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ABSTRACT 

A mathematical model is presented for the nonlinear steady, forced convection, 

hydromagnetic flow of electro-conductive magnetic nano-polymer with magnetic induction 

effects included. The transformed two-parameter, non-dimensional governing partial 

differential equations for mass, momentum, magnetic induction and heat conservation are 

solved with the local non-similarity method (LNM) subject to appropriate boundary 

conditions. Keller’s implicit finite difference “box” method (KBM) is used to validate 

solutions. Computations for four different nanoparticles and three different base fluids are 

included. Silver nanoparticles in combination with various base fluids enhance temperatures 

and induced magnetic field and accelerate the flow. An elevation in magnetic body force 

number decelerates the flow whereas an increase in magnetic Prandtl number elevates the 

magnetic induction. Furthermore, increasing nanoparticle solid volume fraction is found to 

substantially boost temperatures. Applications of the study arise in advanced magnetic solar 

nano-materials (fluids) processing technologies.   

 

Keywords Magneto-nanofluid dynamics; magnetic Prandtl number; magnetic induction; local non-

similarity method (LNM); Keller box method (KBM); magneto-solar nano-materials processing.  

 

 

1. INTRODUCTION 

Magnetic nanofluids have emerged as a new sub-group of nanofluids in energy (and also 

biomedical engineering) which exhibit both magnetic and thermal enhancement properties. 

Interest in solar thermo-magnetic nanofluid devices has also grown significantly in the past 

decade. Some extremely diverse applications of this technology include solar magneto-

nanofluid-heat pipes (MNHPs) [1], sedimentation control of Arc-Submerged Nanoparticle 
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Synthesis Systems (ASNSSs) with magnetic fields [2], critical heat flux elevation with 

magnetic nanofluids in phase change processes [3], droplet vaporization time modification in 

novel rocket combustion systems via magnetized nanofluids [4], thermal tribology [5] and 

solar collector magnetic nano-polymer working fluids [6,7]. In parallel with substantial 

experimental work, a rich literature has also developed focused on theoretical and 

computational simulations of magneto-nanofluid dynamic processes. Rarani et al. [8] used 

CFD simulations to evaluate the effect of electromagnetic fields on viscous properties of iron 

oxide-ethylene glycol magnetized nanofluids. Kandasamy et al. [9] employed Lie group 

transformations and MAPLE software to study magnetic nanofluid convection from an 

extending sheet with wall transpiration. Hamad [10] used hypergeometric functions to 

analyze magnetic field effects on free convection boundary layer flow from a nanofluid 

stretching surface. Rana et al. [11] used a variational finite element code to model the 

transient magneto-convective nanofluid dynamics from a rotating extending surface. They 

employed a Buongiorno model for the nanofluid and showed that primary velocity is strongly 

retarded with increasing Hartmann number (magnetic parameter) and there is also a reduction 

in secondary velocity magnitude. Furthermore, temperature and nanoparticle concentrations 

were found to be accentuated with Hartmann number. Further studies of magnetic nanofluid 

convective transport have examined mixed convection [12], non-isothermal wall conditions 

[13], partially heated micro-channels [14], porous media [15] and thermal radiative heat 

transfer [16].  

 

In numerous modern industrial MHD systems, induction phenomena also arise. These 

systems include MHD induction furnaces [17], magnetohydrodynamic braking [18] and 

levitation processing [19]. In such systems mathematical models must also include separate 

equations for induced magnetic fields, since magnetic Reynolds numbers are of sufficient 

magnitude in these applications. The induced magnetic field distorts the flow field in MHD 

induction phenomena. Chen [20] studied uni-directional radiative flux effects on magnetic 

induction flows with heat transfer. Kumari et al. [21] employed a finite difference procedure 

to study magnetic Prandtl number effects on viscoelastic mixed convection stagnation flow. 

Zueco and Bég [22] employed an electro-thermal network solver code (PSPICE) to simulate 

Batchelor number effects on magnetohydrodynamic Newtonian squeeze films in a dual-disk 

braking system for spacecraft. They showed that magnetic Reynolds number is a key 

parameter dictating the diffusion of magnetic field along streamlines and that Batchelor 

number successfully predicts the relative ease of slip of the fluid through the magnetic field. 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DKandasamy,%2520R.%26authorID%3D6701768011%26md5%3D574c54763f2abff201738aa69b0c9497&_acct=C000012438&_version=1&_userid=10404588&md5=af062c013505d760c4f53cae8c881ec9
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They further determined the correct response of azimuthal and radial induced magnetic field 

distributions under complex boundary conditions. Further studies of MHD induction 

phenomena with thermal convection have been communicated by Bég et al. [23] for steady 

flow of liquid metals, “Ahmed et al. [24] for unsteady plasma flows and Mahmood et al. [25] 

for transpiring wedge boundary layer flows. Rotational MHD induction flows have also been 

studied by Haque et al. [26], Ghosh et al. [27], Bég et al. [28] and very recently with entropy 

generation by Rashidi et al. [29]. These investigations have not however considered magnetic 

nanofluids.  

 

In the present investigation we study the influence of magnetic Prandtl number, nanoparticle 

solid volume fraction and Prandtl number on magneto-convective nanofluid boundary layer 

flow with induction effects. A range of different nanofluids is considered and the motivation 

is to further elucidate the effectiveness of controlling magnetic and thermofluid 

characteristics with external magnetic fields. This study is also motivated by the potential for 

magnetized nanofluid microbial fuel cells [30,31]. Recently several researchers have assessed 

the relative performance of various nanoparticles on convection. Steady Marangoni boundary 

layer flow with three different types of nanoparticles (copper, aluminum oxide and titanium 

oxide) has been considered by Remeli et al. [32]. Steady two-dimensional Falkner–Skan 

boundary layer flow with similar solutions for four different types of nanoparticles, (Cu), 

(Al2O3), (TiO2) and (Ag) together with two different types of the base fluid, water and 

ethylene glycol was also analyzed by Khan et al. [33]. The present study extends the 

conventional thermomagnetic nanofluid model [9,10] to the non-similar problem, with 

different nanoparticles, different base fluids and MHD induction effects. “The induced 

magnetic field is assumed to be applied parallel to the wall at the outer edge of the boundary 

layer. The transformed ordinary differential equations are solved numerically with the 

Sparrow-Yu local non-similarity method (LNM) [34]. An error analysis is also performed. 

Validation of solutions is attained via the Keller box implicit finite difference method 

(KBM). The study is important in simulating transport phenomena in novel nano-magnetic 

materials processing systems. 

 

2. PROBLEM DESCRIPTION 

 

The regime to be studied is depicted in Fig 1. Steady, two-dimensional, laminar boundary 

layer flow of an electrically-conducting, incompressible nanofluid along a plate is 
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investigated.  Magnetic field is applied parallel to the plate i.e. it is aligned with the x-

coordinate. A constant free stream velocity, U is present.  The streamwise direction is 

orientated along the x-coordinate and the spanwise direction is normal to this i.e. along the y-

coordinate. “The magnetic field is aligned with the sheet and comprises two mutually 

perpendicular components, ( )1 2,H H H . Constant thermophysical properties of the nanofluid 

are assumed. The nanofluid is generalized in the sense that different types of nanoparticles 

(Ag, Cu, Al203 and TiO2) are possible as are different base fluids (water etc). The base fluid 

(i.e. water) and the nanoparticles are in thermal equilibrium and no interphase slip is present. 

Electrical field, Alfven wave, viscous dissipation and Ohmic heating effects are neglected. 

Magnetic Reynolds number is sufficiently large however to invoke magnetic induction and 

this parameter is a quantification of the effect of the flow on the magnetic field distortion. For 

cases where this parameter is very small (compared to unity) the magnetic field is known to 

be undistorted by the flow. However, for large values of magnetic Reynolds number 

induction effects are significant and necessitate a separate conservation equation. The normal 

component of the induced magnetic field, 2H vanishes at the wall and the parallel component, 

1H approaches the given value, 0H , at the edge of the boundary layer. Wall temperature wT  

and the free stream temperature T  are prescribed as constant i.e. the wall is isothermal. The 

subscripts  and w  denote conditions at the edge of the boundary layer and on the plate 

surface (wall) respectively. Under the above assumptions, the governing continuity, 

momentum, magnetic induction and heat conservation equations for MHD nanofluid 

boundary layer forced convection can be written using Maxwell’s generalized 

electromagnetic field equations, the Navier-Stokes viscous fluid conservation equations and 

Fourier’s heat conduction equation, combining the models of Ferdows et al. [16] and Takhar 

et al. [17], as follows:    
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Velocity, magnetic induction and temperature boundary conditions are prescribed at the wall 

and in the free stream are as follows: 

1
20 : 0, 0, 0; w
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To simulate the modified properties of the nanofluid, we define, following Tiwari and Das 

[35], the effective density of the conducting nanofluid, 
nf , and the effective viscosity of the 

conducting nanofluid,
nf , respectively as: 
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Nanofluid heat capacity is given by: 

( ) (1 )( ) ( )p nf p f p sC C C    = − + .                                                                           (9)                                                                          

Thermal conductivity ratio of the nanofluid to the base fluid, is expressed using the following 

relation: 
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Here  is the solid volume fraction of the nanofluid, f is the reference density of the (base) 

fluid fraction, s is the reference density of the solid fraction, nfk is the thermal conductivity 

of the nanofluid, f is the viscosity of the fluid fraction, fk  is the thermal conductivity of the 

fluid, sk is the thermal conductivity of the solid. We employ the following transformations to 

non-dimensionalize eqns. and boundary conditions (1)- (7): 
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Here  is the non-dimensional similarity variable,  is the non-dimensional transformed 

stream wise coordinate, f and g are non-dimensional stream and magnetic stream functions, 

respectively,  is non-dimensional temperature function and Rex is local Reynolds number. 
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For the velocity field we define the dimensional stream function, ( ),x y  in the usual way 

employing the familiar Cauchy-Riemann equations: 

,u = v =
y x

  
−

 
.                                                                                                           (12) 

We utilized the appropriate form of the Cauchy-Riemann equations from electromagnetic 

field theory for the induced magnetic field, magnetic stream function is defined as ( ),x y as 

follows: 

1 2,H = H =
y x
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−
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.                                                                              (13) 

From equation (13) Mass (continuity) and magnetic field continuity are satisfied identically. 

The boundary value problem defined by eqns. (1)- (7) then reduces to the following trio of 

coupled, nonlinear partial differential equations in a ( ,  ) coordinate system, of collectively 

8th order.  
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where primes denote the differentiation with respect to . The transformed boundary 

conditions assume the form: 
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Here ( )Pr /f p ff
C k =  is Prandtl number, 2 2

0 0 / fH  = is magnetic body force number, 

1/ Prm = i.e. the reciprocal of magnetic Prandtl number where 1Pr /m f =  denotes 

magnetic Prandtl number. In view of the velocity field, the local skin friction coefficient 

( xCf ) and local Nusselt number (Nu) are given by: 
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Here w is the shear stress at the wall, ( )/
w

T y   is the temperature gradient at the wall, 

wT T T = − is the temperature difference. In a similar fashion we may define a local 

magnetic induction gradient. In the simulations four different nanoparticles and three 

different base fluids are studied. The appropriate properties are summarized in Table 1:  The 

two-point BVP define by eqns. (14)- (16) under conditions (17), (18) is well-posed. It 

generally requires a numerical solution for which many techniques are possible including 

finite elements, spectral methods and network simulation. The adoption of the Tiwari-Das 

model [35] avoids the generation of a third boundary layer equation for species conservation. 

This approach has recently also been implemented for a number of multi-physical nanofluid 

transport problems. Rashidi et al. [36] used Homotopy algorithms to simulate nanofluid 

convection from a cylindrical body with the Tiwari-Das model. Anwar Bég et al. [37] studied 

nanofluid migration in re-charging geothermal systems using a finite difference algorithm 

and both the Tiwari-Das model and other nanoscale transport models. Anwar Bég and 

Tripathi [38] presented the first rigorous study of peristaltic flow of Tiwari-Das nanofluids in 

actuated medical pump systems. Rana et al. [39] used a variational finite element code to 

study the influence of body inclination on Tiwari-Das nanofluid convection from a tilted 

cylinder. These studies have confirmed the robustness of the Tiwari-Das model and verified 

that it accurately characterizes actual nanofluids in engineering systems without the necessity 

for an additional species conservation equation for nano-particles.  

3. SPARROW-YU LOCAL NON-SIMILARITY METHOD (LNM) NUMERICAL  

SOLUTIONS 

In the present study we implement a well-established computational procedure known as 

local non-similarity method (LNM) which was developed by Sparrow and Yu [34]. This 

method has been adapted to solve an extensive range of boundary layer flow problems and is 

lucidly described in Kao [40]. More recently LNM has been used to analyze chemo-magnetic 

heat transfer [41], radiative rheological cross-diffusion flows in porous media [42], 

convection with viscous heating effects [43], axisymmetric transient boundary layers [44], 
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heat transfer from titled solar collectors [45] and magnetic induction flows [46]. Anwar Bég 

[47] has recently reviewed the relative efficiency and versatility of LNM compared with 

other computational approaches including spectral methods and alternating finite difference 

algorithms. LNM embodies two essential features. First the non-similar solution at any 

specific streamwise location is found (i.e. each solution is locally autonomous). Second, the 

local solutions are found from the appropriate differential equations. These equations can be 

solved numerically by well-established techniques, such as forward integration (e.g. a Runge-

Kutta quadrature) in conjunction with a shooting procedure to determine the unknown 

boundary conditions at the wall. The method also allows some degree of self-checking for 

accuracy of the numerical results. It is easily interfaced with modern symbolic programs such 

as MATHEMATICA, MATLAB and MAPLE. In approaching the local non-similarity 

solution of eqns. (14) to (16), it is first convenient to eliminate the explicit presence of the  -

derivatives of the dimensionless stream function, f , and dimensionless temperature 

function,  , by defining: 
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1 2 3, ,G G G represent three additional unknown functions. Therefore, it is necessary to deduce 

three further equations to determine the 1 2 3, ,G G G .This is accomplished by creating 

subsidiary equations by differentiation of the transformed conservation equations and 

boundary conditions (i,e. the 1 2 3, ,G G G system of equations) with respect to .  The subsidiary 

equations for 1 2 3, ,G G G contain terms, 1 2 3/ , / , /G G G         and their   -derivatives.  

When these terms are ignored the system of equations for ,f ,g ,
1,G 2 ,G 3G reduces to a 

system of ordinary differential equations that provide locally autonomous solutions. This 

form of the local non-similarity method is referred to as the second level of truncation, since 

approximations are made by dropping terms in the second level equation. After the 

substitution of these quantities and then differentiated with respect to , giving (with 

boundary conditions): 
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 -derivative terms which are explicitly involving are grouped on the righthand sides. 

Equations (24)-(25) are essentially auxiliaries to the conservation equations and their 

boundary conditions. The functions ,f
1G  appear in these equations. By the same token, the 

functions 2 3, , ,g G G  are present in these equations, necessitating simultaneous solution. The 

non-similarity solution method preserves the two attractive features of the local-similarity 

method, that is, for any given , the solution is independent of that at any other and we can 

solve the resulting equations as if they were ordinary differential equations of the similarity-

type. Furthermore, the local non-similarity approach retains all terms in the momentum, 

magnetic induction and energy equations, as is evidenced in equations (24)- (26). From 

subsidiary equations that is, from the 1 2 3, ,G G G equations, the terms are deleted. This is in 

contrast to the local-similarity method, where terms are deleted from the momentum and 

energy equations themselves. We consider the new functions: 

/

3

/

2

//

1 ,, === hghfh ,                              (29) 





 


=




=




=

/

6

/

5

//

4 ,, h
g

h
f

h  .                  (30) 

Now the nonlinear differential equations (14)- (16) and (24)- (26) with the boundary 

conditions (17), (18) and (27), (28) “have been solved numerically, employing the sixth order 

implicit Runge-Kutta-Butcher (RKB) initial value problem solver along with Nachtsheim-

Swigert iteration technique, in MAPLE. In the shooting method technique 1 2 3 4 5 6, , , , ,h h h h h h    

are considered as missing conditions at the initial point and the differential equations are then 

integrated numerically from the initial value to the terminal point. Thereafter the user checks 

the accuracy of the guess for the missing initial condition with the calculated value of the 

dependent variable at the end point with its given value there. Then one considers another 

value of the missing initial condition and the process is repeated and continued until the 

agreement between the calculated and the given condition at the terminal point is within the 

specified degree of accuracy. Here we have also computed the error of the initial guess values 
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( 1 2 3 4 5 6, , , , ,h h h h h h ). We consider 0.0001 as initial guess values. The following equation is 

used to evaluate the percentage error (PE): 

%100
*

*


−
=

h

hih
PE  .                   (31) 

Where PE= percentage of error of guess values, h* = initial guess values (0.0001) and hi 

denote the calculated values (i = 1….6). Table 2 documents the errors computed with LNM. 

4. VALIDATION WITH KELLER BOX FINITE DIFFERENCE METHOD (KBM) 

In order to validate the present RKB shooting computations, the Keller-Box implicit 

difference method is also utilized to solve the nonlinear boundary value problem defined by 

eqns. (14)- (16) with the boundary conditions (17), (18). This second order accurate method 

is ideal for parabolic problems i.e. boundary layer flows. Recently the KBM algorithm has 

successfully resolved a number of nonlinear magnetohydrodynamics and nanofluid dynamics 

problems including micropolar nanofluid enrobing flows [48], Hall MHD generator transport 

[49], viscoelastic flows in porous media [50] and biological micro-organism propulsion [51]. 

The Keller-Box discretization is fully coupled at each step which reflects the physics of 

parabolic systems – which are also fully coupled.  Discrete calculus associated with the 

Keller-Box scheme has also been shown to be fundamentally different from all other mimetic 

(physics capturing) numerical methods, as elaborated by Keller [52]. The Keller Box Scheme 

comprises four stages: 

1)Decomposition of the Nth order partial differential equation system to N first order 

equations. 

2)Finite Difference Discretization. 

3)Quasi-linearization of Non-Linear Keller Algebraic Equations. 

4)Block-tridiagonal Elimination solution of the Linearized Keller Algebraic Equations. 

A two-dimensional computational grid is imposed on the -η plane. The stepping process is 

defined by: 

0 10, , 1,2,..., J,i i j Jh j    − = = + =  ,                                                           (32) 

0 10, , 1,2,...,n n

nk n N   −= = + = .                                                 (33) 

where nk  is the   - spacing and jh
 
is the   - spacing. If n

jg  denotes the value of any 

general variable at ( ), n

j  , then the variables and derivatives of Equations (14)-(16) at 

( )1/2

1/2 , n

j  −

−  are replaced by: 
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( )1/2 1 1

1/2 1 1

1

4

n n n n n

j j j j jg g g g g− − −

− − −= + + + ,                                       (34) 

( )
1/2

1 1

1 1

1/2

1

2

n

n n n n

j j j j

jj

g
g g g g

h

−

− −

− −

−

 
= − + − 

 

,                                       (35) 

( )
1/2

1 1

1 1

1/2

1

2

n

n n n n

j j j jn

j

g
g g g g

k

−

− −

− −

−

 
= − + − 

 

.                                   (36) 

The resulting finite-difference approximation of equations (14)-(16) for the mid-

point ( )1/2 , n

j − , are then generated. This non-linear system of algebraic equations is 

linearized by means of Newton’s method, as described by Anwar Bég et al. [50]. The 

linearized system is solved by the block-elimination method, since it possesses a block-

tridiagonal structure. The bock-tridiagonal structure generated consists of block matrices. The 

complete linearized system is formulated as a block matrix system, where each element in the 

coefficient matrix is a matrix itself, and this system is solved using the efficient Keller-box 

method. The numerical results are strongly influenced by the number of mesh points in both 

directions. After some trials in the  -direction (radial coordinate) a larger number of mesh 

points are selected whereas in the -direction (tangential coordinate) significantly less mesh 

points are utilized. max has been set at 12 and this defines an adequately large value at which 

the prescribed boundary conditions are satisfied. max is set at 3.0 for this flow domain. Mesh 

independence is achieved in the present computations. The numerical algorithm is executed 

in MATLAB on an Octane SGI workstation and computes in seconds. The method 

demonstrates excellent stability, convergence and consistency, as elaborated by Keller [52]. 

Comparison computations for performance of different nanofluids with aluminum oxide-

water nanofluid (Al2O2-H2O) in terms of percentage (increase (+) or decrease (-)) via both 

LNM and KBM approaches is documented in Tables 3a and 3b. Tables 3a, b and 4 indicate 

that generally silver water and silver oxide water nanofluids yield the best performance 

relative to the benchmark nanofluid considered i.e. aluminum oxide-water nanofluid. 

Excellent correlation is achieved as observed in Tables 3a, b. Confidence in the present 

LNM solutions is therefore high. Further computations with LNM are given in Table 4. 

 

5. LNM COMPUTATIONS, CONVERGENCE, RESULTS AND DISCUSSION 

The two-point non-linear partial differential BVP has been solved numerically using the local 

non-similarity method (LNM). Here, a brief discussion is presented on the convergence of 
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the solution. In due course we present graphical results for the influence of the emerging 

thermophysical parameters ( , , ,  and Pr ) and nanofluid type on velocity, magnetic 

stream function gradient and temperature distributions. The values of the step size  in   

and the infinity condition at the edge of boundary layer ( →  ) have to be adjusted for 

different values of the parameters to maintain accuracy. Throughout this study, we prescribe 

the value of 0.05 = and was found to be satisfactory for a convergence criterion of 10-5 

which gives four decimal places accuracy. The edge of the boundary layer is selected, 

between 5 and 10. We have plotted skin friction coefficient ( ),0 ,f   local Nusselt number 

(Nu) and the induced magnetic stream function gradient profiles ( ),0 ,g   by using a step 

size 0.5 = . The value of  (i.e. the edge of the boundary layer) is taken as 3.0. A 

convergence criterion based on the relative difference between the current and previous 

iteration values is employed. When the difference reaches less than 10-5 the solution is 

assumed to have converged and the iterative process is terminated. The numerical code is 

executed in MATLAB. Dimensionless temperature ( ), ,   and temperature gradients 

( ),0 ,  are also computed, the latter with respect to non-similar parameter ( ). We have 

elected to study initially the different performances of the four nano-particles under 

investigation, viz copper, silver, silver oxide and titanium oxide in individual combination 

with the three different base fluids (water, ethylene glycol (EG) and kerosene (Ke). In order 

to illustrate the results graphically, the numerical values are plotted in Figs (1-13) a-c. In all 

cases, the LNM approach achieves excellent stability and convergence. 

 

Figs. 2a-2c illustrate the velocity, magnetic stream function gradient and thermal 

distributions for different nanofluid suspensions. Here the parameter  (reciprocal of the 

magnetic Prandtl number) is set at 0.5- this indicates that magnetic Prandtl number is 2 i.e. 

viscous diffusion rate is double the magnetic diffusion rate (or magnetic Reynolds number is 

twice the ordinary Reynolds number). Magnetic induction effects are therefore weak. 

Evidently in fig. 2a the greatest acceleration is achieved for silver nanofluids (silver nano-

particles in different base fluids). Silver kerosene achieves the highest velocities followed by 

silver-water and then silver ethylene glycol. The lowest velocities however correspond to 

silver oxide nanofluid (silver oxide kerosene, then silver oxide water and finally silver oxide 

ethylene glycol). Copper-nanofluid suspensions are observed to achieve better velocities than 

titanium oxide-nanofluids, “although the latter still perform better than silver oxide 
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nanofluids. Asymptotically smooth behaviour of all profiles is achieved at the edge of the 

boundary layer testifying to the satisfactory convergence of solutions. Fig 2b reveals similar 

performance to the velocity field- the silver-nanofluids again produce the highest magnitudes 

of magnetic stream function gradient (induced magnetic field function), and titanium oxide 

and silver oxide yield the lowest. Copper nanofluid outperforms both titanium oxide and 

silver oxide but again is superseded by the silver nanofluid case, the latter demonstrating 

again that silver-kerosene is the highest achiever. Conversely in fig. 2c we observe that the 

best heat transfer enhancement is obtained with titanium oxide-water nanofluid (the other 

titanium oxide suspensions achieve very good performance also) whereas the poorest 

performance corresponds to copper-nanofluids, specifically copper-kerosene nano-

suspension. Silver and silver oxide nanofluid also yield high temperatures, although they are 

clearly exceeded with the titanium oxide suspensions. 

 

Figs 3a-c shows the velocity, magnetic stream function gradient and thermal distributions for 

different nanofluid suspensions, for 1 = (all other parameters are unaltered). In this case 

therefore magnetic Prandtl number is also unity and viscous diffusion rate is exactly equal to 

magnetic diffusion rate (magnetic Reynolds number is identical in magnitude to ordinary 

Reynolds number). Magnetic induction effects are therefore anticipated to be stronger than in 

figs 2a-c. Indeed, magnitudes of velocities, induced field and temperature are all greater than 

the corresponding figs 2a-c. Very similar trends are also obtained i.e. silver-nanofluids 

generate the greatest acceleration, highest magnitudes of magnetic stream function gradient 

(induced magnetic field function), and titanium oxide-water nanofluid achieves the highest 

temperatures. 

 

Figs 4a-c illustrate the velocity, magnetic stream function gradient and thermal distributions 

for different nanofluid suspensions. In these plots, however 5 =  and 0.5 =  whereas   

and Pr remain the same. The magnetic Prandtl number 1Pr /m f =  is therefore 0.2, 

significantly lower than in figs 2a-c or 3a-c and magnetic diffusion rate is five times the 

viscous diffusion rate (magnetic Reynolds number is one fifth of ordinary Reynolds number).  

Furthermore, the magnetic body force number is much higher than in figs 2a-c and 3a-c. 

2 2

0 0 / fH  = which represents the magnetic drag force to viscous force ratio. Larger values 

of   will therefore imply more significant applied magnetic field in the regime, as elaborated 

by Ghosh et al. [27]. The general trends observed in figs 2a-c, 3a-c are also computed in figs 
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4a-c. Comparing fig 4a with fig 2a, fig 3a, it is immediately apparent that with greater applied 

magnetic field (Ho), the velocity distributions are all modified from a monotonic increase to a 

sharper plateau pattern attained at smaller values of transverse coordinate. This indicates that 

the velocity field is decelerated, and boundary layer thickness is increased with larger   

values. Comparing figs 4b with figs 2b, 3b, we infer that there is a significant boost in 

induced magnetic field function and, in particular, a marked enhancement at the plate surface. 

However, near the boundary layer free stream, magnetic induction values are found to be 

depleted somewhat with larger magnetic force numbers. Increasing applied magnetic field 

therefore also enhances induced magnetic field. Comparing fig. 4c and figs 2c, 3c, the 

temperature fields are not altered significantly. This may be attributable to the absence of 

Joule heating (Ohmic dissipation) effects in the energy equation, which is the primary 

mechanism for energy dissipation in magnetohydrodynamic flows and conversion of kinetic 

energy to heat, as   discussed by Kumari and Nath [21].  

 

Figs. 5a-c demonstrates the velocity, magnetic stream function gradient and thermal 

distributions for different nanofluid suspensions. In these plots, 10, 0.7 = =  i.e. greater 

than in figs 4a-c. The magnetic Prandtl number 1Pr /m f = is now 0.1, significantly lower 

than in figs 2a-c or 3a-c and magnetic diffusion rate is ten times the viscous diffusion rate 

(magnetic Reynolds number is one tenth ordinary Reynolds number). Magnetic body force 

number, 2 2

0 0 / fH  = is also higher, and magnetic force is 70% the viscous force. The 

trends observed in figs 4a-c are further amplified with the new data. In particular, the 

magnetic induction is found to be even greater at the wall. Magnetic boundary layer thickness 

will therefore also be increased.  

 

Figs 6a-c shows the velocity, magnetic stream function gradient and thermal distributions for 

different nanofluid suspensions, with all data identical to figs 3a-c, i.e. 1, 0.2 = = , except 

solid volume fraction, 0.1 = (half that in fig 3c) “and 3.77Pr = . There is no tangible 

modification in velocity profiles or induced magnetic field (magnetic stream function 

gradient) profiles. However, temperatures are found to be slightly elevated in figs 6c 

compared with fig 3c. Prandtl number defines the ratio of viscous diffusion to thermal 

diffusion in the boundary layer regime.  For Pr 1, momentum diffusivity will exceed 

thermal diffusivity, which applies to figs 3c and 6c. Momentum boundary layer thickness will 
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also exceed thermal boundary layer thickness. Prandtl number = ( ) /f p ff
C k   also represents 

the product of dynamic viscosity and specific heat capacity divided by thermal conductivity 

of the primary fluid. Higher Pr fluids (fig 3c, Pr 4.17= ) will therefore possess a much lower 

thermal conductivity and this will result in lower temperatures in the boundary layer. 

Conversely lower Pr  fluids (fig. 6c, Pr 3.77= ) will possess higher thermal conductivity and 

will generate greater temperatures.  The lower solid volume fraction in fig 6c compared with 

fig 3c will also act to decrease temperatures, but this effect is over-shadowed by the lower 

Prandtl number. 

 

Figs 7a-c depict velocity, magnetic stream function gradient and thermal distributions for 

different nanofluid suspensions, with all data identical to figs 6a-c, i.e. 1, 0.2 = = ,but 

increases in solid volume fraction and Prandtl number, 0.5 = and Pr 6.2= .Significant 

enhancement in temperature in fig 7c compared with fig 6c. Silver oxide water nanofluid 

achieves the highest temperatures whereas copper-kerosene nanofluid yields the lowest 

temperatures. Even though the increase in Prandtl number will result in a lowering in 

temperature, the large increase in solid volume fraction (it is five times greater in fig 7c 

relative to that in fig 6c) will swamp the Prandtl number effect and manifest in an effective 

thermal enhancement, leading to a substantial thickening in the thermal boundary layer.  

 

Figs. 8a-c illustrates the influence of magnetic body force number (  ) on the distributions of 

surface shear stress, ( ),0 ,f  magnetic stream function gradient, ( ),0 ,g  with non-similar 

parameter (  ), for copper-water and copper-ethylene glycol nanofluids. Here we have 

prescribed 0.5, 0.5 = = and Pr 4.17= . Shear stress (fig. 8a) is observed to be maximized 

with copper water nanofluid and low magnetic force number. The smaller applied magnetic 

field associated with lower   will generate a weaker Lorentzian magnetic drag force, and this 

will effectively accelerate the flow causing a rise in shear stresses at the wall. Shear stress is 

clearly minimized with the largest value of 0.4 = and copper ethylene glycol nanofluid.  

Magnetic stream function gradient, ( ),0 ,g  as shown in fig 8b, is also maximized for copper 

water nanofluid and low magnetic force number and minimized with the largest value of 

0.4 = and copper ethylene glycol nanofluid.  Heat transfer rate at the plate is shown in fig 

8c to be maximum for the copper-water nanofluid at maximum magnetic force parameter. 
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The copper ethylene glycol nanofluid with lowest magnetic force number achieves the lowest 

heat transfer gradient.  

 

Figs. 9a-c demonstrates the effect of present the influence of reciprocal of magnetic Prandtl 

number ( ) on the distributions of surface shear stress, ( ),0 ,f  magnetic stream function 

gradient, ( ),0g  and temperature gradient profiles, ( ),0  with non-similar parameter ( ), 

for copper-water and copper-ethylene glycol nanofluids. Here we have prescribed 

0.5, 0.1 = = and Pr 4.17.=  Shear stress is generally maximized with the largest value of 

prescribed ( )1.0 = and for copper-water nanofluid. It is however minimized for copper 

ethylene glycol nanofluid at intermediate reciprocal of magnetic Prandtl number ( )0.7 = . 

The highest heat transfer gradient corresponds to copper water nanofluid at 0.7 = . Copper 

ethylene glycol nanofluid yields the lowest (most negative) values for heat transfer gradient 

with the minimal value of reciprocal of magnetic Prandtl number ( 0.7 = ).  

 

Figs. 10a-c shows the effect of present the influence of magnetic body force number (  ) on 

the distributions of surface shear stress, ( ),0 ,f  magnetic stream function gradient, 

( ),0g  and temperature gradient profiles, ( ),0   with non-similar parameter (), for 

silver-water and silver-ethylene glycol nanofluids with 0.5, 0.5 = = and Pr 4.1= . Silver 

water nanofluid with low  is found to maximize shear stress whereas (fig. 10a), whereas 

silver-ethylene glycol nanofluid with high  minimizes shear stress. Clearly the magnetic 

force parameter acts to decelerate the flow. A similar response is detected for the induced 

magnetic field gradient in fig 10b. Fig 10c demonstrates that silver water nanofluid with high 

( )0.4 = is associated with maximum heat transfer gradient and silver-ethylene glycol 

nanofluid with low ( )0.2 =  minimizes heat transfer gradient, ( ),0 − . 

 

Figs. 11a-c presents the effect of present the influence of reciprocal of magnetic Prandtl 

number ( ) on the distributions of surface shear stress, ( ),0 ,f  magnetic stream function 

gradient, ( ),0g  and temperature gradient, ( ),0  ,with non-similar parameter (  ), for 

silver-water and also silver-ethylene glycol nanofluids with 0.5, 0.1 = = and Pr 4.17= . 

The highest shear stress is associated with silver-ethylene glycol nanofluids for the case 
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where 1 = (maximum) whereas the lowest shear stress corresponds to silver water nanofluid 

with intermediate reciprocal of magnetic Prandtl number ( 0.7 = ). Induced magnetic field 

gradient is conversely found to be maximized with silver water nanofluid with  = 1, whereas 

it is minimized for the with silver-ethylene glycol nanofluids for 10.5. =  Evidently smaller 

magnetic Prandtl numbers (larger  values), as elaborated earlier act to boost the magnetic 

induction effect. As with the shear stress distribution (fig 11a), the temperature gradient is 

largest for silver-ethylene glycol nanofluids with 0.7 = (intermediate) whereas it is a 

minimum for silver water nanofluid with maximum reciprocal of magnetic Prandtl number 

( 1, = for which magnetic Prandtl number is unity). 

 

Figs. 12a-c present the influence of reciprocal of magnetic Prandtl number (  ) on the 

distributions of surface shear stress, ( ),0 ,f  magnetic stream function gradient, ( ),0g   

and temperature gradient, ( ),0  with non-similar parameter ( ), for silver-oxide water and 

silver oxide-ethylene glycol nanofluids with 0.5, 0.1 = = and Pr 4.17= with various 

reciprocals of magnetic Prandtl number (  ). Silver oxide-ethylene glycol nanofluid with 

0.5 = attains the maximum shear stress (fig 12a), whereas silver oxide-water nanofluid with 

1.0 = yields the lowest shear stress. Boundary layer thickness is therefore least with silver 

oxide-ethylene glycol and acceleration is highest. Magnetic stream function gradient, 

( ),0g  is observed to be highest in fig 12b, with silver oxide-ethylene glycol nanofluid with 

1.0 = and to be lowest for silver oxide-water nanofluid with 0.5 = . Temperature gradient 

is found to be maximized (fig. 12c) with silver oxide-water nanofluid with 1.0. = Silver 

oxide-ethylene glycol achieves the lowest temperature gradient with 0.5 = .  

 

Influence of magnetic body force numbers (  ) on the distributions of surface shear stress, 

( ),0 ,f  magnetic stream function gradient, ( ),0g  and temperature gradient, ( ),0  , 

with non-similar parameter (  ), for silver-oxide water and silver oxide-ethylene glycol 

nanofluids with 0.5, 0.1 = = and Pr 4.17= are illustrated in Figs. 13a-c. Silver oxide water 

nanofluid attains the highest magnitudes of shear stress (fig. 13a), with weakest magnetic 

body force ( 0.2 = ). Silver oxide-ethylene glycol nanofluid corresponds to the minimum 

shear stress for the strongest magnetic body force ( 0.4 = ). Evidently shear stress is depleted 

with greater applied magnetic field strengths and this will decelerate the flow and lead to a 



 18 

thicker boundary layer for silver oxide-ethylene glycol. On the contrary, magnetic field 

stream function gradient is observed to be largest for silver oxide-ethylene glycol (with 

lowest  ) in fig 13b, whereas silver oxide water nanofluid at highest   results in the least 

magnitudes of ( ),0 .g  Finally, in fig 13c, it is evident that silver oxide-ethylene glycol (with 

maximum magnetic body force parameter ( 0.4 = ) generates the highest heat transfer 

gradient. Silver oxide water nanofluid with weak magnetic body force corresponds to the 

lowest magnitudes of heat transfer gradient. These computations concur with Jang and Choi 

[53]. It is further to be noted that all nanofluid data has been selected based on actual 

experimental values available in Bianco et al. [54] and Das et al. [55].  

 

6. CONCLUDING REMARKS 

In current simulation, we have developed numerical solutions for non-similar steady 

magnetized nanofluid boundary layer flow with induced magnetic field effects. The 

transformed partial differential equations for momentum, magnetic induction and energy 

conservation have been solved subject to physically realizable boundary conditions, with the 

Sparrow-Yu local non-similarity method (LNM) and shooting quadrature. Extensive 

validation with the Keller box method (KBM), a finite difference second order algorithm. A 

parametric investigation has been conducted for the influence of solid volume fraction, 

magnetic force number, reciprocal of the magnetic Prandtl number, ordinary Prandtl number 

and local non-similarity variable (stream wise coordinate) on velocity, magnetic stream 

function gradient, temperature profiles, shear stress and temperature gradient distributions. 

The relative performance of four nanoparticles (copper, silver, silver oxide, titanium oxide) 

and three different base fluids (water, ethylene glycol and kerosene) have been evaluated. 

The computations executed with MAPLE software, have shown: 

• The best overall performance is achieved with silver nanoparticles. 

• Thermal enhancement is generally maximized when water is utilized as the base fluid, 

although in certain cases ethylene glycol also performs very efficiently. 

• Increasing the magnetic force number decelerates the boundary layer flow  

• Increasing the magnetic Prandtl number generally accentuates magnetic induction.  

• Increasing Prandtl number decreases temperatures and reduces thermal boundary layer 

thickness.  
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• Increasing nanoparticle solid volume fraction elevates temperatures. 

The present study has considered steady-state flow near-wall dynamics of manufacturing of 

solar magnetic nano-polymers. Future investigations will examine actual implementation of 

these fluids in solar collector configurations with radiative heat transfer (solar flux) and 

efforts in this regard are currently underway using the ANSYS FLUENT computational fluid 

dynamics code as elaborated by Kuharat [56].  Furthermore, other possible extensions to the 

current work may involve the exploration of electrical field effects [57], nano-particle shape 

effects [58] and non-Newtonian behaviour [59, 60]. These offer further potential applications 

for electro-magnetic nano-polymers and are currently being considered in solar engineering 

by the authors. 
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NOMENCLATURE 

x
Cf    Skin friction coefficient                 

pC    Specific heat at constant pressure                       

f    Dimensionless stream function 

g    Dimensionless magnetic stream function   

1 2 3, ,G G G  Additional unknown functions 
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H    Induced magnetic field 

1 2,H H  Perpendicular components of H 

1 2 3 4 5 6, , , , ,h h h h h h  Initial guess function 

 fk    Thermal conductivity of the fluid  

sk    Thermal conductivity of the solid 

nfk    Thermal conductivity of the nanofluid                                        

xNu  Nusselt number                                                                                                

Pr    Prandtl number                                                             

Prm   Magnetic Prandtl number                                      

Rex  Local Reynolds number                                                                                                  

wT    Wall temperature of the fluid  

T    Temperature of the fluid in free stream  

U    Free stream velocity  

 

Greek symbols                                      

     Magnetic body force parameter 

     Reciprocal of magnetic Prandtl number 

      Non-dimensional similarity variable 

      Non-dimensional transformed steam wise coordinate 

      Non-dimensional temperature function 

f    Reference density of the fluid fraction  

s    Reference density of the solid fraction  

nf   Density of nanofluid  

f    Viscosity of fluid fraction 

nf   Effective viscosity of the conducting nanofluid  

w    Shear stress at the wall 

T   Temperature difference 

 

Subscripts 

w      Surface conditions  

     Conditions far away from the plate 
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TABLES 

 
Table1: Thermophysical properties of base fluids and nanoparticles 

  (kg/m3) cp (J/kg-K) k (W/m-K)  x10-5(K-1) 

Water 997.1 4179 0.613 21 

Copper (Cu) 8933 385 401 1.67 

Silver (Ag) 10500 235 429 1.89 

Alumina (Al2O3) 3970 765 40 0.85 

Titanium oxide(TiO2) 4250 686.2 8.9538 0.9 

Ethylene Glycol 1115 2428 0.253 0.65 

Kerosene 8810 2010 0.15 99 

 

Table 2: The errors computed for LNM guess values 

h1 h2 h3 h4 h5 h6 

0.000949851 0.001379252 

 

0.001022167 

 

0 0 0 

0.000925271 0.001925341 

 

0.001012947 

 

4.8399E-12 

 

1.01775E-11 

 

6.951E-13 

 

0.000869007 

 

0.003640206 

 

0.000991842 

 

4.2975E-12 

 

2.31775E-11 

 

1.4775E-12 

 

0.001489283 

 

0.002385954 

 

0.002009337 

 

6.7671E-12 

 

1.411E-11 

 

1.6575E-12 

 

0.001324148 

 

0.002259827 

 

0.002363328 

 

6.0775E-12 

 

1.55751E-11 

 

2.6271E-12 

 

0.001099444 0.003819783 

 

0.002221256 

 

5.1084E-12 

 

8.393E-12 

 

1.96E-12 

 

0.001330523 

 

0.004123436 

 

0.001935197 

 

2.4375E-12 

 

1.45024E-11 

 

1.3804E-12 

 

 

Table 3a: Performance of different nanofluids with aluminum oxide-water nanofluid (Al2O2-H2O) in percentage 

(increase (+) or decrease (-)), with  =0.5,  = 0.1,  = 0.5 and Pr = 4.17. 

 f / (%) 

LNM 

f / (%) 

KBM 

f // (%) 

LNM 

f // (%) 

KBM 

g (%) 

LNM 

g (%) 

KBM 

 3.5 3.5 3.5 3.5 3.5 3.5 

Cu-water 11.5420 11.5421 -51.1415 -51.1420 19.70224 19.70225 

Cu-EG 10.4190 10.4189 -43.3789 -43.3792 16.9528 16.95279 

Cu-Ke 13.2090 13.2087 -65.5251 -65.5254 24.88734 24.88737 

Ag-water 12.8965 12.8963 -62.4048 -62.4049 23.7408 23.74081 

Ag-EG 11.9703 11.9701 -54.6423 -54.6425 20.9058 20.90582 

Ag-Ke 14.1815 14.1811 -75.646 -75.6462 29.0228 29.02279 

Al2O3-water 1.5281 1.52782 -4.1095 -4.10931 2.0078 2.007811 

Al2O3-EG 0 0 0 0 0 0 

Al2O3-Ke 4.34128 4.34130 -13.3181 -13.3179 5.96657 5.966541 

TiO2-water 2.4427 2.44280 -6.9254 -6.92520 3.23427 3.234265 

TiO2-EG 0.90298 0.90293 -2.4353 -2.43531 1.169357 1.169356 

TiO2-KE 5.2789 5.27910 -16.89497 -16.8950 7.40973 7.409727 
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Table 3b: Performance of different nanofluids with aluminum oxide-water nanofluid (Al2O2-water) in 

percentage (increase (+) or decrease (-)), with  =0.5,  = 0.1,  = 0.5 and Pr = 4.17. 

 g / (%) 

LNM 

g / (%) 

KBM 

g // (%) 

LNM 

g // (%) 

KBM 

 (%) 

LNM 

 (%) 

KBM 

 /(%) 

LNM 

 /(%) 

KBM 

 3.5 3.5 3.5 3.5 2 2 3.5 3.5 

Cu-water 15.61037 15.61036 -28.1743 -28.1744 -16.0036 -16.0035 -34.262 -34.264 

Cu-EG 13.8393 13.83932 -22.6703 -22.6705 -20.3475 -20.3474 -43.454 -43.455 

Cu-Ke 18.5325 18.53254 -39.6730 -39.6731 -39.78052 -39.7804 -73.8161 -73.816 

Ag-water 17.9506 17.95063 -37.003 -37.0031 -16.095 -16.0951 -33.426 -33.427 

Ag-EG 16.3314 16.33142 -30.8446 -30.8445 -18.65569 -18.6557 -39.2757 -39.276 

Ag-Ke 20.4933 20.49331 -49.1553 -49.1552 -36.0311 -36.0313 -67.9665 -67.967 

Al2O3-water 1.8596 1.859601 -1.47138 -1.47137 3.9323 3.93231 10.3064 10.3063 

Al2O3-EG 0 0 0 0 0 0 0 0 

Al2O3-Ke 5.3763 5.376301 -5.4495 -5.44941 -18.0155 -18.0158 -40.668 -40.667 

TiO2-water 2.9728 2.972802 -2.5613 -2.56121 -0.32007 -0.32009 -0.2785 -0.2784 

TiO2-EG 1.0753 1.075304 -0.8719 -0.87193 -1.92044 -1.92041 -4.7353 -4.7352 

TiO2-KE 6.6034 6.603401 -7.08446 -7.08445 -20.0731 -20.0736 -44.568 -44.569 

 

Table 4: Performance of different nanofluids with aluminum oxide-water nanofluid (Al2O2-water) in percentage 

(increase (+) or decrease (-)), with  =1,  = 0.2,  = 0.5 and Pr = 4.17. 

 f / (%) f // (%) 

 

g (%) 

 

g / (%) 

 

g // (%) 

 

 (%) 

 

 /(%) 

 

 2.0 3.5 2.0 3.5 2 2 3.5 

Cu-water -2.1426 9.813 9.94052 -7.05766 -35.09724 2.231 5.9322 

Cu-EG -2.3375 8.7366 12.5095 -7.334148 -35.5140 2.5258 6.89655 

Cu-Ke -1.69912 13.0242 9.5243 -11.0032 -34.1463 2.2779 6.3829 

Ag-water -1.8259 12.1457 9.5453 -6.5422 -34.415 1.9073 4.6025 

Ag-EG -1.9317 10.57046 9.91275 -6.8291 -34.805 2.19224 5.50458 

Ag-Ke -1.3652 16.5625 9.084669 -5.7322 -33.4158 1.9299 5.21739 

Al2O3-water -3.9098 3.7301 11.2689 -9.0288 -37.971 3.2996 8.333 

Al2O3-EG -4.29222 3.04414 11.34448 -9.2473 -38.3093 3.7037 9.4707 

Al2O3-Ke -3.4096 4.8287 11.0514 -8.60227 -37.289 3.51366 9.8591 

TiO2-water -3.7472 4.0883 11.2088 -8.89434 -37.784 3.2982 8.1 

TiO2-EG -4.0200 3.43214 11.30337 -9.11138 -38.0952 3.58974 9.3567 

TiO2-KE -3.27 5.40293 10.9735 -8.43716 -37.0272 3.43249 9.547738 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 26 

FIGURES 

 

Fig 1: Solar magneto-nano-polymer boundary layer flow manufacturing regime 

 
Fig 2a: Velocity profiles, f /(,), for different nanofluids, with  =0.5,  = 0.1,  = 0.2 and 

Pr = 4.17. 

 
Fig 2b: Magnetic stream function gradient profiles, g /(,), for different nanofluids, with  

=0.5,  = 0.1,  = 0.2 and Pr = 4.17. 
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Fig 2c: Temperature profiles,  (,), for different nanofluids, with  =0.5,  = 0.1,  = 0.2 

and Pr = 4.17. 

.  

Fig 3a: Velocity distributions, f /(,), for different nanofluids, with  =1,  = 0.2,  = 0.2 

and Pr = 4.17. 

 
Fig 3b: Magnetic stream function gradient profiles, g /(,), for different nanofluids, with  

=1,  = 0.2,  = 0.2 and Pr = 4.17. 
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Fig 3c: Temperature profiles,  (,), for different nanofluids, with  =1,  = 0.2,  = 0.2 

and Pr = 4.17. 

 
Fig 4a: Velocity distributions, f /(,), for different nanofluids, with  =5,  = 0.5,  = 0.2 

and Pr = 4.17. 

  
Fig 4b: Magnetic stream function gradient profiles, g /(,), for different nanofluids, with  

=5,  = 0.5,  = 0.2 and Pr = 4.17. 
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Fig 4c: Temperature profiles,  (,), for different nanofluids, with  =5,  = 0.5,  = 0.2 

and Pr = 4.17. 

 
Fig 5a: Velocity distributions, f /(,), for different nanofluids, with  =10,  = 0.7,  = 0.2 

and Pr = 4.17. 

 
Fig 5b: Magnetic stream function gradient profiles, g /(,), for different nanofluids, with  

=10,  = 0.7,  = 0.2 and Pr = 4.17. 
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Fig 5c: Temperature profiles,  (, ), for different nanofluids, with  =10,  = 0.7,  = 0.2 

and Pr = 4.17. 

 
Fig 6a: Velocity distributions, f /(,), for different nanofluids, with  =1,  = 0.2,  = 0.1 

and Pr = 3.77. 

 
Fig 6b: Magnetic stream function gradient profiles, g /(,), for different nanofluids, with  

=1,  = 0.2,  = 0.1 and Pr = 3.77. 
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Fig 6c: Temperature profiles,  (), for different nanofluids, with  =1,  = 0.2,  = 0.1 and 

Pr = 3.77. 

 

Fig 7a: Velocity distributions, f /(,), for different nanofluids, with  =1,  = 0.2,  = 0.5 

and Pr = 6.2. 

 

 Fig 7b: Magnetic stream function gradient profiles, g /(,), for different nanofluids, with  

=1,  = 0.2,  = 0.5 and Pr = 6.2. 
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Fig 7c: Temperature profiles,  (), for different nanofluids, with  =1,  = 0.2,  = 0.5 and 

Pr = 6.2. 

 
Fig 8a: Surface shear stress distributions, f //(,0) versus non-similar parameter  (), for 

copper-water and copper-ethylene glycol with  =0.5,  = 0.5 and Pr = 4.17 with various 

magnetic body force numbers (). 
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Fig 8b: Magnetic stream function gradient profiles, g /(,0), versus non-similar parameter  

(), for copper-water and copper-ethylene glycol with  =0.5,  = 0.5 and Pr = 4.17 with 

various magnetic body force numbers (). 
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Fig 8c: Temperature gradient profiles,  / (, 0), versus non-similar parameter (), for copper-

water and copper-ethylene glycol with  =0.5,  = 0.5 and Pr = 4.17 with various magnetic 

body force numbers (). 
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Fig 9a: Surface shear stress distributions, f //(,0) versus non-similar parameter  (), for 

copper-water and copper-ethylene glycol nanofluids with  = 0.5,  = 0.1 and Pr = 4.17 with 

various reciprocals of magnetic Prandtl number (). 
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Fig 9b: Magnetic stream function gradient profiles, g /(,0), versus non-similar parameter  

(), for copper-water and copper-ethylene glycol nanofluids with  = 0.5,  = 0.1 and Pr = 

4.17 with various reciprocals of magnetic Prandtl number (). 
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Fig 9c: Temperature gradient profiles,  / (,0), versus non-similar parameter (), for copper-

water and copper-ethylene glycol nanofluids with  = 0.5,  = 0.1 and Pr = 4.17 with 

various reciprocals of magnetic Prandtl number (). 
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Fig 10a: Surface shear stress distributions, f //(,0) versus non-similar parameter  (), for 

silver-water and silver-ethylene glycol nanofluids with  =0.5,  = 0.5 and Pr = 4.17 with 

various magnetic body force numbers (). 
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Fig 10b: Magnetic stream function gradient profiles, g /(,0), versus non-similar parameter  

(), for silver-water and silver-ethylene glycol nanofluids with  =0.5,  = 0.5 and Pr = 4.17 

with various magnetic body force numbers (). 
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Fig 10c: Temperature gradient profiles,  / (,0), versus non-similar parameter (), for silver-

water and silver-ethylene glycol nanofluids with  =0.5,  = 0.5 and Pr = 4.17 with various 

magnetic body force numbers (). 
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Fig 11a: Surface shear stress distributions, f //(,0) versus non-similar parameter  (), for 

silver-water and silver-ethylene glycol nanofluids with  = 0.5,  = 0.1 and Pr = 4.17 with 

various reciprocals of magnetic Prandtl number (). 
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Fig 11b: Magnetic stream function gradient profiles, g /(,0), versus non-similar parameter  

(), for silver-water and silver-ethylene glycol nanofluids with  = 0.5,  = 0.1 and Pr = 4.17 

with various reciprocals of magnetic Prandtl number (). 
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Fig 11c: Temperature gradient profiles,  / (,0), versus non-similar parameter (), for silver-

water and silver-ethylene glycol nanofluids with  = 0.5,  = 0.1 and Pr = 4.17 with various 

reciprocals of magnetic Prandtl number (). 
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Fig 12a: Surface shear stress distributions, f //(,0) versus non-similar parameter  (), for 

silver-oxide water and silver oxide-ethylene glycol nanofluids with  = 0.5,  = 0.1 and Pr = 

4.17 with various reciprocals of magnetic Prandtl number (). 
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Fig 12b: Magnetic stream function gradient profiles, g /(,0), versus non-similar parameter  

(), for silver-oxide water and silver oxide-ethylene glycol nanofluids with  = 0.5,  = 0.1 

and Pr = 4.17 with various reciprocals of magnetic Prandtl number (). 
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Fig 12c: Temperature gradient profiles,  / (,0), versus non-similar parameter (), for silver-

oxide water and silver oxide-ethylene glycol nanofluids with  = 0.5,  = 0.1 and Pr = 4.17 

with various reciprocals of magnetic Prandtl number (). 
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Fig 13a: Surface shear stress distributions, f //(,0) versus non-similar parameter  (), for 

silver-oxide water and silver oxide-ethylene glycol nanofluids with  = 0.5,  = 0.1 and Pr = 

4.17 with various magnetic body force numbers (). 
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Fig 13b: Magnetic stream function gradient profiles, g /(,0), versus non-similar parameter  

(), for silver-oxide water and silver oxide-ethylene glycol nanofluids with  = 0.5,  = 0.1 

and Pr = 4.17 with various magnetic body force numbers (). 
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Fig 13c: Temperature gradient profiles,  / (,0), versus non-similar parameter (), for silver-

oxide water and silver oxide-ethylene glycol nanofluids with  = 0.5,  = 0.1 and Pr = 4.17 

with various magnetic body force numbers (). 

 

 

 

 

 

 


