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Abstract

The increasing use of mobile devices, along with advances in telecommunication

systems, increased the popularity of Location-Based Services (LBSs). In LBSs,

users share their exact location with a potentially untrusted Location-Based

Service Provider (LBSP). In such a scenario, user privacy becomes a major

concern: the knowledge about user location may lead to her identification as well

as a continuous tracing of her position. Researchers proposed several approaches

to preserve users’ location privacy. They also showed that hiding the location of

an LBS user is not enough to guarantee her privacy, i.e., user’s profile attributes

or background knowledge of an attacker may reveal the user’s identity. In this

paper we propose ABAKA, a novel collaborative approach that provides identity

privacy for LBS users considering users’ profile attributes. In particular, our

solution guarantees p-sensitive k-anonymity for the user that sends an LBS

request to the LBSP. ABAKA computes a cloaked area by collaborative multi-

hop forwarding of the LBS query, and using Ciphertext-Policy Attribute-Based

Encryption (CP-ABE). We ran a thorough set of experiments to evaluate our

solution: the results confirm the feasibility and efficiency of our proposal.

Keywords: Location-Based Services, Privacy, k-anonymity, p-sensitivity,

Ciphertext-Policy Attribute-Based Encryption.
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1. Introduction

With the rapid development of mobile devices and advances of telecommu-

nications, mobile users tend to have ubiquitous access to information such as

traffic prediction or location map data. Location-Based Services (LBSs) are the

best examples of this new trend, allowing mobile users to receive information5

based on their geographical position [1]. Based on their location, mobile users

can access several types of information and services, e.g., getting the position of

the nearest gas station, restaurant or hospital.

An LBS consists of two major entities: a user (from now on referred also

as issuer of a query) who is interested in acquiring location-based service,10

and a Location-Based Service Provider (LBSP) which provides the desired

location-based service to the issuer. To obtain such a service, the issuer sends

her geographical location, along with her identity and the query to the LBSP.

Unfortunately, some queries (such as searching for the nearest hospital specialized

in a particular disease) may reveal privacy-sensitive information about the issuer.15

The growing interest of smartphone users in using LBSs leads to two major

privacy concerns: location privacy and identity privacy (also known as query

privacy). The former refers to preventing the disclosure of the exact location of an

issuer, while the latter is the ability of concealing the link between her identity and

her query. These two concepts are complementary, and therefore, guaranteeing20

both location and identity privacy for an issuer becomes a challenging task.

Researchers proposed several solutions providing location and identity privacy in

the context of LBSs (examples can be found in [2]). The location privacy problem

has also been studied extensively in other contexts such as sensor networks [3],

and cloud computing [4].25

A popular tool used in the literature to guarantee user’s identity privacy,

in the context of LBSs, is the concept of k-anonymity [5]. This concept refers

to a set of k users in which a target user is indistinguishable (with respect to

her location) from the other k − 1 individuals in the set. However, according

to [6], in the presence of an attacker with background knowledge about a user’s30
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profile attributes, we can only guarantee k-anonymity by considering anonymity

sets in which all the users have the same profile attributes. Furthermore, the

authors in [7] proved that k-anonymity is not sufficient to protect the privacy of

an individual’s attributes in a dataset, and might not prevent the disclosure of

sensitive attributes for the user. With respect to sensitive attributes, we refer to35

a precise definition in [8]: “an attribute whose values may be confidential for an

individual (subject to her/his preferences)”. Indeed, in the context of LBSs, the

semantics of an issued query might allow the LBSP to infer sensitive attributes

of an issuer’s profile, or even her identity [9].

In order to address this problem, researchers proposed a solution called40

p-sensitive k-anonymity [7, 9, 10], in which at least p different values for each

group of sensitive attributes are used. In the context of LBSs, this translates in

ensuring that the anonymity set for an issuer contains individuals with diverse

values for a specific set of privacy-sensitive attributes. In this paper, inspired by

the concept of “personalized privacy preservation” by Xiao and Tao in [8], we45

give the opportunity to the issuer of a query to decide her preferences in sensitive

attributes, based on her query content and physical location. We provided this

feature for the issuer, due to the fact that an attribute could be sensitive for a

query in special location, and insensitive for another query in another location-

(we will further clarify this matter in the following). Before introducing the key50

contribution of the paper, we present a running example.

Medical help example. Consider a set of smartphone users in a geographical area.

We assume that each user is assigned a profile that consists of five attributes:

{Gender , Age, Nationality , Job, Zip-code}. Suppose a user u1 is a 19-year-old

Finnish girl living in Italy. She is looking for a pregnancy help center near55

her house, where the doctors are able to speak English. She sends an LBS

query Q= “where is the nearest pregnancy help center with English speaking

doctors?” and wants to cloak her location while being 9-anonymous. In this

example, based on the content of the query, the attributes Gender and Zip-code

should be identical between all the users in the anonymity set (i.e., providing60
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profile k-anonymity). Moreover, based on the semantics of the issued query,

Age and Nationality are sensitive attributes of u1. It should be noted that age

and nationality are not sensitive attributes per se, but due to the fact that

the issuer is in Italy, her nationality could reveal her identity. Moreover, her

query semantics (i.e., being pregnant) strongly relates to her age. Therefore,65

we consider these two attributes to be her sensitive attributes. Assume that

she computes a cloaked area using one of the existing k-anonymity preserving

methods, and sends her query to the LBSP. Given the fact that she is looking

for an English speaking doctor, a malicious LBSP can infer that the issuer is

foreigner. Moreover, suppose that there are only two foreign users in her cloaked70

area: one 19 years old (u1) and the other 50 years old. In such case, if the

attacker has this background knowledge, he can infer that the issuer is likely to

be u1. This example emphasizes the fact that, based on the query semantics

and considering the attacker’s background knowledge, some attributes could be

sensitive in specific scenarios and reveal the identity of the issuer. A proper75

privacy preserving solution should take into account sensitive attributes of u1,

according to the semantics of the query. For example, a solution could provide

an anonymity set in which all the k users are non-Italian (i.e., providing profile

k-anonymity) and there are enough diversity in age attribute (i.e., providing

p-sensitivity considering the more probable values for being pregnant).80

Contribution. In this paper, we propose ABAKA (Attribute-Based k-Anonymous

collaborative solution for LBSs), a novel solution to provide both identity, and

location privacy for LBS users taking into account the profile attributes of the

users. Our motivation is the existing limitations of the prior research in the

area of LBS users’ privacy: on the one hand, those researches which attempt85

to ensure k-anonymity considering the profile of the users (such as in [6]) are

centralized; and on the other hand, the existing distributed approaches do not

consider profile attributes of the LBS users (such as in [11]).

In this paper, we make the following contributions:

• We propose ABAKA, the first privacy-preserving LBS system that guar-90
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antees p-sensitive k-anonymity running a TTP-free protocol between par-

ticipating users (Section 4). In particular, ABAKA has the following

features:

– It cloaks the exact location of a user into a cloaked area of arbitrary

size, by ensuring that (at least) k− 1 collaborating users will forward95

a query in a random multi-hop path within the cloaked area.

– ABAKA guarantees p-sensitivity by ensuring that the collaborating

users in the anonymity set, which will forward the query, have specific

attributes selected by the issuer. Each issuer can select a desired set

of attributes based on the semantics of the query she wants to send.100

In particular, with ABAKA she can decide: (i) which attributes need

to be identical within an anonymity set; and (ii) which attributes

are sensitive, and thus need to have p different values within the

anonymity set.

– ABAKA adopts Ciphertext-Policy Attribute-Based Encryption (CP-105

ABE) [12], in order to apply fine-grained access control over encrypted

data, by defining high-level access policies as a combination of at-

tributes. CP-ABE allows the issuer to specify attribute-based policies

on the query; in this way, she ensures that other k − 1 collaborative

users have the desired attributes.110

– ABAKA ensures the confidentiality of the query, by using public key

encryption.

• We run a systematic performance evaluation of ABAKA using two different

datasets (Section 5.1) and a thorough evaluation of the computational

overhead imposed by cryptographic processing required by ABAKA (Sec-115

tion 5.2). Our evaluation demonstrates that ABAKA is feasible on both

smartphone and PC platforms.
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2. Background on Attribute-Based Encryption

In what follows, we introduce the fundamental concepts about Attribute-

Based Encryption (ABE), and Ciphertext-Policy Attribute-Based Encryption120

(CP-ABE) in particular. In 2005, Sahai and Waters introduced a Fuzzy Identity-

Based Encryption scheme [13], called ABE. This scheme is a public key encryption

protocol that allows an encryptor to specify fine-grained access control policies

over data. In this scheme, each user is assigned a set of attributes (e.g., Gender,

Age, or Job). The data owner encrypts a plaintext in such a way that all the125

users that have a specific set of attributes will be able to decrypt the ciphertext

(i.e., if user’s attributes satisfy the policy over the data). CP-ABE [12] is a

type of ABE in which the access policy is included into the ciphertext, and

expressed as a combination of attributes. An example of such a policy is:

(Age = 19 ∧Gender = female) ∨ (Nationality = Italian) (see Figure ??).130

Each user has a private decryption key, which represents the set of attributes

she owns. She will be able to decrypt a ciphertext if and only if a subset of

her attributes satisfies the access policy on the data. By construction, in the

CP-ABE scheme only the key issuer (i.e., a Certificate Authority) is able to

generate new private keys, therefore preventing collusion attacks [12].135

In general, a CP-ABE scheme provides the following functions:

• Setup. It takes as input an implicit security parameter, and outputs the

public key pk, and the master key MK .

• Encryption. It takes as input a message M , an access policy A, and the

public key pk, and outputs the corresponding ciphertext E.140

• KeyGen. It takes as input a set of attributes A = {A1, A2, · · ·, An}, the

master key MK and the public key pk. It outputs a decryption key D

reflecting the given attributes.

• Decryption. It takes as input the ciphertext E that is encrypted under

the access policy P ; the decryption key D representing a set of attributes γ;145
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and the public key pk. It outputs the message M if and only if A “satisfies”

the access policy P .

Several researches adopt ABE to provide access control and location privacy.

For example, adopting CP-ABE, Dargahi et al. [14] proposed a k-anonymous

collaborative approach to provide location and identity privacy in the context150

of Location Based Services (LBS). Zhu et al. [4] used KP-ABE scheme in LBS

in order to: i) protect the privacy of the issuer against LBSP by enforcing

the user authentication process to be accomplished on the client-side, and ii)

control the access to exchanged data between the issuer and the LBSP through

defining access policies. In another work, Yang et al. [15] proposed a privacy155

preserving method for vehicular location based services. In this scheme, each

user encrypts her location information using ABE, while defining desired access

policy, and shares her encrypted location in online social sites. Leveraging ABE,

the authors protect the location information of the users against third party

attackers. Different from the state-of-the-art, for the first time, we adopt ABE in160

ABAKA in order to find k−1 collaborating users who have our desired attributes

in their profiles, to provide p-sensitivity as well as k-anonymity.

3. Model and assumptions

In this section, we provide some definitions and assumptions that will be

used in the remainder of the paper. Table 1 reports the used notation.165

3.1. System Model

We consider a set of users U = {u1, u2, · · ·, um} in a geographical area.

Each user can be a potential LBS user (i.e., an issuer) and is equipped with a

location-aware wireless device (e.g., smartphone or tablet) that is able to retrieve

the coordinates associated with its position. We assume the users to be mostly170

stationary (from the time the issuer sends out the query until when she receives

the response back), or to have limited mobility. Users can communicate with

their neighboring users over a wireless medium (e.g., via WiFi) via a single-hop

7



or a multi-hop route. Moreover, we assume that users ignore received packets

that are not intended for them (which they could receive due to the broadcast175

nature of the wireless communication). We consider the ad hoc model due to the

increasing trend in opportunistic networks and device-to-device communications,

where several mobile devices (e.g., smartphones) collaborate in order to forward

messages using wireless technologies, such as Bluetooth or WiFi [16, 17]. This

model has been extensively used and analyzed in several works in the literature,180

such as [16, 18, 19, 20, 21].

Table 1: Notation table.

Notation Description

Q, R Location-based query and response, respectively

s, r Issuer-generated random numbers

pkL,skL
Respectively, public and private key pair of the
LBSP

ku , sku
Respectively, symmetric key and private CP-ABE
key of u

kr Symmetric key of collaborating users

pk Public CP-ABE key

CpabeEncpk(ptxt ,p)
Encryption of a plaintext ptxt applying a policy
p, with CP-ABE

Enck(ptxt)
Symmetric encryption of a plaintext ptxt , using
key k

We assume that each user is assigned a profile which consists of a set of

attributes A = {A1, A2, · · ·, An}. These attributes can be of different types:

personal information (e.g., gender), employment information (e.g., job), and

contact information (e.g, Zip-code). In our medical help example, we consider185

the following profile attributes: {A1 : Gender ,A2 : Age,A3 : Nationality ,A4 :

Job,A5 : Zip-code}. We also assume that none of the users have exact infor-

mation about the number of users in her vicinity, and their profile attributes.

We consider the LBSP to be untrusted, and assume that each LBS user does

not want to share her exact location and identity (ID) with the LBSP. In our190

8



model, the issuer sends her request to the LBSP through a multi-hop path, to

anonymize her location and identity. Our multi-hop approach is similar to the

work in [20, 22], however in ABAKA the issuer looks for a set of collaborating

users having specific attributes, who cooperate with each other to anonymize

the location of the issuer. We also assume that each user, based on its own195

policy, decides whether to participate in the anonymizing process. One may

think of an incentive mechanism in order to motivate users to participate in our

collaborative scheme. There are several monetary and non-monetary incentive

schemes in the literature [23], which could be considered to be a complement

for ABAKA. One possible approach, to be used, could be the privacy-aware200

incentive mechanism proposed in [24], which is a TTP-free scheme based on

blind signature. However, an encouraging mechanism is out of the scope of this

paper (and an orthogonal open research problem, as pointed out by Conti et

al. [25]), and we leave it as future work.

We assume that the LBSP has a pair of keys: a public key pkL, and a private205

key skL that are used to preserve confidentiality and integrity of the message sent

by the issuer to the LBSP. Moreover, we suppose that there could be multiple

Certification Authorities (CAs) [26], each of which being responsible for a specific

geographical area (e.g., states or municipalities), to authenticate the users and

assign them CP-ABE private keys (users key management is out of the scope210

of this paper). Each user obtains a CP-ABE private key based on her profile

attributes, from the CA nearest to her location. The CP-ABE private key will

be used for authentication of collaborating users, and fulfilling the requirement

of p-sensitivity. Furthermore, CAs provide the CP-ABE public key, that the

issuer uses to encrypt her query specifying an access policy. In our solution, we215

assume each user to contact the nearest CA when her profile attributes change,

in order to retrieve a new CP-ABE private key. Note that this does not change

the collaborative nature of our approach. We also assume each user ui has a

symmetric key, kui , which can be a random number defined by ui. The user

ui will use this key to encrypt/decrypt a special field of the packet during the220

packet forwarding procedure. Moreover, the issuer generates a random group
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secret key, kr, for the collaborating users.

Finally, in our model each user can specify her privacy requirements in terms

of size k of the anonymity set, number of users with specific issuer-defined

attributes p, and the largest and smallest desired cloaked area size. Also, we225

assume the issuer to not issue any query that the query content could lead to

her identification or reveal information about her exact location (otherwise the

use of anonymity preserving approaches would not make much sense).

3.2. Adversary Model

We consider two types of adversaries: passive and active. A passive adversary230

can be one of the following three entities [27, 11]: (i) the untrusted LBSP, which

collects information about LBS users such as their location, identity or activities,

based on their queries; (ii) an outsider eavesdropper on wireless communication,

which is interested in identifying location and identity of the issuer; (iii) the users

that collaborate in computing the k-anonymity set. The collaborating users are235

not fully trusted; we consider them to be honest-but-curious (we observed that

this assumption is consistent with several works in the literature, such as the

ones in [28, 29, 30]): i.e., users honestly follow the ABAKA protocol, and neither

drop nor modify the packets. However, they are curious to learn location and

identity of the issuer, or of the other users in the k-anonymity set. We assume240

that a malicious user cannot generate fake profiles in order to participate in our

protocol and decrease the privacy level of the issuer, since the CAs authenticate

the users upon joining the network and assign them CP-ABE private keys (we

found this assumption consistent with [31, 32]).

An active adversary can be one of the non-collaborating users who is not245

able to satisfy the access policy on the encrypted packet (i.e., the user who does

not have the issuer-defined attributes). He is interested in identifying the issuer,

modifying the LBS request, or reducing the issuer’s privacy level. In the last

case, he aims at reducing the number of users in the cloaked area (i.e., reducing

the value of k). We assume that both passive and active adversaries have some250

background knowledge about the users [27]. This background information could
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be about profile attributes of the users, such as location information (e.g., office

address), personal information (e.g., age or nationality), or even the exact or

estimated number of users in a geographical location. The adversary aims at

using his background knowledge to attack the privacy of the issuer. In our model,255

we address the collusion attack of non-collaborating users and we assume that

collaborating users do not collude (as they are semi-trusted). Finally, in this

paper we do not consider other types of attacks, such as, Denial of Service, which

is inevitable in all the collaborative approaches in wireless networks.

4. Our solution: ABAKA260

In this section, we present ABAKA, our TTP-free solution that provides

identity privacy for LBS users. ABAKA deals with both generating and sending

the LBS query to the LBSP (Section 4.1), as well as generating and forwarding

the requested location-based service to the issuer.

First, the issuer ui divides the encrypted query into k− 1 parts, and on each265

part enforces a specific access policy by means of CP-ABE [12]. Then, the issuer

sends the packet to the LBSP through a multi-hop path. This way, she conceals

her identity among other k − 1 neighboring users who are able to decrypt the

CP-AB encrypted parts of the packet. Figure 1 provides a high-level example of

our multi-hop attribute-based solution, considering k = 3. As Figure 1 shows,270

the protocol cloaks the position of the issuer (by collaboration of both users with

green tick icon and red cross icon in Figure 1) and computes a k-anonymity set

based on the issuer-defined attributes. Using CP-ABE allows us to address two

important issues:

275

• Finding k − 1 collaborating users (users with green tick icon in Figure 1)

having specific attributes, which could be issuer’s sensitive attributes. En-

forcing a policy on each of the k − 1 parts of the message, the issuer will

be sure that only the users with attributes satisfying the policy, are able

to decrypt one part. Thus, we guarantee that the collaborating users in280
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Figure 1: Multi-hop CP-ABE based routing to form a rectangle cloaked area, example with
k = 3.

the k-anonymity set satisfy p-sensitivity (recall that collaborating users

are honest-but-curious). We assume that each collaborating user uses her

CP-ABE private key only one time for each received packet. In other words,

we assume that if she is able to decrypt some of the CP-AB encrypted

parts of the packet with her private key (satisfying more than one policy),285

she will process just one part. We consider this assumption to ensure that

all the k − 1 parts of the message will be processed by k − 1 different

collaborating users and hence ensuring the k-anonymity.

• Addressing privacy attack form non-collaborating users, i.e., users outside

the cloaked area in Figure 1. As non-collaborating users are not able to290

satisfy any of the access policies, they will not be able to decrypt any of

the query parts. Therefore, they will not be able to reduce the privacy

level of the issuer by collaboration in computing the cloaked area.

In our medical help example, user u1 wants to be 9-anonymous between

eight other users who are female and have the same four digit prefix Zip-code,295

i.e., Gender = female and Zip-code = 0019. Moreover, due to her sensitive

attributes, she is looking for eight other users who are not Italian and have
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diverse values for the age attribute which fall in three different age categories,

i.e., 15 ∼ 24, 25 ∼ 34, and 35 ∼ 44. User u1 uses ABAKA to conceal her identity.

She encrypts the query Q with the public key of the LBSP, splits it into eight300

equally sized parts and applies an access policy on each part using CP-ABE,

such as (A1 = female) ∧ (A5 = 0019) ∧ (A3 NOT Italian) ∧ (15 ≤ A2 < 25).

This way, she is sure that only the user with the following attributes will be

able to decrypt the corresponding part: who is female, lives in an area with

the same Zip-code prefix as u1, is not Italian, and her age is between 15 and305

24. By defining three different categories for the age attribute (A2), the final

9-anonymity set will be 3-sensitive. As users in the 9-anonymity set have diverse

values from three different categories for sensitive attribute of u1, the probability

that the attacker can identify the issuer’s age category is 1
3 .

Upon receiving an LBS request packet (the packet with two green parts in310

Figure 1), the LBSP decrypts the query with its private key (skL) obtaining: Q;

a random number s, and random symmetric key kr generated by the issuer; and

the encrypted cloaked area. Then, the LBSP decrypts the cloaked area field by

the obtained kr and generates a response message R considering the cloaked area,

which comprises the location information requested by the issuer. To provide315

confidentiality of the response message, the LBSP encrypts R with s. Finally,

the LBSP sends the generated response packet back to the user that delivered

the query (the user in right top corner of the cloaked area in Figure 1). All the

collaborating users in the k-anonymity set use a semi-onion routing approach [33]

to send the response packet back to the issuer. In particular, semi-onion routing320

allows us to deliver the response packet to the issuer, following the reverse path,

without the need for all the nodes in the path to keep track of the path locally.

This approach is not intended to hide the path from the LBSP to the issuer;

indeed, we leave this as a future work.

4.1. Generate and Forward a Request325

In this section, we describe how a query issuer, ui, is generating and forwarding

an LBS request to the LBSP. In particular, an LBS request packet is composed
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of the six fields illustrated in Figure 2 and discussed in the following.

CPABEENC
pk 

(MinArea||q
1
||k

r  
,P

i 
)

MessageHopCount MaxArea
Destination

Address
Encrypted 
MinArea

OneHop 
Address

q
1

q
2

q
k-1

ENC
pk  

(Q||s||k
r 
)

L The query is then 
split into k-1 parts

Each part is concatenated with a random 
key k

r 
and the MinArea field; then, a 

policy p is applied with CP-ABE

The encrypted parts are concatenated 
and written into the Message field

The query is 
encrypted with pk

L

1

2

3

4

CPABEENC
pk  

(MinArea||q
k-1

||k
r  

,P
j 
)

ENC
k
  (MinArea)
r

5 The MinArea field is encrypted 
with the random symmetric key k

r

ABAKA 
Packet

Figure 2: LBS request packet format generated by the issuer.

The Message field contains the query Q, a random number s, and a randomly

generated symmetric key kr encrypted with the public key, pkL, of the LBSP.330

This message is then split into k − 1 parts, each encrypted with CP-ABE

applying a certain policy, and finally recomposed. The HopCount field denotes

the maximum number of hops that the packet should pass through other users.

Its value should be greater than k− 1. The MaxArea field denotes the maximum

size of the desired cloaked area in the form of a rectangle, which is defined by two335

points (xl, yl) and (xr, yr) for bottom left and top right corners of the rectangle,

respectively. The MinArea field represents the minimum size of the desired

cloaked area in the form of a rectangle, which is defined by two points (x′l, y
′
l)

and (x′r, y
′
r) for bottom left and top right corners of the rectangle, respectively.

The content of this field is encrypted with the randomly generated symmetric340

key kr. After completing the cloaking procedure, this field represents the actual

cloaked area dimensions. OneHopAddress is used for routing back the LBSP

response to the issuer of the query. The initial value of this field is Enckui
(r),
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where r is a random number generated by the issuer ui. Upon receiving the

LBS request packet, each user encrypts the address of the previous hop with345

her symmetric secret key (kui
) and appends this encrypted layer to the current

content of the OneHopAddress field. Finally, DestinationAddress contains the

address of the LBSP.

4.1.1. Packet Generation

An issuer ui generates a packet executing the Algorithm 1, which comprises350

the following steps:

Step 1. The query issuer, ui, generates a Message which comprises her

query, Q, a random number, s, and a randomly generated symmetric key kr

encrypted with the public key, pkL, of the LBSP (Algorithm 1, lines 2-3).

Step 2. The issuer splits the encrypted Message into k − 1 parts (e.g., in355

chunks of equal size), where k is the k-anonymity parameter (Algorithm 1, line 4).

Then, she defines the minimum size of the desired cloaked area, MinArea field

(Algorithm 1, line 5). She appends the MinArea field and also the symmetric key

kr to each part and encrypts that part with CP-ABE, specifying an access policy,

i.e., a combination of desired attributes (Algorithm 1, lines 6-8). The reason360

behind including MinArea field in each part is to provide each collaborating user

with the means of checking whether the actual minimum desired cloaked area

defined by the issuer has been modified during the path by intermediate nodes

(we will provide a further discussion in Section 4.2).

Step 3. The issuer creates an empty packet (Algorithm 1, line 9), as365

illustrated in Figure 2. Then, she concatenates the k − 1 parts generated in the

previous step to form a complete message (Algorithm 1, line 10). Afterward,

ui defines her privacy requirements in terms of maximum number of neighbors

that the message should pass through, the maximum and minimum size of the

desired cloaked area, and the destination address, i.e., the address of the LBSP370

(Algorithm 1, lines 11-14). The issuer ui encrypts the MinArea field of the header

with kr, to avoid eavesdroppers or non-collaborating users to be able to read (or

modify) such information (Algorithm 1, line 13).
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Algorithm 1 LBS Packet Generation.
Input: The LBS query Q, the anonymity parameter k, an array of policies, the maximum

hop count max, the largest cloaked area limits ((xl, yl), (xr, yr)), the smallest cloaked area

limits ((x′
l, y

′
l), (x

′
r, y

′
r)), and the Destination address Destination.

1: procedure GenerateRequest(k, policies[ ], Q,max, (xl, yl),

(xr, yr), (x′
l, y

′
l), (x

′
r, y

′
r))

2: kr ← RandomKey(); s← RandomNumber();

3: Message← EncpkL
(Q||s);

4: parts[ ]← Split(Messageenc, k − 1) ;

5: minArea←Area((x′
l, y

′
l),(x

′
r, y

′
r));

6: for i ∈ [1 : k − 1] do

7: parts[i] ←
CpabeEncpk(minArea||parts[i]||kr, policies[i]);

8: end for

9: packet← GenerateEmptyPacket();

10: packet.Message← Concatenate(parts[ ]);

11: packet.HopCount← max;

12: packet.MaxArea← Area((xl, yl),(xr, yr));

13: packet.MinArea← Enckr (minArea);

14: packet.DestinationAddress← Destination;

15: r ← Random();

16: packet.OneHopAddress← Enckui
(r);

17: Forward(packet, neighbors[ ]);

18: end procedure

Step 4. Before sending the packet to a next hop, ui encrypts a random

number r with her symmetric secret key (kui), and attaches it to the packet375

(Algorithm 1, lines 15-16). Finally, ui sends the generated packet to one of her

neighbors. The choice of the next-hop can be done in several ways, e.g., selecting

randomly or based on the proximity with the issuer (Algorithm 1, line 17).

In the medical help example, user u1 splits the encrypted query into eight

parts. Then, she defines her desired smallest cloaked area (MinArea) which could380

be 100 m× 100 m rectangle including her house (the house is not necessarily

placed in the center of the defined area). She concatenates the MinArea to each

part along with a random symmetric key kr, and applies the aforementioned

policies on each part. Afterward, she determines her largest desired cloaked area,

MaxArea, which is a 600 m×600 m rectangle including her geographical position385

and the maximum number of hops (e.g., HopCount=15). Then she encrypts a

random number r with her symmetric key (ku1) and specifies the address of the
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LBSP. Finally, she forwards the generated packet to one of her neighbors.

4.1.2. Packet Forwarding

Once received a packet, a user uj performs the following operations (the390

packet forwarding procedure’s flowchart is depicted in Figure 3):

Step 1. User uj checks whether she resides in the largest desired cloaked

area defined in the MaxArea field of the packet.

Step 2. If uj resides in the defined area, she peruses the packet fields

to decide, based on her own policies, whether she wants to participate in the395

cloaking algorithm. If she does not want to collaborate, she forwards the packet

to another user. Otherwise, she performs the following actions:

• Step 2.1: The user uj checks the Message field of the packet, to verify

whether there is any encrypted part, and if she is able to decrypt one of

them. User uj will be able to decrypt one part, if and only if the attributes400

associated to her profile (i.e, attributes associated to her private key skuj
)

satisfy the policy enforced on that part. If able to decrypt, uj decrypts the

MinArea field of the packet header, i.e., Packet.MinArea, using the key

kr obtained from the CP-ABE decrypted part. Then, uj compares such

field with the Part.MinArea field: if Packet.MinArea < Part.MinArea,405

it means that an attacker has decreased the original value defined by the

issuer. In such a case, uj discards the packet. Otherwise, uj continues by

checking whether she resides in the area defined by the Packet.MinArea.

If not, uj enlarges the area to include also her location. Then, she updates

the part she is currently processing, by removing the Part.MinArea field410

and kr and encrypting such part with kr.

• Step 2.2: The user uj updates the current value of the OneHopAddress

concatenating the address of the previous hop, and encrypting the whole

content of the field with her symmetric secret key (kuj
). This way she

adds a new “onion layer” that will be used to route the response message415

back to the issuer. Then, uj decrements the value of the HopCount field.
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Figure 3: Packet forwarding flowchart.

If uj is the one who decrypted the last part with her CP-ABE key, she

decrypts all the previous parts with the key kr. Then, if HopCount= 0,

uj removes the MaxArea and HopCount fields of the packet header, and

sends the query to the LBSP. The coordinates (x′l, y
′
l) and (x′r, y

′
r) in the420

Packet.MinArea field represent the actual cloaked area, i.e., the smallest

area covering the positions of all the collaborating users. If HopCount> 0,

uj continues forwarding the packet to one of her neighbors.

• Step 2.3: If there are other encrypted parts (i.e., the packet did not pass

enough users to guarantee k-anonymity), or if the user was not able to425

decrypt one of the parts of the message, uj continues forwarding the

packet to one of her neighbors. Before forwarding the packet, uj checks

the HopCount value. If HopCount= 0, uj discards the packet. Otherwise,

forwards the packet again.
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Step 3. If uj does not reside in the defined largest cloaked area, she can430

perform one of the following actions: drop the packet, forward it to a random

neighbor, or send the packet back to the previous user.

The protocol explained in this section ensures that the query is forwarded

through, at least, k − 1 neighboring users having specific attributes, ensuring

k-anonymity and p-sensitivity.435

4.2. Discussion

In this section we briefly discuss issues related to packet generation and

forwarding, as well as the privacy level provided by ABAKA.

4.2.1. Packet Generation

To ensure that the smallest cloaked area specified by the issuer will be440

respected, we introduced the MinArea field in the ABAKA packet. This field is

of extreme importance in order to guarantee the desired privacy level for the

query issuer. Indeed, on one hand, an attacker might want to increase such area

to reduce the quality of service; and, on the other hand, the attacker might also

want to reduce the value of the MinArea field, in this case attempting to reduce445

the privacy guarantees of the ABAKA. In order to prevent these two attacks, we

place the MinArea field inside each of the CP-ABE encrypted parts of the query.

We also encrypt the MinArea field of the packet header with a secret symmetric

key (kr), which can be accessed only by the collaborating users after decrypting

a CP-ABE part. This way, only the collaborating users are able to modify this450

field as well as verifying the possible malicious modifications to the packet, and

eventually discarding it. Similarly, also the MaxArea and HopCount fields might

be targeted by an attacker, who may want to enlarge or reduce their values.

However, such possible attacks would lead to a Denial of Service, that is out of

the scope of this work.455

4.2.2. Packet Forwarding

During the packet forwarding process, we may have some concerns. First, par-

ticipating in the ABAKA protocol may threaten the privacy of the collaborating
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users. Indeed, the issuer could infer that there are people with specific attributes

in the cloaked area, simply by issuing several ABAKA messages adopting dif-460

ferent policies. We addressed this concern by allowing each user who receives

the packet to decide whether to participate in the protocol or not. Therefore, if

a user receives a packet, which has some parts that specify her own sensitive

attributes, she can decide to not decrypt such part and just forward the packet

to a neighbor. Another possible solution for this problem could be considering465

each collaborating user to be able to influence the packet, e.g., enlarging the

minimum cloaked area and then decrypting the packet. In this way, she can

cloak herself in a larger area.

The second concern is the participation of users with revoked attributes.

This issue is mainly related to the key revocation mechanisms for CP-ABE, and470

therefore is out of the scope of this paper. We will leave such concern as a future

work.

A third issue is the collusion of non-collaborating users, that might want

to send the packet to the LBSP when only a portion of CP-ABE parts are

already decrypted. In such a scenario, the LBSP may be able to extract some475

useful information from the currently decrypted parts. We addressed this issue

introducing a random symmetric key (kr) that each collaborating user will

obtain after decrypting a CP-ABE part; after processing the MinArea field (as

explained in Section 4.1.2), each collaborating user will encrypt with kr the

part she decrypted with her CP-ABE private key. In this way, even in case of480

collusion attack, the LBSP receives an encrypted packet and cannot infer any

useful information.

Another privacy concern is the mobility of the collaborating users which

may lead to a reduction of the k-anonymity level, in a case that some of the

collaborating users leave the cloaked area. Although we assumed users to be in a485

limited mobility scenario, we could integrate mobility and movement directions

in computing the cloaked area to support also dynamic networks (e.g., taking

into account the speed of the collaborating users, and computing how much

they could move by the time the response comes back, and computing whether
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they will still be reachable). However, such integration is not trivial, since it490

depends on several parameters (e.g., its domain of application), and requires

a trade-off between privacy level, overhead, and trust to some central entities

(such a trade-off is a common issue in collaborative approaches, such as in [34]).

We leave the management of nodes’ mobility as a future work.

The other issue could be continuous request of a same LBS by a user u in495

a cloaked area. In this case, the LBSP might identify the user by correlation

of the requests over time. In such case, overtime if the other individuals in the

anonymity set are changed, then the user u could be the one who is requesting

the same query. This attack can happen in two cases: (i) if the attacker has

a general view over the path, which could be solved by using some kind of500

anonymous routing, (ii) if the attacker has local real-time knowledge about the

individuals in the set and the query content, and also have historical information

about the previous same requests and the individuals in that sets. We leave a

thorough study of the latter attack as future work.

Finally, another issue is the delay imposed by the multi-hop forwarding, and505

finding k − 1 users with specific attributes. ABAKA is most effective in dense

environments (in which the probability of finding collaborating users in vicinity

is high) and non real-time scenarios. It provides a strong privacy protection

considering the issuer profile attributes varying for each user and query, with the

cost of imposing delay to the system. In many applications, the issuer is willing510

to accept a trade-off between strong privacy protection (by defining strict access

policies) and latency (or not receiving response at all). We could also define a

maximum time bound for the reception of the response: if the issuer does not

receive the response within a certain time frame, she can decide to relax the

privacy constraints and re-issue the query. It is worth mentioning that, as a515

design choice, we attributed higher priority to users’ privacy, with respect to

the quality of service. Therefore, in the case of not finding enough collaborating

users, the issued query will not be submitted to the LBSP and the issuer will

still be anonymous, but we do not ensure that she will receive her requested

service.520
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4.2.3. Privacy Discussion

As introduced in Section 3.2, we consider the following adversaries separately:

(i) the untrusted LBSP; (ii) an outsider eavesdropper; (iii) the semi-trusted

collaborating users; (iv) the untrusted non-collaborating users. We now discuss

how ABAKA protects users against these adversaries.525

(i) Consider the medical help example. Based on the content of the query,

the LBSP could infer that the sender is a foreign woman, probably between

15 and 45 years old. However, even with background knowledge about profile

attributes of women in that area, it could not infer which of these women could

be the issuer. In fact, there are at least nine women in the age range between 15530

and 44, with different nationalities.

(ii) The outsider eavesdropper observes the communication between the users.

He is not able to access the content of the packet since it is encrypted with

CP-ABE, and with the public key of the LBSP. If he can observe all the path,

he can find out the issuer and if he has background knowledge about what535

could be the issuer’s query, he may only be able to infer some attributes of

the collaborating users; however, it is a strong assumption about the adversary.

One can think about an on top anonymized routing layer which could be an

orthogonal solution to be used along with the ABAKA, and we leave it as a

future work.540

(iii) There is no useful information inside the LBS packet for honest-but-

curious collaborating users; the content of the message is encrypted with the

public key of the LBSP, and both location and identity of the issuer are hidden.

A curious collaborating user could obtain only knowledge about attributes of all

the collaborating users, or, at least, attributes of a subset of collaborating users.545

(iv) Non-collaborating users may try to reduce the privacy level of the issuer

(e.g., in the previous example, a man could try to collaborate in computing the

cloaked area to decrease the value of k) or to modify the packet. Using CP-ABE,

users without specific attributes are not able to decrypt the packet. Therefore,

they can neither modify the packet nor collaborate in the k-anonymity set to550
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reduce the privacy level for the issuer.

5. Experimental Results

In this section, we present an experimental evaluation of ABAKA, using two

different datasets. In Section 5.1 we provide performance evaluation of ABAKA

in terms of success rate considering different scenarios; while in Section 5.2555

we investigate the overhead imposed by the cryptographic operations in our

proposed approach.

5.1. Performance Evaluation

For the purpose of evaluating ABAKA in a realistic scenario, we created

two synthetic datasets based on real world statistics of the population of two560

cities: New York (USA), focusing on the Manhattan island, and Milan (Italy). In

particular, we estimated the average number of ABAKA users in an area of 1 km2,

based on: (1) the average population density in such cities, obtained from [35]

and [36]; (2) the statistics on the smartphone penetration in the state of belonging,

i.e., the percentage of population owning a smartphone, according to [37] and565

[38]; and (3) a hypothetical percentage of the smartphone users with the ABAKA

application installed (50%, 60%, and 70% were considered). Moreover, in our

evaluation we assumed a WiFi range of 25 meters for each device [39]. Table 2

shows some statistics about the considered datasets, in particular the number

of users per km2, the percentage of considered collaborating users, and the570

average number of neighboring collaborators for each user. As we can see form

Table 2, the Milan dataset represents a non-dense scenario. Indeed, the average

collaborating neighbors per ABAKA user, spans, on average, form 2.99 to only

4.00, with a percentage of ABAKA users in the smartphone-users population of

50% and 70%, respectively. The New York dataset, instead, represents a “best575

case” scenario, where the average connection degree per ABAKA user is high,

e.g., some 23.89 neighbors on average, considering a 60% ABAKA users in the

smartphone-users population.
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Table 2: Statistics on the considered datasets (data extracted from [35, 36, 37, 38])

City
Inhabitants Smartphone ABAKA Neighboring Users

per km2 Users (%) Users (%) Average Std. Dev.

New York 27,733 64%

50 20.00 4.82

60 23.89 5.31

70 27.85 5.79

Milan 7,382 41%

50 2.99 1.99

60 3.37 2.08

70 4.00 2.24

To evaluate the performance of ABAKA, we measured the average success

rate for a query packet to be received by the LBSP, varying the maximum580

allowed size of the cloaked area, from 100 m2, to 600 m2, with steps increase of

100 m2, as well as the maximum allowed hops number, i.e., 10, 15 and 20 hops.

In our evaluation, we performed our experiments considering two possibilities

for a user to forward a message to a neighbor, i.e., she can forward the packet

to: (1) the closest neighbor, or (2) a random one. We also considered different585

possible actions that a user can perform when receiving a packet outside of

the largest possible cloaked area. In this case, she can decide to: (i) drop the

packet, (ii) forward it to a random neighbor, or (iii) return the packet back to

the previous user, which in turn will select another user to which forward the

message. However, in our experiments we did not consider option (i), since it590

would reduce the probability for a message to complete the protocol.

We considered four different types of attributes for the population, reported

in Table 3. The table reports also the distribution of attribute values in the

population, extracted from [35]. We performed 1000 runs of the ABAKA

protocol, each time randomly initializing the configuration according to the595

values in Table 3, and randomly selecting a different issuer.

Our evaluation of ABAKA considers the following two different policy com-

binations, where parentheses delimit a policy enforced on a single message part

(considered notation is consistent with the reported attributes in Table 3):

(a) [(A ≥ 18 ∧ S = f ), (A ≥ 18 ∧ S = f ), (A ≥ 18 ∧ S = f ), (A ≥ 18 ∧ S = f )]600
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Table 3: Considered attributes and their distribution, according to the data in [35]

Attribute Attribute value
Presence in the

population (%)

Sex (S)
male (m) 47.5

female (f) 52.5

Race (R)

white (w) 33

black (b) 25.5

latino or hispanic (h) 28

asian (s) 12.7

american indian (a) 0.8

Origin (O)
foreign born (f) 37

local born (l) 63

Age (A)

< 18 21.6

between 18 and 65 66.3

≥ 65 12.1

(b) [(A ≥ 18 ∧O = l), (A ≥ 18 ∧ R = h)]

Policies combination (a) provides at least 5-anonymity, and 1-sensitivity,

while polcies combination (b) provides at least 3-anonymity and 2-sensitivity.

Figures 4, 5, 6, and 7 present the results of our simulation, adopting the

different strategies introduced above, with set of policies (a) on the Milan dataset;605

Figures 8, 9, 10, and 11 presents the results of our simulation with set of policies

(a) on the New York dataset. For the sake of brevity, for policies combination

(b) we report only the results obtained on both datasets, with strategy (1) for

selecting the next collaborating user, and strategy (iii) to handle the out-of-area

case. We report these results in Figure 12 and Figure 13.610

From our results, we can derive some useful observations. First of all, we

notice that, unsurprisingly, the average number of collaborating neighbors per

ABAKA user (listed in Table 2) influences the success rate of our proposal. This

is more evident if we consider the Milan dataset. As an example, Figure 4 shows

a significative increase of the success rate, i.e., from a maximum of some 60% to615

a maximum of some 70%, as the number of ABAKA users (and consequently

the number of neighbors per user) grows. However, note that even in non-dense
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(a) 50% ABAKA users.
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(b) 60% ABAKA users.
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(c) 70% ABAKA users.

Figure 4: Success rate of ABAKA simulating policies combination (a) on the Milan dataset.
Each user forwards the message to its closest neighbor; outside the cloaked area, user returns
the message to previous user.
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(a) 50% ABAKA users.
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(b) 60% ABAKA users.
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(c) 70% ABAKA users.

Figure 5: Success rate of ABAKA simulating policies combination (a) on the Milan dataset.
Each user forwards the message to its closest neighbor; outside the cloaked area, user forwards
the message to a random neighbor.

scenarios, ABAKA achieves a reasonable success rate, e.g., in Figure 4(c) we

can observe that ABAKA is capable to achieve a success rate of some 70%,

considering a maximum of 20 hops and a maximum cloaked area size of 200 m2.620
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(a) 50% ABAKA users.
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(b) 60% ABAKA users.
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(c) 70% ABAKA users.

Figure 6: Success rate of ABAKA simulating policies combination (a) on the Milan dataset.
Each user forwards the message to a random neighbor; outside the cloaked area, user returns
the message to previous user.
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(a) 50% ABAKA users.
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(b) 60% ABAKA users.
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(c) 70% ABAKA users.

Figure 7: Success rate of ABAKA simulating policies combination (a) on the Milan dataset.
Each user forwards the message to a random neighbor; outside the cloaked area, user forwards
the message to a random neighbor.
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(a) 50% ABAKA users.
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(b) 60% ABAKA users.
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(c) 70% ABAKA users.

Figure 8: Success rate of ABAKA simulating policies combination (a) on the New York dataset.
Each user forwards the message to its closest neighbor; outside the cloaked area, user returns
the message to previous user.
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(a) 50% ABAKA users.
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(b) 60% ABAKA users.
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(c) 70% ABAKA users.

Figure 9: Success rate of ABAKA simulating policies combination (a) on the New York dataset.
Each user forwards the message to its closest neighbor; outside the cloaked area, user forwards
the message to a random neighbor.

Second, we can observe that both the maximum number of allowed hops,

as well as the maximum cloacked area size, play an important role. The effect

of the maximum number of hops is evident from the results of the experiment
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(a) 50% ABAKA users.
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(b) 60% ABAKA users.
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(c) 70% ABAKA users.

Figure 10: Success rate of ABAKA simulating policies combination (a) on the New York
dataset. Each user forwards the message to a random neighbor; outside the cloaked area, user
returns the message to previous user.
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(a) 50% ABAKA users.
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(b) 60% ABAKA users.
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(c) 70% ABAKA users.

Figure 11: Success rate of ABAKA simulating policies combination (a) on the New York
dataset. Each user forwards the message to a random neighbor; outside the cloaked area, user
forwards the message to a random neighbor.

performed on the New York dataset. For example, from Figure 11 we can see

that adopting a maximum number of hops of 20, brings the success rate of the625

protocol to greater than 90%, while a maximum of 10 hops leads to a success

rate lower than 60%. Analogously, the effect of the adopted bigger maximum

cloacked area size can be observed from Figure 4 to Figure 11; as an example,

Figure 4(a) shows that, with a maximum of 20 hops, a maximum cloacked area

size of 100 m2 leads to an average success rate of some 50%, while when the630

maximum cloacked area size is 600 m2, the success rate is some 60% an average.

5.2. Cryptographic Overhead

For a thorough evaluation of ABAKA, we estimated the overhead introduced

by the cryptographic tools used in our protocol. In particular, we measured

the average time required for encryption and decryption with CP-ABE, RSA,635
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(a) 50% ABAKA users.
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(b) 60% ABAKA users.
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Figure 12: Success rate of ABAKA simulating policies combination (b) on the Milan dataset.
Each user forwards the message to its closest neighbor; outside the cloaked area, user returns
the message to previous user.
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Figure 13: Success rate of ABAKA simulating policies combination (b) on the New York
dataset. Each user forwards the message to its closest neighbor; outside the cloaked area, user
returns the message to previous user.

and AES-CBC. We considered two different platforms: a laptop equipped with

4x1.8 GHz Intel Core i7-4500U processor, and 8 GB RAM, running Ubuntu

14.04; and a smartphone equipped with a 1.2 GHz dual-core ARM Cortex-A9

CPU processor, and 1 GB RAM, running Android 4.3 “Jelly Bean”.

On both platforms, we evaluated CP-ABE using the ABE implementation for640

Android devices we proposed in [40]1. Figure 14 shows the results of our measure-

ments on a 250 KB file (we believe that this is a reasonable size assumption for

a piece of query encrypted in the protocol). Since the time required by CP-ABE

mainly depends on the number of attributes employed in the cryptographic

operations [12], we considered a varying number of attributes for policies and645

1The code of the library is available at http://spritz.math.unipd.it/projects/andraben/
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keys from one to 20.
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Figure 14: Average time required for encryption and decryption operations using CP-ABE on
an Android smartphone and a Laptop device.

As we can see from Figure 14, even adopting a large number of attributes,

the time required by CP-ABE implementation for encryption and decryption is

low, on both smartphone and laptop. For a more comprehensive overview of the

performance of ABE on smartphone devices, the reader may refer to our recent650

work [40]. Additionally, we measured the average encryption and decryption

time for RSA, with key size of 4096 bits, and AES-CBC with key size of 256 bits.

On both platforms, we employed the openssl library [41], that we cross compiled

for Android. We measured RSA encryption and decryption for a key of size

256 bits; while for AES-CBC, we considered a file of size 1 MB. Table 4 shows655

the results of our measurements. As we can see, for both RSA and AES-CBC,

the imposed overhead is very small.

Table 4: Average encryption/decryption time for RSA/AES-CBC on Smartphone and Laptop.

Scheme
Smartphone Laptop

Encrypt Decrypt Encrypt Decrypt

RSA 7.5101 ms 0.0156 ms 0.153 ms 0.001 ms

AES-CBC* 26.199 ms 26.517 ms 2.809 ms 3.953 ms

AES-CBC** 110.179 ms 109.574 ms 11.072 ms 15.526 ms

* Encryption/decryption of a 250 KByte file

** Encryption/decryption of a 1 MByte file
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The results we obtained confirm the applicability of ABAKA not only on

powerful devices such as laptops, but also on smartphone devices. As an

example, consider an anonymity level k = 5, and policies composed by three660

attributes (which we believe are expressive enough to successfully guarantee

p-sensitivity). In this case, the average overhead on an Android smartphone

would be approximately (0.27613 × 5) + 0.00751 + 0.11018 = 1.49834 s for

the issuer, who has to encrypt the query with a symmetric key, that in turn

is encrypted with LBSP’s public key (this is a common usage of public key665

encryption), and encrypt each part of the split message with CP-ABE. Each

collaborating user has to decrypt a part of the query with her CP-ABE private

key, and immediately encrypt it with AES-CBS. Therefore, the approximate

overhead will be 0.13275 + 0.26199 = 0.15894 s. Finally, the last collaborating

user have to decrypt all the parts that are previously encrypted with AES-CBC.670

Therefore, she will incur in an additional overhead of 0.02651× 5 = 0.13255 s.

6. Related Work

The concept of k-anonymity was first introduced for databases applica-

tions [42], and later applied in the context of LBSs [5]: the user’s position is

translated into a cloaked area and provided to the LBSP along with the requested675

query. The concept of k-anonymity has been extended in several aspects, e.g.,

l-diversity [43], and t-closeness [44]. Moreover, in [9] the authors proposed a

p-sensitive approach for LBSs, which provides query l-diversity by classifying

queries into sensitive and non-sensitive groups. However, unlike our work, none

of these approaches considered both (i) query semantics, and (ii) sensitive profile680

attributes of each user, at the same time.

Bamba et al. [45] proposed an approach to provide k-anonymity and location

l-diversity for LBS users. In this scheme, mobile users are not identifiable from

k − 1 other users in a set of l different physical locations such as hospitals, bars

and university. This scheme utilizes one or more anonymization servers between685

users and LBSP to perform spatio-temporal cloaking.
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In traditional approaches for k-anonymity in LBSs, the computation of the

cloaked area is carried out by an anonymization server to which the query is

first forwarded. Such solutions are typically referred as TTP-based schemes.

However, the use of a centralized anonymizer offers a single point of attack, and690

may represent a serious bottleneck for the overall system. To overcome these

limitations, researchers proposed several distributed solutions that compute the

cloaked area in a collaborative way, referred to as TTP-free solutions. For an

overview of the main existing TTP-free solutions, the reader can refer to [46].

Unfortunately, most of the existing schemes (both TTP-free and TTP-based)695

do not consider the background knowledge of the attackers, except from only a

few recently proposed approaches [11]. However, an attacker with background

information about a user’s profile might be able to identify her, even if her

location is hidden [47]. k-anonymity preserving solutions try to overcome the

above issues, by considering user profiles information [6, 48]. However, unlike our700

work, all the aforementioned profile-based schemes are centralized, and might be

subject to the limitations introduced before. To the best of our knowledge, our

proposal is the first TTP-free approach for p-sensitive profile k-anonymity in

LBS that considers user’s profile attributes.

7. Conclusions705

Location and identity privacy in Location-Based Services are major concerns

for users who want to protect their privacy from a malicious LBSP, as well

as from an eavesdropper. While several solutions for guaranteeing privacy in

LBSs have been proposed in the literature, they are often centralized, or do

not take into account the prior knowledge of the attacker about user profiles.710

In this paper we present ABAKA, our collaborative solution that guarantees

k-anonymity, as well as p-sensitivity in LBSs, taking into account the issued

query semantics. In our approach, users have a set of attributes associated to

their profile. Their attributes are bound to a CP-ABE private key. An LBS

message is first processed by the issuer, and then forwarded through a multi-hop715
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route to the LBSP. ABAKA enables each issuer to delimit a cloaked area within

which she wants to be anonymous, and to specify a list of k − 1 policies, i.e.,

attribute combinations, that users in the multi-hop path must satisfy in order

to forward the query message to the LBSP. ABAKA provides the possibility of

performing a trade-off between the stringency of privacy protection and quality720

of service for the issuer in her current location, based on the query semantics. We

addressed the threat of active and passive adversaries by means of CP-ABE and

multi-hop routing approaches. We simulated our protocol on synthetic datasets

derived from real population statistics (considering two cities: New York (USA),

and Milan (Italy)), and demonstrated that our approach is feasible and efficient.725
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