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Abstract 

Purpose – To numerically investigate the two-dimensional unsteady laminar 

magnetohydrodynamic (MHD) bioconvection flow and heat transfer of an electrically-conducting 

non-Newtonian Casson thin film with uniform thickness over a horizontal elastic sheet emerging 

from a slit in the presence of viscous dissipation. The composite effects of variable heat, mass, 

nanoparticle volume fraction and gyrotactic micro-organism flux are considered as is 

hydrodynamic (wall) slip. The Buongiorno nanoscale model is deployed which features Brownian 

motion and thermophoretic effects. The model studies the manufacturing fluid dynamics of smart 

magnetic bio-nano-polymer coatings. 

Design/Methodology/Approach – The coupled non-linear partial differential boundary-layer 

equations governing the flow, heat and nano-particle and micro-organism mass transfer are 

reduced to a set of coupled non-dimensional equations using the appropriate transformations and 

then solved as an nonlinear boundary value problem with the semi-numerical Liao homotopy 

analysis method (HAM).Validation with a generalized differential quadrature (GDQ) numerical 

technique is included. 

Findings – An increase in velocity slip results in a significant decrement in skin friction coefficient 

and Sherwood number whereas it generates a substantial enhancement in Nusselt number and 

motile micro-organism number density. The computations reveal that the bioconvection Schmidt 

number decreases the micro-organism concentration and boundary-layer thickness which is 

attributable to a rise in viscous diffusion rate. Increasing bioconvection Péclet number substantially 

elevates the temperatures in the regime, thermal boundary layer thickness, nanoparticle 

concentration values and nano-particle species boundary layer thickness. The computations 
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demonstrate the excellent versatility of HAM and GDQ in solving nonlinear multi-physical nano-

bioconvection flows in thermal sciences and furthermore are relevant to application in the 

synthesis of smart biopolymers, microbial fuel cell coatings etc. 

Originality/Value – The originality of the study is to address the simultaneous effects of unsteady 

and variable surface fluxes on Casson nanofluid transport of gyrotactic bio-convection thin film 

over a stretching sheet in the presence of a transverse magnetic field. Validation of HAM with a 

generalized differential quadrature (GDQ) numerical technique is included. 

 

Keywords – Magneto-hydrodynamics, Bioconvection, Nanofluid, Brownian motion, Homotopy 

analysis method (HAM), Generalized differential quadrature (GDQ) 

Paper Type – Research paper 

1. Introduction 

The analysis of flow of an incompressible liquid film over a stretching sheet has important 

applications in many branches of science and engineering including polymer processing 

(extrusion), film coating and surface treatment. Thus, the understanding of flow and heat transfer 

within a thin film is very crucial as it features in coating processes for aerospace, chemical 

processing equipment, marine vessels/offshore structures and various heat exchangers. In sheet 

manufacturing processes, the melt issues from a slit and is subsequently stretched to achieve the 

desired thickness. Robust mathematical models and computational simulations of the film fluid 

dynamics and heat transport intrinsic to such processes provide an excellent and inexpensive 

mechanism for improving material design and performance. Such systems may also feature many 

other complex phenomena including magnetohydrodynamics (MHD), mass diffusion, Marangoni 

(thermo-capillary) convection, electro-hydrodynamics (EHD), thermal dispersion, non-Newtonian 

characteristics etc. An important contribution to simulating polymer extrusion hydromechanics 

was presented by Crane (1970) who studied the two-dimensional, steady boundary layer fluid flow 

over stretching sheet. Chakrabarti and Gupta (1979) subsequently addressed analytically the 

hydrodynamics and heat transfer of electrically conducting fluid flow over stretching sheet in the 

presence of uniform magnetic field. The exact similarity solution to the gravity driven film flow 

of viscous fluid is given by Andersson and Ytrehus (1985). Wang (1990) derived closed-form 

solutions for an unsteady stretching surface liquid film dynamics. Wang (2006) used homotopy 
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analysis method to study the flow and heat transfer in film flow on stretching surface. Noor et al. 

(2010) to analyze the magnetohydrodynamic flow and heat transfer in a thin liquid film over an 

unsteady elastic stretching. 

The study of thin film flow of non-Newtonian fluid has received much attention as compared 

with its Newtonian counterpart. The transport phenomena of non-Newtonian fluids arise in many 

branches of chemical and materials processing engineering. The rheological properties of thin 

films offer interesting multi-faceted fluid dynamics problems of great relevance to technology and 

have therefore attracted considerable research attention. Anderson and Irgens (1988) introduced a 

theoretical description of laminar film flow of non-Newtonian power law fluid and have given 

similar solution using approximate integral method. Gorla and Nee (1989) have provided 

perturbation solutions for the heat transfer and heat transfer rates at ingress region of laminar power 

law falling liquid film flow. Pop et al. (1996) expostulated that the similarity solution obtained by 

Andersson and Ytrehus (1985) cannot be possible for the problems including suction/injection of 

fluid through porous wall. Chen (2006) investigated the convective heat transfer of non-Newtonian 

power-law fluids within a thin liquid film on an unsteady stretching sheet with viscous 

dissipation.  Abel et al. (2009) examined the effect of MHD on the flow and heat transfer to a 

liquid film from a stretching surface.  

Although several non-Newtonian models have been implemented in thin film heat transfer 

phenomena, relatively sparse work has been communicated on viscoplastic fluids. One example 

of this type of rheological fluid is the Casson fluid. According to the constitutive equation of 

Casson fluid model, it can reduce to viscous fluid at very high wall shear stress if yield stress is 

very less than the wall stress. Casson fluid model (Casson, 1959; Nakamura and Sawada,1988;  

Ng, 2013; Gireesha et al., 2017) is a robust viscoplastic material model which deals with the shear 

thinning characteristics and features a yield stress and high shear viscosity. This fluid approximates 

quite accurately a diverse array of biological fluent media, dense detergents, molten chocolate, 

cosmetics, nail polish, petroleum drilling fluids, blood, etc.  

Nanofluids are synthesized by suspending nanometer-sized particles of carbides, oxides, 

metals, nitrides, or nanotubes in conventional fluids (water, air, oils etc.). Nanofluids have been 

shown both experimentally and theoretically to hold great potential in the enhancement of heat 

transfer properties, such as thermal diffusivity, thermal conductivity, viscosity and convective heat 

transfer coefficient relative to the traditional heat transfer fluids. Nanofluids have effective 



4 
 

4 
 

applications in cleaning oil from the surface and as well as in the field of enhanced oil recovery 

(EOR) (Wang et al., 2013). Recently they have also been confirmed experimentally to exhibit 

excellent lubricity and mobility properties for petroleum drilling operations (Bég et al., 2018). 

Several mathematical models have already been developed to depict the thermal performance of 

nanofluids including the homogenous model (Choi, 1995), the dispersion model (Xuan and 

Roetzel, 2006) and the Buongiorno two-component model (Buongiorno, 2006). Several 

simulations of nanofluid dynamics pertaining to either Newtonian or non-Newtonian constitutive 

models in different domain with various velocity and thermal boundary conditions can be found 

in the scientific literature (Rashidi et al, 2014; Dinarvand et al., 2015; Kameswaran et al, 2016; 

Mahanthesh et al, 2016; Gorla and Vasu, 2016; Kashani et al, 2019).  

Bioconvection has been observed for over a century in medical sciences (Wager, 1911; 

Kessler et al, 1992). The term bioconvection indicates motion of motile microorganism persuades 

macroscopic motion (convection). The phenomenon of bioconvection is caused by the density 

gradient generated by the self-propelled motile microorganisms which are a little denser than water 

in suspensions. The micro-organisms respond to different stimuli (taxes including light (photo-

tactic), magnetic field (magneto-tactic), chemical concentration (chemo-tactic) and torque (gyro-

tactic)). Recently bioconvection in nanofluids containing gyrotactic microorganisms has mobilized 

intensive interest due to significant potential in biomedical systems. Kuznetsov (2010) studied 

hydrodynamic stability in bioconvection in a horizontal layer filled with a nanofluid containing 

gyrotactic microorganisms and uses the micro-organisms to induce/enhance convectional process 

in a nanofluid. Aziz et al. (2012) demonstrated that bioconvection parameters strongly influence 

the heat, mass and motile microorganism transport rates in boundary layer free convection flows 

in a porous medium filled by a water-based nanofluid containing gyrotactic microorganisms. Beg 

et al. (2013) presented computational solutions for steady-state boundary layer flow of a nanofluid 

from an impermeable vertical flat wall in a porous medium saturated with a water-based dilute 

nanofluid containing oxytactic microorganisms. MHD nanofluids containing gyrotactic 

microorganisms near a vertical wavy surface saturated in non-Darcy medium were discussed by 

Ahmed and Mahdy (2016) who focused on Brownian motion and thermophoresis effects. Latiff et 

al. (2016) obtained Maple quadrature numerical solutions for unsteady forced convective slip 

boundary layer flow of a micropolar bio-nanofluid over a stretching/shrinking sheet. Raees et al. 

(2015) studied mixed convection in gravity-induced film flow of a fluid containing both gyrotactic 
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microorganisms and nanoparticles along a vertical wall with passive and the active boundary 

conditions. It is shown in the study that the model for passively controlled nanofluid can be easily 

applied and achieved in real life situations than the actively controlled model. 

In light of the above extensive studies, it is evident that thus far the problem of two-

dimensional laminar magnetohydrodynamic bio-convection flow of a non-Newtonian Casson 

nanofluid thin film with the uniform thickness over a horizontal elastic sheet in the presence of 

viscous dissipation has not been considered in the literature. This is the focus of the current work. 

To the best of authors’ knowledge, no investigation have been reported addressing the 

simultaneous effects of unsteady and variable surface fluxes on Casson nanofluid transport of thin 

film over a stretching sheet in the presence of a transverse magnetic field. The coupled system of 

non-linear partial differential equations reduced to a set of coupled non-linear ordinary differential 

equations using appropriate similarity transformations. The solution in the study is based on an 

approximate analytical/numerical hybrid technique known as the homotopy analysis method 

(HAM) (Liao and Pop, 2004; Liao, 2009; Rashidi et al, 2012; Dinarvand et al. 2016; Ibrahim et 

al., 2017) which is more straightforward and simpler to apply than existing approximate analytical 

methods. Validation of solutions is achieved with the generalized differential quadrature (GDQ) 

method. Moreover, variations of the local skin friction, the local Nusselt number, the local wall 

mass flux, as well as the local wall motile micro-organism flux with rheological and nanoscale 

parameters are also obtained and interpreted at length. The presence of microorganisms in 

nanofluid improves the stability of nanofluids and prevents agglomeration of nanoparticles which 

is of course directly relevant to smart coating performance and also beneficial to microfluidic 

device wall design. Hence the geometry of the analyzed problem may help in enhancing the mass 

transfer in these applications. The current study is primarily of relevance to simulating the sheet 

manufacturing fluid dynamics of nano-bio-polymer coatings. 

2. Mathematical Model 

The unsteady two-dimensional hydro-magnetic bioconvection flow, heat and mass transfer of 

non-Newtonian Casson thin film over elastic sheet in presence of variable heat, mass and 

nanoparticle volume fraction flux is considered. It is assumed that the flow is laminar and is 

transpiring from slit which is fixed at origin. It is supposed that the swimming direction and 
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velocity of the microorganism is not affected by the presence of nanoparticles. Also, the 

suspension of nanoparticles is dilute and stable with no chemical reaction and negligible radiative 

heat transfer. We follow the approach of Latiff et al. (2016) and Rees et al. (2015).  The film has 

uniform thickness (t)h . Plane of the sheet is placed along x -axis and y -axis is normal to it. The 

schematic diagram of the model is shown in Figure 1. It is assumed that the stretching of the surface 

starts with the velocity ( , )U x t and is defined as  

1

cx
U

t
=

−
               (1) 

Constants appearing in the equation (1) are 0   and 0c  and dimensions of both   and c  are 

reciprocal of time t , where c  is initial stretching rate. From (1), we notice that velocity ( , )U x t is 

valid only when 1t −   unless 0 = . Similarly, it is supposed that the expressions for surface heat 

flux (x, t)tq , nanoparticle volume fraction flux (x, t)sq , and microorganism flux (x, t)nq at 

stretching surface will vary with the power of x  (distance from the slit) and t  (time factor) and 

are defined as follows: 

 

Figure 1   Schematic representation of the problem 
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 is thermal conductivity, refT , refC  and refn  are reference temperature, reference concentration 

and reference motile density and it be taken as 
00 refT T  , 00 refC C  , 00 refn n  .

1m , 
2m  and 

3m are time indices whereas 
1r , 

2r  and 
3r are space indices. Further, surface temperature

sT , 

surface species concentration 
sC and surface motile microorganism density 

sn  of the stretching 

sheet is given by 

1
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Where 
0T , 

0C  and 
0n  are temperature, species concentration and motile density at the slit. Here

sT , 
sC  and 

sn   are assumed to vary with distance from the slit. Constitutive equation of 

incompressible and isotropic non- Newtonian Casson fluid (Shateyi et al, 2017) is given by  

2( P / 2 )e , ,

2( P / 2 )e , .

B y ij c

ij

B y c ij c

  +    
 = 

 +    

       (4) 

Constitutive equation for Casson fluid model consists of ij ,
B , Py ,  , eij  and 

c , where ij is 

stress tensor,
B  is plastic dynamics viscosity, Py  denotes yield stress of the fluid,   is product of 

deformation rate with itself i.e.  

e eij ij =
        

(5) 

eij  corresponds to the ( , )i j th component of deformation rate. It should be noted that the fluid will 

behave like solid when yield stress is greater than the shear stress while it shows flow 

characteristics when shear stress is greater than yield shear stress. 

Using these assumptions, the boundary layer equations governing the conservation of mass, linear 

momentum, thermal energy, nanoparticles volume fraction (species concentration) and density of 

motile microorganisms (Buongiorno, 2006; Kuznetsov, 2010) may be presented as follows: 

Conservation of mass  
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0
u v

x y

 
+ =

 
           (6) 

Conservation of momentum  
2 * 2

2

1
(1 )

f

u u u u B
u v u

t x y y

    
+ + =  + −

     
       (7) 

Conservation of thermal energy 

( ) ( )

2 2

1 1
. (1 )

fT
B

p pf f

DT T T T C T T u
u v D

t x y y y y y T y yc c

               
 + + =  +  + + +                      

(8) 

Conservation of nanoparticle volume fraction (nano-species concentration) 
2 2

2 2

T
B

DC C C C T
u v D

t x y y T y

    
+ + = +

    
       

 (9) 

Conservation of density of motile microorganisms 
2

2

0

c
m

s

bwn n n C n
u v n D

t x y C C y y y

       
+ + + =  

   −     
                                                                 (10) 

Variables u , v , T , C  and n  are velocity along x-direction, velocity along y-direction, 

temperature of nanofluid, nano-species concentration and motile organism’s density respectively. 

In equation (7),   is kinematic viscosity, f represents density of fluid, B  is electromagnetic 

strength, *  is Stefan- Boltzmann constant and 2 /B c yP =   is the non-Newtonian Casson fluid 

parameter. In equation (8),   is the thermal conductivity, BD is the Brownian diffusion coefficient 

of the species and pc  is heat capacity. In equation (9), T  are the ambient temperature, 

respectively, and C  and C  are the species concentration and the ambient concentration. Further, 

in equation (10),
mD , 

0C  and 
sC  are motile diffusion coefficient, nanoparticle volume fraction at 

slit and surface species concentration respectively. 

The boundary conditions for the model is 

1 1

1
(x, t) N 1 , 0, (x, t),

0, (x, t).

t

T
B m n

u T
u U v k q

y y

DC T n
D D q

y T y y

   
= + + = − = 

   

  
+ = − =

  
  

 at y=0  (11)  

0, 0, 0, 0,
u T C n dh

v
y y y y dt

   
= = = = =

   
 at y=h (t) (12) 

In above conditions,  
1

2
1 (1 t)N N= −        (13) 

is the velocity slip factor and is varies with time and N  is the initial value of
1N . 
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Introducing the following transformations: 
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(1 ) (1 ) (1 )
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0
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n n T T
k k

n n T


− − 
  = = +  

−  
     (14c) 

where  is similarity variable, equations (14a-c) are valid only for 1t  , ( )f  , ( )  , ( )   and 

( )   are non-dimensional stream function, dimensionless temperature, nanoparticle volume 

fraction and  micro-organism density function.  

Using above Equations (14 a-c), the primitive boundary-layer equations (6) - (10) are readily 

transformed into the following system of nonlinear, coupled, ordinary differential equations and 

their associated boundary conditions: 

21
1 ''' '' ' '' ' ' 0

2
f ff f S f f Mf

   
+ + − − + − =  
   

      (15) 
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1 1
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'' '' ( ') ' ' ' ' ' Nt( ') 1 '' 0
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cS m r f f Nb E f
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   (18) 

The boundary conditions emerge as: 

1
1 (1 ) , 0   0 , 1, N 0, 1:

, 0, 0, 0, 0   :
2
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At f f
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(19) 

In the reduced system of coupled nonlinear ordinary differential equations, prime represents 

differentiation with respect to  , dimensionless parameters arising in equations (15)-(19) are 

defined as: 

1

2c
N
 

 =  
 

is the velocity (hydrodynamic wall) slip parameter, Pr
p

k

c

=


is the Prandtl 

number, 
( )

2

0p s

U
Ec

c T T
=

−
is the Eckert number. 

2

0 / .fM B c =  is the magnetic body force 
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parameter, /S c= is unsteadiness parameter, 0( ) /B sNb D c c = − is Brownian 

motionparameter, 0(T ) /T sNt D T T  = − is thermophoresis parameter , / BSc D= is Schmidt 

number, / mSb D= is bio convection Schmidt number, /c mPe bW D= (bioconvection 

Pécletnumber ), 0 0/ (n n )sn = −  is a motile micro-organism density number ratio. Furthermore, 

 represents the value of the   at the free surface. From equation (14a),free surface condition for 

 =  at (t)y h= ,  is defined as follows: 

( )

1
12
21 (t)

c
t h

− 
 = − 

 
                                                                                                          (20) 

Value of   can be determined by the whole data obtained in the present study. Rate of change of 

film thickness is given by 

( )

1

2

2 1

dh

dt c t

  
= −   − 

                                                                                                           (21) 

From practical application point of view, it is important to evaluate the physical quantities of flow 

behavior, heat and mass transfer rate by analyzing dimensionless local skin coefficient friction, 

local Nusselt number, local Sherwood number and motile organism number. These dimensionless 

parameters are defined as  

1
1 2
2

1 1

2 2

Re1
2Re 1 ''(0), ,

(0)

Re Re
,

(0) (0)

  x
f x x x

x x
x x

C f Nu

Sh Nn

−  
= − + = 

  

= =
 

    (22) 

where Rex

Ux
=


denotes local Reynolds number. 

3. Homotopy Analysis Method 

In the present study, the efficient Homotopy Analysis Method (HAM) has been implemented 

in order to solve the model defined by equations (15) to (18) subject to boundary conditions (19). 

HAM is a semi-analytical method introduced by Liao (2011) and has been deployed to solve many 

fluid dynamics, applied mathematics and applied mechanics problems. This method does not 

depend upon any physical small/large parameter and furnishes thereby a very convenient way to 

guarantee the series solution by using a special parameter called the convergence control 
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parameter. Bataineh et al. (2008) obtained series solutions to systems of first and second order 

partial differential equations (PDEs) by applying HAM. Rashidi and Dinarvand (2009) used HAM 

to study three-dimensional problem of a condensation film on an inclined rotating disk. Hayat et 

al. (2009) examines the boundary layer flow of carbon nanotubes over a curved stretching surface 

by considering Cattaneo Christov heat flux model theory. Rashidi et al. (2014) applied HAM to 

simulate the flow of nanofluid from a non-linearly stretching sheet with transpiration. Dinarvand 

et al. (2016) implemented HAM and used Tiwari-Das nanofluid model to study unsteady mixed 

convective stagnation-point flow of a nanofluid. Vasu and Ray (2019) applied HAM to discuss the 

non-similarity solution for the flow of Carreau nanofluid past vertical plate with Cattaneo-Christov 

heat flux model. Other applications in biological fluid dynamics and nanoscale transport include 

(Bég et al, 2012; Bég, et al. 2013; Tripathi and Bég, 2015; Srinivas and Bég, 2018). To extract the 

solutions of the (15) – (18) subjected to the boundary conditions (19) using HAM, we take the 

initial guesses 0f  , 0 , 0  and 0  of f , ,  and   in the following form 

/( (1 1/ )

0 /( (1 1/ )

1

2 1

S e
f

e

  

  


 

+

+

− 
= − + 

− 
       (23a) 

0

(1 )e  
 



− +
= − −         (23b) 

0

(1 )Nt e

Nb

  
 



− +
= + 

 
                    (23c) 

0

(1 )e  
 



− +
= − −                     (23d) 

The linear operators are selected as follows: 

1( )f f f = −L          (24a) 

2 ( )  = −L           (24b) 

3( )  = −L           (24c) 

4 ( )  = −L          (24d) 

with the following properties: 

31 1 2( ) 0c c e c e −+ + =L          (25a) 

52 4( ) 0c e c e −+ =L          (25b) 

73 6( ) 0c e c e −+ =L            (25c) 

94 8( ) 0c e c e −+ =L          (25d) 
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where ic (1 9i  )are arbitrary constants. If [0,1]p  is the embedding parameter where 1h , 2h

, 3h
 
and 4h

 
are the convergence control parameters, then the zeroth-order deformation 

equationscan be constructed as: 

( )0 111(1 ) [ ( ; ) ( )] [ ( ; ), ( ; ), ( ; ), ( ; ) ]p f p f ph f p p p p        − − =L N    (26a) 

( )0 22 2(1 ) [ ( ; ) ( )] [ ( ; ), ( ; ), ( ; ), ( ; ) ]p p ph f p p p p          − − =L N    (26b) 

( )0 33 3(1 ) [ ( ; ) ( )] [ ( ; ), ( ; ), ( ; ), ( ; ) ]p p ph f p p p p          − − =L N    (26c) 

( )0 44 4(1 ) [ ( ; ) ( )] [ ( ; ), ( ; ), ( ; ), ( ; ) ]p p ph f p p p p          − − =L N    (26d) 

The appropriate forms of the boundary conditions are now: 

( )(0, ) 1 1 1/ (0, )f p f p  = + + , (0, ) 0f p =  and ( , )
2

S
f p


 =   (27a) 

(0, ) 1p  = − , ( , ) 0p  =            (27b) 

(0, ) (0, ) 0Nt p Nb p  + = , ( , ) 0p  =          (27c) 

(0, ) 1p = − , ( , ) 0p  =            (27d) 

Based on Eqs. (15)–(18), we define the nonlinear operators as: 

( )
23 2

3 2

2

2

1

1 ( ; ) ( ; ) ( ; )
( ; ), ( ; ), ( ; ), ( ; ) 1 ( ; )

( ; ) ( ; ) ( ; )

2

f p f p f p
f p p p p f p

f p f p f p
S M

  
       

   

   

  

     
= + + −   

     

   
− + − 

   

N

 

           

(28a)

 
( )

22 2

2

2

2 2

1 1

1 ( ; ) ( ; ) ( ; )
( ; ), ( ; ), ( ; ), ( ; ) ( ; )

Pr Pr

( ; ) ( ; ) ( ; ) ( ; ) ( ; )
( ; ) ( ; ) ( ; )

2

( ; ) 1
1

p p p
f p p p p p

p f p p p p
S m p r p f p Nb

p
Nt

      
        

  

         
    

    

 

 

    
 = + +       

     
− + − + + 

     

  
+ + +  

  

N

2
2

2

( ; )f p
Ec





  
 

  

(28b) 

( )
2 2

22 23

2

1 ( ; ) 1 ( ; ) ( ; )
( ; ), ( ; ), ( ; ), ( ; ) ( ; )

2

( ; ) ( ; )
( ; ) ( ; )

p Nt p p
f p p p p S m p

Sc Nb Sc

f p p
r p f p

      
        

  

  
  

 

   
= + − + 

   

 
− +

 

N

                     (28c)
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( )

( )

2

3 32

2

4

2

1 ( ; ) ( ; ) ( ; )
( ; ), ( ; ), ( ; ), ( ; ) ( ; ) ( ; )

2

( ; ) ( ; ) ( ; ) ( ; )
( ; )

p p f p
f p p p p S m p r p

Sb

p Pe p p p
f p

Sb

     
          

  

       
  

   

   
= − + − 

   

    
+ − + + 

    

N

          (28d)

 

When 0p =  and 1p = , we obtain 

0( ;0) ( ) ( ;1) ( )f f f f   = =       (29a) 

0( ;0) ( ) ( ;1) ( )       = =       (29b) 

0( ;0) ( ) ( ;1) ( )       = =       (29c) 

0( ;0) ( ) ( ;1) ( )       = =       (29d) 

Thus, as p  increases from 0 to 1 then ( ; ), ( ; ), ( ; )f p p p     and ( ; )p  vary from initial 

approximations to the exact solutions of the original nonlinear differential equations.  

Now, expanding ( ; ), ( ; ), ( ; )f p p p     and ( ; )p   in Taylor series w.r.to p; we have 

( ) ( ) ( )0

1

; m

m

m

f p f f p  


=

= +                  (30a) 

( ) ( ) ( )0

1

; m

m

m

p p     


=

= +                 (30b) 

( ) ( ) ( )0

1

; m

m

m

p p     


=

= +                 (30c) 

( ) ( ) ( )0

1

; m

m

m

p p     


=

= +                 (30d) 

Where 

( )
( )

0

;1
|

!

m

m pm

f p
f

m p


 =




=              (31a)

 

( )
( )

0

;1
|

!

m

m pm

p

m p

 
  =




=                           (31b)

 

( )
( )

0

;1
|

!

m

m pm

p

m p

 
  =




=                            (31c)

 

( )
( )

0

;1
|

!

m

m pm

p

m p

 
  =




=                           (31d) 
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If the initial guess along with auxiliary linear operators and convergence control parameters are 

taken in such a way that the series (30 (a)-(d)) are convergent at 1p =  then: 

( ) ( ) ( )0

1

m

m

f f f  


=

= +                            (32a) 

( ) ( ) ( )0

1

m

m

     


=

= +                            (32b) 

( ) ( ) ( )0

1

m

m

     


=

= +                            (32c) 

( ) ( ) ( )0

1

m

m

     


=

= +                            (32d) 

Differentiating Eqs (26 (a)-(d))m times w.r.to p , setting 0p = and then dividing with m!; we have 

the deformation equations of mth-order as follows: 

*

1 11[ ( ) ( )] ( )m

m m m ff f h R   −− =L        (33a) 

12

*

2[ ( ) ( )] ( )m

m m m h R     −− =L        (33b) 

13

*

3[ ( ) ( )] ( )m

m m m h R     −− =L         (33c) 

14

*

4[ ( ) ( )] ( )m

m m m h R     −− =L        (33d) 

The associated boundary conditions are: 

( )(0) 1 1/ (0) 0m mf f  − + = , (0) 0mf =  and ( ) 0mf  =      (34a) 

(0) 0m = , ( ) 0m  =            (34b)
 

(0) (0) 0m mNt Nb  + = , ( ) 0m  =       (34c) 

  
(0) 0m = , ( ) 0m  =           (34d) 

Where  

1 1

1 1 1 1 1 1

1 1

1
( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

m m
m

f m m i i m i i m m m

i i

R f f f f f S f f Mf


        


− −

− − − − − − − −

= =

   
      = + + − − + −   

  
 

            (35a) 
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( )
1

1 1 1 1 1 1

1

1 1 1 1

1 1 1 1

1 1 1 1

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Pr Pr 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1
1

m
m

m m i i m i i m m

i

m m m m

m i i m i i m i i

i i i i

R S m

r f f Nb Nt

Ec



 
              

             



−

− − − − − − −

=

− − − −

− − − − − −

= = = =

 
    = + + − + 

 

     − + + +

 
+ + 

 



   

1

1

1

( ) ( )
m

m i i

i

f f 
−

− −

=



 (35b) 

1 1 1 2 1

1 1

2 1 1

1 1

1 1
( ) ( ) ( ) ( ) ( )

2

( ) ( ) ( ) ( )

m

m m m m

m m

m i i m i i

i i

Nt
R S m

Sc Nb Sc

r f f




        

     

− − − −

− −

− − − −

= =

 
  = + − + 

 

 − + 

    (35c) 

( )

1

1 1 3 1 3 1

1

1 1

1 1 1 1

1 1

1
( ) ( ) ( ) ( ) ( ) ( )

2

( ) ( ) ( ) ( ) ( ) ( )

m
m

m m m m i i

i

m m

m i i m m i i m i i

i i

R S m r f
Sb

Pe
f

Sb




         

           

−

− − − − −

=

− −

− − − − − − −

= =

 
  = − + − 

 

 
    + − + + 

 



 

            (35d) 

where, *
0, 1

1, 1
m

m

m



= 


              (36) 

The general solution can be written as: 

1 2 3( ) * ( )m mf f c c e c e   −= + + +        (37a) 

4 5( ) * ( )m m c e c e     −= + +       (37b) 

6 7( ) * ( )m m c e c e     −= + +        (37c) 

  8 9( ) * ( )m m c e c e     −= + +          (37d) 

* ( )mf  , * ( )m  , * ( )m   and * ( )m  are special solutions of mth order deformation equations 

and the constants ic (1 9i  ) are to be determined by using boundary conditions (34 a-d). 

3.1. Convergence of HAM Solutions 

The higher order deformation equations (33a)-(33d) for equations (15)–(18) subject to the 

boundary conditions (19) can be obtained using initial guesses 0f  , 0 , 0  and 0 given in (23a)-

(23d) and linear operators 1( )fL , 2 ( )L , 3( )L  and 4 ( )L given in (24a- 24d) with  the suitable 

values for the non-zero control parameters 1h , 2h , 3h and 4h  that have been obtained by plotting 

the h -curves in Figure 2. From Figure 2, it is seen that the valid regions of 1h , 2h , 3h and 4h are 
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about (-0.6, -0.2) and 1 2 3 4 0.5h h h h= = = = −  is considered for the present study.Computations 

are performed in symbolic software Mathematica with the following values of the control 

parameters: 1 = , 1S = , 1.5M = , 0.1 = , Pr 1= , 1 2 3 1.5m m m= = = , 1 2 3 2r r r= = = , 

0.5Nt Nb= = ,  0.001cE = , 0.6Sc = , 2Sb = , 0.1Pe = , 0.1= 0.2 = and 1 = . 

 

Figure 2 h − curve 

Table I. Convergence of HAM solutions 

k -f '' (0) θ(0) φ(0) χ(0) 

2 0.71404 0.464485 0.014451 0.206816 

4 0.72181 0.654134 -0.18574 0.40339 

6 0.72216 0.702721 -0.23527 0.444518 

8 0.72218 0.705101 -0.24681 0.451246 

10 0.72218 0.704782 -0.24819 0.452285 

12 0.72218 0.706288 -0.24857 0.45257 

 

Inspection of Table I show that the convergence of the HAM series solution (32a-32d) for different 

orders of approximation (k= 2, 4, 6…etc.). It is evident that the 10th order (k=10) approximation 

is reasonable to consider for computation since further refinement does not modify the solution 

accuracy. 

-1

-0.6

-0.2

0.2

0.6

1

-0.75 -0.6 -0.45 -0.3 -0.15

f 
''(

0)
,  


(0
),

   


(0
),

   
 

(0
)

h  

f '' (0) θ(0)

φ(0) χ(0)
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3.2. Validation with GDQ Method 

The present mathematical model is a novel contribution. No existing solutions are available in 

the literature to validate the general HAM solutions. Therefore, we implement a different 

computational technique to solve the entire general boundary value problem as defined by (15)-

(18) with respect to boundary conditions (19). The fundamental premise of generalized differential 

quadrature (GDQ) is that the differentiation of a function with respect to a variable of space on a 

given set of points is approximated as a weighted linear sum at the selected points in the domain 

of that variable. The GDQ approach was pioneered in fluid mechanics and engineering dynamics 

applications by Shu et al (1995) to improve the Bellman differential quadrature (DQM) method 

which is based on integral quadrature and was introduced in 1972. It generally approximates the 

differentiation of function with respect to space variables at a sample grid point as a weighted 

linear summation of all the values of function at all grid points in the domain. The basic idea for 

computing the weighting coefficients by GDQ is based on the analysis of a high order polynomial 

approximation and linear vector space. The weighting coefficients of the first order derivative are 

calculated by a simple algebraic formulation, and the weighting coefficients of the second and 

higher order derivatives are given by a recurrence relationship. Shu et al (1995) have shown that 

the GDQ approach is equivalent to the highest order finite difference scheme. This method is also 

described in some detail in the context of magnetohydrodynamics by Bég (2013). To illustrate the 

approximation in the GDQ, let us consider a function f (η) defined in the domain 0 <ηa. 

According to the GDQ, the function f (η) can be approximated as follows: 

∂r𝑓(η)

∂ηr
|
η,τ=ηi

= ∑ Aim
(r)Nη

m=1 𝑓(ηm) = ∑ Aij
(r)Nη

m=1 𝑓m , i = 1, 2,… , Nη.  (38) 

Therefore, the first-order derivatives have following weighting coefficients in the direction of  ηiis 

given by the formula (Shu et al 1995; Bég, 2013). 

Aij =

{
 
 

 
 
− ∑ Aij,

Nη

j=1,   i≠j

            i = j,

1

a

M(ηi)

(ηi − ηj)M(ηj)
,    i ≠ j,

 i, j = 1, 2,… , Nη, M(ηi) = ∏ (ηi − ηj)

Nη

j=1,   i≠j

   

  (39) 

The weighting coefficients of the higher-order derivative can be obtained as follows: 

[Aij
(r)] = [Aij

(r−1)] [Aij] = [Aij] [Aij
(r−1)].          (40) 
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It is pertinent to deploy Chebyshev-Gauss-Lobatto grid distribution: 

ηi
a
=
1

2
[1 − cos (

i − 1

Nη − 1
π)] i = 1, 2, … , Nη, 

             (41) 

According to the GDQ, the discretized governing equations and the appropriate boundary 

conditions can then be generated, although for brevity we have omitted these lengthy algebraic 

expressions here. In the emerging formulations, parameters B and C arise, which represent the 

second- and third-order weighting coefficients, respectively. The values of the similarity flow 

variables i.e. 𝑓i,   θi , i and iat each node in the solution domain can be obtained. These may then 

in turn be utilized to compute the wall functions i.e. skin friction, Nusselt number, Sherwood 

number and motile micro-organism wall mass flux. Comparisons of the HAM solutions and the 

GDQ code (which is executed on an SGI Octane desk workstation and takes forty seconds to 

converge) for skin friction coefficient, Nusselt number, Sherwood number, motile microorganisms 

number are presented in Table II, with all parameter data given as: 1.5M = ,  1S = , 0.1 = , 

0.2 = , Pr 1= , 0.6Sc = , 0.1= , 2Sb = , 0.1Pe = , 0.5Nt Nb= = , 0.001cE = ,  1 =  and 

only variation in the Casson rheological parameter, β. Excellent correlation is achieved over the 

entire range of β values. Confidence in the present HAM solutions is therefore justifiably very 

high. Furthermore Table II (and later Table III in section 4) provides a solid benchmark for other 

researchers to extend the current model and to compare alternative numerical methods with the 

present HAM and GDQ techniques. 

 

Table II. Comparison of HAM & GDQ computations for Casson rheological parameters (β) 

  f ''(0) 

HAM 

f ''(0) 

GDQ 

1/ (0)  

HAM 

1/ (0)  

GDQ 

1/ (0)−  

HAM 

1/ (0)−  

GDQ 

1/ (0)  

HAM 

1/ (0)  

GDQ 

1 0.72218 0.72220 1.41888 1.41882 4.02916 4.02913 2.21099 2.21103 

2 0.87756 0.87751 1.41954 1.41949 4.04312 4.04309 2.22111 2.22107 

4 0.99097 0.99092 1.42176 1.42169 4.05779 4.05773 2.22982 2.22978 
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4. Results and Discussion 

Extensive solutions derived with the HAM approach and Mathematica for the current magneto-

bioconvection viscoplastic Casson thin film stretching sheet dissipative flow problem are 

documented in Table III and Figures 3-28.  

Skin friction coefficient, Nusselt number, Sherwood number, motile micro-organisms number 

are displayed in Table III, respectively. Increasing values of Casson fluid parameter (β) lead to a 

decrease in skin coefficient friction. Skin coefficient friction, Nusselt number, Sherwood number, 

motile micro-organisms number are also decreasing function of Hartmann number (M) whereas 

they are enhanced i.e. are increasing functions of unsteadiness parameter (S). Skin coefficient 

friction and Sherwood number exhibit a strong decrement while Nusselt number and motile 

microorganism number display an increment with increasing velocity slip parameter. Rising values 

of Schmidt number generate a decrease in Nusselt number, Sherwood number and motile 

microorganism number. Bioconvection Péclet number and bioconvection constant (motile density 

ratio parameter) lowers the motile microorganism wall flux whereas increasing bioconvection 

Schmidt number raises motile microorganism number.  

Table III Effect of parameters on skin coefficient friction, Nusselt number, Sherwood number 

and microorganism number 

  M  S      Pr  Sc    Sb  Pe  (0)f −  1/ (0)  1/ (0)−  1/ (0)  

1 
         

0.72218 1.41888 4.02916 2.21099 

2 
         

0.87756 1.41954 4.04312 2.22111 

4 
         

0.99097 1.42176 4.05779 2.22982 

1 0.5 
        

0.6734 1.42893 4.08945 2.22893 
 

1 
        

0.69815 1.42385 4.05861 2.21984 
 

2 
        

0.74553 1.41403 4.0011 2.20241 
 

1.5 0.25 
       

1.04716 0.55474 24.9287 1.14223 
  

0.5 
       

0.9341 0.89613 4.76776 1.56784 
  

0.75 
       

0.82583 1.19317 4.16807 1.93705 
  

1 0 
      

0.72218 1.50649 4.08292 2.21281 
   

0.2 
      

0.72218 1.34726 3.95438 2.21111 
   

0.5 
      

0.72218 1.16898 3.90514 2.21593 
   

0.1 0.1 
     

0.95196 1.43803 4.26807 2.26692 
    

0.2 
     

0.72218 1.41888 4.02916 2.21099 
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0.5 

     
0.41982 1.38332 3.77378 2.13652 

    
0.2 2 

    
0.72218 2.20466 4.51597 2.20871 

     
5 

    
0.72218 3.59776 5.50892 2.20813 

     
7 

    
0.72218 0.73445 0.27511 0.47771 

     
1 1 

   
0.72218 1.41379 4.2356 2.20962 

      
2 

   
0.72218 1.40446 4.72947 2.20812 

      
5 

   
0.72218 1.39188 5.67857 2.20798 

      
0.6 0 

  
0.72218 1.41888 4.02916 2.22314 

       
0.2 

  
0.72218 1.41888 4.02916 2.19898 

       
0.5 

  
0.72218 1.41888 4.02916 2.16371 

       
0.1 1 

 
0.72218 1.41888 4.02916 1.41787 

        
5 

 
0.72218 1.41888 4.02916 3.60649 

        
10 

 
0.72218 1.41888 4.02916 4.78182 

        
2 0 0.72218 1.41888 4.02916 2.2934 

         
0.2 0.72218 1.41888 4.02916 2.13107 

         
0.5 0.72218 1.41888 4.02916 1.90249 

 

From Figures 3 – 6, it can be observed that as the Hartmann number 
2

0 / .fM B c =  increases, 

the velocity retards slightly due to the fact that drag produced by magnetic field and the velocity 

close to the wall of the thin film increases gradually, which explains the emergence of the 

intersection in Figure 3. Meanwhile, the temperature, and motile microorganism density rise 

significantly whereas there is a fall in nanoparticle volume fraction as M increases (see Figures 3 

– 6). Because of Lorentz force, the thermal boundary layer increase and thus magnetic field 

supports the temperature. Further, it is shown that the magnetic field promotes transfer of heat due 

to the dissipation of thermal energy since supplementary work is expended in dragging the 

nanofluid against the action of the magnetic field while the magnetic field emote mass transfer in 

a thin liquid film.  

Figures 7 – 10 display the effect of unsteadiness parameter and Casson fluid parameter on the 

velocity, temperature, nanoparticle volume fraction and motile microorganism density. From these 

figures, it is observed that increasing unsteadiness parameter elevates the velocity (i.e. mobilizes 

flow acceleration and a thinner momentum boundary layer) and also boosts the microorganism 

density while suppresses the temperature and concentration. The influence of increasing Casson 
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fluid parameter results in elevation in the velocity and nanoparticle volume fraction profile 

whereas it induces a significant reduction in temperature and microorganism density number 

magnitudes. 

Two cases are considered in Figures 11 – 15, Case I is for 1 2 3 1 2 3 0r r r m m m= = = = = = , and 

Case II is for 1 2 3 1 2 32, 1.5r r r m m m= = = = = = . The effect of Prandtl number, Casson fluid 

parameter, Schmidt number, bioconvection Peclet number and bioconvection Schmidt number is 

analysed for Case I and Case II. Here, 1 2 3 4 0.35h h h h= = = = −  is taken for Case I and

1 2 3 4 0.5h h h h= = = = −  is considered for Case II. Increasing bioconvection Péclet number helps 

in increasing the speed of the microorganisms. Fig 12 shows that the heat transfer behaviour is 

highly dependent on the most important parameter in thermal convection, i.e. Prandtl number

Pr
p

k

c

=


. The temperature of the fluid decreases monotonically with the increasing Pr in both 

Cases i.e. thermal boundary layer thickness is suppressed. In Figure 13, the effect of Schmidt 

number / BSc D=  on the concentration distribution is displayed. Increasing the Schmidt number 

causes a decrease in the concentration profile and it is obvious that nanoparticle species diffusion 

is inhibited therefore with larger values of Sc  and also there is an associated decrease in 

nanoparticle species boundary layer thickness. This behavior is due to variation in Brownian 

diffusion coefficient. Increasing Sc corresponds to lower Brownian diffusion coefficient which 

results in lesser species concentration. The same behaviour is seen in both Cases. Figure 14 shows 

the effect of /c mPe bW D= (bioconvection Péclet number) on the nanofluid characteristics. Pe 

features in the non-dimensional motile density conservation equation and found that it raises 

temperatures profile and hence elevates thermal boundary layer thickness. Likewise, rising Pe  

boosts the both nanoparticle concentration and the microorganism. Figure 15 demonstrates that the 

bioconvection Schmidt number / mSb D=  helps in decreasing the microorganism concentration 

boundary layer thickness, and this is probably due to the fact that, viscous diffusion rate increases 

due to rise in Sb.  

Figure 16 depicts the influence of Eckert number
( )

2

0p s

U
Ec

c T T
=

−
over temperature for 

different Casson fluid parameter values. Rise in value of Ec  leads to rise in the temperature due 
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to more viscous dissipation i.e. conversion of kinetic energy into thermal energy. Figure 16 also 

declares that the thermal boundary layer decreases with increase in Casson fluid parameter. 

Figures 17 – 20 display the impact of velocity slip parameter  on the dimensionless velocity, 

temperature, nanoparticle volume fraction and motile microorganism density. With the increasing 

values of velocity slip parameter, velocity and nanoparticle volume fraction decreases and there is 

an increase in temperature and microorganism density. 

Figures 21 – 24 depict the influence of Brownian motion 0( ) /B sNb D c c = −  and 

thermophoresis parameter 0(T ) /T sNt D T T  = − on the nanoparticle volume fraction and motile 

microorganism density. Clearly there is a marginal reduction in microorganism density with 

increasing Nb a similar observation is found in Kuznetsov (2012). The nanoparticle volume 

fraction and motile microorganism density are also influenced markedly by the thermophoresis 

effect. The presence of thermophoretic body force aids nanoparticle diffusion which results in 

enhancement of nanoparticle volume fraction.  Further, increasing the Brownian motion parameter 

leads to lesser diameter of nanoparticles, lesser the diameter of nanoparticles corresponds to 

reduction in density of nanoparticle hence the nanoparticle concentration decreases. 

Figures 25 – Fig 28 explore the variation of Sherwood number and motile microorganism 

number for thermophoresis parameter and Brownian motion parameter. Sherwood number is 

increased with thermophoresis effect whereas it is decreased with Brownian motion parameter. 

The converse trend is observed for motile microorganism number. 

 
Figure 3. Effect of MHD parameter M on velocity profile 
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Figure 4. Effect of MHD parameter M on temperature profile 

 
Figure 5. Effect of MHD parameter M on concentration profile 

 
Figure 6. Effect of MHD parameter M on motile microorganism 
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Figure 7. Impact of Casson fluid parameter  over velocity profile for different S  

 
Figure 8. Impact of Casson fluid parameter  over temperature for different S  

 
Figure 9 Impact of Casson fluid parameter  over concentration profile for different S  
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Figure 10 Impact of Casson fluid parameter  over motile micro-organism for different S  

 
Figure 11 Effect of Casson fluid parameter  on temperature profile for Case I and Case II 

 
Figure 12 Effect of Prandtl number Pr on temperature for Case I and Case II 
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Figure 13 Impact of Sc  over nanoparticle volume fraction for Case I and Case II 

 
Figure 14 Impact of Peclet number Pe over motile microorganism for Case I and Case II 

 
Figure 15 Impact of Sb  over micro-organism for Case I and Case II 
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Figure 16 Impact of Ec  parameter over temperature for different Casson fluid parameter 

 
Figure 17 Impact of velocity slip parameter  over velocity profile 

 
Figure 18 Impact of velocity slip parameter  over temperature profile 
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Figure 19 Impact of velocity slip parameter  over concentration profile 

 
Figure 20 Impact of velocity slip parameter  over motile microorganism 

 
Figure 21 Impact of thermophoresis parameter over concentration profile 
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Figure 22 Impact of Brownian motion parameter over microorganism density 

 
Figure 23 Impact of Brownian motion parameter over concentration profile 

 
Figure 24 Impact of Brownian motion parameter over motile microorganism density 
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Figure 25 Variation of 1/ (0) versus Brownian motion parameter 

 
Figure 26 Variation of 1/ (0)  versus Brownian motion parameter 

 
Figure 27 Variation of 1/ (0)  versus thermophoresis parameter 
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Figure 28 Variation of Sherwood Number1/ (0)  

versus thermophoresis parameter 

5. Conclusions 

The unsteady magneto-hydrodynamic nanofluid gyrotactic bio-convection thin film boundary 

layer flow from a stretching sheet with viscous dissipation has been examined theoretically and 

numerically in this study. The normalized nonlinear partial differential boundary value problem 

has been transformed into an ordinary differential boundary value problem and this system has 

been solved with both the HAM and a generalized differential quadrature method (GDQ), 

demonstrating excellent agreement. A parametric study is conducted to evaluate the influence of 

emerging nano-scale, bio-convection and viscoplastic rheological parameters on the distributions 

of fluid velocity, skin friction coefficient, temperature, local Nusselt number, nano-particle volume 

fraction, local Sherwood number, microorganism density number function and the local density of 

the motile microorganism. The computations have shown that: 

(i) Local skin friction coefficient, local rate of heat transfer and local density of motile 

microorganisms are reduced with larger values of Hartmann number (magnetic body 

force) whereas they are increased for larger values of unsteadiness parameter.  

(ii) The velocity, temperature, and nano-particle species concentration all increase with 

higher values of unsteadiness parameter. Motile micro-organism flux at the wall is 

decreased with thermophoresis effect whereas it is increased with Brownian motion 

parameter. 

(iii) The motile micro-organisms density number rises with velocity slip and bio-convection 

parameter. 
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(iv) Increasing Eckert (dissipation) number enhances temperatures whereas increasing 

Casson fluid parameter decreases them. The nanofluid temperature can be reduced by 

increasing Prandtl number and elevating Schmidt number causes a reduction in nano-

particle species concentration. 

(v) Sherwood number is increased with thermophoresis effect whereas it is decreased with 

Brownian motion parameter.  

(vi) Increasing bioconvection Péclet number substantially elevates the temperatures in the 

regime, thermal boundary layer thickness, nanoparticle concentration values and nano-

particle species boundary layer thickness. 

(vii) Skin coefficient friction and Sherwood number exhibit a strong decrement while Nusselt 

number and motile microorganism number display an increment with increasing velocity 

slip parameter.  

(viii) Greater Schmidt number depresses Nusselt number, Sherwood number and motile 

microorganism number.  

(ix) Increasing bioconvection Péclet number and bioconvection constant (motile density ratio 

parameter) lowers the motile microorganism wall flux whereas increasing bioconvection 

Schmidt number raises motile microorganism number.  

The present study has employed a simple viscoplastic model and considered magnetic field effects. 

Future studies will examine more complex non-Newtonian models (Tripathi et al, 2017) and also 

consider electrical field (electro-hydrodynamic) thin films (Gorla et al, 2004) for nanofluid 

bioconvection flows. The present numerical approaches (HAM and GDQ) offer excellent promise 

in simulating such multi-physical problems of interest in thermal thin film rheological fluid 

dynamics in manufacturing processes. 
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Nomenclature  

 

B  Strength of magnetic field 

0C
 

Species concentration at the Slit 

pc   Heat capacity 

refC   Reference concentration 

sC   Surface species concentration of stretching sheet 

C
 Ambient concentration 

BD
 Brownian diffusion coefficient of the species 

Ec  Eckert number 

eij   ( , )i j th component of deformation rate 

( )f    Non-dimensional stream function 

(t)h  Thickness of the film 

M  Magnetic body force parameter (Hartmann number) 

1m ,
2m ,

3m   Time indices 

0n   Motile micro-organism density at the slit 

1N  Velocity slip factor  

N   Initial value of
1N  

Nb  Brownian motion parameter 

Nt  Thermophoresis parameter 
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refn   Reference motile microorganism density 

sn   Surface motile microorganism density of the stretching sheet 

xNu
 

Nusselt number  

Pe  Bioconvection Péclet number  

Pr  Prandtl number 

Py   Yield stress of the fluid 

tq , Surface heat flux at stretching surface 

sq , Nanoparticle volume fraction flux at stretching surface 

nq  Microorganism flux at stretching surface 

1r ,
2r ,

3r  Space indices. 

Rex  Reynolds number 

S  Unsteadiness parameter 

Sc  Schmidt number 

xSh  Sherwood number 

Sb  Bioconvection Schmidt number 

T  Temperature of nanofluid 

0T   Temperature at the Slit 

T
  Ambient temperature 

refT ,  Reference temperature, 

sT   Surface temperature of stretching sheet 

u  Velocity component along x  directions 

v   Velocity component in y  directions 

 

Greek symbols 
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  Kinematic viscosity 

f  Density of nanofluid 

  Velocity (hydrodynamic wall) slips parameter 

*  Stefan- Boltzmann constant 

  Casson rheological parameter 

  Thermal conductivity 

   Motile micro-organism density number ratio 

  Value of the   at the free surface. 

ij  Stress tensor 

B   Plastic dynamic viscosity in Casson model 

   Product of deformation rate with itself 

( )   Dimensionless temperature 

( )   Dimensionless nanoparticle volume fraction 

( )   Dimensionless micro-organism density function 


