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Numerical Solution of Bio-nano-convection transport from a 
horizontal plate with Blowing and Multiple Slip Effects 

 

 

Abstract 

In this paper, a new bio-nano-transport model is presented. The effects of first and second order 

velocity slips, thermal slip, mass slip, and gyro-tactic (torque-responsive) microorganism slip of 

bioconvective nanofluid flow from a moving plate under blowing phenomenon are numerically 

examined. The flow model is expressed by partial differential equations which are converted to a 

similar boundary value problem by similarity transformations. The boundary value problem is 

converted to a system of nonlinear equations which are then solved by a Matlab nonlinear equation 

solver fsolve integrated with a Matlab ODE solver ode15s. The effects of selected control 

parameters (first order slip, second order slip, thermal slip, microorganism slip, blowing, nanofluid 

parameters) on the non-dimensional velocity, temperature, nanoparticle volume fraction, density 

of motile micro-organism, skin friction coefficient, heat transfer rate, mass flux of nanoparticles 

and mass flux of microorganisms are analyzed. Our analysis reveals that a higher blowing 

parameter enhances micro-organism propulsion, flow velocity and nano-particle concentration, and 

increases the associated boundary layer thicknesses. A higher wall slip parameter enhances mass 

transfer and accelerates the flow. The MATLAB computations have been rigorously validated with 

the second-order accurate finite difference Nakamura tri-diagonal method. The current study is 

relevant to microbial fuel cell technologies which combine nanofluid transport, bioconvection 

phenomena and furthermore finds applications in nano-biomaterials sheet processing systems.   

 

Keywords: Bioconvection; motile micro-organism propulsion; Second-order velocity slip, 

nanofluids; boundary layers; nano-bio green fuel cells; numerical solutions. 

 

 

NOMENCLATURE  

a, b first and second order velocity slip parameter (-) 

b  chemotaxis constant (m) 

c thermal slip parameter (-) 

C  nanoparticle volume fraction (-) 

d  mass slip parameter (-) 

1D  variable thermal slip factor (m) 

( )1 0
D  constant thermal slip factor (m) 

BD  Brownian diffusion coefficient (m2s-1) 

nD  diffusivity of microorganisms (m2s-1) 

TD  thermophoretic diffusion coefficient (m2s-1) 

 e microorganism slip parameter (-) 
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1E  variable mass slip factor (m) 

( )1 0
E

 
constant mass slip factor (m) 

1F  variable microorganism slip factor (m) 

( )1 0
F

 
constant microorganism slip factor (m) 

)(f  dimensionless stream function (-) 

g  acceleration due to gravity (ms-2) 

h dimensionless pressure (-) 

j  vector flux of microorganism (kgm-2 s-1)  

k thermal conductivity (Wm-1K-1) 

L  characteristic length (m) 

Lb  bioconvection Lewis number (-) 

Le  Lewis number (-) 

 n volume fraction of motile microorganisms (-) 

1N  variable first order velocity slip factor (sm-1) 

( )1 0
N

 
constant first order velocity slip factor (sm-1) 

2N  variable second order velocity slip factor (sm-1) 

( )1 0
N

 
constant second order velocity slip factor (sm-1) 

Nb  Brownian motion parameter (-) 

xNn  local density number of the motile microorganisms (-) 

Nt  thermophoresis parameter (-) 

Nr  buoyancy ratio parameter (-)
 

xNu  local Nusselt number (-) 

Pe  bioconvection Péclet number (-) 

Pr  Prandtl number (-) 

p  pressure (Pa) 

m
q  wall mass flux (ms-1) 

n
q  wall motile microorganisms flux (ms-1) 

w
q  wall heat flux (Wm-2) 

Ra  Rayleigh number (-) 

xRa  local Rayleigh number (-) 

Rb  bioconvection Rayleigh number (-) 

 s Stefan blowing parameter (-) 

xSh  local Sherwood number (-) 

T nanofluid temperature (K) 

vu ,  velocity components along −x  and −y axes (ms-1) 

rU  reference velocity (ms-1) 
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wu   velocity of the plate (ms-1) 

vu
~

,
~

 average directional swimming velocity of microorganisms along the axes (ms-1) 

cW  constant maximum cell swimming speed (ms-1) 

yx,  Cartesian coordinates ( −x axis is aligned along and −y axis is normal to the plate) (m) 

 

Greek symbols 
  effective thermal diffusivity (m2s-1) 

  volumetric expansion coefficient of nanofluid (K-1) 

  density of motile microorganisms (kg m-3) 

C
  nano-particle concentration boundary layer 

m
  momentum boundary layer 

n
  micro-organism concentration boundary layer 

T
  thermal  boundary layer 

  similarity variable (-) 

)(  dimensionless temperature (-) 

  dynamic viscosity of the fluid ((Nsm-2)) 

  kinematic viscosity of the fluid (m2 s-1) 

f  fluid density (kg m-3) 

p  nanoparticle mass density (kg m-3) 

( )
f

c  heat capacity of the fluid (J kg-3 K-1) 

( )
p

c  heat capacity of the nanoparticle material (J kg-3 K-1) 

  ratio between the effective heat capacity of the nanoparticle material and heat capacity of 

the fluid (-) 

)(  rescaled nanoparticle volume fraction (-) 

( )    rescaled density of motile microorganisms (-) 

  stream function (-) 

 

Subscripts/superscripts 

w condition at the wall 

  free stream condition 

'  differentiation with respect to η 

 

 

 

1. INTRODUCTION 

Nanotechnology is an emerging area of research which has stimulated considerable interest in both 

academia and industry in the 21st century. In this area, nano-particles suspended in conventional 

fluids (water, ethylene glycol, etc.) which constitute nanofluids have been found to have diverse 

applications in aggregate manufacture [1], solar collectors [2], liquid-liquid extraction columns [3], 

heat exchangers [4], bubble absorption technologies [5], reactors [6], refrigeration [7], microscale 
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mixers [8], coolants [9] and waste heat boiler systems [10]. Prior to the deployment of nanofluids 

in the applications, they require extensive laboratory and field tests and also theoretical analysis 

and computational simulation. Metals have over three times greater thermal conductivity than 

conventional heat transfer fluids. Nanofluid is a fluid comprising of two substances i.e., fluid and 

nanoparticles that are combined to fabricate a heat transfer medium which achieves much greater 

heat conductivity than the fluid itself. In the context of mathematical modelling, two thermal 

conductivity and fluid mechanical formulations have proven to be most popular, namely the 

Buongiornio model [11] and the Twari-Das model [12]. Both models fit neatly into the boundary-

layer theory framework although the former features a nano-particle volume fraction conservation 

equation with momentum and energy equations whereas the latter generally comprises momentum 

and energy conservation equations only. Recent studies employing these models have incorporated 

a wide range of computational algorithms for the solution of the associated boundary-layer 

problems. Kothandapani and Prakash [13] investigated radiative-reactive peristaltic magnetic 

nanofluid pumping using the homotopy perturbation method, observing that nanoparticles 

significantly enhance temperatures. Prasad et al. [14] used Buonjiorno’s model to study laminar 

natural convection from an isothermal sphere to nanofluid-saturated porous media by Keller-box 

method. They found that increasing thermophoresis generates a substantial increment in both fluid 

temperature and nano-particle concentration values whereas the nanofluid boundary layer flow is 

decelerated with second order porous drag while temperature and nano-particle concentration are 

both enhanced. Further article addressing multi-physical nanofluid flow problems have been 

communicated by Uddin et al. [15] (for magnetized reactive nanofluids using Maple 17 software), 

Prasad et al. [16] for micropolar rheological nanofluid double-diffusive convection from a 

cylindrical body and Rajesh et al. [17] for unsteady nanofluid dynamics from a  translating curved 

body (using an explicit finite difference solver). Rana and Bég [18] studied variable nano-layer 

conductivity effects on inclined plane magneto-nanofluid flow by finite element method. Rashidi 

et al. [19] employed a differential transform algorithm to examine entropy generation (Bejan 

nmber) effects on steady swirling nanofluid from a permeable rotating disk in a magnetic field. 

Yadav et al. [20] address convective flowin a horizontal layer of an electrically-conducting 

alumina–water nanofluid for free–free, rigid–free and rigid–rigid boundaries under a magnetic field 

by a Galerkin approach.  

 

Bioconvection has also emerged as an important sub-branch of thermofluid sciences in recent years 

[21, 22]. Bioconvection refers to convective phenomenon generated by the motion of motile 

microorganisms in a base fluid. Specifically, bioconvection occurs due to hydrodynamic instability 

caused by accumulation of upward swimming motile microorganisms in the upper areas of the 

fluid. Motile microorganisms are able to propel themselves in different surrounding environments 

e.g., magnetic field, light, gravity or chemical attraction. Nanoparticles do not exhibit self-

propulsion mechanisms and are characterized by Brownian motion and thermophoresis. A 

combination of nanoparticles and motile microorganisms in a suspension therefore enables dual 

benefits to be exploited i.e. directional control of micro-organisms (which aids homogenous 

distribution) and enhancement of macroscopic thermal properties of nanofluids. Bioconvection 

mechanism is used to design ecological fuels e.g. bioethanol [23], fuel cells [24] and photo-bio-

reactors [25-28]. Biomass can be efficiently produced from microalgae in bioconvection by 

controlling the flue gas condition and this results in more sustainable photobioreactors [28]. A 

number of micro-organism propulsion mechanisms are observed e.g., geotactic, chemo-tactic, 

gyro-tactic, photo-tactic, oxy-tactic and magneto-tactic which relate to physical and chemical 

properties of gravity, chemicals, light, oxygen, magnetism of surrounding medium. Bioconvective 
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fluid dynamics has also stimulated considerable attention in the mathematical modelling 

community. Since algae micro-organisms are potential source of biofuels in the future renewable 

energy (owing to their high starch/cellulose and availability in nature), numerous theoretical studies 

have been centered on understanding of the mechanisms inherent in bioconvection. Xu [29] 

examined the bioconvective nanofluid flow over a vertical wall with an external power-law stream 

by a passively controlled nanofluid model. The author evaluated the effects of Prandtl number, 

Grashof number, bioconvection Rayleigh number, Schimdt number, Lewis number and 

bioconvection Péclet number on the concentration of motile micro-organisms. Zaimi et al. [30] 

simulated energy transfer problem past a stretchable/shrinkable sheet placed in a nanofluid with 

gyrotactic microorganisms under suction. They observed that local Sherwood number, local 

Nusselt number, local density of the motile microorganisms and skin friction coefficient are 

enhanced with greater suction. Kuznetsov [31] worked on a shallow layer of nanofluid with 

oxytactic microorganisms where bioconvection exhibits an oscillatory mode. The authors 

presented approximate analytical solutions of the problem with Galerkin approach. Bég et al. [32] 

used Maple 17 software and a Chebyschev spectral algorithm to study bioconvective rheological 

nanofluid flow in a Darcian porous media comprising gyrotactic microorganisms in a free moving 

stream. Other studies were carried out by Kuznetsov [33] and Bég et al. [34]. 

  

 In many chemical and biophysical systems, the conventional no-slip wall condition is violated. 

This phenomenon arises in many applications e.g., trickle-flow reactors [35], viscoplastic die 

extrusion [36], polymer melt capillary dynamics [37], biopolymeric pumping with peristaltic 

devices [38], magnetohydrodynamic flow of micropolar fluids [39],  hydromagnetic flow of 

thermo-solutal nanofluids [40] and food sterilization systems [41]. The term velocity slip refers to 

the property of non-adherence of a certain fluid to a boundary wall. This type of slip may takes 

place on the wall of the geometry for the fluid containing nanoparticles e.g., biopolymers, 

emulsions, suspensions, certain biofuels etc. Slip also arises on hydrophobic walls in fuel cells and 

their analysis necessitates amendment in the boundary conditions which can be obtained by 

incorporating slip factors for velocity and temperature. Moreover, the species diffusing 

simultaneously may cause mass (solutal) slip. Some related studies of slip hydrodynamics are 

conducted by Wang [42] for stagnation Newtonian flows, Turkyilmazoglu [43] for magnetic 

nanofluid slip convection flow and Uddin et al. [44] for magnetohydrodynamic nanofluid flow 

over an extending/contracting biopolymer sheet. Moreover, Ibrahim and Shankar [45] analyzed 

magnetic Sakiadis nanofluid flow with wall transpiration, velocity, thermal and mass slips. Uddin 

et al. [46] investigated nanofluid slip flow in a permeable material with variable viscosity effects 

with g-Jitter mixed convection. Das [47] addressed nanofluid dynamics in a porous stretching sheet 

with a slip, temperature dependent internal heat generation and thermal buoyancy for water-based 

nanofluids with copper and aluminium oxides. 

 

All previous mathematical models did not consider the normal interfacial velocity due to species 

(mass) diffusion. However, there are many industrial systems (e.g. paper drying processes) where 

species transfer occurs via evaporation. Based on the water content and the temperature of the wet 

paper sheet, species transfer may be significant and may produce blowing which is known as Stefan 

blowing since the term is originated from the Stefan problem associated with species transfer [48]. 

Species diffusion generates a bulk motion of fluid that causes an additional motion of fluid 

generating the blowing effect. This has been discussed in text books on heat and mass transfer [49] 

and on magnetohydrodynamic transport phenomena [50]. To reflect the blowing effects for large 

mass transfer flux via the transfer flux of species, a blowing parameter is used to provide a 
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correction factor [51, 52]. Species transfer depends on the flow field that is influenced by the mass 

blowing at the wall. All of these generate a coupling between momentum and concentration fields. 

Many research works have been conducted for fluid flow with blowing phenomenon. Fang and 

Jing [53] illustrated a flow of a viscous fluid along a stretchable sheet considering blowing effects. 

Uddin et al. [54] studied blowing and multiple-slip effects on a moving horizontal plate located in 

a nanofluid with microorganisms. However, to our best knowledge, no study has been 

communicated relating to the laminar flow of bioconvective nanofluids past a moveable plate with 

the blowing effect and multiple slips that include second-order velocity and microorganism slips. 

 

The goal of the present study is to extend a recent work of Uddin et al. [54] by incorporating second 

order slip and microorganism slip. This study is relevant to the investigation of stretchable walls 

of microbial nanofluid fuel cells or in bio-nanofluid materials processing systems exploiting 

bioconvection. Similarity transformations are applied to derive the similarity boundary value 

problem from the governing equations of the flow model. Effects of selected control parameters 

(first order slip, second order slip, thermal slip, microorganism slip, blowing, nanofluid parameters) 

involved in the model on the non-dimensional velocity, temperature, nanoparticle volume fraction 

and density of motile micro-organism are scrutinized. Verification of our computation is made with 

previous studies and also with a Nakamura tri-diagonal finite difference method (NTM) [55].  

 

2.  MATHEMATICAL MODEL OF NANOFLUID BIOCONVECTION 

We now describe the model of a 2D steady nanofluid-flow containing microorganisms past a 

moving plate in a clam free stream. The associated coordinate system with the flow model is shown 

in Fig. 1 in which we choose a Cartesian coordinate system ( ), yx where −x axis is aligned along 

the plate and −y axis, normal to the plate. The plate-velocity can be calculated by 

( )
1/5

/w r

x
u x L U

L

 
=  

 
, where L  denotes the plate length.  

 

 
 

Fig. 1: Coordinate system for nano-bioconvective flow model with multiple slips 

 

 

The following notations are used for different quantities: T denotes the temperature; C, the 

nanoparticle volume-fraction; and n, the concentration of motile microorganisms. Subscript ∞ is 

used to denote the ambient value of the associated quantity while w denotes the value at the 

   

 

  

 

 

 

Stationary free stream  
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boundary wall. Conservation equations for mass, momentum, energy, nanoparticles and 

microorganism (Uddin et al. [54]) are expressed by 

0,
u v

x y

 
+ =

 
 (1) 

2

2
,

f

pu u u
u v

x y x y
 

 
+  

 

   
+ = −

   
 (2) 

( ) ( ) ( ) ( ) ( ) ( ) 0,1 f p f p f

p
C g T T g C C g n n

y
        

 − + + =
 


− − − − − − −


 (3) 

2
2

2
,T

B

DT T T C T T
u v D

x y y y T yy
 



 
  

   
   

    

     
+ = + +

    
 (4) 

2 2

2 2
,T

B

DC C C T
u v D

x y y T y

    
+ = +  

    
 (5) 

( )
2

2
.

n

n n n
u v nv D

x y y y

   
+ + =

   
                                                                                       (6) 

 

Boundary conditions [53, 59] are considered as 

( ) ( ) ( ) ( ) ( )

( ) ( )

slip slip slip

slip

/ , / / / /
1

/ /

, 0

, ,

at 0,

0, , , as ,

B

w

w

w

w w

D
x L x L x L x L C x L

C

x L x L

C
u u u v T T T C C

y

n n n y

u T T C C p p n y  

 
+ + 

−  


= + = − = =



= + =

→ → → → → →

 (7) 

where the following notation applies: 

 

Brownian diffusion coefficient 
BD  

Thermophoretic diffusion coefficient 
TD  

Diffusivity of microorganisms Dn 

gravitational acceleration g 

effective thermal conductivity k 

Velocity components along the x  and
y  

( ),u v  

thermal diffusivity of the fluid   

volumetric expansion coefficient of 

nanofluid 

  

density of the base fluid 
f  

density of the nanoparticles 
p  

dynamic viscosity of the base fluid   

effective heat capacity of the fluid ( )
f

c  

effective heat capacity of the 

nanoparticles 
( )

p
c  
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Characteristic velocity 2/5

rU Ra
L


=  

Swimming velocity of microorganism 

along y direction 
cbW C

v
C y


=
 

 

Ratio of effective heat capacity of the 

nanoparticle to effective heat capacity of 

the fluid 

( )

( )
p

f

c

c





=  

 

Furthermore, velocity slip is given by: 

( ) ( ) ( )

( ) ( )

3 2 2
4 2 2

slip 2 2

2

1 2 2

2 3 2 1 1 2 1
/ 1 / , min ,1 ,

3 3 4

/ / ,

n n n

l l u u
u x L l l x L l

K y K y K

u u
N x L N x L

y y

     − −  
= − − + − =     

      

 
= +

 


 

   (8) 

where the following notation applies: 

 

Momentum  accommodation 

coefficient 
0 1   

Molecular mean free path   

Knudsen number 
nK  

First order slip factor 
( ) ( )

3 2

1

2 3 2 1
/ /

3 3 n

l l
N x L x L

K

 − −
= − 

 





 

Second order slip factor 
( ) ( ) ( )4 2 2

2 2

1 2
/ 1 /

4 n

N x L l l x L
K

 
= − + − 

 
  

Thermal slip ( ) ( )1slip
T x x

T
D

y


=


 

Mass (nanoparticle species) slip ( ) ( )1slip
C x x

C
E

y


=


 

Micro-organism slip ( ) ( )1slip
n x x

n
F

y


=


 

 

The multiple slip factors are assumed to take the form:  

( ) ( ) ( )
2/5

1 1 0
N x N x=   

( ) ( ) ( )
3/5

2 2 0
N x N x=   

( ) ( ) ( )
2/5

1 1 0
D x D x=  

( ) ( ) ( )
2/5

1 1 0
E x E x=  

( ) ( ) ( )
2/5

1 1 0
F x F x= ,           

where: 

 

Constant First-order velocity slip factor ( )1 0
N  



10 

Constant Second order velocity slip factor ( )2 0
N  

Constant thermal slip factor ( )1 0
D  

Constant mass slip factor ( )1 0
E  

Constant micro-organism slip factor ( )1 0
F  

 

Gas flow in micro channels can be classified into four categories [60] considering the variation of 

Knudsen number ( nK ), (i) continuum flow regime ( 0.001nK  ); (ii) slip flow regime (

0.001 0.1nK  ); (iii) transition flow regime ( 0.1 10nK  ) and (iv) free molecular flow regime (

10nK  ).  

In order to transform Eqns. (1)-(7) into non-dimensional form [61], the following variables are 

introduced: 

( )

1/5 2/5 1/5

2

4/5

2
, , ,

, , , , ,
w

w w f

v

L p p
p

y T Tx L L
x y Ra u Ra u v Ra

L L T T

C C n
Ra

C C n


 


 



− − 



 −



−
=

−

−
= = = = =

−

−
= =  

(9) 

in which ( )( ) ( )31 /w fT TRa g C L    = −− is the Rayleigh number. Moreover, using Cauchy-

Riemann equations, we use a stream function  defined by u
y


=


 ; ,v
x


= −


 which  

identically satisfies Eqn. (1). We now employ a group of similarity transformations [55]: 
3 2

5 5
2

5

, ( ), ( ), ( ), ( ), ( ),
y

x f p x h

x

            = = = = = =                 (10) 

in Eqns. (2)-(6) we get the following equations  

2 2 2
'' ' ,

5 5 5 5

3 1
Pr ' 0f f ff h h+ − + − =   (11) 

 

1
' =0,

Pr
h Nr Rb  − + − +    (12) 

 

2 0,
5

3
f Nb Nt        + + + =  (13) 

 
3

0,
5

Nt
Le f

Nb
    + + =  (14)  

 

( )
5

3
' 0.Pe Lb f       − + + =  (15) 

 

The boundary conditions are re-formulated as: 
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5

3
(0) '(0), (0) 1 (0) '(0), (0) 1 (0), (0) 1 '(0),

(0) 1 '(0), '( ) ( ) ( ) ( ) ( ) 0,

s

Le
f f a f b f c d

e f h

    

    

   = = + + = + = +

= +  =  =  =  =  =

           (16) 

 

where the terms are defined as 

 

Dimensionless velocity f (η) 

Dimensionless temperature θ(η) 

Dimensionless nanoparticle volume-

fraction (concentration) 

ϕ(η) 

Dimensionless microorganism 

concentration 

χ(η) 

Prandtl number 
Pr =




 

Thermophoresis ( )T wT TD
Nt

T




−
=



 

Brownian motion ( )B wC CD
Nb −

=



 

Buoyancy ratio ( )( )

( )( )1

p f w

f w

C C

T T
Nr

C



 

−

−

−
=

−

 

 
 

Lewis number 

B

Le
D

=
  

First order velocity slip ( ) 2/5

1 0

f

Ra

L

N
a =




 

Second order velocity slip ( ) 2/5

2 0

f

Ra
b

L

N
=




 

Thermal slip ( ) 2/5

1 0
Ra

c
L

D
=  

Mass slip  ( ) 2/5

1 0
E Ra

d
L

=  

Microorganism slip ( ) 2/5

1 0,
F Ra

e
L

=  

Bioconvection Rayleigh number / nLb D=  

Bioconvection Péclet  number 
𝑃𝑒 =

�̃�𝑊𝑐
𝐷𝑛

 

Bioconvection Lewis number ( ) ( )( ) / (1 )p f w wn n T TRb C   − −= − −     

Stefan blowing ( )

( ) 3/5
.

1

B w

w

D C C

C Ra
s 

−

−

−
=
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4. PHYSICAL QUANTITIES  

Certain physical quantities i.e., local skin friction factor f xC  , local Nusselt number 
xNu , local 

Sherwood number xSh , local density number of the motile microorganisms xNn  , are important for 

engineering applications e.g., in the proximity of near-wall flows of microbial nano-bioconvection 

fuel cell design and in nano-bio-materials processing systems. The quantities are computed by the 

following expressions: 

2
0 0 0 0

2
, , , .f x x x x

w w wy y y yw

u x T x C x n
C Nu Sh Nn

y T T y C C y n n yu



   = = = =

       −  −  − 
      

 −  −  −        
= = = =

     

 
(17) 

Using the transformations, Eqn.  (16) in Eqn. (23), one derives that 

( ) ( ) ( ) ( )3/5 1/5 1/5 1/50 , 0 , ' 0 , ' 0 .x f x x x x x x xRa C f Ra Nu Ra Sh Ra Nn  − − − = = − = − = −  (18) 

where ( ) ( )31 /xRa g C T x = −  is the local Rayleigh number.  

 

5. COMPUTATIONAL SOLUTION OF NANOFLUID-BIOCONVECTION MODEL  

Transformation of the original flow model into ordinary differential equations (ODEs) (11)–(15) 

with boundary conditions (16) significantly reduces the computation. The objective is now to solve 

the ODEs efficiently. Since the equations contain higher order terms, they need to be formulated 

as a set of first order ODEs. Assume that 𝑧1 = 𝑓,  𝑧2 = 𝜃, 𝑧3 = 𝜙, 𝑧4 = 𝜒, 𝑧5 = ℎ, 𝑧6 = 𝑓′  𝑧7 =
𝜃′,  𝑧8 = 𝜙′, 𝑧9 = 𝜒′,  𝑧10 = 𝑓

" = 𝑧6
′ . With these variables in Eqns. (11)–(15), the following system 

of ODEs is reconstructed:  

[
 
 
 
 
 
 
 
 
 
 
𝑧1
′

𝑧2
′

𝑧3
′

𝑧4
′

𝑧5
′

𝑧6
′

𝑧7
′

𝑧8
′

𝑧9
′

𝑧10
′]
 
 
 
 
 
 
 
 
 
 

⏟  
𝑧′

=

[
 
 
 
 
 
 
 
 
 
 
 
 

𝑧6
𝑧7
𝑧8
𝑧9

𝑧2 − 𝑁𝑟 𝑧3 + 𝑅𝑏𝑧4
𝑧10

−𝑧7  [
3

5
𝑧1 +𝑁𝑏 𝑧8 +𝑁𝑡 𝑧7]

−
3

5
𝐿𝑒 𝑧1𝑧8 + 

𝑁𝑡

𝑁𝑏
𝑧7  [

3

5
𝑧1 +𝑁𝑏 𝑧8 +𝑁𝑡 𝑧7]

𝑧9 (𝑃𝑒 𝑧8 − 
3

5
𝐿𝑏 𝑧1) + 𝑃𝑒 𝑧4 (−

3

5
𝐿𝑒 𝑧1𝑧8 + 

𝑁𝑡

𝑁𝑏
𝑧7  [

3

5
𝑧1 +𝑁𝑏 𝑧8 + 𝑁𝑡 𝑧7])

1

𝑃𝑟
 (
𝑧6
2

5
 − 

3

5
𝑧1𝑧10 + 

2

5
𝑧5 −

2

5
𝜂[𝑧2 −𝑁𝑟 𝑧3 + 𝑅𝑏𝑧4]) ]

 
 
 
 
 
 
 
 
 
 
 
 

⏟                                                
𝑔(𝑧)

   (19) 

In this system of equations, we have a vector z= [𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6, 𝑧7, 𝑧8,  𝑧9, 𝑧10]
𝑇of ten variables 

with ten equations in Eqn. (19). We highlight that the velocity slip boundary condition in Eqn. (16) 

includes a third derivative term which has to be converted to a condition comprising lower order 

derivatives. We convert the velocity slip boundary condition using Eqn. (16) with Eqn. (11) as 

follows: 

                                  𝑓′(0) = 1 + 𝑎𝑓′′(0) + 𝑏𝑓′′′(0) 

                           = 1 + 𝑎𝑓′′(0) +
𝑏

𝑃𝑟
− 0.6𝑓(0)𝑓′′(0) + 0.2𝑓′

2(0) + 0.4ℎ(0) 

From the above equation, we deduce that: 
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𝑓′′(0)   =
𝑓′(0) − 1 −

𝑏
𝑃𝑟
[0.2𝑓′2(0) + 0.4ℎ(0)]

𝑎 −
0.6𝑏
𝑃𝑟 𝑓

(0)
 

Finally, the boundary conditions Eqn. (16) can be expressed as: 

𝑧1(0) =
5𝑠

3𝐿𝑒
 𝑧8(0)                              

𝑧2(0) = 1 + 𝑐𝑧7(0)                            

𝑧3(0) = 1 + 𝑑𝑧8(0)                          

𝑧4(0) = 1 + 𝑒𝑧9(0)                           

𝑧5(0) = unknown                            

𝑧6(0) = unknown                             

𝑧7(0) = unknown                           

𝑧8(0) = unknown                           

𝑧9(0) = unknown                           

   𝑧10(0) =
𝑧6(0)−1−b[0.2 𝑧6

2+0.4𝑧5(0)]/Pr

𝑎−0.6𝑧1/𝑃𝑟
  }
 
 
 
 
 

 
 
 
 
 

                                                                   (20) 

Observe that the initial conditions z5(0) − z9(0) are unknown that inhibits solving Eqn. (19) 

directly. However, one can use following additional boundary conditions  
𝑧2(∞) = 0

 𝑧3(∞) =  0

 𝑧4(∞) = 0
 𝑧5(∞) = 0
 𝑧6(∞) = 0}

 
 

 
 

                                                                                                                       (21) 

to solve the system. Eqn. (21) takes the form of a nonlinear system of equations in which we 

attempt to find the unknowns in Eqn. (20) such that (21) holds. It is noticed that η = 20 is adequate 

to represent a sufficiently large  → ∞. The following algorithm constructs Eqn. (21) as a system 

of nonlinear equations.  

Algorithm 1: Construction of Function F(q) 

Input: 𝑞 ∈ ℝ5 

Output : 𝑡 ∈ ℝ5 

1. Assign the unknown values as 

[
 
 
 
 
𝑧5(0)
𝑧6(0)
𝑧7(0)
𝑧8(0)

𝑧9(0)]
 
 
 
 

≔

[
 
 
 
 
𝑞1
𝑞2
𝑞3
𝑞4
𝑞5]
 
 
 
 

 

2. Compute [𝑧1(20),  𝑧2(20),… , 𝑧10(20)] by solving (19) with (20) taking the unknown 

values in step 1 using Matlab function ode15s.  

3. Assign the output t as  

[
 
 
 
 
𝑡1
𝑡2
𝑡3
𝑡4
𝑡5]
 
 
 
 

≔

[
 
 
 
 
𝑧2(20)
𝑧3(20)

𝑧4(20)

𝑧5(20)
𝑧6(20)]

 
 
 
 

 

4. Return t 
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In Algorithm 1, the function F(q) is formulated that can be computed for a given input values of 

q:=[q1, q2, q3, q4, q5]
T. Values of q are set to the unknowns of (20). Eqn. (19) can then be solved by 

Matlab stiff ODE solver ode15s that produces the solution as [𝑧1(20),  𝑧2(20),… , 𝑧10(20)]
𝑇. We 

select the values releated to additional boundary conditions and them to [t1,t2, t3, t4, t5]
T which is 

the output from the function. Now our goal is to find a solution q such that the following condition 

holds:  

F(q) = 0                                                            (21) 

which has the form of a highly nonlinear system of equations. Eqn. (21) can be solved by Matlab 

trust-region-reflective algorithm fsolve.  

 

6. VALIDATION OF MATLAB COMPUTATION 

Comparison of a simplified version of our model with existing solutions in the literature was made 

to verify our solution of the model. In the absence of blowing ( 0s = ), slip boundary conditions (a 

= c = d = e = 0) and microorganism equation (Eqn. (16)), our model takes the form of the model 

from Pradhan et al. [58] for a stationary sheet (f '(0) = 0). For this case, we compared our test results 

with those of Pradhan et al. in Table 1 where an excellent agreement is achieved in the comparison. 

The reason for not having an exact match (slight variation) is that our computation has an accuracy 

of the order O(10-10), while Pradhan et al [58] used an accuracy of  O(10-8) for their solution.  

To examine the nano-bioconvective flow with multiple slips, we carried out computational tests 

with different values of thermophysical parameters. In our tests, a water based nanofluid is 

considered with the parameters as follows: Pr = 6.8 (water), Nb = Nr = Nt = 0.1, Pe = Lb = Rb = 

1, Le = 10 unless stated otherwise. Tables 2-3 present the solutions which have been benchmarked 

with an alternative numerical method of Nakamura [55] which easily solves the coupled boundary 

value problems. Similar to Keller-Box approach, in Nakamura tri-diagonal method (NTM), the 

higher order differential equations are reduced in order. The method has been used for solving 

many boundary layer problems e.g., viscoelastic polymer flows, non- magnetohydrodynamics, 

Newtonian heat transfer and transient rotating flows [62-65]. Solution procedure using NTM for 

our nano-bioconvective flow model can be presented as follows. 

Our goal is to solve eqns. (11)-(16) which are third-order ODEs which are required to be 

transformed to second-order ODEs. The following substitutions are used. 

 

J = f /, K = h, L= ,M = , N =     (29) 

 

The eqns. (17)-(21) take the form: 

 

Nakamura momentum equation: 

 

   A1J
//+ B1J

/+C1J = S1      (30) 

 

Nakamura pressure equation: 

 

   A2K
//+ B2K

/+C2K = S2     (31) 

 

 

Nakamura energy (heat) equation: 
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   A3L//+ B3L/+C3L = S3      (32) 

 

Nakamura species (nanoparticle concentration) equation: 

 

   A4M
//+ B4M

/+C4M = S4     (33) 

 

Nakamura motile microorganism density equation: 

 

   A5L//+ B5L/+C5L = S5                   (34) 

 

where Ai=1…5, Bi=1..5, Ci=1..5 are the Nakamura matrix coefficients, Si=1…5 are the Nakamura source 

terms. The source term includes the variables and derivatives which do not depend on lead 

variables. For instance, in eqn. (31), the source term does not include any term comprising the lead 

variable K. To proceed with NTM, an equi-spaced finite difference mesh is used to discretize the 

one-dimensional domain in -direction. Differentiations of f, h,,  and  with respect to  are 

computed by the central difference scheme. Thus eqns. (30)-(34) are converted to finite difference 

equations which are then formulated as a tri-diagonal system. The 10 boundary conditions in eqn. 

(16) are set in the system by modifying the rows/columns at appropriate positions. An iteration 

loop is used to compute the solutions of the momentum, pressure, energy, nanoparticle species 

(concentration) and motile microorganism density conservation equations by successive 

substitution at each iteration due to the high nonlinearity of equations. Specifically, at each 

iteration, solutions are obtained by solving tri-diagonal system modified by the boundary 

conditions. NTM solutions were compared with the results of Pradhan et al. [58] where a good 

agreement is achieved in comparison. Furthermore, general model solutions obtained with 

MATLAB are compared with NTM computations that provided a good correlation. Hence, the 

accuracy in the MATLAB code is high. 

 

Table 1: Comparison of present study with Pradhan et al. [58] on skin friction factor f ″(0) and 

heat transfer rate -θ′(0) with s=a = c =d=e = 0, f '(0) = 0, Le = 10 and Pr = 7. 

 

Nb Nt Nr 

f"(0)  -θ'(0)  

Present  

Study 

Pradhan  

et al. [58] 
NTM 

Present  

Study 

Pradhan  

et al. [58] 
NTM 

0.1 
0.2 0.4 

0.859828 0.86002 0.86114 0.357423 0.35744 0.35739 

0.5 0.929720 0.92979 0.92981 0.268031 0.26799 0.26795 

0.3 

0.1 

0.001 0.953720 0.95374 0.95371 0.328791 0.32878 0.32873 

0.1 0.939522 0.93956 0.93958 0.327855 0.32784 0.32781 

0.2 0.925020 0.92507 0.92509 0.326894 0.32688 0.32684 

0.3 0.910352 0.91042 0.91044 0.325917 0.32591 0.32588 

0.5 0.880486 0.88058 0.88057 0.323914 0.32391 0.32387 

0.001 

0.2 

0.913447 0.91340 0.91341 0.340780 0.34076 0.34072 

0.2 0.936959 0.93704 0.93705 0.313637 0.31362 0.31359 

0.5 0.973797 0.97398 0.97396 0.277959 0.27797 0.27795 

 

 

Table 2: Skin friction factor f ″(0) and wall mass flux of motile microorganism -χ′(0) with 
various values of a, b, c, d, e and s.  

s a b c d e f "(0) f "(0) -χ′(0) -χ′(0)  
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MATLAB NTM MATLAB NTM 

-1         0.2345347 0.234535 2.464943 2.464945 

0 0.1 -0.1 0.1 0.1 0.1 0.3554415 0.355442 1.700089 1.700090 

1         0.4154311 0.414532 1.323610 1.323612 

-1 10 -0.1       0.0335244 0.033528 2.589387 2.589388 

0 10 -0.1 0.1 0.1 0.1 0.0505944 0.050595 1.884324 1.884326 

1 10 -0.1       0.0594578 0.059458 1.507185 1.507187 

-1 0.1 0       -0.1852024 -0.185303 2.445849 2.445855 

0 0.1 0 0.1 0.1 0.1 -0.1473831 -0.147385 1.678216 1.678220 

1 0.1 0       -0.1300381 -0.130038 1.304167 1.304170 

-1 0.1 -5       -0.4264349 -0.426437 2.814376 2.814376 

0 0.1 -5 0.1 0.1 0.1 -0.431085 -0.431082 2.125818 2.125821 

1 0.1 -5       -0.4346665 -0.436671 1.722904 1.722905 

-1 0.1 -0.1       0.2559226 0.255923 2.457017 2.457019 

0 0.1 -0.1 0 0.1 0.1 0.3742363 0.374236 1.701444 1.701446 

1 0.1 -0.1       0.433374 0.433376 1.326461 1.326465 

-1 0.1 -0.1       -0.0044658 -0.004467 2.558446 2.558447 

0 0.1 -0.1 5 0.1 0.1 0.1031409 0.103141 1.679545 1.679549 

1 0.1 -0.1       0.1569777 0.156978 1.281188 1.281192 

-1 0.1 -0.1       -0.0128258 -0.012826 4.813505 4.813508 

0 0.1 -0.1 0.1 0 0.1 0.3357962 0.335796 1.903316 1.903319 

1 0.1 -0.1       0.4072657 0.407266 1.382789 1.382790 

-1 0.1 -0.1       0.3566764 0.356677 1.442593 1.442595 

0 0.1 -0.1 0.1 0.5 0.1 0.402758 0.402759 1.281593 1.281597 

1 0.1 -0.1       0.4398622 0.439862 1.139594 1.139596 

-1 0.1 -0.1       0.2713895 0.271390 3.284665 3.284668 

0 0.1 -0.1 0.1 0.1 0 0.3833455 0.382246 2.057325 2.057327 

1 0.1 -0.1       0.4385199 0.483520 1.531610 1.531614 

-1 0.1 -0.1       0.1254961 0.125496 0.188340 0.188343 

0 0.1 -0.1 0.1 0.1 5 0.2270652 0.227066 0.181867 0.181869 

1 0.1 -0.1       0.2773583 0.277358 0.176307 0.176310 

 

 

 

 

Table 3: Heat transfer rate –θ′(0) and wall mass flux of nanoparicles -ϕ′(0) with various values of 

a, b, c, d, e and s.  

s a b c d e 
-θ′(0) 

MATLAB 

-θ′(0) 

NTM 

- ϕ′(0) 

MATLAB  

- ϕ′ (0) 

NTM 

-1         0.690358 0.690356 2.662430 2.662426 

0 0.1 -0.1 0.1 0.1 0.1 0.561010 0.561006 1.639821 1.639811 

1         0.508482 0.508478 1.195537 1.195533 

-1 10 -0.1       0.747340 0.747332 2.826062 2.826061 

0 10 -0.1 0.1 0.1 0.1 0.630261 0.630259 1.853659 1.853654 

1 10 -0.1       0.578220 0.578214 1.389526 1.389521 

-1 0.1 0       0.682081 0.682078 2.637294 2.637289 
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0 0.1 0 0.1 0.1 0.1 0.553462 0.553460 1.614720 1.614715 

1 0.1 0       0.501630 0.501628 1.175148 1.175143 

-1 0.1 -5       0.866670 0.866667 3.127368 3.127366 

0 0.1 -5 0.1 0.1 0.1 0.733650 0.733649 2.135950 2.135947 

1 0.1 -5       0.670867 0.670863 1.621613 1.621610 

-1 0.1 -0.1       0.741141 0.741139 2.647089 2.647094 

0 0.1 -0.1 0 0.1 0.1 0.595408 0.595405 1.639527 1.639524 

1 0.1 -0.1       0.536786 0.536784 1.197341 1.197336 

-1 0.1 -0.1       0.157576 0.157574 2.844404 2.844401 

0 0.1 -0.1 5 0.1 0.1 0.148409 0.148406 1.642161 1.642165 

1 0.1 -0.1       0.144097 0.144094 1.168748 1.168745 

-1 0.1 -0.1       0.964090 0.964087 8.277239 8.277236 

0 0.1 -0.1 0.1 0 0.1 0.551604 0.551600 1.980785 1.980783 

1 0.1 -0.1       0.497632 0.497629 1.309836 1.309835 

-1 0.1 -0.1       0.635701 0.635697 1.098599 1.098596 

0 0.1 -0.1 0.1 0.5 0.1 0.580834 0.580831 0.968709 0.968708 

1 0.1 -0.1       0.540187 0.540183 0.851247 0.851243 

-1 0.1 -0.1       0.695301 0.695297 2.671523 2.671519 

0 0.1 -0.1 0.1 0.1 0 0.564425 0.564421 1.646283 1.646280 

1 0.1 -0.1       0.511061 0.511059 1.199816 1.199813 

-1 0.1 -0.1       0.675048 0.675044 2.634885 2.634882 

0 0.1 -0.1 0.1 0.1 5 0.544776 0.544772 1.609402 1.609398 

1 0.1 -0.1       0.492475 0.492470 1.169337 1.169335 

 

 

7. COMPUTATIONAL RESULTS AND DISCUSSION 

Figs. 2-13 illustrate our numerical results. In all these plots it is evident that  f ′ (η)→ 0, θ(η)→0, 

ϕ(η)→0 and χ(η)→0 asymptotically as η→ ∞. For the current bioconvection nanofluid problem we 

found that η→ 20 is large enough to fulfill the boundary condition η→ ∞. The accuracy of the 

solutions for f ′ (η), ϕ(η), θ(η) and χ(η) at η = 20 is of the order O(10-10). 

 
Fig. 2: Variation in profiles of the dimensionless (a) velocity f ′(η) and (b) temperature θ(η) for  

different values of velocity slip a and blowing parameter s 
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Fig. 3: Variation in profiles of the dimensionless (a) nanoparticle volume-fraction ϕ(η) and (b) 

microorganism concentration χ(η) for different values of  a = c = Nb=0.1, λ = Lb =  Pe = 1, Le = 

10 for  different values of velocity slip parameter a and blowing parameter s 

 

 
Fig. 4: Variation in profiles of the dimensionless (a) velocity f ′(η) and (b) temperature θ(η) for 

second order velocity slip parameter b and blowing parameter s. 
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Fig. 5: Variation in profiles of the dimensionless (a) nanoparticle volume-fraction ϕ(η) and (b) 

microorganism concentration χ(η) for second order velocity slip parameter b and blowing 

parameter s. 

 
Fig. 6: Variation in profiles of dimensionless (a) velocity f ′(η) and (b) temperature θ(η) for thermal 

slip parameter c and blowing parameter s. 
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Fig. 7: Variation of dimensionless (a) nanoparticle volume-fraction ϕ(η) and (b) microorganism 

concentration χ(η) for thermal slip parameter c and blowing parameter s. 

 

Fig. 8: Variation of dimensionless (a) velocity f ′(η) and (b) temperature θ(η) for solutal slip 

parameter d and blowing parameter s. 
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Fig. 9: Variation of dimensionless (a) nanoparticle volume fraction ϕ(η) and (b) microorganism 

concentration χ(η) for solutal slip parameter d and blowing parameter s. 

 
Fig. 10: Variation of dimensionless (a) velocity f ′(η) and (b) temperature θ(η) for microorganism 

slip parameter e and blowing parameter s. 
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Fig. 11: Variation of dimensionless (a) nanoparticle volume fraction ϕ(η) and (b) microorganism 

concentration χ(η) for the microorganism slip parameter e and blowing parameter s. 

 

 
Fig. 12: (a) Effect of velocity slips a and b on skin friction factor f ″(0) and (b) effect of c and Nb 

on heat transfer rate -θ′(0). 
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Fig. 13: (a) Effect of the parameters d and Le on wall mass flux of nanoparicles -ϕ′(0) and (b) effect 

of e and Pe on wall mass flux of motile microorganism -χ′(0). 

 

Figs. 2(a)-(b) plot the non-dimensional velocity and temperature profiles for various values of first-

order velocity slip a and blowing s. we observe that dimensionless velocity enhances whilst 

temperature reduces with the increase in velocity slip for both blowing conditions – injection (s = 

1) and suction (s = -1), and the absence of blowing (s=0). For the case of suction, nanofluid is 

drawn inside the boundary through perforations of the sheet. This consequently reduces the 

momentum which decelerates the flow and increases the velocity boundary-layer thickness. The 

opposite phenomena occur when injection is induced which enhances the flow and shrinks the 

velocity boundary-layer thickness. In both cases of injection and suction, the slip decreases 

progressively with respect to the distance from the wall. However, rising velocity slip leads to a 

temperature reduction consistently for all locations from the boundary-wall to the free stream. This 

happens due to enhanced slip that accelerates the flow which cools down the boundary-layer and 

shrinks the thickness of thermal boundary-layer. Temperature rises with injection but falls with 

suction. Thermal-boundary layer has the greatest thickness for injection with no-slip at the wall. 

We notice that at low value of first order momentum slip, a strong velocity shoot arises close to the 

sheet, which disappears with higher first order slip value. No temperature overshoot is computed 

for any value of first order velocity slip. 

Figs. 3(a)-(b) portray the variation in the profiles of nanoparticle volume-fraction (concentration) 

and micro-organism concentration with various values of velocity slip a and blowing parameter s. 

Both profiles exhibit a monotonic decay from the boundary wall. It can be noticed that nano-

particle concentration decreases more rapidly near wall than micro-organism concentration where 

the latter declines more gradually to zero in the free stream. Both the nano-particle and motile 

concentrations reduce with greater slip and increase with injection (s=1). A greater spread can be 

observed in the profiles of nano-particle concentration compared to microorganism concentration. 

It should be noted that significant similarities as well as differences exist between nano-particles 

and micro-organisms. The differences may in fact be more beneficial than the similarities. A key 

problem in nanofluids is mitigation of agglomeration and aggregation, which manifest in clogging 

phenomena [2, 3].  
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Figs. 4(a)-(b) demonstrate the impact of second-order velocity slip (b) and blowing parameter 

(suction, no blowing and injection) on the dimensionless velocity and temperature. It can be 

observed that the dimensionless velocity rises for some distance transverse to the wall with greater 

second order slip magnitude (b =-5); however further from the wall, the velocity increases weakly 

i.e. the flow is accelerated with vanishing second order momentum slip (b=0). A velocity shoot 

near the wall is present in the absence of second order slip whereas it is eliminated when second 

order slip is present. Temperature however is consistently depressed with greater second order slip 

magnitude (b= -5) for all cases of blowing, injection and no blowing. Momentum boundary layer 

thickness at the wall is therefore decreased with greater second order momentum slip close to the 

wall but the opposite effect is sustained further from the wall. Thermal boundary layer thickness is 

generally always reduced. The slip parameters whether momentum, thermal, solutal or micro-

organism, all arise solely in the boundary conditions (32). They do not feature in any of the 

transformed dimensionless boundary layer equations.  The implication for the engineering designer 

of microbial fuel cells is therefore that significant modifications in boundary layer phenomena are 

achievable via manipulation of conditions at the wall. These will inevitably also propagate effects 

further into the main body of the nanofluid and circulation phenomena will be generated. In 

materials processing, a similar transfer of effects will be felt in the body of the nanofluid sheet via 

the imposition of wall conditions, but these will progressively diminish with distance from the wall.  

Figs. 5(a)-(b) show the influence of second-order velocity slip with blowing parameter (suction, 

no blowing and injection) on the dimensionless concentration and microorganism. Both nano-

particle and microorganism concentrations under second-order velocity slip (b = -5) are observed 

to be reduced. With second order velocity slip absent the converse behavior is witnessed. The 

presence of second order slip therefore significantly decreases both nano-particle concentration and 

micro-organism concentration boundary layer thicknesses. Positive Stefan blowing (injection) 

always however enhances both nano-particle and micro-organism species concentration 

magnitudes whereas negative blowing (suction) induces the opposite effect. No overshoots in either 

concentration function are observed for any value of second order slip or blowing parameter.  

Figs. 6(a)-(b) dipict variation in the profiles of dimensionless velocity and temperature with 

different thermal slips. A higher thermal slip decelerates the flow and suppresses the velocity 

overshoot adjacent to the boundary. However, a strong reduction in temperature is observed at the 

wall for higher thermal slip that in turn cools down the boundary layer. Dimensionless temperature 

gradually vanishes at the free stream. With injection, the flow is mildly accelerated and temperature 

mildly rises. However, suction decelerates the flow and decreases temperature that leads to a cooler 

boundary-layer.  

The variation in profiles of nano-particle and micro-organism concentrations for different values 

of thermal slip c is shown in Figs. 7(a)-(b). A weak decrease the nano-particle concentration 

accompanies an increase in thermal slip whereas the micro-organism concentration weakly 

increases in magnitudes. For higher thermal slip, diffusion of nano-particles is slightly hindered 

while propulsion of micro-organisms is slightly improved. Like earlier plots, suction reduces both 

nano-particle and micro-organism concentrations while injection raises them. Overshoots in both 

nano-particle and micro-organism concentration are also absent in both figures. 

Figs. 8(a)-(b) and 9(a)-(b) present variation in the profiles of dimensionless velocity, temperature, 

nano-particle and nano-organism concentration for different values of solutal (mass) slip parameter 

d. For higher mass slip at the boundary, nanofluid flow is mildly accelerated and the velocity over-

shoot is magnified (Fig 8(a)).  Influence of blowing is also remarkable where suction in the absence 

of mass slip minimizes the velocity, whereas injection with mass slip boosts the velocity. On the 

other hand, temperature rises with injection and is the minimum with suction with no mass slip 
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(Fig. 8(b)). With higher mass slip, nano-particle concentration dramatically falls at the vicinity of 

the wall which is minimized with suction. For injection, nano-particle concentration ascends to the 

maximum with the absence of mass slip (Fig. 9(a)). A higher mass slip at the wall raises micro-

organism concentration, which with injection, elevates to a maximum. In the absence of mass slip, 

micro-organism concentration distribution with wall suction descends to a minimum. From the 

figure, we furthermore check that enhanced mass slip improve diffusion of propelling micro-

organisms, a feature of some importance in optimized design of biofuel cell designs.  

Variation in the profiles of dimensionless velocity, temperature, nano-particle and micro-organism 

concentrations is demonstrated in Figs. 10(a)-(b) and 11(a)-(b) with different microorganism slip 

parameters e. A higher microorganism slip produces a mild deceleration in the flow and suppresses 

the velocity overshoot (Fig. 10(a)). Conversely, an increase of microorganism slip slightly 

increases temperature (Fig.10(b)). With increasing microorganism slip, there is a weak rise in nano-

particle concentration (Fig. 11a) whereas the microorganism concentration significantly drops 

(Fig.11b). 

Figs. 12(a)-(b) show the influence of the first- and second-order velocity slips a and b on the 

dimensionless skin friction factor f ″(0) i.e. surface shear stress function, and the influence of 

thermal slip (c) and Brownian motion parameter (Nb) on heat transfer rate -θ′(0). With increasing 

second order slip magnitude a strong reduction in shear stress (Fig. 12a) is induced i.e. the flow is 

retarded; however with greater first order slip, shear stress generally increases i.e., the flow is 

accelerated. Shear stress is also as expected observed to be greater for injection (s>0) than for 

suction (s<0). Fig. 12(b) shows that heat transfer rate, -θ′(0) is generally maximized with absence 

of thermal slip (c=0). Greater magnitudes of heat transfer gradient at the wall are also achieved 

with higher Brownian motion parameter values (Nb = 0.1). Physically a larger Brownian motion 

number indicates smaller nanoparticle diameters. Heat transfer can be improved in the nanofluid 

by higher Brownian motion number. On the other hand, lower Brownian motion number implies 

larger size of nano-particles which leads to reduction of heat transfer.  

Figs. 13(a)-(b) exhibit the impacts of mass slip parameter, d and Lewis number, Le on wall mass 

flux of nanoparticles, -ϕ′(0), and also the effect of micro-organism slip, e, and bioconvection Péclet 

number, Pe on wall mass flux of motile microorganism -χ′(0).  Nanoparticle wall mass flux (Fig. 

13(a)) is generally elevated with decreasing solutal slip (d=0.1) and higher Lewis number.  Solutal 

slip however exerts a much more significant effect. With strong blowing (injection), nanoparticle 

wall mass flux is depressed whereas with suction present it is found to be maximized. Fig. 13(b) 

shows that micro-organism mass flux is substantially increased with bioconvection Peclet number 

but reduced with increasing micro-organism slip. Peclet number, Pe only exists in the 

microorganism concentration conservation equation. Note that Pe =b Wc/Dn that uses  chemotaxis 

constant b , maximum micro-organism  swimming speed Wc and diffusivity of micro-organisms 

Dn. For higher Pe, Patterns of the motile micro-organism flow dramatically alter. With higher 

swimming speed of microorganisms i.e., greater Péclet number, microorganisms propel faster 

which consequently leads to dilution of their concentration. On the contrary, smaller Péclet number 

produces the reverse effect in that mobility of the micro-organisms reduces which raises their 

concentration in the nanofluid boundary layer. Injection (s>0) is associated with suppression of 

micro-organism mass flux while suction (s<0) induces the opposite effect. For blowing effect, the 

same effect occurs on nano-particle concentration but with smaller magnitude. Finally we note that 

bioconvection in the present nanofluid regime occurs since nanoparticle concentration is low which 

does not provide significant increase in the nanofluid viscosity that would inhibit bioconvection 

(large concentrations of nano-particles can suppress bioconvection and this scenario is not 

considered here). 
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8. CONCLUSIONS 

In this study, we investigate the influence of multiple boundary slips and blowing on two-

dimensional boundary-layer flow over a moving horizontal plate located in a nanofluid comprising 

of microorganisms. The flow model expressed in terms of partial differential equations was 

transformed into a system of ODEs by similarity transformation. Then the solution of ODEs with 

associated boundary conditions was numerically obtained. Test results were verified with the 

previous results of a model with no-slip and no-blowing condition obtained in the literature, which 

demonstrated an excellent correlation. Further validation of the generalized model developed was 

achieved with a Nakamura tri-diagonal finite difference algorithm. A number of interesting results 

were obtained from the tests. Specifically, the variation of microorganism concentration with 

various values of Péclet number, blowing, and velocity, tempedrature and microorganism slips is 

significant. Flow velocity, temperature response, and nanoparticle as well as microorganism 

concentration are influenced by injection at the wall. Injection was observed to increase micro-

organism propulsion and to attain higher flow velocities and to raise the nano-particle 

concentration. Nanoparticle wall mass flux is boosted with a reduction in mass slip and elevation 

in Lewis number.  Micro-organism mass flux is also remarkably elevated with greater 

bioconvection Péclet number whereas it is suppressed with increasing micro-organism slip. The 

present computations are relevant to both near-wall microbial nano-technological biofuel systems 

(fuel cells) and also the fabrication of bio-nano materials in industrial manufacturing technologies. 

The current study has overlooked transient and rheological effects, which will be addressed in the 

future research.  
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