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ABSTRACT:  

Biologically inspired pumping systems are of great interest in modern engineering since they 

achieve enhanced efficiency and circumvent the need for moving parts and maintenance. Industrial 

applications also often feature two-phase flows. In this article, motivated by these applications, the 

pumping of an electrically conducting particle-fluid suspension due to metachronal wave 

propulsion of beating cilia in a two-dimensional channel with heat and mass transfer under a 

transverse magnetic field is investigated theoretically. The governing equations for mass and 

momentum conservation for fluid- and particle-phases are formulated by ignoring the inertial 

forces and invoking the long wavelength approximation. The Jeffrey viscoelastic model is 

employed to simulate non-Newtonian characteristics. The normalized resulting differential 

equations are solved analytically. Symbolic software is employed to evaluate the results and 

simulate the influence of different parameters on flow characteristics. Results are visualized 

graphically with carefully selected and viable data. With increasing wave number (𝛽) fluid 

velocity is accelerated in the core region whereas it is decelerated near the channel wall, for the 

Newtonian case. With increasing eccentricity of cilia elliptic path (), a similar response is 

computed as for the wave number.  The size of the bolus is enhanced (and quantity of boluses is 

reduced) with increasing eccentricity of the cilia elliptic path () and Hartmann (magnetic) number 

(M) whereas bolus size is decreased (and quantity of boluses is increased) with increasing wave 

number (𝛽) and particle volume fraction (C). It is also noted that increasing Schmidt number (Sc) 

and Soret number (Sr) diminish the concentration magnitudes. Furthermore, Brinkman number 

(which represents viscous heating effects) significantly boosts the temperature magnitudes. The 

current analysis provides a useful benchmark for more general computational simulations.  
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motion; bio-inspired pumping; non-Newtonian model. 

1. INTRODUCTION 

The word cilia is derived from the Latin for “eyelashes”. They arise in many biological 

applications both externally and internally (e.g. eukaryotic cells) and assist in generating bending 

waves which transport fluid over complex surfaces. Each cilium has a range length of about 2 

micrometers to millimetres and its diameter is 0.2 micrometers. The term cilium is used when the 

cellular appendages are smaller in size and bound together on a single cell. The inner structure of 

cilia is characterized by a cylindrical core called an axoneme. Within the cilia there exists an 

arrangement of force-generating molecular motors known as dynein and elastic filaments which 

are termed microtubules. Cilia elements are alike to hair-like motile appendages which are found 

in female and male reproductive tracts, digestive systems and in the nervous system. Cilia motion 

plays a significant role in different physiological processes i.e. circulation, reproduction, 

respiration, alimentation and locomotion. When cilia elements conglomerate, a large-scale motion 

of propagating waves occurs, and this process is known as a metachronal wave. On protozoa 

(ciliated surfaces) when the beating of cilia occurs in large amounts, the activity of different cilia 

contributes collectively to the hydrodynamics and generates metachronal waves. Various authors 

[1-4] investigated the fluid dynamics associated with metachronal wave cilia beating and observed 

that the fluid viscosity changes across the thickness of physiological organs such as the duct 

afferents of the male reproductive tract, cervical canal and intestines. The behaviour and structure 

of a typical cilium can be treated as a low Reynolds number swimmer, owing to the properties of 

displacing and pushing a fluid with an impact of a total force. Cilia motion is generally associated 

with asymmetric beating which comprises two different phases, namely the recovery stroke and 

the effective stroke. Agrawal and Anwaruddin [5] investigated the cilia transport of Newtonian 

fluid having variable viscosity.  However, the vast majority of biological fluent media are non-

Newtonian in nature and therefore more accurate modelling of ciliated propulsion requires 

rheological models which may be viscoplastic, viscoelastic, micro-structural etc. Recently, 

Nadeem and Sadaf [6] presented closed-form solutions for nanofluid propulsion via cilia motion. 

Akbar and Butt [7] analysed the metachronal wave propulsion of a Rabinowitsch fluid in the 

presence of heat transfer. Miltran [8] conducted a three-dimensional formulation of metachronal 

waves in rows of pulmonary cilia using a two-layer fluid model (Newtonian viscous fluid adjacent 

to the cilia bases and viscoelastic fluid in which the tips of the cilia move) using an immersed 
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boundary method. Maqbool et al. [9] analysed the metachronal propulsion of fractional 

generalized Burgers fluid in a titled conduit. Siddiqui et al. [10] employed a power-law Ostwald 

DeWaele model for flow in a ciliated channel. Akbar et al. [11] used Eringen’s micropolar model 

to derive closed-form solutions for ciliated propulsion in a two-dimensional channel.  

Magnetohydrodynamics (MHD) is also an active area of modern biomedical engineering 

sciences. Blood for example is electrically conducting owing to the presence of haemoglobin in 

the iron molecule and ions [12]. Other physiological fluids which respond to magnetic fields are 

synovial lubricants [13] and plasma [14]. To properly quantify the effectiveness of, for example, 

magnetic drug targeting for different cancerous diseases [15, 16], it is important to develop realistic 

magnetohydrodynamic physiological flow models [17]. The imposition of external (extra-

corporeal) magnetic fields is also beneficial in pain therapy [18] since it successfully controls flow. 

Furthermore, smart electromagnetic medical micro-pump design (e.g. non-pulsating) combines 

ciliated channel features with magnetohydrodynamics [19, 20]. The relative contribution of 

viscous hydrodynamic force and Lorentz magnetic drag force must be carefully selected in such 

designs. In recent years, significant interest has been directed towards simulating internal 

magnetohydrodynamic biological propulsion flows in channels and tubes with non-Newtonian 

models. Manzoor et al. [21] used the Jeffrey viscoelastic model and the Adomian decomposition 

method to investigate hydromagnetic ciliated flow and heat transfer in a porous medium channel 

with viscous dissipation effects. They used an elliptic model for cilia beating and showed that 

pressure difference is enhanced with increasing permeability & Jeffery first parameter (“relaxation 

to retardation time ratio”) whereas it is reduced with Hartmann (magnetic) numbers. Akbar et al. 

[22] used the Casson viscoplastic model to analyse magnetic flow and convection in a ciliated 

channel with wall slip effects under an inclined magnetic field.  

Although physiological fluids are known to be non-Newtonian they have the further 

complication that they contain multiple phases. Blood for example contains numerous suspensions 

which include non-protein hormones, lipids, proteins, nutrients, electrolytes, gases, erythrocytes, 

leukocytes etc. To accurately simulate the multi-phase nature of blood more sophisticated models 

are required. Among the most amenable is the fluid-particle suspension theory [23] which analyses 

the fluent medium with separate conservation equations for the fluid phase and particulate 

(suspension) phases. Also known as the “dusty fluid model”, this approach is also applicable to 

magnetohydrodynamic pumps (which may contain metallic particles e.g. seeded potassium), 
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aerosols, slurry systems, petroleum and centrifugal separation processes, particulate deposition on 

semi-conductor wafers electrostatic precipitation. The dusty model was introduced by Saffman 

[24] who considered hydrodynamic stability of fluid-particle suspension for a gas. Marble [25] 

generalized the model and identified important new applications in mechanical engineering 

sciences. Zung [26] conducted an early analysis of swirling Von Karman flows of fluid-particle 

suspensions. The continuum fluid-particle theory is also applicable in various biological systems 

of hydrodynamics such as swimming of microorganisms, rheology of blood, diffusion of proteins 

and particle deposition. Interesting applications of fluid-particle suspension theory in medical 

engineering include Mekheimer et al. [27, 28] and Srivastava and Srivastava [29] for peristaltic 

flows, Bhatti et al. [30] and Kamel et al. [31] for endoscopic slip flows, Chakraborty et al. [32] 

for stenotic hemodynamics, Bég et al. [33-35] for hematological filtration flows (dialysis). 

Magnetohydrodynamic dusty flows have also garnered some attention in recent years. Relevant 

studies include Vajravelu and Nayfeh [36] (on stretching sheets), Hatami et al. [37] (who used a 

differential quadrature method for fluid-particle Coutte flow), Mahanthesh et al. [38] (on rotating 

magnetic lubrication) and Ramesh et al. [39] (on Hall peristaltic rheological hydromagnetic blood 

micropumps).  

Moreover, the simulation of particle-fluid dynamics with heat and mass transfer has many 

scientific and engineering applications. These include thermal insulation, enhanced oil recovery, 

transport of underground energy, cooling of nuclear reactors, packed bed catalytic reactors 

vasodilation, haemo-dialysis process, oxygenation, treatment of hyperthermia and heat convection 

due to blood flow in a living body from the pores of tissues. Some relevant studies of fluid-particle 

transport phenomena include Refs. [40-45].  

Motivated by recent developments in bio-inspired magnetic cilia systems [46], the aim of 

the present investigation is to analyze the magnetohydrodynamic pumping of a fluid-particle 

suspension due to metachronal wave propulsion of beating cilia with the viscoelastic Jeffrey fluid 

model. This non-Newtonian model represents biophysical fluids reasonably well and features three 

constants i.e. viscosity at zero shear rate, and two time-related material parameter constants. A 

number of studies have reported on the suitability of the Jeffery rheological model for biological 

hydrodynamics including Maraj et al. [47], Tripathi et al. [48] and Ellahi et al. [49]. However, to 

the authors’ knowledge the collective fluid-particle and Jefferys viscoelastic models have not been 

considered simultaneously in ciliated magnetohydrodynamics. This constitutes the novelty of the 
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present analysis. The governing mass and momentum conservation equations of motion for fluid 

phase and particulate phase are constructed under the assumption of long wave length and low 

Reynolds number approximation. The appropriate stress tensor terms for the Jeffery elastic-

viscous model are incorporated as are the Lorentzian magnetic body force terms. An elliptic 

beating cilia model is adopted to simulate metachronal wave propulsion [50]. The non-dimensional 

emerging ordinary differential equation boundary value problem is then solved analytically subject 

to appropriate boundary conditions. A detailed parametric study of the influence of wave number, 

cilia path eccentricity, magnetic Hartmann number and particle volume fraction on velocity, 

pressure and bolus characteristics is conducted with extensive visualization. Elaborate 

interpretation of the physics of the flow is included.  

 

2. MATHEMATICAL MODEL 

The physical regime under consideration is illustrated in Fig. 1. Unsteady hydromagnetic flow of 

an incompressible electro-conductive viscoelastic fluid-particle suspension through a ciliated two-

dimensional planar channel. The particles embedded in the fluid are assumed to be equal in size, 

spherical in shape, and uniformly distributed in a fluid. The volume fraction and interparticle 

collision of the particles are ignored. Stokes’ linear drag theory is applied to model the drag force. 

An extrinsic magnetic field is applied, while the induced magnetic field is very small and assumed 

to be ignored here. Electrostatic interactions between the particles are ignored. A metachronal 

wave occurs due to collective beating of cilia along the walls and travels with a constant velocity

c .  A Cartesian coordinate system is adopted for the channel i.e. axisX −  lie across the axial 

direction and axisY − lie along the transverse direction (see Fig. 1). The envelop for cilia tips is 

supposed to follow an elliptic model and the appropriate equations [22] are:  

( ) ( )
2

, cos , F t X a a X ct





= + −         (1) 

( ) ( )0

2
,   sin .G t X X a X ct


 


= + −         (2) 
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Fig. 1: Flow configuration for metachronal magnetic pumping. 

 

The horizontal and vertical velocity components for the cilia motion read as [22]: 

( )

( )
,

2 2
cos

,
2 2

1 cos
f p

a c X ct

U

a c X ct

 


 
 


 

− −

=

− −

        (3) 

( )

( )
,

2 2
sin

.
2 2

1 2 sin
f p

a c X ct

V

a c X ct

 


 
 


 

− −

=

− −

        (4) 

The governing equations of motion for the fluid- and particulate-phases read as:  

 

Fluid Phase [51-52]:  

,
f fV U

Y X

 
− =
 

           (5) 

( )
( ) ( )

2
0

 
S S ,

1 1

p ff f f

f f f f f XX XY

CS U UU U U B UP
U V

t C CX Y X Y X


  

−      
+ + = + − + − 

  − −     

 (6) 

( )
( )

S S .
1

p ff f f

f f f YY XY

CS V VV V V P
V U

t CY X Y X Y


−      
+ + = + + − 

  −     

    (7) 

Electrically 

conducting non-

Newtonian 

fluid-particle 

suspension 

Ciliated internal 

wall surface  
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( ) ( )

( ) ( ) ( )
2 2

2

2 2
,1 k 1

f f f p p

p p f f f

T

f f f

f pX

f

X

p

c C
c c C V U

tY X

U
C C CS U U

Y X Y

   
  



 

   
− + + − − = 

  

    
− + − + + −  

        

S

     (8) 

( ) ( )

( ) ( )

2 2

m 2 2

2 2

m

2 2

1 1 D

D
1 K .

f f f f f

f f

p f f

p f T

f C m

U V C C
tX Y Y X

C
C

T X Y



 

      
+ + − = − +          

  
+ − + + − 

   

    

 
 

    (9) 

Particulate Phase [51-52]: 

0,
p pU V

X Y

 
+ =

 
          (10) 

( ) ,
p p p

p p p f p

U U U P
C U V C C U U S

tX Y X


    
+ + = − + − 

    

     (11) 

( ) ,
p p p

p p p f p

V V V P
C U V C S V V C

tX Y Y


    
+ + = − + − 

    

     (12) 

( ) ,p p p p p

p p p p f p

T

Cc
Cc V U

tY X

   
  



   
+ + = − 

  
      (13) 

.
p p p f p

p p

C

V U
t Y X 

   −  
+ + =   

  

   

  




       (14) 

The empirical relations for the drag coefficient (S) and the viscosity of suspension (s) are given 

as follows [39]:  

( ) ( )
 ( )

( )

1.691
2.49 1107

0 0

2 2

4 3 8 39
,   ,   ,   0.07 . 

ˆ 12 3 2

CTC e
T

s

C C C
S C C e

Ca C

 
   



− +
 

+ + −
= = = =

−−
 (15) 

In Eqns. (1)-(11) all parameters are defined in the notation at the start of the paper. The stress 

tensor in the Jeffrey fluid model is: 

( )2

1

.  
1

s   


= +
+

S           (16) 

Here 𝜇𝑠 is dynamic viscosity of Jefferys fluid, 𝛾̇ rate of strain,  𝜆1 ratio of relaxation and retardation 

time (Jeffreys parameter),  𝜆2 retardation time while dots denote differentiation with respect to 

time. Eqn. (12) can be reduced to the Newtonian case by taking 𝜆1 = 0. It is convenient to 
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transform variables from the fixed frame to the laboratory (wave) frame which maps the flow into 

a moving boundary problem and eliminates time:  

, , , ,,  ,    ,  , ,.f p f p f p f pv V x X ct U u c P p y Y= = − − = = =       (17) 

The non-dimensional quantities are defined as 

( )( ) ( )( )

2 22
0 1 0m

m m 1 0

, 2
, , ,

2
1

, , 0 1 0 , , 0 1 0

1

1

D K
,  , ,  ,

D

,  ,  ,   , Re ,  ,  
k

Φ ,

,

1

  , 

s T
c r r c

s s s

f p s
f p f p f p r

s s

f p f p f p p

p

r

f c

B aSa
N M S S P E

T

v cx ac
x ya y v p pa cu u P

c c

E
c

B

c

   

   



    

    


− −

 −
= = = =  

 − 

= = = = = = =

=  −

=

 − = − − =
( )0

,

. 
 











− 


  (18) 

Here again all parameters are given in the notation. Using Eqn. (13) and Eqn. (14) in Eqns. (5) to 

(10), then employing the approximation of long wavelength and ignoring the inertial forces, leads 

to the following formulation.  

 

The remaining equation for the fluid-phase read as:  

( )
( )

( )
2

2

2

1
1 ,

1

f

f p f

udp NC
M u u u

dx Cy


= − + + −

−
       (19) 

( )

22 2

2

1

1
,

f f r c
r c

u P E dp
P E

y N C dxy

    
+ = −   

 −   
       (20) 

2 2

2 2

Φ1
.  

f f

r

c

S
S y y

 
= −

 
          (21) 

Similarly, for the particulate phase: 

( ) ,f p

dp
N u u

dx
= −           (22) 

, f p =            (23) 

Φ Φ .f p=            (24) 

Their corresponding boundary conditions are 

( )

( )
'

2 cos2
0 at  0 ;  1;at  cos2 1,

2 cos2 1
f f

x
u y u y h x

x

  
 

  
= = = − − = = +

− +
    (25) 

0 Φ ;at  0 and  1 Φ ;at  .f f f fy y h = = = = = =        (26) 
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where 1.1 = +  

3. ANALYTICAL SOLUTIONS  

The exact solutions of Eqn. (15) and Eq. (16) using Eqn. (17), can be obtained by integrating twice:   

( )
( )

 

( )
2

12 2

cosh sech1
  1 1 ,

1 1
f

My hMdp dp
u C M N

dx dxC M C M

 
   

=− − − − − − − + 
   (27) 

1
,p f

dp
u u

N dx
= −           (28) 

( ) ( )
2

2
2 3

2
, 1 2 3

cosh 2 cosh 2
,4 2

8
f p

h y y hM hy
h

y
h y

h h

M

M

 
   

    − + −
     = + − +


−


 (29) 

( ) ( )

2
2 3

, 1 2 2

2
3

cosh 2 co
4

sh 2
Φ .2

8

r c

f p r c

S S yy
h h y

h hM

h y hM h yM
S S

 
  

    − − +
     = − − +

 
− (30) 

Where 

( )

( )1

2 cos2
,

1 2 cos2

x
N

x

 

 
=

−
         (31) 

( )

2

1

1

,
1

rB dp

N C dx


 
=  

−  
          (32) 

( )2

1

,
1

rB



=

−
           (33) 

( )
( )
( )

2
3 1 1

sech
,

1

hMdp
M N CN

dx C M


 
   

= − − −  − 
      (34) 

Volumetric flow rate can be obtained by integration across the channel width:  

( )
0

1 dy,
h

f fQ C u= − −            (35) 

0

dy,
h

p pQ C u=             (36) 

where 

,  f pQ Q Q= +            (37) 

And 

( ) ( )

( )

2 2 2
1

3 3

1 1 tanh

. 

dp C dp dp
h M C M M M C N hM

dx N dx dx
Q

M M C

      + − + + − −          
=

− +
  (38) 
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The non-dimensional pressure rise p is solved numerically by: 

1

0

dx.p =             (39) 

where pressure gradient ( )/dp dx= is evaluated from Eq. (38). 

4. GRAPHICAL DISCUSSION  

This section illustrates the graphical results for the impact of selected physical parameters 

on velocity profile and pressure rise. Effects of velocity are plotted in Fig. (2) and Fig. (3), while 

the pumping characteristics are sketched in Fig. (4) and Fig. (5) and Streamlines are also drawn in 

Fig. (6) to Fig. (9) for selected parameters. Fig. (10) to Fig. (14) are plotted for concentration and 

temperature profiles. 

 

Fig. (2) indicates that when cilia eccentricity parameter ( )  increases there is a deceleration in the 

fluid phase velocity ( )fu . In all cases the profiles decay monotonically from the channel centreline 

to the wall (no slip condition). Fig. 2 also shows that with increasing wave number, ( ) , fluid 

velocity is accelerated in the core region whereas it is decelerated near the channel wall. With 

increasing eccentricity of cilia elliptic path, ( ) , therefore a similar response is computed as for 

the wave number.  Fig. (3) shows that when the particle volume fraction rises then the velocity of 

the fluid decreases i.e. greater concentration of suspended particles induces a deceleration. It also 

indicates that the velocity of the fluid diminishes when the magnetic parameter ( )M  rises. Higher 

values of ( )M  correspond to stronger external magnetic field. This in turn accentuates the 

Lorentzian drag force which increases the impedance to the flow i.e. induces retardation and a 

reduction in fluid phase velocity magnitudes. At higher values of y, negative velocity is induced 

i.e. near the walls of the channel there is flow reversal. Evidently the flow is strongly regulated by 

the action of a magnetic field and this is of significance in flow control in micro-biofluidics.  

Figs. (4) and (5) are plotted to visualize the impact of selected parameters on the ciliated channel 

pumping features. The nature of the flow is periodic and in fact a peristaltic wave.  It can be 

observed from Fig. (4) that when cilia eccentricity parameter ( )  increases then pressure rise 

diminishes in the retrograde pumping region ( )0, 0Q p    and its behaviour is similar in free 



 
 

11 
 

pumping region ( )0, 0Q p    and also the co-pumping region ( )0, 0 .Q p    The behaviour of 

the amplitude ratio ( )  is found to be opposite in both the regions. Fig. (5) reveals that when the 

particle volume fraction ( )C rises then the pressure rise diminish in a retrograde pumping region, 

whereas opposite response is computed in the co-pumping region. Inspection of Fig. (5) also 

reveals that when the Hartmann number ( )M rises then the pressure rise reduces in the free 

pumping region and in co-pumping region whereas it distinctly increases in the retrograde 

pumping region. The magnetic field therefore modifies pressure distribution substantially in 

different regions of the pumping in the ciliated channel. 

In peristaltic flows, a key mechanism of interest is trapping which may be analysed by 

drawing stream lines. Trapping refers to the formation of an internally circulating bolus that is 

enclosed by various stream lines. It can be seen from Fig. (6) that when cilia eccentricity parameter

( )  rises then the magnitude of the bolus decreases whereas the number of boluses increases. 

From Fig. (7), we can see that the size of the trapping bolus decreases when the wave number ( )  

increases. Fig. (8) demonstrates that when the particle volume fraction ( )C  rises then the number 

of boluses increases whereas the size of the bolus decreases. Finally Fig. (9) indicates that when 

the Hartmann number ( )M  rises from 0.5 through 1 to 1.5, then the size of the bolus becomes 

bigger while the number of bolus reduces i.e. greater magnetic field encourages growth of the 

bolus whereas it inhibits the quantity of boluses formed in the channel. When the viscous force is 

exceeded by the Lorentz magnetic body force therefore (i.e. M>1) the maximum contraction in 

bolus size is achieved in the regime. The opposite effect is induced when the viscous force exceeds 

the magnetic body force (M<1). The intermediate case (M=1) corresponds to an equivalence in the 

viscous hydrodynamic force and the Lorentz magnetic drag force and produces an intermediate 

bolus magnitude.  

Fig. (10) to Fig. (14) show the variation of temperature profiles and concentration profiles 

for both the fluid- and particulate-phase. From Fig. (10) can be observed from this figure that an 

enhancement in  and rB tends to rise the temperature profile. Brinkman number rB represents 

relative impact of heat generated due to viscous dissipation and the propagation of heat by 

molecular conduction. Therefore, an increment in Brinkman number rB tends to create less effect 
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in the generation of thermal conduction through viscous dissipation and higher elevation in 

temperature profile. A similar behaviour was noted by Gorla et al. [53]. Fig. (11) is sketched for 

 and .C  It is noted from this figure that the particle volume fraction C  tends to produce a 

significant resistance in the temperature profile. However, the wavenumber   reveals a similar 

behaviour and the temperature profile is maximum in the centre of the channel. Fig. (12) is plotted 

for  and rS (Soret number) for the concentration profile. It can be viewed from this figure that 

both parameters represent converse behaviour on the concentration profile. Soret number is a 

mechanism noticed in the mixtures of mobile particles where the multiple particles types reveal 

various responses to a force of the temperature gradient. Therefore, an enhancement in Soret 

number tends to reduce the concentration profile. In Fig. (13) we can observe that concentration 

profile rises due to significant influence of   and C . However, the magnitude of the concentration 

profile is minimum in the centre of the channel. Fig. (14) shows the variation of cS (Schmidt 

number) and rB  on the concentration profile. It can be seen from this figure that an enhancement 

in Schmidt number diminishes the concentration profile. Schmidt number represents the ratio of 

mass diffusivity and kinematic viscosity (“momentum diffusivity”), therefore, an enhancement in 

Schmidt number tends to rise the viscous diffusion and as a result concertation profile decreases.  

 

5. CONCLUSIONS 

A mathematical study has been conducted to simulate the transport of an electro-conductive 

viscoelastic fluid-particle suspension with heat and mass transfer via metachronal wave propulsion 

in a planar channel. The internal walls of the planar channel have been modelled as ciliated and 

the synchronized cilia beating generates the metachronal wave. The governing conservation 

equations for momentum and mass for both the fluid phase and particle phase have been 

normalized with appropriate dimensionless variables and simplified via lubrication 

approximations. The resulting ordinary differential boundary value problem has been solved 

analytically. Numerical evaluation of the fluid phase temperature, velocity, pressure rise, 

concentration and streamline distributions has been conducted with symbolic software 

(Mathematica). The trapping mechanism has been examined via drawing stream lines. Graphical 

results for non-Newtonian fluids have been visualized for the effect of cilia eccentricity parameter, 
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Brinkman number, metachronal wave number, Schmidt number, particle volume fraction, Soret 

number and magnetic parameter. The major deductions which can be made from the present 

analysis are: 

• Velocity of the fluid reveals opposite attitude along the walls with an increase in both the cilia 

eccentricity and wave number parameters. 

• Velocity of the fluid diminish with increasing particle volume fraction and Hartman number.  

• Pressure rise diminishes in the retrograde pumping due to an increment in particle volume 

fraction while the contrary attitude is observed in the co-pumping region.  

• Temperature profile reveals converse behaviour for higher values of Brinkman number and 

particle volume fraction.  

• Soret number and Schmidt number produces similar impact on the concentration profile.  

 

The present results have ignored Hall current [39] and magnetic induction effects which may also 

be relevant to biological magnetic devices and blood flow control. These will be considered in the 

future. Furthermore nanofluids (featuring either metallic [54] or carbon-based [55] nano-particles) 

offer some potential in smart biomimetic pumping systems and these are also under consideration.  
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NOMENCLATURE 

𝑎̃  Mean width of the channel  

𝐵0 Magnetic field 

𝑐̃ Wave velocity  

𝐶 Volume fraction density 

𝑀 Hartmann number  

𝑃̃ Pressure in fixed frame 

𝑄 Volumetric flow rate 

Re Reynolds number 

𝐒 Stress tensor  

𝑆 Drag force  

𝑡̃ Time  

cS  Schmidt number 

rS  Soret number 

rB  Brinkman number 

𝑈̃, 𝑉̃ Velocity components in fixed 

frame 

𝑋̅0 Reference position of the cilia 

𝑋̃, 𝑌̃ Cartesian coordinate axes in fixed 

frame 

Greek symbols  

𝜎 Electrical conductivity of Jeffrey 

fluid 

𝜆 Wavelength 

𝜇𝑠 Dynamic viscosity of Jeffrey fluid 

𝜙 Amplitude ratio 

𝜌 Fluid density 

   Measure of cilia length 

𝜆1 Relaxation time 
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𝜆2 Retardation time  

𝛾 Shear rate 

𝛼 Eccentricity of the elliptic path of 

cilia 

β Wave number 

 

Subscripts 

𝑓 Fluid phase   

𝑝 Particulate phase  
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FIGURES-COMPUTATIONS 

 

Fig. 2: Velocity profile for various values of and .  

 

Fig. 3: Velocity profile for various values of C and .M  
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Fig. 4: Pressure rise vs volume flow rate for various values of  and .  

 

 

Fig. 5: Pressure rise vs volume flow rate for various values of C and .M  
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(a) (b) 

(c) 

Fig. 6: Stream lines for various values of . ( ) 0.25a  = ; ( ) 0.3b  = ; ( ) 0.4c  =  
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(a) (b) 

(c) 

Fig. 7: Stream lines for various values of . ( ) 0.4a  = ; ( ) 0.5b  = ; ( ) 0.6c  =  
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(a) (b) 

(c) 

Fig. 8: Stream lines for various values of .C ( ) 0a C = ; ( ) 0.15b C = ; ( ) 0.3c C =  
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(a) (b) 

(c)  

Fig. 9: Stream lines for various values of .M (a) M= 0.5;(b) M=1.0 (c) M=1.5 
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Fig. 10: Temperature profile for various values of and .rB  

 

 

Fig. 11: Temperature profile for various values of  and .C  
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Fig. 12: Concentration profile for various values of and .rS  

 

Fig. 13: Concentration profile for various values of  and .C  



 
 

29 
 

 

Fig. 14: Concentration profile for various values of cS and .rB  

 


