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Abstract

This paper presents a novel intuitive synthesis approach for constructing Fulleroid-like Archimedean
DPMs based on a Sarrus-like overconstrained spatial eight-bar linkage. Firstly, structure and
the associated foundations of the eight-bar linkage are presented and characterized. Then, by
integrating the eight-bar linkage into the Archimedean polyhedron bases, synthesis of a group of
Fulleroid-like Archimedean DPMs is implemented; demonstrated by the design and construc-
tion of a Fulleroid-like deployable cuboctahedral mechanism and a Fulleroid-like deployable
truncated tetrahedral mechanism. Subsequently, the mobility of these Fulleroid-like DPMs is
verified through formulating the constraint matrices with Kirchhoff’s circulation law and the
associate constraint graphs. Further, kinematics of proposed polyhedral mechanisms is derived
with numerical simulations, leading to the motion characterization of the eight-bar linkage and
the group of Fulleroid-like deployable Archimedean mechanisms.

Keywords: Deployable Mechanism, polyhedral mechanism, overconstrained mechanism,
Archimedean mechanisms, eight-bar linkage, synthesis

1. Introduction

Deployable polyhedral mechanisms (DPMs), are deployable mechanisms [1, 2] that are syn-
thesized and constructed by integrating kinematic chains into the faces, edges and vertices of
the polyhedrons. Most of DPMs are highly overconstrained mechanisms and the research on
DPMs can be traced back to the flexible polyhedron proposed by Goldbergh [3], the fordable
“Jitterbug” by Fuller [4] and the enlightening work “Jitterbug transformers” by Verheyen [5, 6].
The polyhedral structures Verheyen [5] proposed are formed by integrating polygonal element
pairs in two-layers; it can also be derived as a special “Double Jitterbug” where two polygons
in each pair are connected by revolute joints at their common edges. In spite of the original
Jitterbugs, these structures are of one degree of freedom with translation and rotation along
and about a virtual axis that passes through the centres of the polygons. The structures have
a pattern of mirror-symmetry because of the opposite orientation of the layers.

Historically, perhaps it was the mobile octahedron named “Heureka-polyhedron” [7], ex-
hibited at the Heureka Exposition in Zürich, firstly sparked off research interest of polyhedral
mechanisms from researchers in the fields of mechanical and structural engineering, architec-
ture and robotics. The Heureka-polyhedron was obtained from Buckminster Fuller’s Jitterbug
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[4] by replacing its twelve spherical joints in the links with 2-DoF joints. The motion of the
Jitterbug converting a regular octahedron via a regular icosahedron into a cuboctahedron is
shown to be constrained for the Heureka-polyhedron.

After the work by Fuller, Verleyen and the Heureka-polyhedron, more research on expend-
able/deployable polyhedral mechanisms has been continuously presented, and among these the
most notable contributions come from Wohlhart, whose work stated from the presentations
of the “Turning Tower”[8]; then the spheroidal linkages [9], i.e. the “Breathing Ball”, the
“Spheriod”, the “Star-cube” and the “Fulleroid” synthesized based on folding cotoid using the
Heureka Octahedron as a basic module; the Röschel polyhedral [10, 11] linkages; the deformable
cages [12] constructed by implanting a couple pairs of laminas interconnected by a set of dou-
ble rotary joints into the regular ployhedra and semi-regular polyhedral; the regular polyhedral
linkages [13] generated by implanting link groups into the faces of regular polyhedrons and by
interconnecting them with appropriated double gussets and multiple gussets; and the irregular
polyhedral linkages [14] achieved by implanting appropriate link groups, each of which consists
of a central body in the same form as the polyhedral face, into the faces of irregular polyhedra
and connecting the link groups by multiple revolute whose axes intersect at the corner points
of the irregular polyhedron and whose number equals the number of faces which meet at the
corner points.

Another interesting work was the “Hoberman Switch Pitch”, a toy that was brought to
be marked by Hoberman based on his patent “geared expanding structures” [15]. The switch-
pitch is also publicly called colour-changing ball; throw it into the air, the double-coloured leaves
around the ball magically flip and change the colour of the ball. In addition, by embedding
articulated facet linkage into polyhedrons, Gosselin et al. [16, 17, 18] proposed the RAFs,
i.e. polyhedra with articulated faces. By using prismatic joints, Agrawal et al. [19] presented
expanding polyhedra that can preserve their shapes. By inserting Bricard 8R- and 10R- linkages
into the edges of polyhedrons, Wand and Kong [20] proposed multi-mode deployable polyhedral
mechanisms. By using parallelogram linkage, Li et al. [21] constructed reconfigurable DPMs.
Further, for investigating the behaviour of virus, Kovcs et al. [22] proposed a class of DPMs
which were constructed by implanting prismatic faces that were connected by hinged plates
along the edges of the base polyhedra. Moreover, Wei and Dai [23, 24, 25, 26, 27, 28] found
that by integrating the fundamental PRRP chains, a two-ford symmetric spatial eight-bar
linkage, and a one-fold symmetric eight-bar linkage into the faces, edges and vertices of the
polyhedra, including the regular and semi-regular polyhedra, deployable polyhedral mechanisms
with radially reciprocating motions could be formed. Furthermore, mechanical network and
the associated constraint graph, and group theory [24, 29, 30] were introduced to the mobility
analysis of DPMs which provides effective tools for the investigation of DPMs. Mobility and
kinematic of these deployable polyhedral mechanisms, which possess cubic symmetry, can also
be effectively investigated using symmetry-adapted mobility rule [31, 32, 33] .

In the above deployable polyhedral mechanisms, the Fulleroid-like mechanisms have at-
tracted special interest from Wohlhart [13, 34] and Röschel[11, 10], with the synthesis, dynamics
and self-motions having been addressed. And by using a novel Sarrus-like overconstrained eight-
bar linkage, a systematic and intuitive approach has been proposed for constructing Fulleroid-
like deployable Platonic mechanisms [35].

In this paper, based on the approach proposed in [35], synthesis and constructions of a
group of Fulleroid-like Archimedean DPMs are generalized and presented. Structure and re-
lated formulations of an overconstrained eight-bar linkage is briefed, and by taking two typical
Archimedean polyhedrons as examples, synthesis of the Archimedean DPMs is illustrated and
presented. Further, mobility of the proposed mechanisms is formulated, followed by kinematic
analysis and simulations of the eight-bar linkage and the proposed Fulleroid-like deployable
Archimedean mechanisms.
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2. A Sarrus-like Overconstrained Spatial Eight-bar Linkage

This section briefly introduces the structure of a Sarrus-like overconstrained linkage that is
proposed in our previous work [35]. Mechanical structure is firstly presented, then its structure
equation is developed providing kinematic background for further analysis.

2.1. Structure and Geometry of the Linkage
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Figure 1: A Sarrus-like eight-bar linkage and its geometry.

Figure 1 illustrates the structure and the geometry of the Sarrus-like spatial eight-bar link-
age. In the linkage, there are two identical isosceles V-shaped links, i.e., links V1, V2, one as
a base (link 1 denoted as V1) and the other one as a moving platform (link 5 denoted as V2),
each of them has revolute joints at both ends, which are joints A1, A2, and D1 and D2. Joints
A1, B1, C1 and D1 are parallel to each other, and so are joints A2, B2, C2 and D2. Joints A1,
B1, C1 and D1 are connected by link 2, link 3 and link 4; and similarly joints A2, B2, C2 and
D2 are connected by links 6, 7 and 8. All the non-V-shaped links are of the same length. As
shown in Fig. 1, the angles between the joint axes of both of the V-shaped links are ρ. This
linkage is a plane symmetric with respect to plane Ω which is defined by bisectors of angles ρ
of the V-shaped base and the V-shaped platform.

Regarding this eight-bar linkage as a “twined-branch” parallel kinematic mechanism with
each branch starting from one side of link V1 and ending at the same side of link V2, one can
readily find that this eight-bar mechanism bears a resemblance to the Sarrus mechanism [36].
By contrast with the Sarrus mechanism, each branch of the linkage has an extra R joint and
an extra link; and this is an overconstrained mechanism like the Sarrus linkage.

2.2. Loop Equations of the Eight-bar Linkage

Structure equation of the eight-bar linkage is formulated in this section. The eight-bar
linkage contains two branches with branch 1 consisting of joints A1, B1, C1 and D1, and the
associated links; and branch 2 containing joints A2, B2, C2 and D2, and the coupled links. To
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perform the derivation, coordinate frames are established in the linkage as illustrated in Fig.1.
An inertial coordinate frame F0-{x0, y0, z0} is established on the base (link V1) with its origin
located at point O0, y0-axis collinear with the bisector and z0-axis normal to the plane formed
by the axes of joints A1 and A2. In addition, by following the D-H convention, local coordinate
frame Fmn-{xmn, ymn, zmn} are attached to the joints with the zmn-axis locating along the axis
of the mnth joints and the xmn-axis along the common perpendicular of the zm(n−1)-axis and
zmn-axis; where the first subscript m with m =1 and 2 denotes the two branches, and the
second subscript n with n =1, 2, 3 and 4 stands for the joint number in the two branches.
For frame F11-{x11, y11, z11}, the x11-axis is perpendicular to the axis of joint A1, and for F21-
{x21, y21, z21}, the x21-axis is perpendicular to the axis of joint B1. In addition, a coordinate
system FP -{xp, yp, zp} is fixed on the moving platform (link V2) with the yp-axis lying on the
bisector of link V2 and the zp-axis normal to the plane formed by axes of joints D1-axis and
D2. In the linkage, the link length for amn are all a and the joint angles are denoted as αmn,
twist angles that are either 0 or π/2 are denoted as τmn. In addition, the distances from points
A1 and A2 to point O0 are both h. Using the about coordinate frames, the D-H parameters of
the linkage can be identified and obtained.

Following the D-H parameters defined above, in the two open branches matrices GT1 and
GT2 that respectively represent the transformations from frames F11 and F21 of branches 1

and 2 to the reference frame F0 are given as GT1 =
[
z0

(ρ
2

)
, 0
] [
x0

(π
2

)
, h
]
, and GT2 =[

z0

(
π − ρ

2

)
, 0
] [
x0

(
−π

2

)
, h
]
; and the homogeneous transformation matrices Tmn between

two adjacent coordinate frames are expressed as

Tmn = [zmn(αmn, dmn)][xmn(τmn, amn)] (1)

Further, given the transformations from frames F14 and F24 to frame FP with H1 =[
z15

(
π − ρ

2

)
, 0
]

[x15 (0, 0)] and H2 =
[
z25

(ρ
2

)
, 0
]

[x25 (0, 0)], respectively, the structure equa-

tion for each open branch can be formed as follows.
For branch 1 it has

Dbranch 1 = GT1T11T12T13T14H1 (2)

and for branch 2 it has

Dbranch 2 = GT2T21T22T23T24H2 (3)

Hence, by equating the above two equations, structure equation for the eight-bar linkage is

GT1T11T12T13T14H1 = GT2T21T22T23T24H2 (4)

2.3. Mobility of the Eight-bar Linkage

As aforementioned, the proposed eight-bar linkage is an overconstrained mechanism like the
Sarrus linkage. As formulated in [35] with screw-theory, the motion-screw system Sf of the
moving platform (link V2) is of three-system [37] as

Sf =


S f1 =

[
0 0 0 1 0 0

]T
S f2 =

[
0 0 0 0 1 0

]T
S f3 =

[
0 0 0 0 0 1

]T (5)

which is the span of motion-screw system Si of each ranch.
Equation (5) implies that the moving platform of the spatial eight-bar linkage has 3-DOF

with link V1 being a fixed base, which are translations along the x0-axis, y0-axis and z0-axis; and
therefore mobility of the linkage is three. However, corresponding to the Chebychev-Grübler-
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Figure 2: Loci of B1, B2, C1, C2 and P in the condition of giving symmetric inputs α11 = α21.

Kutzbach’s equation [37], mobility of this linkage is two. Thus, the proposed spatial eight-bar
linkage is overconstrained.

2.4. Features of the Eight-bar Linkage

Considering the similarity of the proposed eight-bar linkage with the Sarrus linkage, it is
supposed that by given proper inputs, the moving platform (link V2) will implement straight-
line motion on the symmetric plane Ω. Since this is a 3-DOF linkage, three inputs must be
provided and to achieve the straight-line motion of the moving platform, these three inputs
must satisfy certain conditions. In this paper, it is found that there are two cases that can lead
to the desired motion with different conditions.

Figure 2(A) shows the first case in which three inputs are α11, α21 and α12 with the two
grounded inputs α11, α21 satisfying α11 = α21. The initial configuration of eight-bar linkage
is set as: in branch 1, links 3 and 7 are parallel to each other, the angle between link 2 and
link 3 is 150 deg and the angle between link 3 and link 4 is 150 deg; in branch 2, the angle
between link 6 and link 7 is 150 deg and the angle between link 7 and link 8 is 150 deg. In this
initial configuration, there are four intersection points derived from the extensions of links 2,
4, 6 and link 8 (blue dash-line) symbolized as points A, C, O1 and O2. Perpendicular lines (red
dash-line) respectively perpendicular to planes ACO1 and ACO2 passing through O1 and O2

intersect at point O. In this case, the moving platform implements reciprocating straight-line
motion relative to point O, which is regarded as virtual central point of the eight-bar linkage.
Like Sarrus linkage, the locus of the platform can be presented by the point P, as shown in Fig.
2(B), is a straight line. In the meantime, link 3 and link 7 are able to achieve spatial motion
(symmetrical about plane ACO) with their orientations unchanged .

The other case is indicated in Fig. 3, unlike the first case, it demands that links 3 and
7 carry out skew-symmetric screw motion. In order to perform such motion, the geometric
condition to be satisfied is α11 = α24 or α14 = α21 which is derived in details as follows.

Referring to Fig. 3(A), the two perpendicular lines OO1 and OO2 of the planes ACO1 and
ACO2 intersect at the virtual centre point O. The normals n2 and n4 are respectively outwards
along lines OO1 and OO2. Assume that the mobile platform executes reciprocating straight-line
motion, considering that the linkage is symmetric about the plane ACO, it implies that point P
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Figure 3: Loci of B1, B2, C1, C2 and P in the condition of giving skew-symmetric inputs α11 = α24 or α14 = α21.

must be placed on Ω such that the x -coordinate of P is 0. Given the coordinates from Dbranch 1

and Dbranch 2 in Eqns. (2) and (3) as xP1 and xP2 , respectively, it has

xP1 = Xa+ Y h = 0 (6)

and
xP2 = X ′a+ Y ′h = 0 (7)

with

X = cos
(ρ

2

)
[cosα11 + cos (α11 + α12) + cos (α11 + α12 + α13)]

Y = cos
(ρ

2

)
[1 + cos (α11 + α12 + α13 + α14)]

X ′ = cos
(ρ

2

)
[cosα21 + cos (α21 + α22) + cos (α21 + α22 + α23)]

Y ′ = cos
(ρ

2

)
[1 + cos (α21 + α22 + α23 + α24)]

Since a, h are constant as structure parameters, and ρ is less than 180 deg, Eqns. (6) and
(7) indicate that the values of X, Y , X ′ and Y ′ have to be zero, which result in the following
relations {

cosα11 + cos (α11 + α12) + cos (α11 + α12 + α13) = 0
α11 + α12 + α13 + α14 = π

(8)

and {
cosα21 + cos (α21 + α22) + cos (α21 + α22 + α23) = 0
α21 + α22 + α23 + α24 = π

(9)

Using the relations in Eqns. (8) and (9), the position vector for point P in the moving
platform can be expressed in branch 1 and branch 2, respectively as

6



p1 =

 xp
yp
zp

 =

 0
0

a [sinα11 + sin (α11 + α12) + sin (α11 + α12 + α13)]

 (10)

and

p2 =

 xp
yp
zp

 =

 0
0

a [sinα21 + sin (α21 + α22) + sin (α21 + α22 + α23)]

 (11)

Both Eqns. (10) and (11) imply that the platform has a restricted movement which only a
translation along the z -axis direction, i.e., the platform implements a strict straight-line motion.

Further, in Fig. 3 assuming that the V-shaped link 1 is no longer treated as a fixed base, it is
found that if the given inputs meet the condition α11 = α24, α12 = α23 and α13 = α22, the links
3 and 7 will execute screw motion around OO1 and OO2 respectively while the links 1 and 5 are
able to carry out radially reciprocating movement along CO and AO. In this case, the angles
between OO1 and CO, OO2 and OA are the same, declared as γ. From this configuration, there
exists

nT
1 n2 = nT

3 n4 (12)

where n1 and n3 can be derived from Figs. 1 and 3 as

n1 =

 1 0 0
0 cos (−β) − sin (−β)
0 sin (−β) cos (−β)

 0
0
−1

 =

 0
− sin β
− cos β

 (13)

and

n3 =

 1 0 0
0 cos β − sin β
0 sin β cos β

 0
0
1

 =

 0
− sin β
cos β

 (14)

The normals n2 and n4 can be respectively extracted from the homogeneous coordinates of
joints B1 and B2 as

n2 =


sin
(ρ

2

)
− cos

(ρ
2

)
0

 (15)

and

n4 =


− sin

(ρ
2

)
− cos

(ρ
2

)
0

 (16)

Substituting Eqns. (13) to (16) into Eqn. (12) leads to the results that nT
1 n2 = nT

3 n4 =
sin β cos (ρ/2) = cos γ, which means once the dimension of the V-shaped link of eight-bar
linkage is determined, by using the above analysis, the angles γ and β are determined.
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Then equating Eqns. (10) and (11), there exists

sinα11 + sin (α11 + α12) + sin (α11 + α12 + α13) =
sinα21 + sin (α21 + α22) + sin (α21 + α22 + α23)

(17)

Substituting Eqns. (8) and (9) into Eqn. (17), it yields

sinα11 + sin (α13 + α14) + sinα14 =
sinα21 + sin (α21 + α22) + sinα24

(18)

Giving the condition that α11 = α24, Eqn. (18) can be further simplified as

sin (α13 + α14) + sinα14 = sinα21 + sin (α21 + α22) (19)

Referring to Fig. 3, assuming that α21 = α14, we have

sin (α13 + α14) = sin (α21 + α22) (20)

which means the equation α11 + α12 = α23 + α24 exists and hence we have α12 = α23 and
α13 = α22.

Therefore, it is evidently proved that once meet the requirements of α11 = α24, α12 = α23

and α13 = α22 and given three skew-symmetric inputs, the moving platform executes an strict
straight-line motion; and the four joints which belonged to link 3 and link 7 are able to perform
double helix motion (shown in green lines) as illustrated in Fig. 3(B).

Based on the motion features of the proposed eight-bar linkage, it is well used for synthe-
sizing and constructing Fulleroid-like Archimedean DPMs by properly implanting it into the
group of Archimedean polyhedron bases, more details as shown in the following sections.

3. Synthesis & Construction of Fulleroid-like Archimedean DPMs

Syntheses and constructions of the Fulleroid-like Archimedean DPMs are presented in this
section. It is well known that there are thirteen Archimedean polyhedrons first enumerated
by Archimedes. For illustration purpose, the cuboctahedron and truncated tetrahedron are
selected from the group of Archimedean polyhedrons as examples for the synthesis. A cuboc-
tahedron, from the geometry perspective, has 6 square faces and 8 equilateral triangular faces;
it has 12 identical vertices, each of which is formed by the intersection of two triangles and two
squares; it also has twenty-four identical edges, each separating a triangle from a square. A
truncated tetrahedron has four regular hexagonal faces, four equilateral triangular faces, twelve
vertices and eighteen identical edges. The main difference between these two Archimedean
solids is that in the truncated tetrahedron, a hexagonal face not only shares edges with other
hexagonal faces but also shares edges with other triangular faces. By respectively inserting a
batch of the proposed eight-bar linkage into the cuboctahedron base and the truncated tetra-
hedron base, the Fulleroid-like deployable cuboctahedral mechanism and tetrahedral truncated
mechanism are synthesized and constructed in this section; and this methodology can readily
be extended and generalized to the synthesis of the whole group of Archimedean polyhedra.

3.1. Synthesis & Construction of A Fulleroid-like Deployable Cuboctahedral Mechanism

The cuboctahedron is one of well-known Archimedean solids which is a semi-regular convex
polyhedron composed of equilateral triangles and squares. These triangles and squares meet in
identical vertices by sharing an identical edge. A cuboctahedron is illustrated in Fig. 4; it has
14 faces, with the triangular faces numbered from f1 to f8 and the square faces numbered from
f9 to f14. The 12 vertices are labelled as A, B, C,· · ·, L and 24 edges denoted by e1 throughout
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Figure 4: A regular cuboctahedron base and its geometry.

e24. Points O1, O2, · · ·, O8 and O9, O10, · · ·, O14 are the centroids of eight triangles and six
squares. According to the property of a cuboctahedron, the line segments O1O8, O2O5, O3O6,
O4O7, O9O11, O10O12, O13O14 are all perpendicular to the corresponding faces and intersect at
point O, i.e. the centroid of the cuboctahedron. The cuboctahedron here is used as a base for
synthesizing a Fulleroid-like featured deployable cuboctahedral mechanism. As shown in Fig.
4, line segments in red central lines are treated as virtual axes and point O is defined as the
virtual centre of the deployable cuboctahedral mechanism to be constructed.

In the cuboctahedron base, as shown in Fig. 5(A), the first eight-bar linkage is arranged
along e3. In this implant, the axes of all revolute joints A1, B1, C1 and D1 from branch 1 are
normal to face f1. Similarly, the axes of all revolute joints from branch 2 are perpendicular to
the adjacent face f9. The joints B1 and C1 are not allowed to be aligned with either the bisector
of ∠DAE which is AO1 or the bisector of ∠ADE which is O1D. It is noted that f1 will occupy a
branch from an eight-bar linkage, but the height of f1 is lower than the length of the edge. On
the face f9, joints A2 and B2 are aligned with the diagonal of f9 denoted as AO9, joints C2 and
D2 are collinear with another diagonal of f9, i.e. O9D. Referring to Fig. 4, the dihedral angle α
of the cuboctahedron can be calculated as αcub = arcsec

(
−
√

3
)
. So the angle of the V-shaped

link of eight-bar linkage must satisfy the condition that ρcub = 180◦ − αcub and lengths of the
all links in the two branches have to remain the same value.

Next, the second eight-bar linkage is embedded along e1 as illustrated in Fig. 5(B). At this
time, it owns and shares link A1B1 with the previous linkage, which means link A3B3 remained
unchanged such that joints C3 and D3 are orthogonal to f1. The axes of joints A4, B4, C4 and
D4 are normal to f12 which shares the same edge e1 with face f1. On face f1, joint B3 is not
allowed to be aligned with AO1 and joint C3 is not allowed to be aligned with the bisector of
∠AED which is D3O1. On the face f12, joints A4 and B4 lie on the diagonal AO12 and joints C4

and D4 lie on the diagonal O12E.
After integrating the two eight-bar linkages, the very same procedure is processed and two

more eight-bar linkages are mounted along edges e12 and e4 (see Fig. 5(C) and (D)) until we
get the first preliminary vertex around point A of the Fulleroid-like deployable cuboctahedral
mechanism. Moreover, by integrating twenty more eight-bar linkages along the rest edges,
a Fulleroid-like deployable cuboctahedral mechanism is generated as shown in Fig. 6. This
deployable mechanism is comprised of eight equilateral triangular facet components labelled
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Figure 5: Synthesis of a Fulleroid-like deployable cuboctahedral mechanism.

from V1 to V8, six square facet components numbered from V9 to V14; each equilateral triangular
component hooks up three identical links with pins through the joints, and the length of link
equal to the side of the component. Similarly, each square facet component has four identical
links connected with same length. All the links connected to two different facet components are
identical. In addition, twelve vertex components labelled as VA, · · ·, VL are formed. Due to the
property of the eight-bar linkage, given a torque on any facet component around its virtual axis,
all the other components are able to carry out screw motions around the corresponding virtual
axes; and all vertices are capable of accomplish reciprocating motion along their corresponding
virtual axes.

Figure 6(A) shows the fully expanded configuration of the mechanism, in this configuration
each part of this mechanism arrives at the distal end along the associated virtual axes; on the
contrary, in Fig.6(C), the completely folded configuration, every link in this mechanism over-
laps one side of a facet component. The above demonstrates how to synthesize a Fulleroid-like
deployable cuboctahedral mechanism. Nevertheless, so far it has not yet confirmed whether
this synthesizing method can be extended and applied to the whole group of Archimedean
solids. In order to further verify the suitability for Archimedean solids, we changed the cuboc-
tahedron base to a truncated tetrahedron base. The truncated tetrahedron is another typical
Archimedean polyhedron which has a different feature from the cuboctahedron as we mentioned
before: one of the two different polygonal faces is not only sharing edges with another kind of
polygonal face but also with the same kind. The detailed synthesis and construction process is
shown in the following section.
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(A) completely expanded (B) intermediate configuration (C) completely folded 

Figure 6: A Fulleroid-like deployable cuboctahedral mechanism in three configurations.
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Figure 7: A regular truncated tetrahedron base and its geometry.

3.2. Synthesis & Construction of A Fulleroid-like Deployable Truncated Tetrahedral Mechanism

Fig. 7 shows a regular truncated tetrahedron, it consist of four equilateral triangular faces,
numbered from f1 to f4, and four hexagonal faces numbered as f5, f6, f7, f8; its eighteen edges
are declared as e1 throughout e18, which precisely organize twelve vertices from A throughout
L. Points O1, · · ·, O4 are the centroids of the four triangular faces, and points O5, · · ·, O8 are
the centroids of the four hexagonal faces so that four line segments O1O8, O2O7, O3O6 and
O4O5 are all normal to the corresponding faces and cisscross at point O, the centroid of the
truncated tetrahedron. This truncated tetrahedron is employed as a base for synthesizing a
Fulleroid-like deployable truncated tetrahedral mechanism with O1O8, O2O7, O3O6 and O4O5

being consulted as virtual axes and point O being consulted as the virtual centre.
In the truncated tetrahedron base, as illustrated in Fig. 8(A), place the first eight-bar

linkage embedded along the e7. Make sure that all the axes of joints from branch 1 and branch
2 are respectively normal to faces f4 and f6. On face f6, joints A2, B2 are aligned with FO6,
joints C2 and D2 are aligned with GO6. With regards to f4, joint B1 is not able to aligned
with FO4 while C1 can not be aligned with GO4 since the deficient space for settling the third
identical link in the case that link A1B1 and C1D1 are coincided with FO4 and GO4. Because of

11



A

B C

D

E

F H

I

J

G

L KO4

O6

O

A

B C

D

E

F H

I

J

G

L K
O4

O6
O7

O

A

B C

D

E

F H

I

J

G

L K
O4

O6
O7

O

A1

B1
C1

D1

D2
C2

B2

A2

A3

B3

C3
D3

A4B4

C4

D4

A5

B5

C5

D5D6

C6

B6 A6

(A) (B) (C)

Figure 8: Synthesis of Fulleroid-like deployable truncated tetrahedral mechanism.

(A) completely expanded (B) intermediate configuration (C) completely folded 

Figure 9: A Fulleroid-like deployable truncated tetrahedral mechanism in three configurations.

the characteristics of the truncated tetrahedron base, there are two dihedral angles which can
be calculated as: the dihedral angle between triangular face and hexagonal face is 109◦28′′16′,
and the dihedral angle between two hexagonal faces is 70◦31′′44′. In pursuance of building
a Fulleroid-like mechanism by embedding the proposed eight-bar linkage into the truncated
tetrahedron base, referring to the previous subsection, the angles of R-R dyads have to satisfy
ρtrun1 = 70◦31′′44′ when forming the vertex which holds triangular face and hexagonal face and
ρtrun2 = 109◦28′′16′ when building the vertex that holds two hexagonal faces.

Following the same operation, we implant the second eight-bar linkage along edge e15 by
sharing the link C4D4 with the previous eight-bar linkage, that is, link C1D1 is on a par with
link C4D4, as illustrated in Fig. 8(B). The axes of joints A4, B4, C4 and D4 are normal to f4
while B4, C4 can not be aligned with GO4 and LO4, meanwhile, axes of joints A3, B3, C3 and
D3 are normal to f7 with joints A3 and B3 lie on HO7, C3 and D3 lie on GO7.

Further, the third integration is carried out along edge e8 which being shared by two identical
hexagonal faces f6 and f7. So in the third integration of eight-bar linkage, see Fig. 8(C), link
A5B5 is shared by link D3C3 from the second integration of eight-bar linkage and A6B6 is
shared by link D2C2 from the first integration of the eight-bar linkage. Note that in the third
integration, the value of angle of V-shaped link should be 109◦28′′16′.

The above gives the principal steps for integrating the proposed eight-bar linkages into a
truncated tetrahedron base. One can take these three steps for synthesizing one single prelim-
inary vertex of the Fulleroid-like deployable mechanism because each vertex is formed by three
faces (two hexagonal faces and one triangular face). It is intuitive and straightforward that we
only need to repeat the mentioned steps for integrating eight-bar linkages along the rest edges
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and then followed by implementing a further specified goal-oriented structural processing, a
Fulleroid-like deployable mechanism is created as demonstrated in Fig. 9.

The whole mechanism consists of eighteen independent loops, which loop forms eight-bar
linkage with four triangular facet components named as V1, · · ·, V4, and four hexagonal facet
components named as V5, · · ·, V8. The length of side of triangular component is the same as
that of the hexagonal component. Each triangular component is connected with three identical
links. Similarly, each hexagonal facet component is attached with six identical links. As
discussed in previous sections, all link lengths equal the length of the side of facet components
which means there is only one identical link exists. In the mechanism, there are twelve vertex
components named VA throughout VL. All the facet components operate screw-motions around
their associated virtual axes and all the vertex components implement radially reciprocating
movements along their corresponding virtual axes.

Figure 9 shows the detailed design of a Fulleroid-like deployable truncated tetrahedral mech-
anism. From Fig. 9(A) that in completely expanded configuration, each vertex and facet com-
ponent reaches the extreme position; and in fully folded configuration, as indicated in Fig.
9(C), links are sheltered by the facet components which means all parts reach the proximal-end
positions.

3.3. Number Synthesis & Construction of Fulleroid-like Archimedean DPMs

Previous sections present the syntheses and constructions of two Fulleroid-like DPMs based
on two typical Archimedean polyhedron bases through integrating the overconstrained eight-
bar-linkage. Without loss of generality, this synthesizing method of can be naturally extended
and generalized based on other bases from the group of Archimedean polyhedra. According
to [28], semi-regular polyhedrons such as Archimedean solids have the same properties on
numbers of links and joints. Thus, the number synthesis for the whole group of Fulleroid-like
Archimedean DPMs is presented in this section.

By recalling the geometrical traits of the Archimedean polyhedrons with the Euler’s formula
for a polyhedron, the number of links and joints for each of the Archimedean mechanisms are
given as

Nlink = v + f +

f∑
i=1

si +

f∑
j=1

sj = 3e+ 2 (21)

and

Njoint = 2

f∑
j=1

sj = 4e (22)

where f , v, e denote the numbers of faces, vertices, and edges in the given Archimedean solid
base, satisfying v − e + f = 2. Hence, consider the synthesizing approach used for the con-
struction of the aforementioned two mechanisms, based on the structure parameters of the
Archimedean solids identified in Table 1, where Nlink and Njoint provide the number of links
and joints, and γ1, γ2 give the angles between the locus of vertex and the two corresponding
perpendicular line of two facet components, ρ represents the angle of V-shaped link in eight-bar
linkage forming the vertex. The whole group of Archimedean polyhedrons can be synthesized
and transformed into Fulleroid-like DPMs. As can be seen in Table 1, some mechanisms are
formed by two regular polygons such as the cuboctahedral mechanism and truncated tetrahe-
dral mechanism, some are formed by three regular polygons such as the deployable Fulleroid-like
truncated icosidodecahedral mechanism and the deployable Fulleroid-like rhombicosidodecahe-
dral mechanism, they all synthesized and constructed based on the proposed overconstrained
8-bar linkage. Because of the special kinematic characterization and the synthesizing method,
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Table 1: Numbers of links and joints of Fulleroid-like Archimedean DPMs

Deployable mechanisms Nlink Njoint Formed by γ1(deg) γ2(deg) ρ(deg)

Truncated tetrahedral 56 72
Triangle-Hexagon 29.5 58.52 70.53
Hexagon-Hexagon 58.52 58.52 109.47

Cuboctahedral 74 96 Triangle-Square 54.74 45 54.74

Truncated cube 110 144
Triangle-Octagon 18.94 47.27 54.74
Octagon-Octagon 47.27 47.27 90

Truncated octahedra 110 144
Square-Hexagon 26.57 39.23 54.74
Hexagon-Hexagon 39.23 39.23 70.53

Rhombicuboctahedral 146 192
Triangle-Square 24.37 30.36 35.26
Square-Square 30.36 30.36 45

Truncated cuboctahedral 218 288
Square-Hexagon 17.75 25.56 35.26
Square-Octagon 17.76 34.32 45
Hexagon-Octagon 25.26 34.32 54.74

Snub cube 182 240
Triangle-Square 25.45 31.75 37.02
Triangle-Triangle 25.45 25.45 26.77

Icosidodecahedral 182 240 Triangle-Pentagon 20.91 31.72 37.38

Truncated dodecahedral 272 360
Triangle-Decagon 11.21 33.02 37.38
Decagon-Decagon 11.21 33.02 63.43

Truncated icosahedral 272 360
Pentagon-Hexagon 20.08 23.8 37.38
Hexagon-Hexagon 23.8 23.8 41.81

Rhombicosidodecahedral 362 480
Triangle-Square 14.98 18.46 20.91
Square-Pentagon 18.46 22.39 31.72

Truncated icosidodecahedral 542 720
Square-Hexagon 10.72 15.25 20.91
Square-Decagon 10.72 25.18 31.72
Hexagon-Decagon 15.25 25.18 37.38

Snub dodecahedral 452 600
Triangle-Triangle 15.53 15.53 15.82
Triangle-Pentagon 15.53 23.24 27.07

all the synthesized Fulleroid-like Archimedean deployable mechanisms are of 1-DOF mecha-
nisms.

4. Mobility and Kinematics of the Fulleroid-like Archimedean DPMs

Considering the properties of the eight-bar linkage addressed in Section 2 and the con-
structed Fulleroid-like Archimedean DPMs in Section 3, mobility and kinematics of the Archimedean
DPMs are investigated in this section. Referring to the Kirchhoff’s circulation law [38], the in-
stantaneous relative motion of the links can be identified from the linear combination of screw
sets. Hence, mobility of the two presented deployable mechanisms can be investigated and
verified as long as the screw-loop equations of the mechanisms are established. In this section,
based on the Fulleroid-like deployable mechanisms, constraint graphs are sketched and con-
straint matrices of the mechanisms are formulated; leading to the ranks of the null-space of the
mechanisms. The nullity of the constraint matrix gives mobility of the mechanisms in every
configuration. In addition, kinematic analysis and simulation of the two synthesized deployable
mechanisms are carried out and presented.

4.1. Constraints Matrix and Mobility Analysis of the Fulleroid-like Deployable Cuboctahedral
Mechanism

Figure 10 shows the Fulleroid-like deployable cuboctahedral mechanism in an arbitrary con-
figuration with a reference coordinate system attached at the virtual centre of the mechanism.
The origin is at point O, with the x-axis passing through the centroid of square facet component
V9, the y-axis passing through the square facet component V14, and the z-axis passing through
the square facet component V12.
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Figure 10: Geometry of a Fulleroid-like deployable cuboctahedral mechanism.
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Figure 11: (A)(B)(C) respectively represents joint screws in three different facet component.

In each triangular facet component Vi (i = 1, 2, 3, · · · , 8), a local coordinate frame {ui, vi, wi}
is established with its origin Oi locating at the center of the ith equilateral triangular facet
component as shown in Fig. 11(A), where the wi-axis is collinear with OOi (referring to Fig.
10), the ui-axis is parallel to one side of the triangular facet. bt is the distance between Oi and
the axis of joint. dt means the distance between O and Oi. On the square facet components
Vj (j = 9, 10, 11, · · · , 14), the local coordinate frame {uj, vj, wj} is established with origin Oj

locating at the center of the jth square facet component as shown in Fig. 11(B). In this local
coordinate system, the wj-axis is aligned with OOj (referring to Fig. 10), the uk-axis is normal
to one side of the square facet component and therefore the vk-axis is perpendicular to the
adjacent edge. The distance between Ok and the axis of joint is bs, and the distance between
O and Oj is ds.

Since the lengths of all links in Fulleroid-like deployable mechanism are of the same, denoted
as l, every edge of the triangular facet component and the square facet component of the
Fulleroid-like deployable cuboctahedral mechanism is l. According to the geometric relations
in Fig. 11(A) and (B), there exist bt = l

/√
3, βi = arcsin (btsin θi/l) for the triangular facet

component, and bs = l
/√

2, βj = arcsin (bs sin θj/l) for the square facet component.
Based on Fig. 11(A), joint screws on every individual equilateral triangular component can

be derived by referring to their associated local coordinate systems as
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

S i1 =
[

0 0 1 bt 0 0
]T

S ′i1 =
[

0 0 1 bt + l cos βi −l sin βi 0
]T

S i2 =

[
0 0 1 −bt

2

√
3bt
2

0

]T

S ′i2 =

[
0 0 1 −

bt +
(
cos βi −

√
3 sin βi

)
l

2

√
3bt + l

(√
3 cos βi + sin βi

)
2

0

]T

S i3 =

[
0 0 1 −bt

2
−
√

3bt
2

0

]T

S ′i3 =

[
0 0 1 −

bt + l
(
cos βi +

√
3 sin βi

)
2

√
3bt + l

(√
3 cos βi − sin βi

)
2

0

]T

(23)

And joint screws on every individual square facet component (see Fig. 11(B)) can be
calculated relative to the corresponding local coordinate systems as

S j1 =
[

0 0 1 bs 0 0
]T

S ′j1 =
[

0 0 1 bs + l cos βj −l sin βj 0
]T

S j2 =
[

0 0 1 0 bs 0
]T

S ′j2 =
[

0 0 1 l sin βj bs + l cos βj 0
]T

S j3 =
[

0 0 1 −bs 0 0
]T

S ′j3 =
[

0 0 1 −bs − l cos βj 0
]T

S j4 =
[

0 0 1 0 −bs 0
]T

S ′j4 =
[

0 0 1 −l sin βj −bs − l cos βj 0
]T

(24)

The first subscript i = 1, 2, 3, · · · , 8 in Eqn. (23) indicate the number of triangular facet
component. In Eqn. (24), the first subscript j = 6, 7, 8, · · · , 14 means the number of square
facet component.

Equation (23) gives the joint screws of the joints embedded in the local coordinate systems
in the triangular facet components, these joint screws can be transformed to the reference

coordinate system by an adjoint transformation matrix (AdT )t =

[
Ri 0
p̃ iRi Ri

]
with Ri being

the rotation matrix and p̃ i being a skew-symmetric matrix representation of vector p i which
presents the displacement of point Oi with respect to point O in the reference coordinate
system. Similarly, the joint screws for the joints in the local coordinate systems of the square
facet components, i.e. Eqn. (24), can be transformed to the reference coordinate system
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through matrix (AdT )s =

[
Rj 0

p̃jRj Rj

]
with Rj and pj, Where Rj is a rotation matrix and

pj is a vector from point O to point Oj. Referring to Fig. 11(A) and (B), Ri, Rj and p i, pj

are able to obtained and listed in Appendix A.
Further, by referring to Euler’s formula in use of mechanical networks [39], the mechanism

owns twenty-four independent loops which can be counted by sketching the constraint graph, as
listed in Appendix B(A). Further, based on this graph, the constraint matrix of the deployable
cuboctahedral mechanism is organized as

Mc =
[
Mc1 Mc2

]
(25)

with

Mc1 =

[
012×6 M12 M13 012×6 012×6 012×6 M17

M21 012×6 012×6 M24 M25 M26 012×6

]
(26)

Mc2 =

[
M18 M19 M1−10 M1−11 M1−12 M1−13 012×8
012×6 M29 M2−10 M2−11 M2−12 012×8 M2−14

]
(27)

where elements M12, M13, M17, M18, M19, M21, M24, M25 and M26 are 12×6 matrices, while
M1−10, M1−11, M1−12, M1−13, M29, M2−10, M2−11, M2−12 and M2−14 are 12 × 8 matrices.
Hence, this constraint matrix Mc is a 144 × 96 one and detailed matrices can be found in
Appendix C. Mobility of the mechanism is determined and identified by the dimension of
nullity of the constraint matrix Mc as

m = dim (N (Mc)) = 1 (28)

Further, by modelling in Solidworksr as shown in Fig. 6, by given one angular input, the
motion simulation indicated that the mechanism has one degree of mobility. Above analysis
proves that mobility of the Fulleroid-like deployable cuboctahedral mechanism is one, which
means it is an overconstrained mechanism. This method can also been used to calculate the
mobility of the truncated tetrahedral mechanism as follows.

4.2. Constraints Matrix and Mobility Analysis of the Fulleroid-like Deployable Truncated Tetra-
hedral Mechanism
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Figure 12: Geometry of Fulleroid-like deployable truncated tetrahedral mechanism.
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An arbitrary configuration of the proposed Fulleroid-like deployable truncated tetrahedral
mechanism is shown in Fig. 12. For the convenience purpose, a global coordinate system is
attached to the mechanism as a reference system with its origin O being located at the virtual
centre, and the x-axis, y-axis and z-axis respectively passing through three pairs of middle points
(x-axis for edges EF and CJ, y-axis for edges BD and IH, and z-axis for edges AG and KL).
Similar to the previous analysis, place a local coordinate system {ui, vi, wi} on the ith triangular
facet component (i = 1, 2, 3, 4) as illustrated in Fig. 11(A). Figure 11(C) illustrates the joint
screws on an individual hexagonal facet component, a local coordinate system {uk, vk, wk} is
attached with its origin Ok locating at the centre of kth hexagonal component (k = 5, 6, 7, 8).
The vk-axis passes through one of the vertices of the hexagonal component. The lengths of all
the links, in the hexagonal facet component and in the triangular facet component, are all l,
the distance between Ok and the axis of the joint is bh, the distance between O and Ok is dh.

Joint screws on each hexagonal component (see Fig. 11(C)) can be calculated as

S k1 =
[

0 0 1 l 0 0
]T

S ′k1 =
[

0 0 1 l + l cos βk −l sin βk 0
]T

S k2 =

[
0 0 1

1

2
l

√
3

2
l 0

]T

S ′k2 =

[
0 0 1

1

2
l + l sin

(
βk +

π

6

) √
3

2
l + l cos

(
βk +

π

6

)
0

]T

S k3 =

[
0 0 1 −1

2
l

√
3

2
l 0

]T

S ′k3 =

[
0 0 1 −1

2
l − l cos

(
βk +

π

3

) √
3

2
l + l sin

(
βk +

π

3

)
0

]T
S k4 =

[
0 0 1 −l 0 0

]T
S ′k4 =

[
0 0 1 −l − l cos βk l sin βk 0

]T
S k5 =

[
0 0 1 −1

2
l −

√
3

2
l 0

]T

S ′k5 =

[
0 0 1 −1

2
l − l sin

(
βk +

π

6

)
−
√

3

2
l − l cos

(
βk +

π

6

)
0

]T

S k6 =

[
0 0 1

1

2
l −

√
3

2
l 0

]T

S ′k6 =

[
0 0 1

1

2
l + l cos

(
βk +

π

3

)
−
√

3

2
l − l sin

(
βk +

π

3

)
0

]T

(29)

where the subscript k indicting the number of hexagonal facet component. From the geometry
information in Fig. 11(C), there exists bh = l and βk = θk.

In the Fulleroid-like deployable truncated tetrahedral mechanism, the adjoint transformation
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matrices for transforming the joint screws from the local coordinate frames in the triangular
facet component and the hexagonal facet component to the reference coordinate system are

given as (AdT )t =

[
Ri 0
p̃ iRi Ri

]
and (AdT )h =

[
Rk 0

p̃kRk Rk

]
, respectively. Where Ri, Rk,

p i, and pk are calculated and listed in Appendix D.
Similarly, the constraint graph is sketched as illustrated in Appendix B(B); Hence the

constraint matrix can be derived as

M′
c =

[
M′

c1 M′
c2

]
(30)

where

M′
c1 =

[
M11 M12 09×6 M14

09×6 M22 M23 M24

]
(31)

M′
c2 =

[
M15 M16 M17 09×12
M25 M26 M27 M28

]
(32)

in Eqns. (31) and (32), the elements M11, M12, M14, M22, M23 and M24 are 9 × 6 ma-
trices. M15, M16, M17, M25, M26, M27 and M28 are 9 × 12 matrices. More details of the
constraint matrices are listed in Appendix E. Hence, M′

c is a 108 × 72 matrix. Then through

programming in symbolic system such as Matlabr, it gives mobility of the mechanism as
m = dim(Null(M′

c)) = 1.

Further, by modelling in Solidworksr, one can run the simulation for testing the mobility
of the stereo mechanism by giving only one angular variation input on any link around its
corresponding revolute joint, it turns out that the mechanism performs the prospective motion
such that the triangular and hexagonal facet components are able to operate screw motion and
the vertex components can carry out strict reciprocating straight-line motion. Therefore, the
mobility of the mechanism is one.

The above analysis clearly reveals that both the deployable cuboctahedral and truncated
tetrahedral mechanisms has only one mobility. Hence, these two mechanisms are both over-
constrained mechanisms. Without loss of generality, this method can be generalized to the
mobility analysis of other Fulleroid-like Archimedean DPMs in the group. All the mechanisms
synthesized in this paper have a single degree of freedom.

4.3. Kinematics and Motion Simulations of the Fulleroid-like Archimedean DPMs

In this section, kinematics of the Sarrus-like overcontrained eight-bar linkage is investigated
first. Further to the structure equation of the linkage derived in Section 2, by implanting the
eight-bar linkage into the Archimedean polyhedral base, e.g. the truncated tetrahedral base
illustrated in Fig. 13, we aim to investigate the kinematic performance of the eight-bar linkage
within the polyhedral base. As shown in Fig. 13, the eight-bar linkage is integrated into the
base along the edge GF which is shared by a hexagonal face and a triangular face. The linkage
is in an arbitrary configuration which means the links A1B1, A2B2, B1C1, B2C2, C1D1 and
C2D2 are not in the same positions as initially indicated in Fig. 8(A).

Then we transform the coordinate system {x0, y0, z0} to the fix coordinate system {x, y, z}
of the polyhedral base with the origin O being the centroid of the truncated tetrahedral base.
By pre-multiplying this transformation with the structure equations derived in Section 2.4, it
is found that if the joint angles meet the requirements of α11 = α24, α12 = α23 and α13 = α22,
motion of the eight-bar linkage can be characterized. Given the structure parameters and
implementing the equations in Section 2.4 in computer program, the motion of the eight-bar
linkage is simulated and illustrated in Fig. 14. From Fig. 14, it can be seen that traces of
joints B1 and C1 are double helix line in 3-dimensional space as well as the joints B2 and C2

do (seeing the grass green lines). The simulation is well verified in the truncated tetrahedral
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Figure 13: Only one proposed eight-bar linkage in the regular truncated tetrahedron base.

mechanism model in Fig. 15, which shows four typical configurations, including the fully-
folded configuration (Fig. 15(A)) and fully-expanded configuration (Fig. 15(D)). In Fig. 15,
four blue sliders indicate the motion traces intersected at point O, which is the centre of the
red truncated tetrahedron base. Regarding the fully-folded configuration, joints A1, C1 are
overlapped, so do the joints B2, D2. These simulations evidently reveal that the two triangular
components (one side of each the triangular component formed by link 3 and link 7) are able
to achieve screw motions around associated virtual axes and the vertex components (formed
by V1 and V2 contain joints A1,A2 and D1,D2) implement radially reciprocating motions along
their associated virtual axes.

This single-loop motion simulation hence verifies that the proposed eight-bar linkage is able
to operate the motions as expected for synthesizing Fulleroid-like mechanisms. This motion
analysis can then be generalized to the motion analysis of the whole group of Fulleroid-like
Archimedean DPMs.

For the Fulleroid-like deployable cuboctahedral mechanism, Fig. 16 displays the position
relationship between a triangular facet component and a square facet component. In the figure,
the wi-axis and the wj-axis are respectively the virtual axes of the triangular facet component
and the adjacent square facet component. Point O is the virtual centre of the mechanism, Oi

is the centre point of the equilateral triangular facet component, Oj is the centre point of the
square facet component, and O′ is the vertex point in the vertex component which is located
at the intersection of the joint axes. The angle between OO′ and OOi is γ1 which is constant,
with the value 54.74◦; and the angle between OO′ and OOj is γ2, with a constant value 45◦.
According to the property of the proposed deployable cuboctahedral mechanism, it is expected
that, when the vertex component performs reciprocating straight line along OO′, the triangular
and square facet components carry out screw motion around axes wi and wj respectively with
rotation angles θi and θj, and displacements dt and ds. Hence, when the length of the link l is
given, referring to Fig. 11(A), it has

O′Oi = bt cos θi + l cos βi (33)
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Since βi = arcsin(bt sin θi/l), and bt =

√
3l

3
, Eq. (33) can be further derived as

O′Oi =

√
3

3
l
(

cos θi +
√

2 + cos2 θi

)
(34)

Hence, referring to Fig. 11, in the right-angled triangle OOiO
′, OO′ can be obtained as

OO′ =
O′Oi

sin γ1
=

√
3l
(
cos θi +

√
2 + cos2 θi

)
3 sin γ1

(35)

Similarly, in the right-angled triangle OO′Oj, there exists

O′Oj = bs cos θj + l cos βj =

√
2l
(
cos θj +

√
1 + cos2 θj

)
2

(36)

where βj = arcsin(bs sin θi/l), and bs =

√
2l

2
, and such that OO′ can also be expressed as
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OO′ =
O′Oj

sin γ2
=

√
2l
(
cos θj +

√
1 + cos2 θj

)
2 sin γ2

(37)

According to the property of the cuboctahedral base, it has sin γ1=
√

6
/

3 and sin γ2 =
√

2
/

2,
hence from Eqns. (35) and (37), it yields

cos θi +
√

2 + cos2 θi =
√

2
(

cos θj +
√

1 + cos2 θj

)
(38)

In addition, the displacements dt and ds can be expressed with respect to the rotation angles
as

dt =
O′Oi

tan γ1
=

√
3l
(
cos θi +

√
2 + cos2 θi

)
3 tan γ1

=

√
6lκ1
6

(39)

and

ds =
O′Oj

tan γ2
=

√
2l
(
cos θi +

√
1 + cos2 θi

)
2 tan γ1

=

√
2lκ2
2

(40)

where, κ1 = cos θi +
√

2 + cos2 θi and κ2 = cos θj +
√

1 + cos2 θj.
Using the angle relationship in Eqn. (38) and the displacements in Eqns. (39) and (40)

together and kinematics for the eight-bar linkage, kinematic analysis of the cuboctahedral de-
ployable mechanism can be derived and simulated as shown in Fig. 17. The figure indicates that
the triangular and square components are able to achieve screw motion around their associated
virtual axes and the vertex components can operate reciprocating straight line motion along
their corresponding virtual axes. With the feature of well-implemented radially reciprocating
movement, the relationship between the velocities (triangular facet component and square facet
component) and two angles θi and θj of the actuated components is discussed as follow.

According to the geometry of the cuboctahedral mechanism, Position vectors of all the
triangular facet components can be denoted as from P1 to P8, and position vectors of all
the square facet components can be named as P9 throughout P14. Keep the global reference
coordinate system unchanged, seeing in Fig.18, position vector of points P1 can be obtained
from Appendix A as

P1 = A1dt (41)
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where A1 =

[ √
3

3

√
3

3

√
3

3

]T
.

Then, position vector of point P2 can be obtained as P2 = A2dt with A2 =

[ √
3

3

−
√

3

3

√
3

3

]T
.

Similarly, P3 = A3dt with A3 =

[ √
3

3

−
√

3

3

−
√

3

3

]T
, P4 = A4dt with A4 =

[ √
3

3

√
3

3

−
√

3

3

]T
,

P5 = A5dt with A5 =

[
−
√

3

3

√
3

3

−
√

3

3

]T
, P6 = A6dt with A6 =

[
−
√

3

3

√
3

3

√
3

3

]T
,

P7 = A7dt with A7 =

[
−
√

3

3

−
√

3

3

√
3

3

]T
and P8 = A8dt with A8 =

[
−
√

3

3

−
√

3

3

−
√

3

3

]T
.

Regarding the square facet components, position vector of point P9 can be obtained as

P9 = A9ds (42)

where A9 =
[

1 1 0
]T

.
Similarly, the position vectors for the rest points on the square facet components can be

derived as P10 = A10ds with A10 =
[

0 0 −1
]T

, P11 = A11ds with A11 =
[
−1 0 0

]T
,

P12 = A12ds with A12 =
[

0 0 1
]T

, P13 = A13ds with A13 =
[

0 −1 0
]T

, P14 = A14ds

with A14 =
[

0 1 0
]T

.
It is found from above analysis that the deployable Fulleroid-like cuboctahedral mechanism

has one degree of freedom, if the actuated component starts rotating, the displacements of all
the centres of the 12 facet components can be determined. The forward kinematic analysis of the
mechanism consists of determination of the velocities of the centroids of the facet components
for a given velocity of the active triangular facet component θ̇i. Take differential of the position
vectors P1 to P8, the velocities of points P1 to P8 can be obtained and Jacobian can be given
as
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

v p1

v p2

v p3

v p4

v p5

v p6

v p7

v p8


=



J 1

J 2

J 3

J 4

J 5

J 6

J 7

J 8


θ̇i (43)

where sub-matrixes J 1, J 2, J 3, J 4, J 5, J 6, J 7, J 8 of the Jacobian matrix can be obtained by
taking time differential of the corresponding position vectors. For the suqare facet components,
by following the same method, the velocities of points P9 to P14 can be obtained and Jacobian
can be given as 

v p9

v p10

v p11

v p12

v p13

v p14

 =


J 9

J 10

J 11

J 12

J 13

J 14

 θ̇j (44)

where sub-matrixes J 9, J 10, J 11, J 12, J 13, J 14 of the Jacobian matrix can be obtained by
taking time differential of the corresponding position vectors P9 to P14.

It can be found that the resultant velocities of triangular facet components are the same,
and the resultant velocities of square facet components are the same, and the relationship of θ̇i
and θ̇j can be obtained from Eqn. (38). Further, once any position of the centroid point of the
facet components of the mechanism is given, the input rotation angle θi or θj can be obtained.
From any position vectors, θi and θj can be expressed as the functions of the positions of the
centroid points. For example, when the position of point P1 is known the rotation angle θi can
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Figure 19: Velocities of two different components along the associated virtual axes of the Fulleroid-like deployable
cuboctahedral mechanism.

be represented as

θi = arccos


(
p1x −

√
2

6
l

)2

− 2

2

(
p1x −

√
2

6
l

)
 (45)

where p1x is the x-component of vector P1 and l is the link length as aforementioned.
According to the geometry of the cuboctahedral mechanism, we can have dt(n), ds(n),

where n means the angle of actuated component. Particularly, the ranges of rotation angle of
triangular actuated component and square actuated component are [0◦, 82.46◦] and [0◦, 90◦],
respectively. The angular velocity is 1◦/s. The displacement increments of dt and ds along
their virtual axes in the n-th second is

δdt(n) = dt(n)− dt(n− 1) (46)

and
δds(n) = ds(n)− ds(n− 1) (47)

Thus for each second, the velocities of the two different components can be written as vt(n)
and vs(n). With the parameter of link length is 40 mm, the velocities of two components along
their own moving axes in a specified actuated angle from fully folded state to fully expanded
state is programmed and presented in Fig. 19.

Similarly, Fig. 20 represents the relationship of a triangular facet component and a hexag-
onal facet component in the deployable truncated tetrahedral mechanism. The wi-axis and
wk-axis are respectively the virtual axes of the two components intersecting at the virtual cen-
tre O. O′ is the intersect point of the screw axes in the vertex component, Oi is the centre point
of the triangular component and Ok is the centre point of the hexagonal component. Angle γ1 is
a constant with value 29.5◦ and angle γ2 equals 58.52◦. Similar to the above derivations for the
cuboctahedral mechanism, referring to Figs. 11 (A) and (C) there exist O′Oi = bt cos θi+l cos βi
and O′Ok = bh cos θk + l cos βk, such that the OO′ can be obtained in the right-angled triangle
OOiO

′ the same as the one in Eqn. (35), and in the right-angled triangle OOkO′ as
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OO′ =
OkO′

sin γ2
=

2l cos θk
sin γ2

(48)

with the relations that bh = l and βk = θk.

Equating Eqns. (35) and (48), it yields

√
3l
(
cos θi +

√
2 + cos2θi

)
3 sin γ1

=
2l cos θk
sin γ2

. With

sin γ1=0.492 and sin γ2 = 0.853, the relation between angles θi and θk in the truncated tetra-
hedral mechanism can be given as

1

2

(
cos θi +

√
2 + cos2θi

)
= cos θk (49)

Further, the displacements d′t and dh can be formulated as

d′t =
O′Oi

tan γ1
=

√
3l
(
cos θi +

√
2 + cos2 θi

)
3 tan γ1

= 1.02lκ1 (50)

and

dh=
O′Ok

tan γ2
=

2l cos θk
1.633

= 1.225lκ3 (51)

where κ1 is the same one as Eq. (39) and κ3 = cos θk.
By referring to Fig. 21, position vectors denoted as P1 throughout P8 represent the posi-

tions of all facet components of the deployable Fulleroid-like truncated tetrahedral mechanism.
Taking the same approach, position vector of point P1 can be deduced as

P1 = A1d
′
t (52)

where A1 =

[
−
√

3

3

−
√

3

3

√
3

3

]T
.

Subsequently, position vector of point P2 can be obtained as P2 = A2d
′
t with A2 =[ √

3

3

−
√

3

3

−
√

3

3

]T
. Similarly, P3 = A3d

′
t with A3 =

[
−
√

3

3

√
3

3

−
√

3

3

]T
, P4 = A4dt

with A4 =

[ √
3

3

√
3

3

√
3

3

]T
. Further, for the hexagonal facet components, P5 = A5dh with
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A5 =

[
−
√

3

3

−
√

3

3

−
√

3

3

]T
, P6 = A6dh with A6 =

[ √
3

3

−
√

3

3

√
3

3

]T
, P7 = A7dh

with A7 =

[
−
√

3

3

√
3

3

√
3

3

]T
and P8 = A8dh with A8 =

[ √
3

3

√
3

3

−
√

3

3

]T
.

Similarly, taking differential of the position vectors P1 to P4, the velocities of points P1 to
P4 can be obtained and Jacobian can be given as

v p1

v p2

v p3

v p4

 =


J 1

J 2

J 3

J 4

 θ̇i (53)

where sub-matrixes J 1, J 2, J 3, J 4 of the Jacobian matrix can be obtained by taking time
differential of the corresponding position vectors. For the hexagonal facet components, by
following the same method, the velocities of points P5 to P8 can be obtained and Jacobian can
be given as 

v p5

v p6

v p7

v p8

 =


J 5

J 6

J 7

J 8

 θ̇k (54)

where sub-matrixes J 5, J 6, J 7, J 8 and J 13 of the Jacobian matrix can be obtained by taking
time differential of the corresponding position vectors P5 to P8.

By referring the relationship of θ̇i and θ̇k from Eqn. (49), once any position of the centroid
point of the facet components of the truncated tetrahedral mechanism is given, the input
rotation angle θi or θk can be obtained. From any position vectors, θi and θk can be expressed
as the functions of the positions of the centroid points. For example, the most convenient one
can be obtained from position of point P7, when the position vector P7 is known the rotation
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angle θk can be represented as

θk = arccos

(√
2p7z
l

)
(55)

where p7z is the z-component of vector P7 with l being denoted as the link length.
With Eqns. (49), (50) and (51) and the kinematics of the eight-bar linkage and given the

structure parameters, motion and velocities of the triangular facet component and hexagonal
facet component of the Fulleroid-like deployable truncated tetrahedral mechanism can be char-
acterised and simulated as illustrated in Figs. 22 and 23. Figures indicate that in the deployable
truncated tetrahedral mechanism, the eight components all operate screw motion around the
associated virtual axes with real-time velocities and twelve vertices are able to achieve radially
reciprocating motion along their associated virtual axes.
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Figure 22: Motion simulation (working trajectory) of the Fulleroid-like deployable truncated tetrahedral mech-
anism.

Further, referring to the mobility and motion analysis above, it is found that the two de-
ployable Fulleroid-like Archimedean mechanisms are both mobility one and if the rotation angle
(θi or θj in the Fulleroid-like deployable cuboctahedral mechanism and θi or θk in the Fulleroid-
like deployable truncated tetrahedral mechanism) is given, the displacement of all the centres
of the facet components of those deployable Fulleroid-like Archimedean mechanisms can be
determined. It also has been well verified that the double helix motions of all joints in those
mechanisms comply with the geometric constraint presented in Section 2. It is noted that,
for the concerning of bifurcation/multifurcation behaviour, which is generally unavoidable for
deployable structures [40], the unexpected motions will lead the mechanical structure into any
one of the bifurcation paths. the multifurcation of the proposed mechanisms can be solved by
the adding constraint gears to couple the rotating of the joints in the same vertex component
and facet component as indicated in [24, 28, 40]. However, the mobility of the mechanisms
reported in the paper have been investigated using screw theory and their motion paths in-
cluding the moving traces of each facet components and the representative joints on the facet
components are verified by programmed simulations. It is found and proved that by giving only
one actuate rotation input, the components will all move as expected, which are translations
along their virtual axes. Each single facet component is coplanar with the connected links,

28



Figure 23: Velocities of two different components along the associated virtual axes of the Fulleroid-like deployable
truncated tetrahedral mechanism.

and the links are moving with the facet component toward and backward along the same ori-
entation while the facet components are self-revolving on the axis. The singular positions are
very straightforward, are the fully-folded configuration and the fully-expanded configuration,
no matter the cuboctahedral mechanism or the truncated tetrahedral mechanism. It is noted
that in the fully-expanded configuration of the cuboctahedral mechanism, the distal joint of
the link connected to the square facet component has been reached the farthest position while
the triangular facet component and its associated links do not reach the farthest position (if
reach, the angle between the link and the adjacent edge of triangular facet component should
be 120 degree).

By following the same pattern, kinematics of the other eleven deployable Archimedean
mechanisms are able to obtained and analysed which helps to reveal the characterizations
of Fulleroid-like deployable mechanisms from the constructing point of view. In addition,
computation algorithms as presented in [33] can be considered to increase the efficiency of the
construction process.

5. Conclusions

An efficient and intuitive approach was presented in this paper for the synthesis and con-
struction of a group of featured Fulleroid-like Archimedean DPMs based on a Sarrus-like over-
constrained spatial eight-bar linkage. Structure and mobility of the linkage were briefly intro-
duced and formulated, which clearly verified that the proposed linkage is an overconstrained
mechanism like the Sarrus linkage. Then by selecting the cuboctahedron and truncated tetra-
hedron as example bases, the approach for synthesizing a characteristic features of Fulleroid
mechanisms, called Fulleroid-like deployable cuboctahedral mechanism and Fulleroid-like de-
ployable truncated tetrahedral mechanism were presented and illustrated. Further, based on
Kirchhoff’s circulation law for independent loop using in mechanical networks, mobility of the
proposed mechanisms was studied. In order to demonstrate the motion performance of the
proposed eight-bar linkage and the Fulleroid-like Archimedean DPMs, kinematics of the link-
ages was researched and stated with numerical simulations. The results clearly indicate that
the eight-bar linkage is able to performs double-helix motion (link 3 and link 7) integrated
with straight-line motion (movable platform denoted as link V2); and for all the synthesized
and constructed Fulleroid-like Archimedean DPMs in this paper, all the facet components that
involved, are able to operate screw motion around their associated virtual axes, and all the
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vertex components are capable of performing radially reciprocating motion along their corre-
sponding virtual axes. The proposed deployable mechanisms have great potential applications
in reconfigurable robotics, deployable architectures and expendable space exploring devices.

6. References

[1] E. Rivas-Adrover, Deployable Structures, Laurence King Publishing, London, 2015.

[2] W. Cao, D. Yang, H. Ding, A new family of deployable mechanisms derived from two-layer
and two-loop spatial linkages with five revolute pair coupling chains, Journal of Mechanisms
and Robotics 9 (6) (2017) 061016.

[3] M. Goldberg, New five-bar and six-bar linkages in three dimensions, Transactions of the
ASME 65 (1943) 649–661.

[4] R. B. Fuller, Synergetics,explorations in the geometry of thinking, Macmillan Publishing
Co.Inc., New York, NY, 1979.

[5] H. F. Verheyen, Expandable polyhedral structures based on dipolygonids, in: Proc. 3rd
Int. conf. Space Structures, Elsevier, London, UK, 1984.

[6] H. F. Verheyen, The complete set of jitterbug transformers and the analysis of their motion,
Computers & Mathematics with Applications 17 (1-3) (1989) 203–250.

[7] H. Stachel, The heureka-polyhedron, in: Intuitive Geometry, Vol. 63, Colloq. Math. Soc.
Jnos Bolyai, North-Holland, Amsterdam., 1994, pp. 447–459.

[8] K. Wohlhart, Heureka octahedron and brussels folding cube as special cases of the turning
tower, in: Proc. the Sixth IFToMM International Symposium on Linkages and Computer
Aided Design Methods, Bucharest, Romania, 1993.

[9] K. Wohlhart, New overconstrained spheroidal linkages, in: Proc. the Ninth World Congress
on the Theory of Machines and Mechanisms, Milano, Italy, 1995.
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Appendix A.

R1 =

 0.107 sin θi − 0.809 cos θi −0.107 cos θi − 0.809 sin θi 0.577
0.498 cos θi + 0.647 sin θi 0.498 sin θi − 0.647 cos θi 0.577
0.312 cos θi − 0.755 sin θi 0.755 cos θi + 0.312 sin θi 0.577

 (A.1)

R2 =

 0.647 sin θi + 0.498 cos θi 0.647 cos θi + 0.498 sin θi 0.577
0.809 cos θi − 0.107 sin θi 0.107 cos θi + 0.809 sin θi −0.577
0.312 cos θi − 0.755 sin θi 0.755 cos θi + 0.312 sin θi 0.577

 (A.2)

R3 =

 0.498 cos θi + 0.647 sin θi 0.498 sin θi − 0.647 cos θi 0.577
0.755 sin θi − 0.312 cos θi −0.755 cos θi − 0.312 sin θi −0.577
0.809 cos θi − 0.107 sin θi 0.107 cos θi + 0.809 sin θi −0.577

 (A.3)

R4 =

 0.312 cos θi − 0.755 sin θi 0.755 sin θi + 0.312 cos θi 0.577
0.498 cos θi + 0.647 sin θi 0.498 cos θi − 0.647 sin θi 0.577
0.809 cos θi − 0.107 sin θi 0.107 cos θi + 0.809 sin θi −0.577

 (A.4)

R5 =

 0.107 sin θi − 0.809 cos θi 0.107 cos θi + 0.809 sin θi −0.577
0.755 sin θi − 0.312 cos θi 0.755 cos θi + 0.312 sin θi −0.577
0.647 sin θi + 0.498 cos θi 0.647 cos θi − 0.498 sin θi 0.577

 (A.5)
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R6 =

 −0.498 cos θi − 0.647 sin θi 0.647 cos θi − 0.498 sin θi −0.577
−0.809 cos θi − 0.107 sin θi 0.107 cos θi − 0.809 sin θi 0.577
0.312 cos θi − 0.755 sin θi 0.755 cos θi + 0.312 sin θi 0.577

 (A.6)

R7 =

 0.312 cos θi − 0.755 sin θi −0.755 cos θi − 0.312 sin θi −0.577
0.498 cos θi + 0.647 sin θi 0.647 cos θi − 0.498 sin θi −0.577
0.809 cos θi − 0.107 sin θi −0.107 cos θi − 0.809 sin θi 0.577

 (A.7)

R8 =

 0.755 sin θi − 0.312 cos θi −0.755 cos θi − 0.312 sin θi −0.577
−0.498 cos θi − 0.647 sin θi 0.647 cos θi − 0.498 sin θi −0.577
0.809 cos θi − 0.107 sin θi 0.107 cos θi + 0.809 sin θi −0.577

 (A.8)

R9 =

 0 0 1
− sin θj − cos θj 0
cos θj − sin θj 0

 (A.9)

R10 =

 sin θj cos θj 0
cos θj − sin θj 0

0 0 −1

 (A.10)

R11 =

 0 0 −1
sin θj cos θj 0
cos θj − sin θj 0

 (A.11)

R12 =

 − cos θj sin θj 0
− sin θj − cos θj 0

0 0 1

 (A.12)

R13 =

 sin θj − cos θj 0
0 0 −1

cos θj sin θj 0

 (A.13)

R14 =

 − sin θj cos θj 0
0 0 1

cos θj sin θj 0

 (A.14)

p1 = dt
[

0.577 0.577 0.577
]T

(A.15)

p2 = dt
[

0.577 −0.577 0.577
]T

(A.16)

p3 = dt
[

0.577 −0.577 −0.577
]T

(A.17)

p4 = dt
[

0.577 0.577 −0.577
]T

(A.18)

p5 = dt
[
−0.577 0.577 −0.577

]T
(A.19)

p6 = dt
[
−0.577 0.577 0.577

]T
(A.20)

p7 = dt
[
−0.577 −0.577 0.577

]T
(A.21)
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p8 = dt
[
−0.577 −0.577 −0.577

]T
(A.22)

p9 = ds
[

1 1 0
]T

(A.23)

p10 = ds
[

0 0 −1
]T

(A.24)

p11 = ds
[
−1 0 0

]T
(A.25)

p12 = ds
[

0 0 1
]T

(A.26)

p13 = ds
[

0 −1 0
]T

(A.27)

p14 = ds
[

0 1 0
]T

(A.28)
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Appendix C.

M12=


S 21 S ′21 S 22 S ′22 0 0

03×6
−S 21 −S ′21 0 0 S 23 S ′23

06×6
0 0 −S 22 −S ′22 −S 23 −S ′23

 (C.1)

M13=


03×6
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0 0 0 0 0 0
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M17=


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M21 =


S 11 S ′11 0 0 SS13 S ′13

06×6
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0 0 −S 12 −S ′12 −S 13 −S ′13
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 (C.6)

M26=
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S 61 S ′61 0 0 S 63 S ′63
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−S 61 −S ′61 −S 62 −S ′62 0 0

03×6

 (C.7)
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M18=
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R5=


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(D.5)

R6=
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(D.6)

R7=


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R8=


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(D.8)
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p7 = dh
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p8 = dh
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Appendix E.

M11=


0 0 0 0 0 0
0 0 S 12 S ′12 S 13 S ′13
S 11 S ′11 0 0 −S 13 −S ′13
−S 11 −S ′11 −S 12 −S ′12 0 0

05×6

 (E.1)

M12=

[
08×6

S 21 S ′21 0 0 S 23 S ′23

]
(E.2)

M14=


05×6

S 41 S ′41 0 0 S 43 S ′43
0 0 0 0 0 0
−S 41 −S ′41 S 42 S ′42 0 0
0 0 0 0 0 0

 (E.3)

M22=


0 0 S 22 S ′22 −S 23 −S ′23

03×6
−S 21 −S ′21 −S 22 −S ′22 0 0

04×6

 (E.4)

M23=


06×6

0 0 S 32 S ′32 S 33 S ′33
S 31 S ′31 −S 32 −S ′32 0 0
−S 31 −S ′31 0 0 −S 33 −S ′33

 (E.5)

M24=

 02×6
0 0 −S 42 −S ′42 −S 43 −S ′43

06×6

 (E.6)

M15=



S 51 S ′51 S 52 S ′52 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
−S 51 −S ′51 0 0 0 0 0 0 0 0 S 56 S ′56

03×12
0 0 0 0 0 0 0 0 S 55 S ′55 −S 56 −S ′56
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 S 54 S ′54 −S 55 −S ′55 0 0


(E.7)

M16=



03×12
S 61 S ′61 0 0 0 0 0 0 0 0 S 66 S ′66
0 0 0 0 0 0 0 0 S 65 S ′65 −S 66 −S ′66
0 0 0 0 0 0 0 0 0 0 0 0

−S 61 −S ′61 S 62 S ′62 0 0 0 0 0 0 0 0
0 0 0 0 0 0 S 64 S ′64 −S 65 −S ′65 0 0
0 0 0 0 0 0 0 0 0 0 0 0


(E.8)
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M17=


0 0 0 0 0 0 0 0 S 75 S ′75 S 76 S ′76
S 71 S ′71 0 0 0 0 0 0 0 0 −S 76 −S ′76

02×12
−S 71 −S ′71 S 72 S ′72 0 0 0 0 0 0 0 0
0 0 −S 72 −S ′72 S 73 S ′73 0 0 0 0 0 0

03×12

 (E.9)

M25=


05×12

0 0 0 0 S 53 S ′53 −S 54 −S ′54 0 0 0 0
02×12

0 0 −S 52 −S ′52 −S 53 S ′53 0 0 0 0 0 0

 (E.10)

M26=

 0 0 −S 62 −S ′62 S 63 S ′63 0 0 0 0 0 0
0 0 0 0 −S 63 −S ′63 −S 64 −S ′64 0 0 0 0

07×12

 (E.11)

M27=


03×12

0 0 0 0 −S 73 −S ′73 S 74 S ′74 0 0 0 0
03×12

0 0 0 0 0 0 −S 74 −S ′74 −S 75 −S ′75 0 0
0 0 0 0 0 0 0 0 0 0 0 0

 (E.12)

M28=



0 0 0 0 0 0 0 0 0 0 0 0
S81 S ′81 S82 S ′82 0 0 0 0 0 0 0 0
−S81 −S ′81 0 0 0 0 0 0 0 0 S86 S ′86
0 0 0 0 0 0 0 0 S85 S ′85 −S86 −S ′86
0 0 −S82 −S ′82 S83 S ′83 0 0 0 0 0 0
0 0 0 0 −S83 −S ′83 S84 S ′84 0 0 0 0
0 0 0 0 0 0 −S84 −S ′84 −S85 −S ′85 0 0

02×12


(E.13)
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