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Abstract 
Rigid origami, which can be regarded as assemblies of spherical linkages, inspires a new paradigm of 
design for mechanical metamaterials and deployable structural systems with large deployable ratio. In 
this paper, the kinematic properties of assemblies of spherical 4R linkages are studied, and new origami 
patterns are obtained. Kinematics of a single loop spherical 4R linkage is firstly presented, and by 
assigning four specified values for the four twist angles, and defining four pairs of specified input and 
output angles, 16 maps between the input and output angles are obtained together with 256 types of 
special spherical 4R linkages. By merging four identical spherical 4R linkages into a single loop, three 
basic mobile assemblies are constructed and the one-degree-of-freedom kinematic compatibility 
condition is formulated. Through alteration of the four vertex linkages in the three basic assemblies, 
variations of the basic assemblies are generated. Consequently, by adding further geometric conditions, 
novel rigid origami patterns are obtained leading to the tessellation of the spherical-4R-linkage-
integrated assemblies. Hence, this paper provides a novel approach for generating new rigid origami 
patterns which can lead to the development of foldable structures and tessellations with potential 
applications in robotics, smart architectures, and space exploration.  
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1. Introduction 
Origami is a traditional art and it is a continuous, one-to-one mapping of a crease pattern to create a 
three-dimensional object. Rigid origami, which is referred to the case that each paper facet surrounded 
with creases is not stretching or bending during folding. Because of the large deployable ratio and low 
cost, rigid origami patterns have significant potentials in various applications such as robotic systems 
[1, 2], deployable arrays for space applications [3], and self-deploy structures [4]. 
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On the one hand, rigid origami has been investigated from the viewpoint of geometry. Miura [5] 
presented a proposition of intrinsic geometry of origami based on an arbitrary point on the surface of 
origami works. Watanabe and Kawaguchi [6] proposed two methods to judging rigid foldability of 
origami patters from the compatibility matrix. Based on separating each crease of an origami pattern 
into two parallel creases, Hull and Tachi [7] presented the double line method to obtain new origami 
patterns. And recently, He and Guest [8] studied the configuration space of four-crease origami patterns 
and generated two families of rigid-foldable origami patterns with four-crease vertexes. 
 
On the other hand, rigid origami can be studied with a kinematic approach, where its facets and crease 
lines can be replaced by rigid panels and hinges [9]. In particular, a four-crease vertex can be 
represented by a spherical 4R linkage [10-12]. Wu and You [13] proposed a new crease pattern that 
allows a tall box-shaped bag with a rectangular base to be rigidly folded flat. The typical origami crease 
patterns and their corresponding equivalent closed-loop linkage were investigated by Zhang and Dai 
[14]. Wei and Dai [15] analyzed an origami carton by representing it with one planar four-bar loop and 
two spherical 4R linkage loops. With the tessellation method for mobile assemblies of spatial linkages 
[16-18], Wang and Chen [19] proposed the mobile assembly [20] of spherical 4R linkages to study the 
Kokotsakis type of the rigid origami patterns. Liu [21] used the assemblies of spherical 4R linkages to 
analyze the rigid origami patterns and presented several new patterns. Based on the kinematics of 
spherical 4R linkages, Liu et al. [22] presented several types of rigid origami tubes, and recently Chen 
et al. [23] proposed an extended family of them. However, the spherical 4R linkage method applied to 
analyze rigid origami patterns requests quite complicated closure equations, which limits the design of 
rigid origami. This prompted us to think whether 4R linkage method could be improved. 
 
In this paper, a new method for synthesizing novel rigid origami patterns is proposed. The approach is 
based on the development a family of mobile assemblies with spherical 4R linkage of various formats 
and thus forming the corresponding rigid origami patterns. Kinematics of spherical 4R linkage is 
presented and 1-DOF mobile assemblies formed by four spherical 4R linkages are developed. Then 
based the equivalence between linkage and rigid origami, innovative design of rigid origami patterns 
is proposed demonstrated by the generation of a helical pattern rigid origami. 
 
 
2. Kinematics of a Spherical 4R Linkage and Maps between Special Input and Output Angles  
Origami is seen in different forms in our daily life, and since the research by Cundy [24] it is widely 
acknowledged that for every rigid origami there correspondingly exists an equivalent linkage [9, 25]. 
Figure 1(a) shows a degree-4 origami vertex containing four panels or sectors 1 to 4, and four creases 
A, B, C and D; the four creases intersect at a common point O. The four sector angles between the 
adjacent creases are α12, α23, α34 and α41; and the four dihedral angles between the adjacent sectors are 
θ1, θ2, θ3, and θ4. From the mechanism point of view, by taking the sectors as links and the creases as 
revolute joints, an equivalent spherical 4R linkage can be obtained in Fig. 1(b); where sectors 1 to 4 
become links 1 to 4, creases A to D become joints A1 to A4, and sector angels α12, α23, α34 and α41 
become twist angles of the linkage. Hence, kinematics for the spherical 4R linkage can be applied to 
the kinematic analysis of the degree-4 origami vertex [26].   
 



 
Figure 1 A degree-4 origami vertex and its equivalent spherical 4R linkage 

 
         
In Fig. 1(b), by following the D-H convention [27], coordinate frames Fi are established at the joints 
of the linkage. Where, the Zi-axis (i = 1, 2, 3 and 4) is along the joint axis of joint Ai; Xi-axis is normal 
to the plane formed by the Zi and Zi+1 axes such that Xi = Zi × Zi+1 (it should be noted that when the 
subscript i + 1 = 5, it is replaced with 1); Yi-axis can be found with right-hand rule and the origin Oi of 
each coordinate frame coincides with point O. Angle θi+1 is defined as joint angle from the Xi-axis to 
the Xi+1-axis, positively about Zi+1-axis; and angle αi(i+1) is the twist angle from Zi to Zi+1 positively 
about axis Xi (when i + 1 = 5, it is replaced with 1). Further, link length ai(i+1) is defined as the distance 
of the common perpendicular between Zi and Zi+1 along Xi, and offset di+1 is defined as the distance 
between Xi to Xi+1 along Zi+1. For the spherical 4R linkage, since all the four revolute joints intersect 
at a common point O, it has a12 = a23 = a34 = a41 = 0, and d1 = d2 = d3 = d4 = 0 such that there is no 
translation between the coordinate frames.  
 
Treating two adjacent joint angels θi, θi+1 one, e.g. θi as input and the other one, i.e. θi+1 as output, 
based on the loop equation that R12R23R34R41 = I with Rij being the rotation matrix and I being a 3 × 
3 identity matrix, the general relationship between two adjacent joint angles can be given as  
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And the detailed derivation of Eq. (1) can be found in [28]. In the Eq. (1), subscript i is the number of 
stating joint and subscript i + j (j = 1, 2, 3, 4) is the number for the sequential joint. In the case that i + 
j > 4, with i = 1, 2, 3 and 4, and j = 1, 2, 3 and 4, i + j needs to be replaced by i + j – 4. For example, 
referring to Fig. 1 in the paper, the spherical 4R linkage has just four twist angles, if the stating joint i 
= 3 then the twist angle between joint i + 1 and i + 2 (with j = 1 and 2) becomes α(i+1)(i+2), i.e. α45, which 



does not exist and the actual twist angle should be α41; in which i + 2 = 3 + 2 = 5 > 4 is replaced by i 
+ 2 – 1 = 3 + 2 – 1 = 1 .   
 
Solving the trigonometric equation in Eq. (1) leads to 
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With k1 = sinαi(i+1)sinα(i+1)(i+2)cosα(i+3)(i+4) + cosαi(i+1)sinα(i+1)(i+2)sinα(i+3)(i+4)cosθi, k2 = 
sinα(i+2)(i+3)sinα(i+3)(i+4)sinθi and k3 = cosαi(i+1)cosα(i+1)(i+2)cosα(i+3)(i+4) – cosα(i+2)(i+3) – 
sinαi(i+1)cosα(i+1)(i+2)sinα(i+3)(i+4)cosθi, all being the functions of θi.   
  
Equation (2) gives the explicit function between the output angle θi+1 and the input angle θi which can 
also be represented concisely in implicit function form as 
 

 1 ( 1) ( )i i i ifθ θ+ +=                                    (3) 

 
Further, by substituting –θi and –θi+1 into Eq. (1), due to the relations that cos(−θi) = conθi, cos(−θi+1) 
= conθi+1, conθiconθi+1 = cos(−θi)cos(−θi+1), and sinθisinθi+1 = sin(−θi)sin(−θi+1), it is found that all the 
five terms on the left hand side of Eq. (1) remain unchanged, hence there exists the following relation:  
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which implies that a minus input results in a minus output. 
 
In this paper, it is interesting to find that by altering the twist angles α(i +j)(i+j+1) into four cases as α(i 

+j)(i+j+1), −α(i +j)(i+j+1), π – α(i +j)(i+j+1), and –π + α(i +j)(i+j+1), there exist different maps between the special 
input and output angles of the spherical 4R linkage such that given the input as either of the four values 
as θi, π – θi, −π + θi, or –θi, each can lead to four results for the output angle as θi+1, π – θi+1, −π + θi+1, 
or –θi+1. For each of the case, by taking the map from θi to –θi+1, that is denoted as m4 in this paper, as 
an example, there are 16 different combinations of the four twist angles α(i +j)(i+j+1), −α(i +j)(i+j+1), π – α(i 

+j)(i+j+1), and –π + α(i +j)(i+j+1) that can lead to the same map based on Eq. (1); and these 16 combinations 
provide 16 variations of the spherical 4R linkage as listed in Table 1.  
 

Table 1 Map m4, the associated combinations of twist angles and variations of spherical 4R linkage 

Map Combinations of α(i +j)(i+j+1), −α(i +j)(i+j+1), π – α(i +j)(i+j+1), and –π + α(i +j)(i+j+1) Variations fij 

m4: θi → 
– θi+1 

π – αi(i+1), π – α(i+1)(i+2), α(i+2)(i+3), –α(i+3)(i+4)    v41: m4-c1 

π – αi(i+1), π – α(i+1)(i+2), π – α(i+2)(i+3), π – α(i+3)(i+4)    v42: m4-c2 

π – αi(i+1), π – α(i+1)(i+2), –π + α(i+2)(i+3), π – α(i+3)(i+4)    v43: m4-c3 



π – αi(i+1), π – α(i+1)(i+2), –α(i+2)(i+3), – α(i+3)(i+4)    v44: m4-c4 

π – αi(i+1), – α(i+1)(i+2), α(i+2)(i+3), π – α(i+3)(i+4)    v45: m4-c5 

π – αi(i+1), – α(i+1)(i+2), π – α(i+2)(i+3), – α(i+3)(i+4)    v46: m4-c6 

π – αi(i+1), – α(i+1)(i+2), – π + α(i+2)(i+3), – α(i+3)(i+4)    v47: m4-c7 

π – αi(i+1), – α(i+1)(i+2), – α(i+2)(i+3), π – α(i+3)(i+4)    v48: m4-c8 

–π + αi(i+1), α(i+1)(i+2), α(i+2)(i+3), –π + α(i+3)(i+4)    v49: m4-c9 

–π + αi(i+1), α(i+1)(i+2), π + α(i+2)(i+3), α(i+3)(i+4)    v410: m4-c10 

–π + αi(i+1), α(i+1)(i+2), –π + α(i+2)(i+3), α(i+3)(i+4)    v411: m4-c11 

–π + αi(i+1), α(i+1)(i+2), –α(i+2)(i+3), –π + α(i+3)(i+4)    v412: m4-c12 

–π + αi(i+1), –π + α(i+1)(i+2), α(i+2)(i+3), α(i+3)(i+4)    v413: m4-c13 

–π + αi(i+1), –π + α(i+1)(i+2), π – α(i+2)(i+3), –π + α(i+3)(i+4)    v414: m4-c14 

–π + αi(i+1), –π + α(i+1)(i+2), π + α(i+2)(i+3), –π + α(i+3)(i+4)    v415: m4-c15 

–π + αi(i+1), –π + α(i+1)(i+2), – α(i+2)(i+3), α(i+3)(i+4)    v416: m4-c16 

 
 
In Table 1, m4 stands for the 4th map and ci (i = 1 to 16) denotes the ith combination; hence, map m4 
contains 16 different types of variations of spherical 4R linkage that can lead to the same map that can 
achieve –θi+1 by given an adjacent input angle θi. It should be pointed out that due to the combination 
of the twist angles, the 16 variations of Map m4 listed in Table 1 are not always different. Nevertheless, 
it is found that for each variation v4i in map m4, there always exists at least one variation v4j which is 
identical with it in the case that αi(i+1) is related to α(i+3)(i+4) with π, −π or inverse. 
 
Further, from the specified input angles θi, π – θi, −π + θi, and –θi to the specified output angles θi+1, π 
– θi+1, −π + θi+1, or –θi+1, there are totally 16 maps which are listed in Table 2. 
 

Table 2 Maps between the special input and output angles 

Map i Relationship between the input and output angles 
m1 θi → θi+1: {θi+1 = fi(i+1)(θi)} 

m2 θi → π – θi+1: {π – θi+1 = fi(i+1)(θi)} 

m3 θi → – π + θi+1: {– π + θi+1 = fi(i+1)(θi)} 

m4 θi → – θi+1: {– θi+1 = fi(i+1)(θi)} 

m5 π – θi → θi+1: {θi+1 = fi(i+1)(π – θi)} 

m6 π – θi → π – θi+1: {π –θi+1 = fi(i+1)(π – θi)} 

m7 π – θi → – π + θi+1: {– π + θi+1 = fi(i+1)(π –θi)}  

m8 π – θi → – θi+1: {– θi+1 = fi(i+1)(π –θi)} 



m9 – θi → – θi+1: {– θi+1 = fi(i+1)(– θi)} 

m10 – θi → – π + θi+1: {– π + θi+1 = fi(i+1)(– θi)} 

m11 – θi → π – θi+1: { π – θi+1 = fi(i+1)(– θi)} 

m12 – θi → θi+1: {θi+1 = fi(i+1)(– θi)} 

m13 – π + θi → – θi+1: {– θi+1 = fi(i+1)(– π + θi)} 

m14 – π + θi → – π + θi+1: {– π + θi+1 = fi(i+1)(– π + θi)} 

m15 – π + θi → π – θi+1: { π – θi+1 = fi(i+1)(– π + θi)} 

m16 – π + θi → θi+1: {θi+1 = fi(i+1)(– π + θi)} 

 
Where in Table 2, fi(i+1)(θ) is the function obtained in Eq. (3). Since there exists –θi(i+1) = fi(i+1)(–θi) = –
fi(i+1)(θi) as indicated in Eq. (4), it can be found that maps m9 to m16 in Table 2 are the negative angle 
forms of maps m1 to m8, and for each of the maps there are 16 types of combinations of the twist angles 
providing 16 variations of spherical 4R linkage. Figure 2 indicates the generation of the variations of 
the spherical 4R linkage, and the maps m1 to m8 are derived and the detailed combinations of twist 
angles α(i +j)(i+j+1), −α(i +j)(i+j+1), π – α(i +j)(i+j+1), and –π + α(i +j)(i+j+1) that lead to these maps are listed in 
Table A1 in Appendix A. Combinations of twist angles for maps m9 to m16 are the same as those for 
maps m1 to m8, correspondingly. From Table 1, one can find that for each map mi, there are 16 types 
of variations of spherical 4R linkage with various specified twist angles, and the 16 maps in Table 2 
lead to 256 types (which may not all be different) of variations of special spherical 4R linkage of 
special twist angles; each denoted as vij: mi-cj, with i = 1 to 16 and j = 1 to 16 as shown in Fig. 2.  
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Figure 2 Generation of variations of spherical 4R linkage  
 

By forming combinations of four of the variations of spherical 4R linkage from these 256 special 
spherical 4R linkages, various mobile assemblies of 1-DOF can be obtained which can then result in 
the corresponding origami patterns for the constructed of novel tessellations. 
 
3. 1-DOF Mobile Assemblies of Four-spherical-4R-integrated Linkages 
3.1 The Basic Assemblies of Spherical 4R Linkages 
A mobile assembly of linkages is a network or tessellation of unit linkages with very few degrees of 
freedom (DOF) [29]. In order to construct 1-DOF mobile assemblies with four spherical 4R linkages, 



the assembly of two spherical 4R linkages is considered first, and the connection between two spherical 
4R linkages is constructed through the alignment and merging of a pair of common revolute joints 
from the two linkages as shown in Fig. 3. By defining the link between the i and i+1 joints in the 
spherical 4R linkage as link i(i+1), referring to Fig. 3, it can be seen that when joint a1 in linkage A 
and joint b1 in linkage B are aligned and merged, link 12 of linkage A and link 41 of linkage B are 
rigidly connected and become one link, and so are the link 14 of linkage A and link 12 of linkage B. 

This combination leads to the result that 1 1
a bθ θ= ; according to [15, 30] this is a two-spherical-4R-

integrated linkage of 1 degree of freedom.  
 
Similarly, by adding two more spherical 4R linkages, and aligning and merging the joints with the 
same subscript as shown in Fig. 4, an assembly of four spherical 4R linkages is obtained, which forms 
a four-spherical-4R-integrated linkage expected to be 1-DOF. In the linkage, joints a1 and a2 in linkage 
A is merged with joint d1 of linkage D and joint b2 of linkage B, respectively; and joints c3 and c4 in 
linkage C blend with joint b3 of linkage B and joint d4 of linkage D, respectively.   
 

 

Figure 3 The assembly of two spherical 4R linkages. 

 

Figure 4 The assembly of four spherical 4R linkages. 
 
For the sake of simplicity, we assumed that the four assembled spherical 4R linkages are identical such 
that there exist 
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Based on this assumption, considering the four twist angles 𝛼𝛼12𝑘𝑘 , 𝛼𝛼23𝑘𝑘 , 𝛼𝛼34𝑘𝑘 , and 𝛼𝛼41𝑘𝑘  there are four 
types of the assemblies of four-spherical-4R-integrated linkages as shown in Fig. 5. 

 

      

                    (a)                               (b) 

      

                    (c)                               (d) 
Figure 5 The schematic diagram of the assemblies of spherical 4R linkages: (a) double-plane 
symmetric case; (b) and (c) plane symmetric case; (d) rotational case (in which the straight lines 
represent the axes of the joints; the curved lines represent the links, and the nodes on the curved lines 
are the joints connecting the ends of the links.) 
 
In Fig. 5(a) with the three-dimensional configuration supported in Fig. 6, the distribution of spherical 
4R linkages C and D are the mirror of linkages A and B in the vertical direction, and in the meaning 
while linkages B and C are the mirror of linkages A and D in the horizontal direction, hence this is a 
double-plane symmetric case, which means it is planar-symmetric with respect to two orthogonal 
planes, i.e. plane hh′  and vv′ in Fig. 6. In order to keep this assembly to be one degree of freedom, 



the kinematical compatibility conditions must be set up. Referring to Fig. 6, if 1
aθ  is the input, using 

Eqs. (3) and (4) it has 2 2 12 1( )b a a afθ θ θ− = =  , 1 1 21 2( )c b b bfθ θ θ− = =  , 2 2 12 1( )d c c cfθ θ θ− = =   and 

1 1 21 2( )a d d dfθ θ θ− = = , in which the subscripts in k
ijf  indicate the input and output angles, e. g., 21

bf  

means that in the spherical 4R linkage B, the input angle is 2θ  and the output angle is 1θ . Thus, 

when the rotational motion transfers through the collinear joints, and back to 1
aθ   in the end, the 

transmission loop can be expressed as 
 
 

      (6) 
 
 
 

which can be represent as 1 21 12 21 12 1
a d c b a af f f fθ θ= − − − −( ( ( ( )))). Considering that the four linkages A, B, C 

and D are identical, Eq. (6) is simplified as 1 21 12 21 12 1
a af f f fθ θ= − − − −( ( ( ( )))), according to Eq. (4), 

and as long as this condition is satisfied, this double-plane symmetric case is of 1-DOF four-spherical-
4R-integrated linkage. 
 

 

 
Figure 6 3D configuration of the assembly in double-plane symmetric case 

Further, the distributions of spherical 4R linkages A and D, B and C are symmetric in the horizontal 
direction in Fig. 5(b); and the distributions of linkages A and B are symmetric with D and C in the 
vertical direction in Fig. 5c. Since these two cases have the same symmetric characteristics, the 



assemblies in Fig. 5(b) and (c) are topologically the same, and are termed as plane symmetric case. 
Only Fig. 5(c) is taking into consideration in the following analysis and similar to the analysis for the 
double-plane symmetric case, the transmission loop for the plane symmetric case can be derived as 
 

,             (7) 

 

which can be simplified as ))))(((( 1122332211
aa ffff θθ −−=  according to Eq. (7), and the assembly of this 

plane symmetric case is mobile with 1-DOF. 
 
For the case illustrated in Fig. 5(d), distribution of the four joints of in each linkage is center clockwise 
about the intersection point of the axes of the joints, hence it is termed as rotational case, with the 
transmission loop being expressed as  
 

,           (8) 

 

which can be simplified as ))))(((( 1122334411
aa ffff θθ = , and the assembly of this case is obviously 1-

DOF. 
  
Therefore, by integrating four identical spherical 4R linkages into one single loop, the above 
combination gives three cases of the basic assemblies, and based on these three basic cases, by altering 
the four linkages A, B, C and D with the variations of four-spherical 4R linkage generated in Section 
2, variants of these basic assemblies can be obtained as follows. 
 
 
3.2 The Variants of the Basic Assemblies 
As mentioned in Section 2, by changing the link twist angles, different relationships between the input 
and output angles, i.e. θi and θi+1 of a spherical 4R linkage can be obtained. Considering this, if the 
twist angles in the spherical 4R linkages of the above three basic assemblies are changed, variants of 
them can be obtained. 
 
 



 

 
Figure 7 One variation of the double-plane symmetric case 

 
The variants of the three basic assemblies are developed by maintaining the compatibility conditions 
for each case. In this development, twist angles in linkage D of each of the three basic assemblies are 
kept unchanged, and the variants are obtained by changing the twist angles of the other three linkages 
A, B, and C according to different maps and linkage variations derived in Section 2. Taking the double-
plane symmetric case as an example as illustrated in Fig. 7, keep the twist angles in linkage D 
unchanged, and we change the twist angles in linkages B and C. Referring to the left figure in Fig. 7, 
in the original assembly, both linkages B and C satisfy map m1 such that given θ1 leads to θ2 as θ1 → 
θ2. After changing the twist angles in linkages B and C, assuming that the new linkages both obeying 
map m16 such that given –π + θ1 results in θ2 as m16: –π + θ1; a variant is obtained and illustrated on 
the right hand side of Fig. 7. And hence the transmission loop in equation for the new variant assembly 
then changes into 
 

         (9)  

 
Comparing with Eq. (6), it is found that the transmission loop is changed in the intermediate process, 

but the compatibility condition 1 1
d aθ θ= −   is still hold since linkage D is not changed, hence, this 

assembly is 1-DOF. One combination of the twist angles, which makes 1 0
( )

( , )i iα π+ ∈ , for Eq. (9) 

according to Table A1 is 
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And by changing the intermediate process of the transmission loop and keeping the compatibility 

condition 1 1
d aθ θ= −  , there are totally 15 different variations for the double-plane symmetric case, 



which are enumerated and listed in Table 3, where vti represents the ith type of the variations of the 
double-plane symmetric case. The new types of linkages for A, B, C and D are given according to the 
different types of spherical 4R linkages provided in Appendix A, and n/c denotes that the linkage is 
not changed.  
 

Table 3 Variants for the double-plane symmetric case 

Variant types 
Types of the four spherical 4R linkages 

A B C D 

vt1 m2-ci m2-ci n/c n/c 

vt2 m3-ci m3-ci n/c n/c 

vt3 m4-ci m4-ci n/c n/c 

vt4 n/c m5-ci m5-ci n/c 

vt5 n/c m12-ci m12-ci n/c 

vt6 n/c m16-ci m16-ci n/c 

vt7 m2-ci m6-ci m5-ci n/c 

vt8 m2-ci m15-ci m16-ci n/c 

vt9 m2-ci m11-ci m12-ci n/c 

vt10 m3-ci 
 

m7-ci m5-ci n/c 

vt11 m3-ci m10-ci m12-ci n/c 

vt12 m3-ci m14-ci m16-ci n/c 

vt13 m4-ci m8-ci m5-ci n/c 

vt14 m4-ci m9-ci m12-ci n/c 

vt15 m4-ci m13-ci m16-ci n/c 

 
Similarly, for the plane symmetric case, referring to Fig. 5(c) and let linkages A and B be replaced with 
linkages of types m4-ci and m12-ci respectively, an example of its variant can be obtained, and the 
corresponding new transmission loop equation can be derived as, 
 

         (11) 



in which the compatibility condition 1 1
d aθ θ= −  does not change. And one solution of the twist angles 

for spherical 4R linkages to constitute a network is 
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This variant assembly of plane symmetric case is shown in Fig. 8. Similarly, using 16 kinds of variant 
geometric relationships can give more solutions for the twist angles. All variant relationships are listed  
in Table 4. 
 
 

 

 
Figure 8 One variation of the plane symmetric case 

 
 

Table 4 Variants for plane symmetric case.  

Variant types 
Types of the four spherical 4R linkages 

A B C D 

vs1 n/c m2-ci m2-ci n/c 

vs2 n/c m3-ci m3-ci n/c 

vs3 n/c m4-ci m4-ci n/c 

vs4 m2-ci m5-ci n/c n/c 

vs5 m3-ci m16-ci n/c n/c 

vs6 m4-ci m12-ci n/c n/c 



vs7 m2-ci m6-ci m2-ci n/c 

vs8 m2-ci m7-ci m3-ci n/c 

vs9 m2-ci m8-ci m4-ci n/c 

vs10 m3-ci 
 

m15-ci m2-ci n/c 

vs11 m3-ci m14-ci m3-ci n/c 

vs12 m3-ci m13-ci m4-ci n/c 

vs13 m4-ci m11-ci m2-ci n/c 

vs14 m4-ci m10-ci m3-ci n/c 

vs15 m4-ci m9-ci m4-ci n/c 

 
For rotational case, referring to Fig. 5(d), an example of the variant relationships, in which the 

compatibility condition 1 1
d aθ θ=  remains, is by replacing linkage A with m3-ci, and linkage B with 

m16-ci; and the variant relationship is θ1 → – π + θ2, and – π + θ2 → θ3 and thus the transmission loop 
can be altered as 
 

 .       (13) 

 
Referring to Table A1, a solution of the twists in the four spherical 4R linkages is 
 

.
,
,
,
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which is shown in Fig. 9. And the variations of rotational case are enumerated in Table 5. 
 



 

 
Fig. 9 One variation of the rotational case 

 
Therefore, this section presents three basic assemblies of spherical 4R linkages and their variants and 
all these assemblies have their corresponding rigid origami patterns [24]. However, from the viewpoint 

of application, for each variation, those with twist angles satisfying 1 0
( )

( , )i iα π+ ∈  are considered 

in the following analysis, which are listed in Tables A2 (1)-(3) in Appendix A.  
 

Table 5 Variants for rotational case  

Variant types 
Types of the four spherical 4R linkages 

A B C D 

vr1 m2-ci m5-ci n/c n/c 

vr2 m3-ci m16-ci n/c n/c 

vr3 m4-ci m12-ci n/c n/c 

vr4 m2-ci m6-ci m5-ci n/c 

vr5 m2-ci m7-ci m16-ci n/c 

vr6 m2-ci m8-ci m12-ci n/c 

vr7 m3-ci m13-ci m12-ci n/c 

vr8 m3-ci m14-ci m16-ci n/c 

vr9 m3-ci m15-ci m5-ci n/c 

vr10 m4-ci 
 

m9-ci m12-ci n/c 

vr11 m4-ci m10-ci m16-ci n/c 

vr12 m4-ci m11-ci m5-ci n/c 

 



4. A Novel Origami Pattern Obtained from the Variations 
Based on the equivalence between linkage and rigid origami [9, 23, 24], for all the mobile assemblies 
of the four-spherical-4R-integrated linkages obtained in Section 3 there exist corresponding rigid 
origami patterns. However, for each equivalent rigid origami, besides the compatibility conditions for 
the mobile assemblies mentioned above, some extra conditions known as flat-foldability [25, 31] 
should be added.  
 
 
4.1 Flat-foldability of Degree-4 Vertices 
To form a rigid origami pattern, according to the flat-foldability condition proposed in [31] the panel 
ABCD in Fig. 5 should be a planar quadrilateral such that in double-plane symmetric case, there must 
exist 
 

212121212
παααα ==== dcba ;                         (15a) 

 
For the symmetric case, there twist angles must satisfy 
 

bcda
23231212 απαπαα −=−== ,                       (15b) 

 
and for the rotational case, it complies with 
  

παααα 241342312 =+++ dcba .                         (15c) 

 
Further, if a pattern is flat-deployable, i.e., the pattern can be folded from a flat paper, except for the 
rotational case, the addition conditions is 
 

 12 23 34 41 2k k k kα α α α π+ + + =                          (16) 

Where 
( 1) (0, 2 )k

i iα π+ ∈  with k stands for a, b, c and d.  

 
In this way, we can derive the four-spherical-4R-integrated linkage from a desired pattern. Take the 
pattern of the bottom of the shopping bag in [13] as an example, and the folding process of the pattern 
is illustrated in Fig 10(a): The pattern belongs to the double-planesymmetric case, and its twist angles 

are shown in Fig. 10(b); according to Eqs. (5) and (15a), we can derive that 12 2
k πα = . Since the pattern 

can be folded to a plane and deployed to a cuboid, we can also derive that 23 2
k πα =  and 34 41=

4
k k πα α= . 



 

(a) 

 

(b) 

Figure 10 The shopping bag pattern, (a) the folding process and (b) the twist angles of the pattern 

 
 
4.2 From Mobile Assemblies to Rigid Origami Patterns 
Through the analogy between the linkage and the origami pattern, the origami patterns corresponding 
to all the three basic assemblies in Fig. 5 can be obtained. From the four-spherical-4R-integrated 
linkages, a general origami pattern with four-crease vertexes can be generated as illustrated in Fig. 10a. 
Here the creases surrounding vertex A, i.e., AD, AB, AE2 and AE1, correspond to joints a1 to a4 of the 
spherical 4R linkage A in Fig. 5, respectively. Similarly, the creases surrounding the other three 
vertexes correspond to the joints of the other three spherical 4R linkages in Fig. 5. Further, by setting 
the sector angles between the adjacent creases of the origami patterns according to the twist angles in 
the corresponding mobile assemblies, origami patterns stemming from the double-plane symmetric 
case, the symmetric case, and the rotational case can be obtained. Taking the rotational case as an 

example, by setting the sector angles ( 1)
k
i iα +  according to the twist angles illustrated in Fig. 5(d), the 

corresponding origami pattern can be generated and sketched as shown in Fig. 11(a).  
 
 



 

(a) 

 

(b) 
Figure 11 An origami pattern inspired by rotational case, (a) the origami pattern and (b) the physical 

model obtained from the rotational case.  
 

When the corresponding assembly of the spherical 4R linkages meets the compatibility conditions, the 
origami pattern is rigid; and to become a rigid origami pattern, conditions for flat-foldability [28] must 
be satisfied, and combining Eqs. (8), (15c) and (16) one solution for the origami pattern in Fig. 11(a) 
can be derived as  
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                             (17) 

 
Using the solution in Eq. (17), a rigid origami pattern is generated and a physical model in a 44 ×



tessellation form is made as shown in Fig. 11(b).  
 
Further, if we alter the sector angles in the vertexes in Fig. 10(a) by replacing sector angles for vertex 
A with variation type v42: m4-c2, and changing sector angles for vertexes B and C into variation type 
v91: m9-c1 and type v122: m12-c2, respectively, a new origami pattern can be evolved as show in Fig. 
12(a). From derivation for the corresponding assembly, transmission loop equation for this new pattern 
is  
 

         (18) 

 
Considering the cases listed in Table A2 in Appendix A, a solution for this pattern can be obtained as 
 

 

(a) 

 

(b)
 

Figure. 12 An origami pattern generated from the variant of the rotational case, (a) a new the helical 
pattern, and (b) the physical model obtained from the rotational case’s variation 
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Substituting Eqs. (15c) and (17) into Eq. (19) leads to 
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Equations (19) and (20) provide the relationships between the twist angles in the new pattern, and 
considering the flat-foldability condition, a solution for this new rigid origami pattern is    
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Using this solution, a physical model of the new pattern is produced and illustrated in Fig. 12(b). This 
is a new rigid origami pattern and is termed a helical pattern in this paper. 
 
 
 
4.3 Geometry of the New Helical Pattern 
Geometry of the helical pattern is illustrated in Fig. 13. Figure 13(a) illustrates the lengths of the sides, 
in which ai and bi represents the row and column in which the sides in the latitude and longitude 
directions locate; aij and bij represents the length of the sides in the latitude and longitude directions, e. 
g. a33 is the length of the third side in row a3 and b33 is the length of the third side in row b3. The length 
of the sides in a single panel is shown in Fig. 13(b), in which there exist 
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22 cos2 αijijijij babam −+=                         (22c) 

 
In Fig. 13(c), the dihedral angles between neighboring panels in a single unit, ϕ1 to ϕ4 is illustrated and 
it has 
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Figure 13 The geometry of the helical pattern: (a) the lengths of the sides; (b) a single panel and (c) 

the dihedral angles in a single unit. 
 

Similar to the process of designing the novel helical origami pattern above, using the same analogy 
between linkage/mobile assembly and origami, it is supposed that all the mobile assemblies obtained 
in Section 3 can be used to identify and design their corresponding origami patterns. However, to from 
flat-foldable origami, the flat-foldability conditions presented in Section 4.1 must be satisfied. Hence, 
by using the variants of the mobile assemblies obtained in Section 3 as listed in Tables A2 (1) to (3) in 
Appendix A, and considering the flat-foldability conditions in Eqs. (15) and (16), all flat-deployable 
origami patterns (in which the twists αij ∈ (0, π)) that can be found are derived and listed in Tables  
A3 (1) to (3). 18 flat-foldable origami patterns are obtained from the mobile assemblies of the double-
plane symmetric, and plane symmetric cases, and 4 are obtained from the rotational case. According 
to the categories proposed in Ref. [22], for the 9 patterns from the double-plane symmetric case, 5 are 
planar symmetric type, 3 are supplementary type and 1 is translational type; for the 9 from the 
symmetric case, 3 are planar symmetric type, 3 are supplementary type and 3 are translational type; 
and for the 4 from rotational case, 1 is supplementary type and 3 belongs to the translational type. The 
helical pattern discovered in Section 4.2 is a novel pattern type.   
 
 
5. Conclusions 
This paper has proposed an innovative approach for synthesizing novel rigid origami patterns. Based 
on the kinematics of a single loop spherical 4R linkage, by assigning four pairs of specified input-
output maps and by modifying the twist angles each with 4 specified values, 16 different maps between 
the specified input and output were obtained; and in each of the maps 16 combinations of the twist 
angles leading to 16 linkage types; these result in 256 special spherical 4R linkages. Then by 
integrating four spherical 4R linkages into one mobile assembly loop, three basic mobile assemblies 
containing four identical spherical 4R linkages were constructed. Kinematics of spherical 4R linkages 
was used to prove the mobility and the compatibility conditions among the assemblies and 
transmission loop equations of the basic assemblies were established altered. Further, by altering the 
vertex linkages of the three basic assemblies with the 256 special spherical 4R linkages, variations of 
them and suitable parameters of spherical 4R linkages were identified and the evolved transmission 



loop equations were formed. Consequently, using the equivalence between the linkage and rigid 
origami, by combining the kinematic compatibility conditions of the mobile assemblies and 
geometrical conditions of origami patterns, from the assemblies obtained in this paper new rigid 
origami patterns were achieved with discovery of the novel helical pattern; which leads to the 
construction of novel tessellations. The theory proposed in the paper can lead to a large number of 
mobile assemblies of spherical 4R linkages, and using these assemblies associated with the equivalent 
rigid origami patterns, it is expected that novel origami structures and tessellations are to be found.  
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Appendix A 
 

Table A1 Maps, the associated combinations of twist angles and linkage variations 
Map Combinations of α(i +j)(i+j+1), −α(i +j)(i+j+1), π – α(i +j)(i+j+1), –π + α(i +j)(i+j+1) variants 

m1: θi → 
θi+1 

αi(i+1), α(i+1)(i+2), α(i+2)(i+3), α(i+3)(i+4)    v11: m1-c1 

αi(i+1), α(i+1)(i+2), π – α(i+2)(i+3), – π + α(i+3)(i+4)    v12: m1-c2 

αi(i+1), α(i+1)(i+2), – π + α(i+2)(i+3), – π + α(i+3)(i+4)    v13: m1-c3 

αi(i+1), α(i+1)(i+2), – α(i+2)(i+3),  α(i+3)(i+4)    v14: m1-c4 

αi(i+1), – π + α(i+1)(i+2), α(i+2)(i+3), – π + α(i+3)(i+4)    v15: m1-c5 

αi(i+1), – π + α(i+1)(i+2), π – α(i+2)(i+3), α(i+3)(i+4)    v16: m1-c6 

αi(i+1), – π + α(i+1)(i+2), – π + α(i+2)(i+3), α(i+3)(i+4)    v17: m1-c7 

αi(i+1), – π + α(i+1)(i+2), – α(i+2)(i+3), – π + α(i+3)(i+4)    v18: m1-c8 

– αi(i+1), π – α(i+1)(i+2), α(i+2)(i+3), π – α(i+3)(i+4)    v19: m1-c9 

– αi(i+1), π – α(i+1)(i+2), π – α(i+2)(i+3), – α(i+3)(i+4)    v110: m1-c10 

– αi(i+1), π – α(i+1)(i+2), –π + α(i+2)(i+3), – α(i+3)(i+4)    v111: m1-c11 

– αi(i+1), π – α(i+1)(i+2), –α(i+2)(i+3), π – α(i+3)(i+4)    v112: m1-c12 

– αi(i+1), – α(i+1)(i+2), α(i+2)(i+3), – α(i+3)(i+4)    v113: m1-c13 

– αi(i+1), – α(i+1)(i+2), π – α(i+2)(i+3), π – α(i+3)(i+4)    v114: m1-c14 

– αi(i+1), – α(i+1)(i+2), –π + α(i+2)(i+3), π – α(i+3)(i+4)    v115: m1-c15 

– αi(i+1), – α(i+1)(i+2), – α(i+2)(i+3), – α(i+3)(i+4)    v116: m1-c16 

m2: θi → 
π – θ(i+1) 

π – αi(i+1), α(i+1)(i+2), α(i+2)(i+3), π – α(i+3)(i+4)    v21: m2-c1 

π – αi(i+1), α(i+1)(i+2), π – α(i+2)(i+3), – α(i+3)(i+4)    v22: m2-c2 

π – αi(i+1), α(i+1)(i+2), – π + α(i+2)(i+3), – α(i+3)(i+4)    v23: m2-c3 

π – αi(i+1), α(i+1)(i+2), – α(i+2)(i+3), π – α(i+3)(i+4)    v24: m2-c4 

π – αi(i+1), α(i+1)(i+2), – π + α(i+2)(i+3), – α(i+3)(i+4)    v25: m2-c5 

π – αi(i+1), – π + α(i+1)(i+2), π – α(i+2)(i+3),  π – α(i+3)(i+4)    v26: m2-c6 

π – αi(i+1), – π + α(i+1)(i+2), – π + α(i+2)(i+3), π – α(i+3)(i+4)    v27: m2-c7 

π – αi(i+1), – π + α(i+1)(i+2), – α(i+2)(i+3), – α(i+3)(i+4)    v28: m2-c8 

– π + αi(i+1), π – α(i+1)(i+2), α(i+2)(i+3),  α(i+3)(i+4)    v29: m2-c9 

– π + αi(i+1), π – α(i+1)(i+2), π – α(i+2)(i+3), – π + α(i+3)(i+4)    v210: m2-c10 

– π + αi(i+1), π – α(i+1)(i+2), –π + α(i+2)(i+3), – π + α(i+3)(i+4)    v211: m2-c11 

– π + αi(i+1), π – α(i+1)(i+2), –α(i+2)(i+3), α(i+3)(i+4)    v212: m2-c12 



– π + αi(i+1), – α(i+1)(i+2), α(i+2)(i+3), – π + α(i+3)(i+4)    v213: m2-c13 

– π + αi(i+1), – α(i+1)(i+2), π – α(i+2)(i+3), α(i+3)(i+4)    v214: m2-c14 

– π + αi(i+1), – α(i+1)(i+2), – π + α(i+2)(i+3), α(i+3)(i+4)    v215: m2-c15 

– π + αi(i+1), – α(i+1)(i+2), – α(i+2)(i+3), – π + α(i+3)(i+4)    v216: m2-c16 

m3: θi → 
– π + θ(i+1) 

αi(i+1), π – α(i+1)(i+2), α(i+2)(i+3), – π + α(i+3)(i+4)    v31: m3-c1 

αi(i+1), π – α(i+1)(i+2), π – α(i+2)(i+3), α(i+3)(i+4)    v32: m3-c2 

αi(i+1), π – α(i+1)(i+2), – π + α(i+2)(i+3), α(i+3)(i+4)    v33: m3-c3 

αi(i+1), π – α(i+1)(i+2), – α(i+2)(i+3), – π + α(i+3)(i+4)    v34: m3-c4 

αi(i+1), – α(i+1)(i+2), α(i+2)(i+3), α(i+3)(i+4)    v35: m3-c5 

αi(i+1), – α(i+1)(i+2), π – α(i+2)(i+3), – π + α(i+3)(i+4)    v36: m3-c6 

αi(i+1), – α(i+1)(i+2), – π + α(i+2)(i+3),  – π + α(i+3)(i+4)    v37: m3-c7 

αi(i+1), – α(i+1)(i+2), – α(i+2)(i+3), α(i+3)(i+4)    v38: m3-c8 

– αi(i+1), α(i+1)(i+2), α(i+2)(i+3), – α(i+3)(i+4)    v39: m3-c9 

– αi(i+1), α(i+1)(i+2), π – α(i+2)(i+3), π – α(i+3)(i+4)    v310: m3-c10 

– αi(i+1), α(i+1)(i+2), –π + α(i+2)(i+3), π – α(i+3)(i+4)    v311: m3-c11 

– αi(i+1), α(i+1)(i+2), – α(i+2)(i+3), – α(i+3)(i+4)    v312: m3-c12 

– αi(i+1), –π + α(i+1)(i+2), α(i+2)(i+3), π – α(i+3)(i+4)    v313: m3-c13 

– αi(i+1), –π + α(i+1)(i+2), π – α(i+2)(i+3), – α(i+3)(i+4)    v314: m3-c14 

– αi(i+1), –π + α(i+1)(i+2), –π + α(i+2)(i+3), – α(i+3)(i+4)    v315: m3-c15 

– αi(i+1), –π + α(i+1)(i+2), – α(i+2)(i+3), π – α(i+3)(i+4)    v316: m3-c16 

m4: θi → 
– θ(i+1) 

π – αi(i+1), π – α(i+1)(i+2), α(i+2)(i+3), –α(i+3)(i+4)    v41: m4-c1 

π – αi(i+1), π – α(i+1)(i+2), π – α(i+2)(i+3), π – α(i+3)(i+4)    v42: m4-c2 

π – αi(i+1), π – α(i+1)(i+2), –π + α(i+2)(i+3), π – α(i+3)(i+4)    v43: m4-c3 

π – αi(i+1), π – α(i+1)(i+2), –α(i+2)(i+3), – α(i+3)(i+4)    v44: m4-c4 

π – αi(i+1), – α(i+1)(i+2), α(i+2)(i+3), π – α(i+3)(i+4)    v45: m4-c5 

π – αi(i+1), – α(i+1)(i+2), π – α(i+2)(i+3), – α(i+3)(i+4)    v46: m4-c6 

π – αi(i+1), – α(i+1)(i+2), – π + α(i+2)(i+3), – α(i+3)(i+4)    v47: m4-c7 

π – αi(i+1), – α(i+1)(i+2), – α(i+2)(i+3), π – α(i+3)(i+4)    v48: m4-c8 

–π + αi(i+1), α(i+1)(i+2), α(i+2)(i+3), –π + α(i+3)(i+4)    v49: m4-c9 

–π + αi(i+1), α(i+1)(i+2), π + α(i+2)(i+3), α(i+3)(i+4)    v410: m4-c10 

–π + αi(i+1), α(i+1)(i+2), –π + α(i+2)(i+3), α(i+3)(i+4)    v411: m4-c11 



–π + αi(i+1), α(i+1)(i+2), –α(i+2)(i+3), –π + α(i+3)(i+4)    v412: m4-c12 

–π + αi(i+1), –π + α(i+1)(i+2), α(i+2)(i+3), α(i+3)(i+4)    v413: m4-c13 

–π + αi(i+1), –π + α(i+1)(i+2), π – α(i+2)(i+3), –π + α(i+3)(i+4)    v414: m4-c14 

–π + αi(i+1), –π + α(i+1)(i+2), π + α(i+2)(i+3), –π + α(i+3)(i+4)    v415: m4-c15 

–π + αi(i+1), –π + α(i+1)(i+2), – α(i+2)(i+3), α(i+3)(i+4)    v416: m4-c16 

m5: π –θi 
→ θ(i+1) 

π – αi(i+1), π – α(i+1)(i+2), α(i+2)(i+3), α(i+3)(i+4)    v51: m5-c1 

π – αi(i+1), π – α(i+1)(i+2), π – α(i+2)(i+3), – π + α(i+3)(i+4)    v52: m5-c2 

π – αi(i+1), π – α(i+1)(i+2), – π + α(i+2)(i+3), – π + α(i+3)(i+4)    v53: m5-c3 

π – αi(i+1), π – α(i+1)(i+2), – α(i+2)(i+3),  α(i+3)(i+4)    v54: m5-c4 

π – αi(i+1), – α(i+1)(i+2), α(i+2)(i+3), – π + α(i+3)(i+4)    v55: m5-c5 

π – αi(i+1), – α(i+1)(i+2), π – α(i+2)(i+3), α(i+3)(i+4)    v56: m5-c6 

π – αi(i+1), – α(i+1)(i+2), – π + α(i+2)(i+3), α(i+3)(i+4)    v57: m5-c7 

π – αi(i+1), – α(i+1)(i+2), – α(i+2)(i+3), – π + α(i+3)(i+4)    v58: m5-c8 

– π + αi(i+1), α(i+1)(i+2), α(i+2)(i+3), π – α(i+3)(i+4)    v59: m5-c9 

– π + αi(i+1), α(i+1)(i+2), π – α(i+2)(i+3), – α(i+3)(i+4)    v510: m5-c10 

– π + αi(i+1), α(i+1)(i+2), –π + α(i+2)(i+3), – α(i+3)(i+4)    v511: m5-c11 

– π + αi(i+1), α(i+1)(i+2), –α(i+2)(i+3), π – α(i+3)(i+4)    v512: m5-c12 

– π + αi(i+1), – π + α(i+1)(i+2), α(i+2)(i+3), – α(i+3)(i+4)    v513: m5-c13 

– π + αi(i+1), – π + α(i+1)(i+2), π – α(i+2)(i+3), π – α(i+3)(i+4)    v514: m5-c14 

– π + αi(i+1), – π + α(i+1)(i+2), –π + α(i+2)(i+3), π – α(i+3)(i+4)    v515: m5-c15 

– π + αi(i+1), – π + α(i+1)(i+2), – α(i+2)(i+3), – α(i+3)(i+4)    v516: m5-c16 

m6: π –θi 
→π – θ(i+1) 

αi(i+1), π – α(i+1)(i+2), α(i+2)(i+3), π – α(i+3)(i+4)    v61: m6-c1 

αi(i+1), π – α(i+1)(i+2), π – α(i+2)(i+3), – α(i+3)(i+4)    v62: m6-c2 

αi(i+1), π – α(i+1)(i+2), – π + α(i+2)(i+3), – α(i+3)(i+4)    v63: m6-c3 

αi(i+1), π – α(i+1)(i+2), – α(i+2)(i+3), π – α(i+3)(i+4)    v64: m6-c4 

αi(i+1), – α(i+1)(i+2), α(i+2)(i+3), – α(i+3)(i+4)    v65: m6-c5 

αi(i+1), – α(i+1)(i+2), π – α(i+2)(i+3), π – α(i+3)(i+4)    v66: m6-c6 

αi(i+1), – α(i+1)(i+2), – π + α(i+2)(i+3), π – α(i+3)(i+4)    v67: m6-c7 

αi(i+1), – α(i+1)(i+2), – α(i+2)(i+3), – α(i+3)(i+4)    v68: m6-c8 

– αi(i+1), α(i+1)(i+2), α(i+2)(i+3), α(i+3)(i+4)    v69: m6-c9 

– αi(i+1), α(i+1)(i+2), π – α(i+2)(i+3), – π + α(i+3)(i+4)    v610: m6-c10 



– αi(i+1), α(i+1)(i+2), –π + α(i+2)(i+3), –π + α(i+3)(i+4)    v611: m6-c11 

– αi(i+1), α(i+1)(i+2), –α(i+2)(i+3), α(i+3)(i+4)    v612: m6-c12 

– αi(i+1), –π + α(i+1)(i+2), α(i+2)(i+3), –π + α(i+3)(i+4)    v613: m6-c13 

– αi(i+1), –π + α(i+1)(i+2), π – α(i+2)(i+3), α(i+3)(i+4)    v614: m6-c14 

– αi(i+1), –π +α(i+1)(i+2), –π + α(i+2)(i+3), α(i+3)(i+4)    v615: m6-c15 

– αi(i+1), –π + α(i+1)(i+2), – α(i+2)(i+3), –π + α(i+3)(i+4)    v616: m6-c16 

m7: π – θi 
→– 

π+θ(i+1) 

π – αi(i+1), α(i+1)(i+2), α(i+2)(i+3), – π + α(i+3)(i+4)    v71: m7-c1 

π – αi(i+1), α(i+1)(i+2), π – α(i+2)(i+3), α(i+3)(i+4)    v72: m7-c2 

π – αi(i+1), α(i+1)(i+2), – π + α(i+2)(i+3), α(i+3)(i+4)    v73: m7-c3 

π – αi(i+1), α(i+1)(i+2), – α(i+2)(i+3),  – π + α(i+3)(i+4)    v74: m7-c4 

π – αi(i+1), – π + α(i+1)(i+2), α(i+2)(i+3), α(i+3)(i+4)    v75: m7-c5 

π – αi(i+1), – π + α(i+1)(i+2), π – α(i+2)(i+3),  – π + α(i+3)(i+4)    v76: m7-c6 

π – αi(i+1), – π + α(i+1)(i+2), – π + α(i+2)(i+3),  – π + α(i+3)(i+4)    v77: m7-c7 

π – αi(i+1), – π + α(i+1)(i+2), – α(i+2)(i+3), α(i+3)(i+4)    v78: m7-c8 

– π + αi(i+1), π – α(i+1)(i+2), α(i+2)(i+3), – α(i+3)(i+4)    v79: m7-c9 

– π + αi(i+1), π – α(i+1)(i+2), π – α(i+2)(i+3), π – α(i+3)(i+4)    v710: m7-c10 

– π + αi(i+1), π – α(i+1)(i+2), –π + α(i+2)(i+3), π – α(i+3)(i+4)    v711: m7-c11 

– π + αi(i+1), π – α(i+1)(i+2), –α(i+2)(i+3), – α(i+3)(i+4)    v712: m7-c12 

– π + αi(i+1), – α(i+1)(i+2), α(i+2)(i+3), π – α(i+3)(i+4)    v713: m7-c13 

– π + αi(i+1), – α(i+1)(i+2), π – α(i+2)(i+3), – α(i+3)(i+4)    v714: m7-c14 

– π + αi(i+1), – α(i+1)(i+2), –π + α(i+2)(i+3), – α(i+3)(i+4)    v715: m7-c15 

– π + αi(i+1), – α(i+1)(i+2), – α(i+2)(i+3), π – α(i+3)(i+4)    v716: m7-c16 

m8: π –θi 
→ – θ(i+1) 

αi(i+1), α(i+1)(i+2), α(i+2)(i+3), – α(i+3)(i+4)    v81: m8-c1 

αi(i+1), α(i+1)(i+2), π – α(i+2)(i+3), π – α(i+3)(i+4)    v82: m8-c2 

αi(i+1), α(i+1)(i+2), – π + α(i+2)(i+3), π – α(i+3)(i+4)    v83: m8-c3 

αi(i+1), α(i+1)(i+2), – α(i+2)(i+3), – α(i+3)(i+4)    v84: m8-c4 

αi(i+1), – π + α(i+1)(i+2), α(i+2)(i+3), π – α(i+3)(i+4)    v85: m8-c5 

αi(i+1), – π + α(i+1)(i+2), π – α(i+2)(i+3), – α(i+3)(i+4)    v86: m8-c6 

αi(i+1), – π + α(i+1)(i+2), – π + α(i+2)(i+3), – α(i+3)(i+4)    v87: m8-c7 

αi(i+1), – π + α(i+1)(i+2), – α(i+2)(i+3), π – α(i+3)(i+4)    v88: m8-c8 

– αi(i+1), π – α(i+1)(i+2), α(i+2)(i+3), – π + α(i+3)(i+4)    v89: m8-c9 



– αi(i+1), π – α(i+1)(i+2), π – α(i+2)(i+3), α(i+3)(i+4)    v810: m8-c10 

– αi(i+1), π – α(i+1)(i+2), –π + α(i+2)(i+3), α(i+3)(i+4)    v811: m8-c11 

– αi(i+1), π – α(i+1)(i+2), –α(i+2)(i+3), – π + α(i+3)(i+4)    v812: m8-c12 

– αi(i+1), – α(i+1)(i+2), α(i+2)(i+3), α(i+3)(i+4)    v813: m8-c13 

– αi(i+1), – α(i+1)(i+2), π – α(i+2)(i+3), – π +α(i+3)(i+4)    v814: m8-c14 

– αi(i+1), – α(i+1)(i+2), –π + α(i+2)(i+3), – π + α(i+3)(i+4)    v815: m8-c15 

– αi(i+1), – α(i+1)(i+2), – α(i+2)(i+3), α(i+3)(i+4)    v816: m8-c16 

  



Table A2 (1) Variants for double-plane symmetric case ( 1 0
( )

( , )i iα π+ ∈ ) 

Variant 
types vt1 vt2 

Types of 
the four 
spherical 

4R 
linkages 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α π α α α α α

α α α α α α α α

α α α α α α α α

α π α α π α α α α α

= − = − = =

= = = =

= = = =

= − = − = =

 
12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α α α α α α α α

α π α α π α α α α α

α π α α π α α α α α

α α α α α α α α

= = = =

= − = − = =

= − = − = =

= = = =

 

Variant 
types vt3 vt4 

Types of 
the four 
spherical 

4R 
linkages 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α π α α α α α

α π α α π α α α α α

α π α α π α α α α α

α π α α π α α α α α

= − = − = =

= − = − = =

= − = − = =

= − = − = =

 
12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α α α π α α π α α α

α α α π α α π α α α

α α α α α α α α

α α α α α α α α

= = − = − =

= = − = − =

= = = =

= = = =

 

Variant 
types vt5 vt6 

Types of 
the four 
spherical 

4R 
linkages 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α α α π α α π α α α

α α α π α α π α α α

α α α π α α π α α α

α α α π α α π α α α

= = − = − =

= = − = − =

= = − = − =

= = − = − =

 
12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α α α α α α α α

α α α α α α α α

α α α π α α π α α α

α α α π α α π α α α

= = = =

= = = =

= = − = − =

= = − = − =

 

Variant 
types vt7 vt8 

Types of 
the four 
spherical 

4R 
linkages 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α α α π α α α

α α α π α α π α α α

α α α α α α α α

α π α α π α α α α α

= − = = − =

= = − = − =

= = = =

= − = − = =

 
12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α π α α α α α

α α α α α α α α

α α α π α α π α α α

α π α α α α π α α α

= − = − = =

= = = =

= = − = − =

= − = = − =

 

Variant 
types vt9 vt10 

Types of 
the four 
spherical 

4R 
linkages 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , ,

a b c d

a b c d

a b c d

a b c d

α π α α α α π α α α

α α α π α α π α α α

α α α α α π α α α

α π α α π α α π α α α

= − = = − =

= = − = − =

= = = − =

= − = − = − =

 
12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α α α π α α π α α α

α π α α α α π α α α

α π α α π α α α α α

α α α α α α α α

= = − = − =

= − = = − =

= − = − = =

= = = =

 

Variant 
types vt11 vt12 

Types of 
the four 
spherical 

4R 
linkages 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α α α π α α π α α α

α π α α α α π α α α

α π α α α α π α α α

α α α π α α π α α α

= = − = − =

= − = = − =

= − = = − =

= = − = − =

 
12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α α α α α α α α

α π α α π α α α α α

α π α α α α π α α α

α α α π α α π α α α

= = = =

= − = − = =

= − = = − =

= = − = − =

 



Variant 
types vt13 vt14 

Types of 
the four 
spherical 

4R 
linkages 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α α α π α α α

α π α α α α π α α α

α π α α π α α α α α

α π α α π α α α α α

= − = = − =

= − = = − =

= − = − = =

= − = − = =

 
12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α α α π α α α

α π α α α α π α α α

α π α α α α π α α α

α π α α α α π α α α

= − = = − =

= − = = − =

= − = = − =

= − = = − =

 

Variant 
types vt15 

Types of 
the four 
spherical 

4R 
linkages 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α π α α α α α

α π α α π α α α α α

α π α α α α π α α α

α π α α α α π α α α

= − = − = =

= − = − = =

= − = = − =

= − = = − =

 

 
  



Table A2 (2) Variants for plane symmetric case ( 1 0
( )

( , )i iα π+ ∈ ) 

Variant 
types vs1 vs2 

Types of 
the four 
spherical 

4R 
linkages 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α α α π α α π α α α

α α α π α α π α α α

α α α α α α α α

α α α α α α α α

= = − = − =

= = − = − =

= = = =

= = = =

 
12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α α α α α α α α

α α α α α α α α

α α α π α α π α α α

α α α π α α π α α α

= = = =

= = = =

= = − = − =

= = − = − =

 

Variant 
types vs3 vs4 

Types of 
the four 
spherical 

4R 
linkages 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α α α α α π α α π α

α α α α α π α α π α

α α α α α π α α π α

α α α α α π α α π α

= = = − = −

= = = − = −

= = = − = −

= = = − = −

 
12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α α α α α α

α α α π α α α α α

α α α π α α α α α

α π α α α α α α α

= − = = =

= = − = =

= = − = =

= − = = =

 

Variant 
types vs5 vs6 

Types of 
the four 
spherical 

4R 
linkages 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α α α π α α α α α

α π α α α α α α α

α π α α α α α α α

α α α π α α α α α

= = − = =

= − = = =

= − = = =

= = − = =

 
12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α π α α α α α

α π α α π α α α α α

α π α α π α α α α α

α π α α π α α α α α

= − = − = =

= − = − = =

= − = − = =

= − = − = =

 

Variant 
types vs7 vs8 

Types of 
the four 
spherical 

4R 
linkages 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α π α α π α α α

α α α α α π α α α

α α α π α α α α α

α π α α α α α α α

= − = − = − =

= = = − =

= = − = =

= − = = =

，
 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α α α α α α

α α α π α α α α α

α α α α α π α α α

α π α α π α α π α α α

= − = = =

= = − = =

= = = − =

= − = − = − =

 

Variant 
types vs9 vs10 

Types of 
the four 
spherical 

4R 
linkages 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α π α α π α α α

α α α α α π α α α

α α α α α π α α α

α π α α π α α π α α α

= − = − = − =

= = = − =

= = = − =

= − = − = − =

 
12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α α α α α π α α α

α π α α π α α π α α α

α π α α α α α α α

α α α π α α α α α

= = = − =

= − = − = − =

= − = = =

= = − = =

 

Variant 
types vs11 vs12 

Types of 
the four 
spherical 

4R 
linkages 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α α α π α α α α α

α π α α α α α α α

α π α α π α α π α α α

α α α α α π α α α

= = − = =

= − = = =

= − = − = − =

= = = − =

 
12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α α α α α π α α α

α π α α π α α π α α α

α π α α π α α π α α α

α α α α α π α α α

= = = − =

= − = − = − =

= − = − = − =

= = = − =

 



Variant 
types vs13 vs14 

Types of 
the four 
spherical 

4R 
linkages 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α α α π α α α

α π α α α α π α α α

α π α α π α α α α α

α π α α π α α α α α

= − = = − =

= − = = − =

= − = − = =

= − = − = =

 
12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α π α α α α α

α π α α π α α α α α

α π α α α α π α α α

α π α α α α π α α α

= − = − = =

= − = − = =

= − = = − =

= − = = − =

 

Variant 
types vs15 

Types of 
the four 
spherical 

4R 
linkages 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α α α π α α α

α π α α α α π α α α

α π α α α α π α α α

α π α α α α π α α α

= − = = − =

= − = = − =

= − = = − =

= − = = − =

 

 
  



Table A2 (3) Variants for rotational case ( 1 0
( )

( , )i iα π+ ∈ ) 

Variant 
types vr1 vr2 

Types of 
the four 
spherical 

4R 
linkages 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α α α α α α

α α α π α α α α α

α α α π α α α α α

α π α α α α α α α

= − = = = =

= = − = =

= = − = =

= − = = =

 
12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α α α π α α α α α

α π α α α α α α α

α π α α α α α α α

α α α π α α α α α

= = − = =

= − = = =

= − = = =

= = − = =

 

Variant 
types vr3 vr4 

Types of 
the four 
spherical 

4R 
linkages 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α π α α α α α

α π α α π α α α α α

α π α α π α α α α α

α π α α π α α α α α

= − = − = =

= − = − = =

= − = − = =

= − = − = =

 
12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α π α α α α α

α α α α α α α α

α α α π α α π α α α

α π α α α α π α α α

= − = − = =

= = = =

= = − = − =

= − = = − =

 

Variant 
types vr5 vr6 

Types of 
the four 
spherical 

4R 
linkages 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α α α π α α α

α α α π α α π α α α

α α α α α α α α

α π α α π α α α α α

= − = = − =

= = − = − =

= = = =

= − = − = =

 
12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α π α α π α α α

α α α α α π α α α

α α α α α π α α α

α π α α π α α π α α α

= − = − = − =

= = = − =

= = = − =

= − = − = − =

 

Variant 
types vr7 vr8 

Types of 
the four 
spherical 

4R 
linkages 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α α α α α α α α

α π α α π α α α α α

α π α α α α π α α α

α α α π α α π α α α

= = = =

= − = − = =

= − = = − =

= = − = − =

 
12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α α α π α α π α α α

α π α α α α π α α α

α π α α π α α α α α

α α α α α α α α

= = − = − =

= − = = − =

= − = − = =

= = = =

 

Variant 
types vr9 vr10 

Types of 
the four 
spherical 

4R 
linkages 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α α α α α π α α α

α π α α π α α π α α α

α π α α π α α π α α α

α α α α α π α α α

= = = − =

= − = − = − =

= − = − = − =

= = = − =

 
12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α α α α α α

α π α α α α α α α

α π α α π α α π α α α

α π α α π α α π α α α

= − = = =

= − = = =

= − = − = − =

= − = − = − =

 

Variant 
types vr11 vr12 

Types of 
the four 
spherical 

4R 
linkages 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α π α α π α α α

α π α α π α α π α α α

α π α α α α α α α

α π α α α α α α α

= − = − = − =

= − = − = − =

= − = = =

= − = = =

 
12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,
, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

α π α α α α π α α α

α π α α α α π α α α

α π α α α α π α α α

α π α α α α π α α α

= − = = − =

= − = = − =

= − = = − =

= − = = − =

 



Table A3 (1) Flat-deployable origami patterns obtained from the variations of double-plane 

symmetric case ( 1 0
( )

( , )i iα π+ ∈ ) 

Variant 
types 

Additional relationships 
besides Tab. A2  Origami patterns Types of the 

patterns 

vt1 12 41 23 34 .α α α α π+ = + =   Planar 
symmetric type 

vt2 12 41

23 34

,
2
.

πα α

α α π

= =

+ =
  Planar 

symmetric type 

vt3 12 23 34 41 2 .α α α α π+ + + =   Planar 
symmetric type 



vt4 12 23

34 41

,
2
.

πα α

α α π

= =

+ =
  Planar 

symmetric type 

vt6 12 23

34 41

,
2
.

πα α

α α π

= =

+ =
  Planar 

symmetric type 

vt11 12 41 23 34 .α α α α π+ = + =   Supplementary 
type 

vt13 12 23 34 41 .α α α α π+ = + =   Translational 
type 



vt14 12 23 34 41 2 .α α α α π+ + + =   Supplementary 
type 

vt15 12 23 34 41 .α α α α π+ = + =   Supplementary 
type 

 
  



Table A3 (2) Flat-deployable origami patterns obtained from the variations of plane symmetric case  

( 1 0
( )

( , )i iα π+ ∈ ) 

Variant 
types 

Additional relationships 
besides Tab. A2 Origami patterns Types of the 

patterns 

vs1 12 23

34 41

,
2
.

πα α

α α π

= =

+ =
  Planar 

symmetric type 

vs2 12 23 34 41 .α α α α π+ = + =   Planar 
symmetric type 

vs3 12 23

34 41

,
2
.

πα α

α α π

= =

+ =
  Planar 

symmetric type 



vs4 12 41 23 34 .α α α α π+ = + =   Translational 
type 

vs6 12 23 34 41 2 .α α α α π+ + + =   Translational 
type 

vs9 12 41 23 34 .α α α α π+ = + =   Translational 
type 

vs13 12 23 34 41 .α α α α π+ = + =   Supplementary 
type 



vs14 12 23 34 41 .α α α α π+ = + =   Supplementary 
type 

vs15 12 23 34 41 2 .α α α α π+ + + =   Supplementary 
type 

 
  



Table A3 (3) Flat-deployable origami patterns obtained from the variations of rotational case  

( 1 0
( )

( , )i iα π+ ∈ ) 

Variant 
types 

Additional relationships 
besides Tab. A2 Origami patterns Types of the 

patterns 

vr2 12 41 23 34 .α α α α π+ = + =   Translational 
type  

vr3 12 23 34 41 .α α α α π+ = + =   Supplementary 
type 

vr7 12 41 23 34 .α α α α π+ = + =   Translational 
type 



vr12 12 23 34 41 .α α α α π+ = + =   Translational 
type 
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