. Hence, the preferred 

temperature can be used as one of the indices to evaluate the human preference for 

thermal environment. Also, the neutral temperature of the classroom is lower than that of 

residential buildings due to the clothing insulation. In the residential buildings, occupants 

can adjust their clothing level to achieve comfort. However, the clothing insulation of 

students in the classroom cannot be conveniently changed, thereby leading to the lower 

neutral temperature. 

    According to the “adaptive theory”, people are not passive receivers of their thermal 

environment but alter or adapt to their environment to suit themselves by adjusting their 

thermal comfort [37]. Therefore, the comfort range as one of the most indices is required. 

When compared to the ASHRAE comfort range (23.0-27.0 °C), the comfort range (21.65 

- 26.75 °C) for subjects in this study, is wider, which indicates the Hong Kong students’ 

preference for cooler indoor thermal environment. The upper limit is similar to the 

ASHRAE comfort range. Thus, it can be concluded that the comfort criteria of ASHRAE 

Standard 55 can be used to decide the set point in hot and humid climates. Many 

researches also reached similar conclusions as shown in Table 3. However, there are 

significant differences among different comfort ranges in different places due to thermal 

adaptation. To evaluate indoor thermal environment correctly, the comfort ranges of each 

climate zone needs to be specifically modified. 

As living standards rise, at present, the increasing number of air conditioners will be a 

significant threat to the goal of the Paris Climate Accord. The lifting indoor set-point 

temperature in air-conditioned buildings is helpful to energy conservation. In classroom, 

the neutral temperature is 24.14 °C.  It located in the comfort range between 21.56 and 

26.75 °C.  To provide preferred or comfortable thermal environment, the temperature set-

point can be selected at 24 °C.  However, to reduce energy consumption of the HVAC 

system, the indoor set-point temperature in air-conditioned classrooms, can be regulated 

at 26 °C or even higher in Hong Kong. 

4.2  Thermal comfort models  
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Under the adaptive approach to modeling thermal comfort, thermal perception is 

affected by circumstances beyond the physics of the body’s heat-balance, such as 

climatic setting, social conditioning, economic considerations and other contextual 

factors. Three modes of adaptation are: (1) behavioral adjustments (personal, 

environmental, technological, or cultural), (2) physiological (genetic adaptation or 

acclimatization), and (3) psychological (habituation or expectation). In order to simplify 

the thermal comfort model [2], Top is applied in thermal comfort model to evaluate the 

thermal environment. Current comfort standards, such as ASHRAE Standard 55 [24] and 

ISO 7730 [25], determine the design values of Top  in indoor spaces based on the PMV-

PPD models. Thus, many studies have demonstrated the relationship between PMV and 

Top, as summarized in Table 4. The linear relationship between the PMV and Top  is 

strong. Most of the R2 exceeded 0.7. The maximal R2 is higher than 0.98, similar to this 

study R2 = 0.93. Also, the MTSV, as the actual thermal evaluation, were extensively 

applied in field survey investigation. Many previous studies concluded that there was a 

strong linear relationship between MTSV and Top. The statistical results indicated most of 

R2 also exceed 0.7. However, from Table 4, the slopes of the regression models were 

different by geographical locations and types of buildings. Hong Kong is located in a hot 

and humid climate zone. In the classroom buildings, the students are trained in the cooler 

indoor thermal environment due to lower set-point temperature, which leads to the 

difference of the regression model to be significant. Based on the analysis of different 

thermal comfort models, the predictions of the UCB thermal comfort model are in good 

agreement with the MTSV. For an accurate evaluation of the thermal environment, the 

relationships between the MTSV, UCB, and PMV were also summarized in Table 4. The 

fitted linear relationship between the MTSV and UCB is significant with a high R2 of 

0.916. The relationship between the MTSV and PMV is a quadratic function with a R2 of 

0.966. Thus, this study reported using three methods to evaluate the indoor thermal 

environment of Hong Kong classrooms. Based on the variations of the Top, UCB, and 

PMV, the MTSV prediction models could be obtained. 

5. Conclusion  

    An appropriate indoor air temperature setting for air conditioned classrooms is crucial 

for students’ comfort and for energy efficiency. In this study, a field survey was 
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conducted in typical classroom setups at the City University of Hong Kong. Responses of 

982 students to their perceived thermal environment in air conditioned classrooms were 

collected along with the indoor temperatures. Based on analysis of the survey data, major 

findings of this investigation are as follows: 

(1) The indoor thermal environment of typical classrooms is found to be cooler by 

measurement. The students donned light clothing of 0.42 clo in the classroom 

environment due to adaptation. 

(2) There is an insignificant difference between the neutral temperature and preferred 

temperature, which were found to be 24.14°C and 24.58°C respectively. Both 

temperatures fall within the comfort range of 21.56°C - 26.75°C. Hence, to provide 

a preferable and comfortable thermal environment and to reduce energy 

consumption of HVAC systems, a set-point temperature of 26°C is recommended. 

(3) Comparing the PMV and UCB models, the predictions of the UCB model were in 

good agreement with the MTSV values. The PMV model underestimated the 

human thermal sensation when Top was lower than 27°C. 

(4) There were strong linear relationships between the MTSV and each of the 

following: Top, PMV and UCB with high R2 values. 

The adaptive model is important for evaluation of the indoor thermal environment in 

NV buildings. However, the differences between the thermal comfort in NV buildings 

and that in air conditioned buildings are significant. Therefore, the findings of this 

investigation are only applicable to air conditioned buildings. Also, the Hong Kong 

climate is classified as “humid subtropical”, which is different from those in the other 

climatic zones. Hence, the characteristic of the adaptive thermal comfort could be 

specific only to this climatic zone.  

   

Acknowledgments                                                                                                                                                                                                                                                              

The work described in this paper was fully supported by a grant from the Research 

Grants Council of the Hong Kong Special Administrative Region, China (Project No. 

C5002-14G).  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

References  

[1]. E. Halawa, J.V. Hoof, The adaptive approach to thermal comfort-a critical 
overview, Energy and Buildings 51 (4) (2012) 101–110. 

[2]. G.S. Brager, D.R.J. De, Thermal adaptation in the built environment: a literature 
review, Energy and Buildings 27 (1) (1998) 83-96. 

[3]. J.F. Nicol, M.A. Humphreys, Thermal comfort as part of a self-regulating 
system, in: Proceedings of the CIB Symposium on Thermal Comfort, Building 
Research Establishment, Watford, UK, 1973. 

[4]. M. Schweiker, S. Brasche, W. Bischof, M. Hawighorst, K. Voss, A. Wagner, 
Development and validation of a methodology to challenge the adaptive comfort 
model, Building and Environment 49 (2012) 336–347. 

[5]. K.W.D. Cheong, E. Djunaedy, Y.L. Chua, K.W. Tham, S.C. Sekhar, N.H. Wong, 
Thermal comfort study of an air-conditioned lecture theatre in the tropics. 
Building and Environment 38 (2003) 63-73. 

[6]. R. de Dear, G.S. Brager, Developing an adaptive model of thermal comfort and 
preference, ASHRAE Trans 104 (1) (1998) 145–167. 

[7]. M.A. Humphreys, J. F. Nicol, The validity of ISO-PMV for predicting comfort 
votes in every-day thermal environments, Energy and Buildings 34 (6) (2002) 
667–684. 

[8]. Y. Yang, B. Li, H. Liu, M. Tan, R. Yao, A study of adaptive thermal comfort in 
a well-controlled climate chamber, Applied Thermal Engineering 76 (2015)283–
291. 

[9]. J. Liu, R. Yao, R. McCloy, A method to weight three categories of adaptive 
thermal comfort, Energy and Buildings 47 (2012) 312–320. 

[10]. F. Nico, Adaptive thermal comfort standards in the hot-humid tropics, Energy 
and Buildings 36(7) (2004) 628-37. 

[11]. K. W. Mui, W.T. Chan, J. Burnett, The use of an indoor environmental quality 
logger for Hong Kong building environmental assessment in office buildings. 
Urban pollution control technology. In: Proceedings of international conference 
on urban pollution control technology.13-15 October 1999, Hong Kong, China. 
615-22. 

[12]. W.K. Chow, W.Y. Fung Survey of design considerations for ventilating and air-
condition systems for Hong Kong, ASHRAE Transactions 102(2) (1996) 210-9. 

[13]. R. Hao, S. Sun, R. Ding, Conditioning strategies of indoor thermal environment 
in warm climates. Energy and Buildings 36 (2004) 1281-6. 

[14]. V. Cheng, E.Ng, Comfort temperatures for naturally ventilated buildings in 
Hong Kong, Architectural Science Review 49(2) (2006) 179-82. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

[15].  L.N. Huda, H. Homma, H. Matsumoto. Effects of faster airflows on human 
thermal comfort in summer. Journal of Asian Architecture and Building 
Engineering 5(1) (2006) 177 - 82. 

[16]. T. Akimoto, S. Tanabe, T. Yanai, M. Sasaki, Thermal comfort and productivity 
e evaluation of workplace environment in a task conditioned office. Building 
and Environment 45(1) (2010) 45-50. 

[17]. K.W. H. Mui, W. T. D. Chan, Adaptive comfort temperature model of air-
conditioned building in Hong Kong, Building and Environment 38 (2003) 837 -
852 

[18]. K.W. Mui, L.T. Wong, Neutral temperature in subtropical climates-A field 
survey in air-conditioned offices, Building and Environment 42 (2007) 699-706 

[19]. H. Zhang, Human thermal sensation and comfort in transient and non-uniform 
thermal environments. Ph. D. Thesis, University of California Berkeley, 2003. 

[20]. P.O. Fanger, Thermal comfort. Analysis and application in environmental 
engineering. Danish Technical Press.  Copenhagen. 1970. 

[21]. https://en.wikipedia.org/wiki/Hong_Kong 
[22]. R.J. de Dear, K.G. Leow, S.C. Foo, Thermal comfort in the humid tropics: field 

experiments in air conditioned and naturally ventilated buildings in Singapore. 
International Journal of Biometeorol 34 (1991) 259-65. 

[23]. D.W.T..Chan, J..Burnett, R. de Dear, S.C.H. Ng. Large-scale survey of thermal 
comfort in office premises in Hong Kong. ASHRAE Trans 104(Pt 1) (1998) 
1172-80. 

[24]. ANSI/ASHRAE. Standard 55-2013: thermal environmental conditions for 
human occupancy. Atlanta, Georgia: American Society of Heating Refrigerating 
and Air-Conditioning Engineers (ASHRAE); 2013. 

[25]. ISO, International Standard 7730, Ergonomics of the Thermal Environment – 
Analytical Determination and Interpretation of Thermal Comfort using 
Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. 
International Standard Organization: Geneva. 2005. 

[26]. International Standard Organization, ISO 7726: Ergonomics of the thermal 
environment–Instruments for measuring physical quantities, International 
Standard Organization, Geneva Switzerland (2002) 

[27]. Y. Cheng, Z. Lin, Experimental investigation into the interaction between the 
human body and room airflow and its effect on thermal comfort under stratum 
ventilation. Indoor Air 26(2) (2015) 274-284 

[28]. JAA, Joint Airworthiness Requirements: Part 25: Large Airplanes (JAR-25), 
Joint Aviation Authorities, Hoofdorp, 2007. 

[29]. E. Arens, H. Zhang, C. Huizenga, Partial- and whole-body thermal sensation and 
comfort, part I: uniform environmental conditions. Journal of Thermal Biology 
31 (2006) 53-9. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

[30]. E. Arens, H. Zhang, C. Huizenga, Partial-and whole-body thermal sensation and 
comfort, part II: non-uniform environmental conditions. Journal of Thermal 
Biology 31 (2006) 60-6. 

[31]. H. Zhang, E. Arens, C. Huizenga, T. Han, Thermal sensation and comfort 
models for non-uniform and transient environments: part III: whole-body 
sensation and comfort. Building and Environment 452 (2010) 399-410. 

[32]. H. Zhang, E. Arens, C. Huizenga, Thermal sensation and comfort models for 
nonuniform and transient environments: part I: local sensation of individual 
body parts. Building and Environment 45(2) ( 2010) 380-8 

[33]. W.T Chan, J. Burnett, R.J. de Dear, C.H. Ng. A large-scale survey of thermal 
comfort in office premises in Hong Kong. ASHRAE Technical Data Bulletin 
14(1) (1998) 76–84. 

[34]. Y. Zhang, H. Chen, Q. Meng, Thermal comfort in buildings with split air-
conditioners in hot-humid area of China. Building and Environment 64 (2013) 
213-224 

[35]. M. Luo, B. Cao, J. Damiens, B. Lin, Y. Zhu, Evaluating thermal comfort in 
mixed-mode buildings: A field study in a subtropical climate, Building and 
Environment 88 (2015) 46-54 

[36]. X.J. Ye, Z.P. Zhou, Z.W. Lian, H.M. Liu, C.Z. Li, Y.M. Liu, Field study of a 
thermal environment and adaptive model in Shanghai, Indoor Air 16 (2006) 320-
326. 

[37]. S. Ferrari, V. Zanotto, Adaptive comfort: Analysis and application of the main 
indices, Building and Environment 49 (2012) 25-32. 

[38]. T. H. Karyono, Report on thermal comfort and building energy studies in 
Jakarta-Indonesia, Building and Environment 35 (2000) 77-90. 

[39]. W. Yang, G. Zhang, Thermal comfort in naturally ventilated and air-conditioned 
buildings in humid subtropical climate zone in China, International Journal of 
Biometeorol 52 (2008) 385–398 

[40]. J. Busch, Thermal responses to the Thai office environment. ASHRAE Trans 
96(1)  (1990) 859-872. 

[41]. Kwok, A. G. (1998). Thermal comfort in tropical classrooms. ASHRAE 
Transactions, 104(1B), 1031–1047. 

[42]. N. Yamtraipat, J. Khedari, J. Hirunlabh, Thermal comfort standards for air 
conditioned buildings in hot and humid Thailand considering additional factors 
of acclimatization and education level, Solar Energy 78 (2005) 504–517 

[43]. R.L. Hwang , T.P. Lin , N.J. Kuo, Field experiments on thermal comfort in 
campus classrooms in Taiwan, Energy and Buildings 38 (2006) 53–62 

[44]. K.M. Torres, GABRIELGOMEZ-AZPEITIA, G. Bojorquez, MORALES,  
Adaptive Thermal Comfort for Air-Conditioned Offices in a Warm Sub-Humid 
Climate,   PLEA2012 - 28th Conference, Opportunities, Limits & Needs 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Towards an environmentally responsible architecture Lima, Perú 7-9 November 
2012. 

[45]. M. Indraganti, R. Ooka, H. B. Rijal, G. S. Brager, Adaptive model of thermal 
comfort for offices in hot and humid climates of India, Building and 
Environment 74 (2014) 39-53 

[46]. A. Hussin, E. Salleh, H.Y. Chan, S. Mat, The reliability of Predicted Mean Vote 
model predictions in an air-conditioned mosque during daily prayer times in 
Malaysia, Architectural Science Review 58(1) (2015) 67–76. 

[47]. R. de Dear, J. Kim, C. Candido,  M. Deuble, Adaptive thermal comfort in 
Australian school classrooms, Building Research and Information 43(3) 2015 
383–398. 

[48]. S. Natarajan, J. Rodriguez,M. Vellei, A field study of indoor thermal comfort in 
the subtropical highland climate of Bogota, Colombia, Journal of Building 
Engineering 4 (2015) 237–246 

[49]. Y. He, N. Li, J. Peng, W.Zhang, Y. Li, Field study on adaptive comfort in air 
conditioned dormitories of university with hot-humid climate in summer, Energy 
and Buildings 119 (2016) 1-12 

[50]. R.L. Hwang,  T.P. Lin,  M.J. Cheng,  J.H. Chien, Patient thermal comfort 
requirement for hospital environments in Taiwan, Building and Environment 
42 (8) ( 2007) 2980-2987 

[51]. P. Ricciardi, C. Buratti, Thermal comfort in open plan offices in northern Italy: 
An adaptive approach, Building and Environment 56 (2012) 314-320 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Table 

Table 1 the information of instruments 

Instruments  Measured 

parameters  

Measurement 

range  

Accuracy  

LUMASENSE 

transducer MM0038 

Indoor velocity 0-10 m/s 5% of 

readings+0.05m/s 

LUMASENSE 

transducer MM0034 

Indoor temperature   ±0.2 °C 

LUMASENSE 

transducer MM0037 

Indoor humidity   ±0.5 °C 

FLUKE 561 

Thermometer  

Surface temperature  -40 - 550°C Greater one of ±1 °C 

and ±1% of readings  

 

Table 2 Anthropometric information of the subjects 

Gender Age 
Height   
H (cm) 

Weight   
W (kg) 

Body Surface 
Area (m2) 

Ponderal 
index 

Male 21.2 (0.8*) 173.1 (4.8) 64.7 (9.2) 1.77 (0.06) 2.32 (0.1) 

Female 21.4 (0.9) 158.2 (3.8) 51.2 (5.6) 1.50 (0.04) 2.34 (0.06) 

Male+Female 21.3 (0.85) 165.4 (7.9) 58.2 (8.8) 1.64 (0.08) 2.34 (0.08) 

*Standard Deviation 
The body surface area was determined by the DuBois area, A = 0.202W0.424H0.725 [27] 
Ponderal index = W1/3/ H. 
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Table 3 the comparing the different locations investigations  
Study  Location  Climate  Buildings Sample 

size  

Neutral 

temperature 

(°C) 

Preferred 

temperature 

(°C) 

Comfort range 

(°C) 

Acceptable 

percentage 

(%) 

Thermal 

sensation 

Busch (1990) 

[40] 

Bangkok  Tropical 

savanna 

Office 1100 25 (Top ) - - - - 

de Dear et al. 

(1991) [22] 

Singapore  Tropical 

rainforest  

Residential 

and office 

235 24.2 (Top ) - 23.6- 25.1(Top ) 95% - 

Kwok (1998) 

[41] 

Hawaii Tropical  Classroom 1363 21.4 (Top)  23.0 (Top) - - - 

Karyono 

(2000) [39] 

Jakarta tropical 

monsoon 

Office 459 26.7 (Top) - 23.5- 29.9 (Top) 80% (-1,+1,) 

Mui et al. 

(2003) [18] 

Hong Kong  Humid 

subtropical  

office - 23.7 (Top) - 20.8- 25 (Top) 80% - 

Yamtraipat et 

al. (2005) [42] 

Thailand Tropical office 755 25.4 (Ta) - 25 -26.2 (Ta) 80% (-1, +1) 

Hwang et al. 

(2006) [43] 

Taiwan Marine tropic

al 

Classroom  932 24.7 (ET*) 

 

25.6 (ET*) 21.1-29.8 (ET*

)  

80% - 

Mui et al. 

(2007) [17] 

Hong Kong  Humid 

subtropical  

Office 128 23.6 (Top) - - - - 

Yang and 

Zhang (2008) 

[39] 

Changsha, 

Wuhan, 

Shanghai, 

Jiujiang and 

Nanjing 

Humid 

subtropical 

Residential 100 27.7 (Top ) 27.3 (Top) 25.1-30.3 (Top)  80%  (-0.85,+0.85) 

Torres et al. 

(2012)[44] 

Colima  Tropical  Office 414 24.2 (Ta)  - 22.6 – 25.8 (Ta) - (-1, +1) 
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Indraganti et 

al. (2014)[45] 

South 

Indian states 

of Andhra 

Pradesh and 

Tamil Nadu 

 

Hot and 

humid  

Office  1168 26.4 (Tg) - - - - 

Hussin et al. 

(2015)[46] 

Kepala 

Batas 

Classified 

tropical 

Mosque  330 30.4 (Top) - 27.0-31.4 (Top) 90% (-0.5, 0.5) 

de Dear et al. 

(2015)[47] 

Australian Temperate, 

subtropical 

and semi-arid 

climate zones 

Classroom 1326 22.4 (Top) 22.2 ( Top) 19.5-26.6 (Top) - (-0.85,+0.85) 

Natarajan et al. 

(2015)[48] 

Bogota Subtropical 

highland 

Office  37 23.0 (Top) - - - - 

He et 

al.(2016)[49] 

Changsha  Humid 

subtropical 

Dormitory 

room 

- 26.08  

25.02; 

25.61; (Top) 

 

26.16; 

25.38 ;25.91; 

(Top) 

23.85 -28.30; 

23.24 - 26.80; 

23.71-27.43; 

(Top) 

90% (-0.5, +0.5) 

Present study  Hong Kong Humid 

subtropical  

Classroom  946 24.14 (Top) 24.58 (Top) 21.65 - 26.75   (-0.5,+0.5) 

 

 

Table 4 the thermal comfort models in previous investigations 
Study  Location  Building  PMV-T MTSV-T 

Karyono et al. (2000)[39] Jakarta Office  - MTSV=0.31Top - 8.38 (R2=0.42) 

Hwang et al. (2006)[43] Taiwan classroom PMV = 0.2805 ET* - 7.717(R2=0.9128) MTSV=0.1413ET*-3.762 (R2=0.8857) 

Hwang et al. (2007)[50] Taiwan Office PMV=0.274*Top - 6.732 (R2=0.985) MTSV=0.215Top - 8.068 (R2=0.805) 
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Yang and Zhang (2008)[39] Nanjing; 

Shanghai; 

Wuhan; 

Changsha 

Jiujiang 

Office - MTSV=0.32Top - 9.12 (R2=0.57) 

Ricciardi et al. (2012)[51] Italy Office PMV=0.3879 Top - 8.8784 (R2=0.48) - 

Hussin et al. (2015)[46] Malaysia mosque PMV=0.394Top - 10.2 (R2=0.96) MTSV=0.097Top - 2.9 (R2=0.29) 

Natarajan et al.(2015)[48] Bogota Office  PMV=0.2617Top - 5.9523(R2=0.7456) MTSV=0.454Top - 10.47 (R2=0.4819) 

de Dear et al. (2015)[47] Australia  Office  - MTSV=0.12Top - 2.78 (R2=0.76) 

Luo et al. (2015)[35] Shenzhen Office  PMV=0.356Top - 9.154 MTSV=0.203Top - 5.077 

He et al. (2016)[49] Changsha Dormitory  - (1)MTSV= 0.225Top - 5.867 (R2=0.927) 

(2)MTSV=0.282Top - 7.055 (R2= 0.798) 

(3)MTSV=0.269Top - 9.879 (R2=0.818) 

At Present  Hong Kong  Classroom PMV=0.371Top – 9.765 (R2=0.992)                                                                                          

UC-B=0.186Top – 4.663 (R2=0.89)                                                                                           

 

MTSV=0.198Top– 4.789 (R2=0.774)                                                                                  

MTSV=1.05 UCB + 0.185(R2= 0.916)                                                                                      

MTSV=0.131 PMV2 + 0.667PMV + 0.382 

(R2=0.966)   
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Figures 

 

Fig. 1 Mean monthly variation of temperature and relative humidity in Hong Kong 
 
 
 
 
 
 

 

 

 

 

Fig. 2 Picture and layout of classroom 
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Fig. 3 Thermal environment status 

 
Fig. 4 Variation of clothing insulation with operative temperature 
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Fig. 5 Vote scale with operative temperature  

 

 

Fig. 6 Variation of thermal prefer percentage with operative temperature  
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Fig. 7 Acceptable comfort range of MTSV 

 

 

Fig. 8 Relationships between MTSV versus UCB or PMV 

 

MTSV = 1.05UCB + 0.185
R² = 0.916

MTSV= 0.131PMV2 + 0.667PMV + 0.382
R² = 0.966
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Highlights 

� A field survey was conducted in several typical classrooms in Hong Kong. 

� The students in light clothing (0.42 clo) had adapted to the cooler classroom 

environments. 

� The neutral temperature is close to the preferred temperature of approximately 24°C. 

� The regression models of the MTSV, respectively fitted versus Top, PMV, and UCB, were 

obtained. 
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