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Linear Discriminant Analysis (LDA) is a very common
technique for dimensionality reduction problems as a pre-
processing step for machine learning and pattern classifica-
tion applications. At the same time, it is usually used as a
black box, but (sometimes) not well understood. The aim of
this paper is to build a solid intuition for what is LDA, and
how LDA works, thus enabling readers of all levels be able
to get a better understanding of the LDA and to know how to
apply this technique in different applications. The paper first
gave the basic definitions and steps of how LDA technique
works supported with visual explanations of these steps.
Moreover, the two methods of computing the LDA space, i.e.
class-dependent and class-independent methods, were ex-
plained in details. Then, in a step-by-step approach, two nu-
merical examples are demonstrated to show how the LDA
space can be calculated in case of the class-dependent and
class-independent methods. Furthermore, two of the most
common LDA problems (i.e. Small Sample Size (SSS) and
non-linearity problems) were highlighted and illustrated, and
state-of-the-art solutions to these problems were investigated

and explained. Finally, a number of experiments was con-
ducted with different datasets to (1) investigate the effect of
the eigenvectors that used in the LDA space on the robust-
ness of the extracted feature for the classification accuracy,
and (2) to show when the SSS problem occurs and how it can
be addressed.
Keywords: Dimensionality reduction, PCA, LDA, Kernel
Functions, Class-Dependent LDA, Class-Independent LDA,
SSS (Small Sample Size) problem,, eigenvectors artificial in-
telligence

1. Introduction

Dimensionality reduction techniques are important
in many applications related to machine learning [15],
data mining [6,33], Bioinformatics [47], biometric [61]
and information retrieval [73]. The main goal of the di-
mensionality reduction techniques is to reduce the di-
mensions by removing the redundant and dependent
features by transforming the features from a higher di-
mensional space that may lead to a curse of dimension-
ality problem, to a space with lower dimensions. There
are two major approaches of the dimensionality reduc-
tion techniques, namely, unsupervised and supervised
approaches. In the unsupervised approach, there is no
need for labeling classes of the data. While in the su-
pervised approach, the dimensionality reduction tech-
niques take the class labels into consideration [32,15].

There are many unsupervised dimensionality reduc-
tion techniques such as Independent Component Anal-
ysis (ICA) [31,28] and Non-negative Matrix Factor-
ization (NMF) [14], but the most famous technique of
the unsupervised approach is the Principal Component
Analysis (PCA) [71,4,67,62]. This type of data reduc-
tion is suitable for many applications such as visualiza-
tion [40,2], and noise removal [70]. On the other hand,
the supervised approach has many techniques such as
Mixture Discriminant Analysis (MDA) [25] and Neu-
ral Networks (NN) [27], but the most famous technique
of this approach is the Linear Discriminant Analysis
(LDA) [50]. This category of dimensionality reduction
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techniques are used in biometrics [36,12], Bioinfor-
matics [77], and chemistry [11].

The LDA technique is developed to transform the
features into a lower dimensional space, which max-
imizes the ratio of the between-class variance to the
within-class variance, thereby guaranteeing maximum
class separability [76,43]. There are two types of LDA
technique to deal with classes: class-dependent and
class-independent. In the class-dependent LDA, one
separate lower dimensional space is calculated for each
class to project its data on it whereas, in the class-
independent LDA, each class will be considered as a
separate class against the other classes [1,74]. In this
type, there is just one lower dimensional space for all
classes to project their data on it.

Although the LDA technique is considered the most
well-used data reduction techniques, it suffers from a
number of problems. In the first problem, LDA fails to
find the lower dimensional space if the dimensions are
much higher than the number of samples in the data
matrix. Thus, the within-class matrix becomes singu-
lar, which is known as the small sample problem (SSS).
There are different approaches that proposed to solve
this problem. The first approach is to remove the null
space of within-class matrix as reported in [79,56]. The
second approach used an intermediate subspace (e.g.
PCA) to convert a within-class matrix to a full-rank
matrix; thus, it can be inverted [35,4]. The third ap-
proach, a well-known solution, is to use the regulariza-
tion method to solve a singular linear systems [38,57].
In the second problem, the linearity problem, if differ-
ent classes are non-linearly separable, the LDA can-
not discriminate between these classes. One solution to
this problem is to use the kernel functions as reported
in [50].

The brief tutorials on the two LDA types are re-
ported in [1]. However, the authors did not show the
LDA algorithm in details using numerical tutorials, vi-
sualized examples, nor giving insight investigation of
experimental results. Moreover, in [57], an overview
of the SSS for the LDA technique was presented in-
cluding the theoretical background of the SSS prob-
lem. Moreover, different variants of LDA technique
were used to solve the SSS problem such as Di-
rect LDA (DLDA) [22,83], regularized LDA (RLDA)
[18,37,38,80], PCA+LDA [42], Null LDA (NLDA)
[10,82], and kernel DLDA (KDLDA) [36]. In addition,
the authors presented different applications that used
the LDA-SSS techniques such as face recognition and
cancer classification. Furthermore, they conducted dif-
ferent experiments using three well-known face recog-

nition datasets to compare between different variants
of the LDA technique. Nonetheless, in [57], there is
no detailed explanation of how (with numerical exam-
ples) to calculate the within and between class vari-
ances to construct the LDA space. In addition, the steps
of constructing the LDA space are not supported with
well-explained graphs helping for well understanding
of the LDA underlying mechanism. In addition, the
non-linearity problem was not highlighted.

This paper gives a detailed tutorial about the LDA
technique, and it is divided into five sections. Section 2
gives an overview about the definition of the main idea
of the LDA and its background. This section begins by
explaining how to calculate, with visual explanations,
the between-class variance, within-class variance, and
how to construct the LDA space. The algorithms of cal-
culating the LDA space and projecting the data onto
this space to reduce its dimension are then introduced.
Section 3 illustrates numerical examples to show how
to calculate the LDA space and how to select the most
robust eigenvectors to build the LDA space. While Sec-
tion 4 explains the most two common problems of the
LDA technique and a number of state-of-the-art meth-
ods to solve (or approximately solve) these problems.
Different applications that used LDA technique are in-
troduced in Section 5. In Section 6, different packages
for the LDA and its variants were presented. In Section
7, two experiments are conducted to show (1) the influ-
ence of the number of the selected eigenvectors on the
robustness and dimension of the LDA space, (2) how
the SSS problem occurs and highlights the well-known
methods to solve this problem. Finally, concluding re-
marks will be given in Section 8.

2. LDA Technique

2.1. Definition of LDA

The goal of the LDA technique is to project the orig-
inal data matrix onto a lower dimensional space. To
achieve this goal, three steps needed to be performed.
The first step is to calculate the separability between
different classes (i.e. the distance between the means
of different classes), which is called the between-class
variance or between-class matrix. The second step is to
calculate the distance between the mean and the sam-
ples of each class, which is called the within-class vari-
ance or within-class matrix. The third step is to con-
struct the lower dimensional space which maximizes
the between-class variance and minimizes the within-



3

class variance. This section will explain these three
steps in detail, and then the full description of the LDA
algorithm will be given. Figures (1 and 2) are used to
visualize the steps of the LDA technique.

2.2. Calculating the Between-Class Variance (SB)

The between-class variance of the ith class (SBi) rep-
resents the distance between the mean of the ith class
(µi) and the total mean (µ). LDA technique searches
for a lower-dimensional space, which is used to max-
imize the between-class variance, or simply maxi-
mize the separation distance between classes. To ex-
plain how the between-class variance or the between-
class matrix (SB) can be calculated, the following as-
sumptions are made. Given the original data matrix
X = {x1,x2, . . . ,xN}, where xi represents the ith sam-
ple, pattern, or observation and N is the total num-
ber of samples. Each sample is represented by M fea-
tures (xi ∈ R M). In other words, each sample is repre-
sented as a point in M-dimensional space. Assume the
data matrix is partitioned into c = 3 classes as follows,
X = [ω1,ω2,ω3] as shown in Fig. (1, step (A)). Each
class has five samples (i.e. n1 = n2 = n3 = 5), where ni
represents the number of samples of the ith class. The
total number of samples (N) is calculated as follows,
N = ∑

3
i=1 ni.

To calculate the between-class variance (SB), the
separation distance between different classes which is
denoted by (mi−m) will be calculated as follows:

(mi−m)2 = (W T µi−W T µ)2 =W T (µi−µ)(µi−µ)TW
(1)

where mi represents the projection of the mean of the
ith class and it is calculated as follows, mi = W T µi,
where m is the projection of the total mean of all
classes and it is calculated as follows, m = W T µ, W
represents the transformation matrix of LDA1, µi(1×
M) represents the mean of the ith class and it is com-
puted as in Equation (2), and µ(1×M) is the total mean
of all classes and it can be computed as in Equation (3)
[83,36]. Figure (1) shows the mean of each class and
the total mean in step (B and C), respectively.

µ j =
1
n j

∑
xi∈ω j

xi (2)

1The transformation matrix (W ) will be explained in Sect. 2.4

µ =
1
N

N

∑
i=1

xi =
c

∑
i=1

ni

N
µi (3)

where c represents the total number of classes (in our
example c = 3).

The term (µi − µ)(µi − µ)T in Equation (1) repre-
sents the separation distance between the mean of the
ith class (µi) and the total mean (µ), or simply it repre-
sents the between-class variance of the ith class (SBi ).
Substitute SBi into Equation (1) as follows:

(mi−m)2 =W T SBi W (4)

The total between-class variance is calculated as fol-
lows, (SB = ∑

c
i=1 niSBi ). Figure (1, step (D)) shows first

how the between-class matrix of the first class (SB1 ) is
calculated and then how the total between-class matrix
(SB) is then calculated by adding all the between-class
matrices of all classes.

2.3. Calculating the Within-Class Variance (SW )

The within-class variance of the ith class (SWi ) rep-
resents the difference between the mean and the sam-
ples of that class. LDA technique searches for a lower-
dimensional space, which is used to minimize the dif-
ference between the projected mean (mi) and the pro-
jected samples of each class (W T xi), or simply min-
imizes the within-class variance [83,36]. The within-
class variance of each class (SW j ) is calculated as in
Equation (5).

∑
xi∈ω j , j=1,...,c

(W T xi−m j)
2

= ∑
xi∈ω j , j=1,...,c

(W T xi j−W T µ j)
2

= ∑
xi∈ω j , j=1,...,c

W T (xi j−µ j)
2W

= ∑
xi∈ω j , j=1,...,c

W T (xi j−µ j)(xi j−µ j)
TW

= ∑
xi∈ω j , j=1,...,c

W T SW j W

(5)

From Equation (5), the within-class variance for
each class can be calculated as follows, SW j = dT

j ∗d j =

∑
n j
i=1(xi j − µ j)(xi j − µ j)

T , where xi j represents the ith

sample in the jth class as shown in Fig. (1, step (E,
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Fig. 1. Visualized steps to calculate a lower dimensional subspace of the LDA technique.

F)), and d j is the centering data of the jth class, i.e.
d j = ω j−µ j = {xi}

n j
i=1−µ j. Moreover, step (F) in the

figure illustrates how the within-class variance of the
first class (SW1 ) in our example is calculated. The total
within-class variance represents the sum of all within-
class matrices of all classes (see Fig. (1, step (F))), and
it can be calculated as in Equation (6).
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Table 1
Notation.

Notation Description Notation Description
X Data matrix xi ith sample

N Total number of samples in X M
Dimension of X or

the number of features of X

W Transformation matrix Vk The lower dimensional space

ni Number of samples in ωi c Total number of classes

µi
The mean of
the ith class

mi
The mean of the ith class

after projection

µ
Total or global mean

of all samples
m

The total mean of all
classes after projection

SWi
Within-class variance or scatter

matrix of the ith class (ωi)
SW Within-class variance

SBi
Between-class variance

of the ith class (ωi)
SB Between-class variance

V Eigenvectors of W λ Eigenvalue matrix

Vi ith eigenvector λi ith eigenvalue

xi j The ith sample in the jth class Y Projection of the original data

k
The dimension of the lower

dimensional space (Vk)
ωi ith Class

SW =
3

∑
i=1

SWi

= ∑
xi∈ω1

(xi−µ1)(xi−µ1)
T

+ ∑
xi∈ω2

(xi−µ2)(xi−µ2)
T

+ ∑
xi∈ω3

(xi−µ3)(xi−µ3)
T

(6)

2.4. Constructing the Lower Dimensional Space

After calculating the between-class variance (SB)
and within-class variance (SW ), the transformation ma-
trix (W ) of the LDA technique can be calculated as in
Equation (7), which is called Fisher’s criterion. This
formula can be reformulated as in Equation (8).

arg max
W

W T SB W
W T SW W

(7)

SW W = λSB W (8)

where λ represents the eigenvalues of the transfor-
mation matrix (W ). The solution of this problem
can be obtained by calculating the eigenvalues (λ =

{λ1,λ2, . . . ,λM}) and eigenvectors (V = {v1,v2, . . . ,vM})
of W = S−1

W SB, if SW is non-singular [83,36,81].
The eigenvalues are scalar values, while the eigen-

vectors are non-zero vectors, which satisfies the Equa-
tion (8) and provides us with the information about the
LDA space. The eigenvectors represent the directions
of the new space, and the corresponding eigenvalues
represent the scaling factor, length, or the magnitude of
the eigenvectors [59,34]. Thus, each eigenvector rep-
resents one axis of the LDA space, and the associated
eigenvalue represents the robustness of this eigenvec-
tor. The robustness of the eigenvector reflects its ability
to discriminate between different classes, i.e. increase
the between-class variance, and decreases the within-
class variance of each class; hence meets the LDA
goal. Thus, the eigenvectors with the k highest eigen-
values are used to construct a lower dimensional space
(Vk), while the other eigenvectors ({vk+1,vk+2,vM})
are neglected as shown in Fig. (1, step (G)).
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Fig. 2. Projection of the original samples (i.e. data matrix) on the lower dimensional space of LDA (Vk).

Figure (2) shows the lower dimensional space of
the LDA technique, which is calculated as in Fig. (1,
step (G)). As shown, the dimension of the original data
matrix (X ∈ R N×M) is reduced by projecting it onto
the lower dimensional space of LDA (Vk ∈ R M×k) as
denoted in Equation (9) [81]. The dimension of the
data after projection is k; hence, M− k features are ig-
nored or deleted from each sample. Thus, each sample
(xi) which was represented as a point a M-dimensional
space will be represented in a k-dimensional space by
projecting it onto the lower dimensional space (Vk) as
follows, yi = xiVk.

Y = XVk (9)

Figure (3) shows a comparison between two lower-
dimensional sub-spaces. In this figure, the original
data which consists of three classes as in our example
are plotted. Each class has five samples, and all sam-
ples are represented by two features only (xi ∈ R 2)
to be visualized. Thus, each sample is represented
as a point in two-dimensional space. The transforma-
tion matrix (W (2× 2)) is calculated using the steps
in Sect. 2.2, 2.3, and 2.4. The eigenvalues (λ1 and λ2)
and eigenvectors (i.e. sub-spaces) (V = {v1,v2}) of W
are then calculated. Thus, there are two eigenvectors
or sub-spaces. A comparison between the two lower-
dimensional sub-spaces shows the following notices:

– First, the separation distance between different
classes when the data are projected on the first
eigenvector (v1) is much greater than when the
data are projected on the second eigenvector (v2).
As shown in the figure, the three classes are effi-
ciently discriminated when the data are projected
on v1. Moreover, the distance between the means
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Fig. 3. A visualized comparison between the two lower-dimensional
sub-spaces which are calculated using three different classes.

of the first and second classes (m1−m2) when the
original data are projected on v1 is much greater
than when the data are projected on v2, which re-
flects that the first eigenvector discriminates the
three classes better than the second one.

– Second, the within-class variance when the data
are projected on v1 is much smaller than when it
projected on v2. For example, SW1 when the data
are projected on v1 is much smaller than when the
data are projected on v2. Thus, projecting the data
on v1 minimizes the within-class variance much
better than v2.
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From these two notes, we conclude that the first eigen-
vector meets the goal of the lower-dimensional space
of the LDA technique than the second eigenvector;
hence, it is selected to construct a lower-dimensional
space.

2.5. Class-Dependent vs. Class-Independent Methods

The aim of the two methods of the LDA is to cal-
culate the LDA space. In the class-dependent LDA,
one separate lower dimensional space is calculated for
each class as follows, Wi = S−1

Wi
SB, where Wi represents

the transformation matrix for the ith class. Thus, eigen-
values and eigenvectors are calculated for each trans-
formation matrix separately. Hence, the samples of
each class are projected on their corresponding eigen-
vectors. On the other hand, in the class-independent
method, one lower dimensional space is calculated for
all classes. Thus, the transformation matrix is calcu-
lated for all classes, and the samples of all classes are
projected on the selected eigenvectors [1].

2.6. LDA Algorithm

In this section the detailed steps of the algorithms
of the two LDA methods are presented. As shown in
Algorithms (1 and 2), the first four steps in both al-
gorithms are the same. Table (1) shows the notations
which are used in the two algorithms.

2.7. Computational Complexity of LDA

In this section, the computational complexity for
LDA is analyzed. The computational complexity for
the first four steps, common in both class-dependent
and class-independent methods, are computed as fol-
lows. As illustrated in Algorithm (1), in step (2), to
calculate the mean of the ith class, there are niM ad-
ditions and M divisions, i.e., in total, there are (NM +
cM) operations. In step (3), there are NM additions
and M divisions, i.e., there are (NM +M) operations.
The computational complexity of the fourth step is
c(M +M2 +M2), where M is for µi− µ, M2 for (µi−
µ)(µi− µ)T , and the last M2 is for the multiplication
between ni and the matrix (µi−µ)(µi−µ)T . In the fifth
step, there are N(M +M2) operations, where M is for
(xi j − µ j) and M2 is for (xi j − µ j)(xi j − µ j)

T . In the
sixth step, there are M3 operations to calculate S−1

W , M3

is for the multiplication between S−1
W and SB, and M3

to calculate the eigenvalues and eigenvectors. Thus,
in class-independent method, the computational com-

Algorithm 1. : Linear Discriminant Analysis (LDA): Class-
Independent

1: Given a set of N samples [xi]
N
i=1, each of which

is represented as a row of length M as in Fig. (1,
step(A)), and X(N×M) is given by,

X =


x(1,1) x(1,2) . . . x(1,M)

x(2,1) x(2,2) . . . x(2,M)
...

...
...

...
x(N,1) x(N,2) . . . x(N,M)

 (10)

2: Compute the mean of each class µi(1×M) as in
Equation (2).

3: Compute the total mean of all data µ(1×M) as in
Equation (3).

4: Calculate between-class matrix SB(M×M) as fol-
lows:

SB =
c

∑
i=1

ni(µi−µ)(µi−µ)T (11)

5: Compute within-class matrix SW (M×M), as fol-
lows:

SW =
c

∑
j=1

n j

∑
i=1

(xi j−µ j)(xi j−µ j)
T (12)

where xi j represents the ith sample in the jth class.
6: From Equation (11 and 12), the matrix W that

maximizing Fisher’s formula which is defined in
Equation (7) is calculated as follows, W = S−1

W SB.
The eigenvalues (λ) and eigenvectors (V ) of W are
then calculated.

7: Sorting eigenvectors in descending order accord-
ing to their corresponding eigenvalues. The first k
eigenvectors are then used as a lower dimensional
space (Vk).

8: Project all original samples (X) onto the lower di-
mensional space of LDA as in Equation (9).

plexity is O(NM2) if N >M; otherwise, the complexity
is O(M3).

In Algorithm (2), the number of operations to cal-
culate the within-class variance for each class SW j in
the sixth step is n j(M + M2), and to calculate SW ,
N(M + M2) operations are needed. Hence, calculat-
ing the within-class variance for both LDA methods
are the same. In the seventh step and eighth, there
are M3 operations for the inverse, M3 for the multi-
plication of S−1

Wi
SB, and M3 for calculating eigenval-

ues and eigenvectors. These two steps are repeated for
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Algorithm 2. : Linear Discriminant Analysis (LDA): Class-
Dependent

1: Given a set of N samples [xi]
N
i=1, each of which

is represented as a row of length M as in Fig. (1,
step(A)), and X(N×M) is given by,

X =


x(1,1) x(1,2) . . . x(1,M)

x(2,1) x(2,2) . . . x(2,M)
...

...
...

...
x(N,1) x(N,2) . . . x(N,M)

 (13)

2: Compute the mean of each class µi(1×M) as in
Equation (2).

3: Compute the total mean of all data µ(1×M) as in
Equation (3).

4: Calculate between-class matrix SB(M×M) as in
Equation (11)

5: for all Class i, i = 1,2, . . . ,c do
6: Compute within-class matrix of each class

SWi(M×M), as follows:

SW j = ∑
xi∈ω j

(xi−µ j)(xi−µ j)
T (14)

7: Construct a transformation matrix for each class
(Wi) as follows:

Wi = S−1
Wi

SB (15)

8: The eigenvalues (λi) and eigenvectors (V i) of
each transformation matrix (Wi) are then calcu-
lated, where λi and V i represent the calculated
eigenvalues and eigenvectors of the ith class, re-
spectively.

9: Sorting the eigenvectors in descending order ac-
cording to their corresponding eigenvalues. The
first k eigenvectors are then used to construct a
lower dimensional space for each class V i

k .
10: Project the samples of each class (ωi) onto their

lower dimensional space (V i
k ), as follows:

Ω j = xiV
j

k , xi ∈ ω j (16)

where Ω j represents the projected samples of
the class ω j.

11: end for

each class which increases the complexity of the class-
dependent algorithm. Totally, the computational com-

plexity of the class-dependent algorithm is O(NM2) if
N > M; otherwise, the complexity is O(cM3). Hence,
the class-dependent method needs computations more
than class-independent method.

In our case, we assumed that there are 40 classes
and each class has ten samples. Each sample is rep-
resented by 4096 features (M > N). Thus, the com-
putational complexity of the class-independent method
is O(M3) = 40963, while the class-dependent method
needs O(cM3) = 40×40963.

3. Numerical Examples

In this section, two numerical examples will be pre-
sented. The two numerical examples explain the steps
to calculate the LDA space and how the LDA tech-
nique is used to discriminate between only two differ-
ent classes. In the first example, the lower-dimensional
space is calculated using the class-independent method,
while in the second example, the class-dependent
method is used. Moreover, a comparison between the
lower dimensional spaces of each method is presented.
In all numerical examples, the numbers are rounded up
to the nearest hundredths (i.e. only two digits after the
decimal point are displayed).

The first four steps of both class-independent and
class-dependent methods are common as illustrated in
Algorithms (1 and 2). Thus, in this section, we show
how these steps are calculated.

Given two different classes, ω1(5×2) and ω2(6×2)
have (n1 = 5) and (n2 = 6) samples, respectively. Each
sample in both classes is represented by two features
(i.e. M = 2) as follows:

ω1 =


1.00 2.00
2.00 3.00
3.00 3.00
4.00 5.00
5.00 5.00

 and ω2 =


4.00 2.00
5.00 0.00
5.00 2.00
3.00 2.00
5.00 3.00
6.00 3.00

 (17)

To calculate the lower dimensional space using
LDA, first the mean of each class µ j is calculated. The
total mean µ(1×2) is then calculated, which represents
the mean of all means of all classes. The values of the
mean of each class and the total mean are shown below,

µ1 =
[
3.00 3.60

]
, µ2 =

[
4.67 2.00

]
, and

µ =
[ 5

11 µ1
6
11 µ2

]
=
[
3.91 2.727

] (18)
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The between-class variance of each class (SBi(2×
2)) and the total between-class variance (SB(2×2) are
calculated. The values of the between-class variance of
the first class (SB1 ) is equal to,

SB1 = n1(µ1−µ)T (µ1−µ) = 5[−0.91 0.87]T [−0.91 0.87]

=

[
4.13 −3.97
−3.97 3.81

]
(19)

Similarly, SB2 is calculated as follows:

SB2 =

[
3.44 −3.31
−3.31 3.17

]
(20)

The total between-class variance is calculated a fol-
lows:

SB = SB1 +SB2 =

[
4.13 −3.97
−3.97 3.81

]
+

[
3.44 −3.31
−3.31 3.17

]
=

[
7.58 −7.27
−7.27 6.98

]
(21)

To calculate the within-class matrix, first subtract
the mean of each class from each sample in that class
and this step is called mean-centering data and it is cal-
culated as follows, di = ωi − µi, where di represents
centering data of the class ωi. The values of d1 and d2
are as follows:

d1 =


−2.00 −1.60
−1.00 −0.60
0.00 −0.60
1.00 1.40
2.00 1.40

 and d2 =


−0.67 0.00
0.33 −2.00
0.33 0.00
−1.67 0.00
0.33 1.00
1.33 1.00


(22)

In the next two subsections, two different methods
are used to calculate the LDA space.

3.1. Class-Independent Method

In this section, the LDA space is calculated using the
class-independent method. This method represents the
standard method of LDA as in Algorithm (1).

After centring the data, the within-class variance
for each class (SWi(2× 2)) is calculated as follows,

SW j = dT
j ∗ d j = ∑

n j
i=1(xi j − µ j)

T (xi j − µ j), where xi j

represents the ith sample in the jth class. The total
within-class matrix (SW (2× 2)) is then calculated as
follows, SW = ∑

c
i=1 SWi . The values of the within-class

matrix for each class and the total within-class matrix
are as follows:

SW1 =

[
10.00 8.00
8.00 7.20

]
, SW2 =

[
5.33 1.00
1.00 6.00

]
,

SW =

[
15.33 9.00
9.00 13.20

] (23)

The transformation matrix (W ) in the class-independent
method can be obtained as follows, W = S−1

W SB, and
the values of (S−1

W ) and (W ) are as follows:

S−1
W =

[
0.11 −0.07
−0.07 0.13

]
and W =

[
1.36 −1.31
−1.48 1.42

]
(24)

The eigenvalues (λ(2×2)) and eigenvectors (V (2×
2)) of W are then calculated as follows:

λ =

[
0.00 0.00
0.00 2.78

]
and V =

[
−0.69 0.68
−0.72 −0.74

]
(25)

From the above results it can be noticed that, the
second eigenvector (V2) has corresponding eigenvalue
more than the first one (V1), which reflects that, the
second eigenvector is more robust than the first one;
hence, it is selected to construct the lower dimen-
sional space. The original data is projected on the
lower dimensional space, as follows, yi = ωi V2, where
yi(ni×1) represents the data after projection of the ith

class, and its values will be as follows:

y1 = ω1V2 =


1.00 2.00
2.00 3.00
3.00 3.00
4.00 5.00
5.00 5.00


[

0.68
−0.74

]
=


−0.79
−0.85
−0.18
−0.97
−0.29

 (26)

Similarly, y2 is as follows:

y2 = ω2V2 =


1.24
3.39
1.92
0.56
1.18
1.86

 (27)
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Fig. 4. Probability density function of the projected data of the first
example, (a) the projected data on V1, (b) the projected data on V2.

Figure (4) illustrates a probability density function
(pdf) graph of the projected data (yi) on the two eigen-
vectors (V1 and V2). A comparison of the two eigenvec-
tors reveals the following :

– The data of each class is completely discrimi-
nated when it is projected on the second eigen-
vector (see Fig. (4)(b)) than the first one (see
Fig. (4a)). In other words, the second eigenvector
maximizes the between-class variance more than
the first one.

– The within-class variance (i.e. the variance be-
tween the same class samples) of the two classes
are minimized when the data are projected on the
second eigenvector. As shown in Fig. ((4)(b)), the
within-class variance of the first class is small
compared with Fig. ((4)(a)).

3.2. Class-Dependent Method

In this section, the LDA space is calculated using the
class-dependent method. As mentioned in Sect. 2.5,
the class-dependent method aims to calculate a sepa-
rate transformation matrix (Wi) for each class.

The within-class variance for each class (SWi(2×
2)) is calculated as in class-independent method. The
transformation matrix (Wi) for each class is then cal-
culated as follows, Wi = S−1

Wi
SB. The values of the two

transformation matrices (W1 and W2) will be as fol-
lows:

W1 = S−1
W1

SB =

[
10.00 8.00
8.00 7.20

]−1 [ 7.58 −7.27
−7.27 6.98

]
=

[
0.90 −1.00
−1.00 1.25

][
7.58 −7.27
−7.27 6.98

]
=

[
14.09 −13.53
−16.67 16.00

]
(28)

Similarly, W2 is calculated as follows:

W2 =

[
1.70 −1.63
−1.50 1.44

]
(29)

The eigenvalues (λi) and eigenvectors (Vi) for each
transformation matrix (Wi) are calculated, and the val-
ues of the eigenvalues and eigenvectors are shown be-
low.

λω1 =

[
0.00 0.00
0.00 30.01

]
and Vω1 =

[
−0.69 0.65
−0.72 −0.76

]
(30)

λω2 =

[
3.14 0.00
0.00 0.00

]
and Vω2 =

[
0.75 0.69
−0.66 0.72

]
(31)

where λωi and Vωi represent the eigenvalues and eigen-
vectors of the ith class, respectively.

From the results shown (above) it can be seen that,
the second eigenvector of the first class (V {2}ω1 ) has cor-
responding eigenvalue more than the first one; thus,
the second eigenvector is used as a lower dimensional
space for the first class as follows, y1 = ω1 ∗V {2}ω1 ,
where y1 represents the projection of the samples of
the first class. While, the first eigenvector in the second
class (V {1}ω2 ) has corresponding eigenvalue more than
the second one. Thus, V {1}ω2 is used to project the data
of the second class as follows, y2 =ω2 ∗V

{1}
ω2 , where y2

represents the projection of the samples of the second
class. The values of y1 and y2 will be as follows:

y1 =


−0.88
−1.00
−0.35
−1.24
−0.59

 and y2 =


1.68
3.76
2.43
0.93
1.77
2.53

 (32)
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Figure (5) shows a pdf graph of the projected data
(i.e. y1 and y2) on the two eigenvectors (V {2}ω1 and V {1}ω2 )
and a number of findings are revealed the following:

– First, the projection data of the two classes are
efficiently discriminated.

– Second, the within-class variance of the projected
samples is lower than the within-class variance of
the original samples.
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Fig. 5. Probability density function (pdf) of the projected data using
class-dependent method, the first class is projected on V {2}ω1 , while

the second class is projected on V {1}ω2 .

3.3. Discussion

In these two numerical examples, the LDA space is
calculated using class-dependent and class-independent
methods.

Figure (6) shows a further explanation of the two
methods as following:

– Class-Independent: As shown from the figure,
there are two eigenvectors, V1 (dotted black line)
and V2 (solid black line). The differences between
the two eigenvectors are as follows:

∗ The projected data on the second eigenvec-
tor (V2) which has the highest corresponding
eigenvalue will discriminate the data of the
two classes better than the first eigenvector. As
shown in the figure, the distance between the
projected means m1−m2 which represents SB,
increased when the data are projected on V2
than V1.

∗ The second eigenvector decreases the within-
class variance much better than the first eigen-
vector. Figure (6) illustrates that the within-
class variance of the first class (SW1 ) was much
smaller when it was projected on V2 than V1.

∗ As a result of the above two findings, V2 is used
to construct the LDA space.

– Class-Dependent: As shown from the figure, there
are two eigenvectors, V {2}ω1 (red line) and V {1}ω2
(blue line), which represent the first and second
classes, respectively. The differences between the
two eigenvectors are as following:

∗ Projecting the original data on the two eigen-
vectors discriminates between the two classes.
As shown in the figure, the distance between
the projected means m1−m2 is larger than the
distance between the original means µ1−µ2.

∗ The within-class variance of each class is de-
creased. For example, the within-class variance
of the first class (SW1 ) is decreased when it is
projected on its corresponding eigenvector.

∗ As a result of the above two findings, V {2}ω1 and
V {1}ω2 are used to construct the LDA space.

– Class-Dependent vs. Class-Independent: The two
LDA methods are used to calculate the LDA
space, but a class-dependent method calculates
separate lower dimensional spaces for each class
which has two main limitations: (1) it needs
more CPU time and calculations more than class-
independent method; (2) it may lead to SSS prob-
lem because the number of samples in each class
affects the singularity of SWi

2.

These findings reveal that the standard LDA technique
used the class-independent method rather than using
the class-dependent method.

4. Main Problems of LDA

Although LDA is one of the most common data re-
duction techniques, it suffers from two main problems:
the Small Sample Size (SSS) and linearity problems.
In the next two subsections, these two problems will
be explained, and some of the state-of-the-art solutions
are highlighted.

4.1. Linearity problem

LDA technique is used to find a linear transforma-
tion that discriminates between different classes. How-
ever, if the classes are non-linearly separable, LDA can
not find a lower dimensional space. In other words,
LDA fails to find the LDA space when the discrimina-
tory information are not in the means of classes. Fig-

2SSS problem will be explained in Sect. 4.2
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ure (7) shows how the discriminatory information does
not exist in the mean, but in the variance of the data.
This is because the means of the two classes are equal.
The mathematical interpretation for this problem is as
follows: if the means of the classes are approximately
equal, so the SB and W will be zero. Hence, the LDA
space cannot be calculated.

One of the solutions of this problem is based on the
transformation concept, which is known as a kernel
methods or functions [50,3]. Figure (7) illustrates how
the transformation is used to map the original data into
a higher dimensional space; hence, the data will be lin-
early separable, and the LDA technique can find the
lower dimensional space in the new space. Figure (8)
graphically and mathematically shows how two non-

separable classes in one-dimensional space are trans-
formed into a two-dimensional space (i.e. higher di-
mensional space); thus, allowing linear separation.

The kernel idea is applied in Support Vector Ma-
chine (SVM) [49,66,69] Support Vector Regression
(SVR)[58], PCA [51], and LDA [50]. Let φ represents
a nonlinear mapping to the new feature space Z. The
transformation matrix (W ) in the new feature space (Z)
is calculated as in Equation (33).

F(W ) = max

∣∣∣∣∣W T Sφ

BW

W T Sφ

WW

∣∣∣∣∣ (33)

where W is a transformation matrix and Z is the new
feature space. The between-class matrix (Sφ

B) and the
within-class matrix (Sφ

W ) are defined as follows:
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Fig. 7. Two examples of two non-linearly separable classes, top
panel shows how the two classes are non-separable, while the bot-
tom shows how the transformation solves this problem and the two
classes are linearly separable.

Sφ

B =
c

∑
i=1

ni(µ
φ

i −µφ)(µφ

i −µφ)T (34)

Sφ

W =
c

∑
j=1

n j

∑
i=1

(φ{xi j}−µφ

j )(φ{xi j}−µφ

j )
T (35)

where µφ

i = 1
ni

∑
ni
i=1 φ{xi} and µφ = 1

N ∑
N
i=1 φ{xi} =

∑
c
i=1

ni
N µφ

i
Thus, in kernel LDA, all samples are transformed

non-linearly into a new space Z using the function
φ. In other words, the φ function is used to map the
original features into Z space by creating a nonlin-
ear combination of the original samples using a dot-
products of it [3]. There are many types of kernel
functions to achieve this aim. Examples of these func-
tion include Gaussian or Radial Basis Function (RBF),
K(xi,x j) = exp(−||xi− x j||2/2σ2), where σ is a posi-
tive parameter, and the polynomial kernel of degree d,
K(xi,x j) = (

〈
xi,x j

〉
+ c)d , [3,51,72,29].
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Fig. 8. Example of kernel functions, the samples lie on the top panel
(X) which are represented by a line (i.e. one-dimensional space) are
non-linearly separable, where the samples lie on the bottom panel
(Z) which are generated from mapping the samples of the top space
are linearly separable.

4.2. Small Sample Size Problem

4.2.1. Problem Definition
Singularity, Small Sample Size (SSS), or under-

sampled problem is one of the big problems of LDA
technique. This problem results from high-dimensional
pattern classification tasks or a low number of train-
ing samples available for each class compared with the
dimensionality of the sample space [30,38,85,82].

The SSS problem occurs when the SW is singular3.
The upper bound of the rank4 of SW is N − c, while
the dimension of SW is M×M [38,17]. Thus, in most
cases M >> N − c which leads to SSS problem. For
example, in face recognition applications, the size of
the face image my reach to 100×100 = 10000 pixels,
which represent high-dimensional features and it leads
to a singularity problem.

3A matrix is singular if it is square, does not have a matrix in-
verse, the determinant is zeros; hence, not all columns and rows are
independent

4The rank of the matrix represents the number of linearly inde-
pendent rows or columns
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4.2.2. Common Solutions to SSS Problem:
There are many studies that proposed many solu-

tions for this problem; each has its advantages and
drawbacks.

– Regularization (RLDA): In regularization method,
the identity matrix is scaled by multiplying it by
a regularization parameter (η > 0) and adding it
to the within-class matrix to make it non-singular
[18,38,82,45]. Thus, the diagonal components of
the within-class matrix are biased as follows,
SW = SW + ηI. However, choosing the value of
the regularization parameter requires more tuning
and a poor choice for this parameter can degrade
the performance of the method [38,45]. Another
problem of this method is that the parameter η is
just added to perform the inverse of SW and has
no clear mathematical interpretation [38,57].

– Sub-space: In this method, a non-singular inter-
mediate space is obtained to reduce the dimen-
sion of the original data to be equal to the rank
of SW ; hence, SW becomes full-rank5, and then
SW can be inverted. For example, Belhumeur et
al. [4] used PCA, to reduce the dimensions of the
original space to be equal to N− c (i.e. the upper
bound of the rank of SW ). However, as reported
in [22], losing some discriminant information is a
common drawback associated with the use of this
method.

– Null Space: There are many studies proposed to
remove the null space of SW to make SW full-rank;
hence, invertible. The drawback of this method is
that more discriminant information is lost when
the null space of SW is removed, which has a neg-
ative impact on how the lower dimensional space
satisfies the LDA goal [83].

Four different variants of the LDA technique that are
used to solve the SSS problem are introduced as fol-
lows:

PCA + LDA technique: In this technique, the orig-
inal d-dimensional features are first reduced to h-
dimensional feature space using PCA, and then the
LDA is used to further reduce the features to k-
dimensions. The PCA is used in this technique to re-
duce the dimensions to make the rank of SW is N−c as
reported in [4]; hence, the SSS problem is addressed.
However, the PCA neglects some discriminant infor-
mation, which may reduce the classification perfor-
mance [57,60].

5A is a full-rank matrix if all columns and rows of the matrix are
independent, (i.e. rank(A)= # rows= #cols) [23]

Direct LDA technique: Direct LDA (DLDA) is one of
the well-known techniques that are used to solve the
SSS problem. This technique has two main steps [83].
In the first step, the transformation matrix, W, is com-
puted to transform the training data to the range space
of SB. In the second step, the dimensionality of the
transformed data is further transformed using some
regulating matrices as in Algorithm 4. The benefit of
the DLDA is that there is no discriminative features are
neglected as in PCA+LDA technique [83].

Regularized LDA technique: In the Regularized LDA
(RLDA), a small perturbation is add to the SW matrix
to make it non-singular as mentioned in [18]. This reg-
ularization can be applied as follows:

(SW +ηI)−1SBwi = λiwi (36)

where η represents a regularization parameter. The di-
agonal components of the SW are biased by adding this
small perturbation [18,13]. However, the regularization
parameter need to be tuned and poor choice of it can
degrade the generalization performance [57].

Null LDA technique: The aim of the NLDA technique
is to find the orientation matrix W, and this can be
achieved using two steps. In the first step, the range
space of the SW is neglected, and the data are projected
only on the null space of SW as follows, SWW = 0. In
the second step, the aim is to search for W that satis-
fies SBW = 0 and maximizes |W T SBW |. The higher di-
mensionality of the feature space may lead to compu-
tational problems. This problem can be solved by (1)
using the PCA technique as a pre-processing step, i.e.
before applying the NLDA technique, to reduce the di-
mension of feature space to be N−1; by removing the
null space of ST = SB + SW [57], (2) using the PCA
technique before the second step of the NLDA tech-
nique [54]. Mathematically, in the Null LDA (NLDA)
technique, the h column vectors of the transformation
matrix W = [w1,w2, . . . ,wh] are taken to be the null
space of the SW as follows, wT

i SW wi = 0, ∀i = 1 . . .h,
where wT

i SBwi 6= 0. Hence, M− (N− c) linearly inde-
pendent vectors are used to form a new orientation ma-
trix, which is used to maximize |W T SBW | subject to the
constraint |W T SWW |= 0 as in Equation (37).

W = arg max
|W T SW W |=0

|W T SBW | (37)
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5. Applications of the LDA technique

In many applications, due to the high number of fea-
tures or dimensionality, the LDA technique have been
used. Some of the applications of the LDA technique
and its variants are described as follows:

5.1. Biometrics Applications

Biometrics systems have two main steps, namely,
feature extraction (including pre-processing steps) and
recognition. In the first step, the features are extracted
from the collected data, e.g. face images, and in the
second step, the unknown samples, e.g. unknown face
image, is identified/verified. The LDA technique and
its variants have been applied in this application. For
example, in [83,10,41,75,20,68], the LDA technique
have been applied on face recognition. Moreover, the
LDA technique was used in Ear [84], fingerprint [44],
gait [5], and speech [24] applications. In addition, the
LDA technique was used with animal biometrics as in
[65,19].

5.2. Agriculture Applications

In agriculture applications, an unknown sample can
be classified into a pre-defined species using computa-
tional models [64]. In this application, different vari-
ants of the LDA technique was used to reduce the di-
mension of the collected features as in [9,26,46,21,64,
63].

5.3. Medical Applications

In medical applications, the data such as the DNA
microarray data consists of a large number of features
or dimensions. Due to this high dimensionality, the
computational models need more time to train their
models, which may be infeasible and expensive. More-
over, this high dimensionality reduces the classifica-
tion performance of the computational model and in-
creases its complexity. This problem can be solved us-
ing LDA technique to construct a new set of features
from a large number of original features. There are
many papers have been used LDA in medical applica-
tions [54,52,53,16,39,55,8].

6. Packages

In this section, some of the available packages that
are used to compute the space of LDA variants. For
example, WEKA6 is a well-known Java-based data
mining tool with open source machine learning soft-
ware such as classification, association rules, regres-
sion, pre-processing, clustering, and visualization. In
WEKA, the machine learning algorithms can be ap-
plied directly on the dataset or called from person’s
Java code. XLSTAT7 is another data analysis and sta-
tistical package for Microsoft Excel that has a wide
variety of dimensionality reduction algorithms includ-
ing LDA. dChip8 package is also used for visualiza-
tion of gene expression and SNP microarray including
some data analysis algorithms such as LDA, cluster-
ing, and PCA. LDA-SSS9 is a Matlab package, and it
contains several algorithms related to the LDA tech-
niques and its variants such as DLDA, PCA+LDA, and
NLDA. MASS10 package is based on R, and it has
functions that are used to perform linear and quadratic
discriminant function analysis. Dimensionality reduc-
tion11 package is mainly written in Matlab, and it has
a number of dimensionality reduction techniques such
as ULDA, QLDA, and KDA. DTREG12 is a software
package that is used for medical data and modeling
business, and it has several predictive modeling meth-
ods such as LDA, PCA, linear regression, and decision
trees.

7. Experimental Results and Discussion

In this section, two experiments were conducted to
illustrate: (1) how the LDA is used for different appli-
cations, (2) what is the relation between its parame-
ter (Eigenvectors) and the accuracy of a classification
problem, (3) when the SSS problem could appear and
a method for solving it.

6http:/www.cs.waikato.ac.nz/ml/weka/
7http://www.xlstat.com/en/
8https://sites.google.com/site/dchipsoft/home
9http://www.staff.usp.ac.fj/sharma al/index.htm

10http://www.statmethods.net/advstats/discriminant.html
11http://www.public.asu.edu/*jye02/Software/index.html
12http://www.dtreg.com/index.htm
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7.1. Experimental Setup

This section gives an overview of the databases,
the platform, and the machine specification used to
conduct our experiments. Different biometric datasets
were used in the experiments to show how the LDA
using its parameter behaves with different data. These
datasets are described as follows:

– ORL dataset13 face images dataset (Olivetti Re-
search Laboratory, Cambridge) [48], which con-
sists of 40 distinct individuals, was used. In this
dataset, each individual has ten images taken at
different times and varying light conditions. The
size of each image is 92×112.

– Yale dataset14 is another face images dataset
which contains 165 grey scale images in GIF for-
mat of 15 individuals [78]. Each individual has
11 images in different expressions and configura-
tion: center-light, happy, left-light, with glasses,
normal, right-light, sad, sleepy, surprised, and a
wink.

– 2D ear dataset (Carreira-Perpinan,1995)15 images
dataset [7] was used. The ear data set consists of
17 distinct individuals. Six views of the left pro-
file from each subject were taken under a uniform,
diffuse lighting.

In all experiments, k-fold cross-validation tests have
used. In k-fold cross-validation, the original samples of
the dataset were randomly partitioned into k subsets of
(approximately) equal size and the experiment is run k
times. For each time, one subset was used as the testing
set and the other k− 1 subsets were used as the train-
ing set. The average of the k results from the folds can
then be calculated to produce a single estimation. In
this study, the value of k was set to 10.

The images in all datasets resized to be 64×64 and
32× 32 as shown in Table (2). Figure (9) shows sam-
ples of the used datasets and Table (2) shows a descrip-
tion of the datasets used in our experiments.

In all experiments, to show the effect of the LDA
with its eigenvector parameter and its SSS problem on
the classification accuracy, the Nearest Neighbour clas-
sifier was used. This classifier aims to classify the test-
ing image by comparing its position in the LDA space
with the positions of training images. Furthermore,
class-independent LDA was used in all experiments.

13http://www.cam-orl.co.uk
14http://vision.ucsd.edu/content/yale-face-database
15http://faculty.ucmerced.edu/mcarreira-perpinan/software.html

Fig. 9. Samples of the first individual in: ORL face dataset (top row);
Ear dataset (middle row), and Yale face dataset (bottom row).

Table 2
Dataset description.

Dataset Dimension (M)
No. of

Samples (N)
No. of

classes (c)
ORL64×64 4096

400 40
ORl32×32 1024

Ear64×64 4096
102 17

Ear32×32 1024

Yale64×64 4096
165 15

Yale32×32 1024

Moreover, Matlab Platform (R2013b) and using a PC
with the following specifications: Intel(R) Core(TM)
i5-2400 CPU @ 3.10 GHz and 4.00 GB RAM, under
Windows 32-bit operating system were used in our ex-
periments.

7.2. Experiment on LDA Parameter (Eigenvectors)

The aim of this experiment is to investigate the re-
lation between the number of eigenvectors used in the
LDA space, and the classification accuracy based on
these eigenvectors and the required CPU time for this
classification.

As explained earlier that the LDA space consists
of k eigenvectors, which are sorted according to their
robustness (i.e. their eigenvalues). The robustness of
each eigenvector reflects its ability to discriminate be-
tween different classes. Thus, in this experiment, it
will be checked whether increasing the number of
eigenvectors would increase the total robustness of
the constructed LDA space; hence, different classes
could be well discriminated. Also, it will be tested
whether increasing the number of eigenvectors would
increase the dimension of the LDA space and the pro-
jected data; hence, CPU time increases. To investi-
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Fig. 10. Accuracy and CPU time of the LDA techniques using dif-
ferent percentages of eigenvectors, (a) Accuracy (b) CPU time.

gate these issue, three datasets listed in Table (2) (i.e.
ORL32×32, Ear32×32, Yale32×32), were used. Moreover,
seven, four, and eight images from each subject in the
ORL, ear, Yale datasets, respectively, are used in this
experiment. The results of this experiment are pre-
sented in Fig. (10).

From Fig. (10) it can be noticed that the accu-
racy and CPU time are proportional with the number
of eigenvectors which are used to construct the LDA
space. Thus, the choice of using LDA in a specific ap-
plication should consider a trade-off between these fac-
tors. Moreover, from Fig. (10a), it can be remarked that
when the number of eigenvectors used in computing
the LDA space was increased, the classification accu-
racy was also increased to a specific extent after which
the accuracy remains constant. As seen in Fig. (10a),
this extent differs from application to another. For ex-
ample, the accuracy of the ear dataset remains con-
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Fig. 11. The robustness of the first 40 eigenvectors of the LDA tech-
nique using ORL32×32, Ear32×32, and Yale32×32 datasets.

stant when the percentage of the used eigenvectors is
more than 10%. This was expected as the eigenvec-
tors of the LDA space are sorted according to their ro-
bustness (see Sect. 2.6). Similarly, in ORL and Yale
datasets the accuracy became approximately constant
when the percentage of the used eigenvectors is more
than 40%. In terms of CPU time, Fig. (10b) shows the
CPU time using different percentages of the eigenvec-
tors. As shown, the CPU time increased dramatically
when the number of eigenvectors increases.

Fig. (11) shows the weights16 of the first 40 eigen-
vectors which confirms our findings. From these re-
sults, we can conclude that the high order eigenvectors
of the data of each application (the first 10 % of ear
database and the first 40 % of ORL and Yale datasets)
are robust enough to extract and save the most discrim-
inative features which are used to achieve a good accu-
racy.

These experiments confirmed that increasing the
number of eigenvectors will increase the dimension of
the LDA space; hence, CPU time increases. Conse-
quently, the amount of discriminative information and
the accuracy increases.

7.3. Experiments on the Small Sample Size problem

The aim of this experiment is to show when the LDA
is subject to the SSS problem and what are the methods
that could be used to solve this problem. In this experi-
ment, PCA-LDA [4] and Direct-LDA [83,22] methods

16The weight of the eigenvector represents the ratio of its cor-
responding eigenvalue (λi) to the total of all eigenvalues (λi, i =
1,2, . . . ,k) as follows, λi

∑
k
j=1 λ j
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are used to address the SSS problem. A set of exper-
iments was conducted to show how the two methods
interact with the SSS problem, including the number of
samples in each class, the total number of classes used,
and the dimension of each sample.

As explained in Sect. 4, using LDA directly may
lead to the SSS problem when the dimension of the
samples are much higher than the total number of sam-
ples. As shown in Table (2), the size of each image or
sample of the ORL dataset is 64×64 is 4096 and the to-
tal number of samples is 400. The mathematical inter-
pretation of this point shows that the dimension of SW
is M×M, while the upper bound of the rank of SW is
N−c [79,82]. Thus, all the datasets which are reported
in Table (2) lead to singular SW .

To address this problem, PCA-LDA and direct-LDA
methods were implemented. In the PCA-LDA method,
PCA is first used to reduce the dimension of the origi-
nal data to make SW full-rank, and then standard LDA
can be performed safely in the subspace of SW as in Al-
gorithm (3). For more details of the PCA-LDA method
are reported in [4]. In the direct-LDA method, the null-
space of SW matrix is removed to make SW full-rank,
then standard LDA space can be calculated as in Al-
gorithm (4). More details of direct-LDA methods are
found in [83].

Table (2) illustrates various scenarios designed to
test the effect of different dimensions on the rank of SW
and the accuracy. The results of these scenarios using
both PCA-LDA and direct-LDA methods are summa-
rized in Table (3).

As summarized in Table (3), the rank of SW is very
small compared to the whole dimension of SW ; hence,
the SSS problem occurs in all cases. As shown in
Table (3), using the PCA-LDA and the Direct-LDA,
the SSS problem can be solved and the Direct-LDA
method achieved results better than PCA-LDA because
as reported in [83,22], Direct-LDA method saves ap-
proximately all important information for classifica-
tion while the PCA in PCA-LDA method saves the in-
formation with high variance.

8. Conclusions

In this paper, the definition, mathematics, and im-
plementation of LDA were presented and explained.
The paper aimed to give low-level details on how the
LDA technique can address the reduction problem by
extracting discriminative features based on maximiz-
ing the ratio between the between-class variance, SB,

Algorithm 3. : PCA-LDA.
1: Read the training images (X = {x1,x2, . . . ,xN}),

where xi(ro×co) represents the ith training image,
ro and co represent the rows (height) and columns
(width) of xi, respectively, N represents the total
number of training images.

2: Convert all images in vector representation Z =
{z1,z2, . . . ,zN}, where the dimension of Z is M×
1,M = ro× co.

3: calculate the mean of each class µi, total mean of
all data µ, between-class matrix SB(M×M), and
within-class matrix SW (M×M) as in Algorithm
(1, Step(2-5)).

4: Use the PCA technique to reduce the dimension of
X to be equal to or lower than r, where r represents
the rank of SW , as follows:

XPCA =UT X (38)

where, U ∈ R M×r is the lower dimensional space
of the PCA and XPCA represents the projected data
on the PCA space.

5: Calculate the mean of each class µi, total mean of
all data µ, between-class matrix SB, and within-
class matrix SW of XPCA as in Algorithm (1,
Step(2-5)).

6: Calculate W as in Equation (7) and then calculate
the eigenvalues (λ) and eigenvectors (V ) of the W
matrix.

7: Sorting the eigenvectors in descending order ac-
cording to their corresponding eigenvalues. The
first k eigenvectors are then used as a lower dimen-
sional space (Vk).

8: The original samples (X) are first projected on the
PCA space as in Equation (38). The projection on
the LDA space is then calculated as follows:

XLDA =V T
k XPCA =V T

k UT X (39)

where XLDA represents the final projected on the
LDA space.

and within-class variance, SW , thus discriminating be-
tween different classes. To achieve this aim, the paper
followed the approach of not only explaining the steps
of calculating the SB, and SW (i.e. the LDA space) but
also visualizing these steps with figures and diagrams
to make it easy to understand. Moreover, two LDA
methods, i.e. class-dependent and class-independent,
are explained and two numerical examples were given
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Table 3
Accuracy of the PCA-LDA and direct-LDA methods using the
datasets listed in Table (2).

Dataset Dim (SW )
# Training

images
# Testing
images

Rank (SW )
Accuracy (%)

PCA-LDA Direct-LDA

ORL32×32 1024×1024
5 5 160 75.5 88.5
7 3 240 75.5 97.5
9 1 340 80.39 97.5

Ear32×32 1024×1024
3 3 34 80.39 96.08
4 2 51 88.24 94.12
5 1 68 100 100

Yale32×32 1024×1024
6 5 75 78.67 90.67
8 3 105 84.44 97.79
10 1 135 100 100

ORL64×64 4096×4096
5 5 160 72 87.5
7 3 240 81.67 96.67
9 1 340 82.5 97.5

Ear64×64 4096×4096
3 3 34 74.5 96.08
4 2 51 91.18 96.08
5 1 68 100 100

Yale64×64 4096×4096
6 5 75 74.67 92
8 3 105 95.56 97.78
10 1 135 93.33 100

The bold values indicate that the corresponding methods obtain best performances

and graphically illustrated to explain how the LDA
space using the two methods can be constructed. In
all examples, the mathematical interpretation of the
robustness and the selection of the eigenvectors as
well the data projection were detailed and discussed.
Also, LDA common problems (e.g. the SSS and lin-
earity) were mathematically explained using graphi-
cal examples, then their state-of-the-art solutions are
highlighted. Moreover, a detailed implementation of
LDA applications was presented. Using three standard
datasets, a number of experiments were conducted to
(1) investigate and explain the relation between the
number of eigenvectors and the robustness of the LDA
space, (2) to practically show when the SSS problem
occurs and how it can be addressed.
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