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Abstract: In this article, motivated by more accurate simulation of electromagnetic blood flow in 

annular vessel geometries in intravascular thrombosis, a mathematical model is developed for 

elucidating the effects of coagulation (i.e. a blood clot) on peristaltically induced motion of an 

electrically-conducting (magnetized) Prandtl fluid physiological suspension through a non-

uniform annulus containing a homogenous porous medium. Magnetohydrodynamics is included 

owing to the presence of iron in the hemoglobin molecule and also the presence of ions in real 

blood. Hall current which generates a secondary (cross) flow at stronger magnetic field is also 

considered in the present study. A small annular tube (endoscopic) with sinusoidal peristaltic 

waves traveling along the inner and outer walls at constant velocity with a clot present is analyzed. 

The governing conservation equations which comprise the continuity and momentum equations 

for the fluid phase and particle phase are simplified under lubrication approximations (long 

wavelength and creeping flow conditions). The moving boundary value problem is normalized and 

solved analytically (with appropriate wall conditions) for the fluid phase and particle phase using 

the homotopy perturbation method (HPM) with MATHEMATICA software. Validation is 

conducted with MAPLE numerical quadrature. A parametric study of the influence of clot height 
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(), particle volume fraction (C), Prandtl fluid material parameters (, β), Hartmann number (M), 

Hall parameter (m), permeability parameter (k), peristaltic wave amplitude ( ) and wave number 

(  ) on pressure difference and wall shear (friction forces) is included. Pressure rise is elevated 

with clot height, medium permeability and Prandtl rheological material parameters whereas it is 

reduced with increasing particle volume fraction and magnetic Hartmann number. Friction forces 

on the outer and inner tubes of the endoscope annulus are enhanced with clot height and particle 

volume fraction whereas they are decreased with Prandtl rheological material parameters, Hall 

parameter and permeability parameter. The simulations provide a good benchmark for more 

general computational fluid dynamics studies of magnetic endoscopic multi-phase peristaltic 

pumping. 

 

Keywords: Magnetic endoscopy; Prandtl rheological model; Particle-fluid suspension; 

Peristaltic waves; Magneto-hemodynamics; particle volume fraction; Hall current; permeable 

medium; pressure difference; wave amplitude; friction force; homotopy perturbation method 

(HPM), Maple quadrature.  

 

1. INTRODUCTION 

Hemodynamics has emerged as a vibrant sub-field in modern fluid mechanics. It involves the 

theoretical, computational and experimental (clinical) analysis of how blood flows in the 

cardiovascular and capillary systems. An important aspect of healthy blood flow is the 

circumvention of a thrombus i.e. blood clot which is the ultimate product of blood coagulation in 

hemostasis [1-2].  In this scenario, blood platelets quickly conglomerate at the location of a 

vascular injury. The vessel wall and sub-endothelium rapidly attach to the developing thrombus. 

Subsequent to clot retraction, damaged tissue decreases the clot permeability and curtails blood 

leakage. Clots may also arise in hemodynamic devices and medical blood processing systems. The 

hemodynamics associated with clot contraction and subsequent modification in blood flow 

dynamics is complex and involves many different fluid mechanical aspects including multi-phase 

characteristics, laminar and turbulent flow, separation, vortex dynamics etc. [3-4]. Magnetically 

Guided Capsule Endoscopy (MGCE) has also emerged as a promising new development in 

biomedical engineering in which is body‐exogenous magnetic fields are exploited to manipulate 

transport in various digestive tract and other physiological system diagnoses. The presence of, for 
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example, ions in digestive fluids and iron in the hemoglobin molecule make these physiological 

fluids responsive to the application of external magnetic fields. The resulting flows are 

magnetohydrodynamic in nature and as such are amenable to the application of advanced 

diagnostic and therapeutic functionalities in monitoring the function of these biological systems 

[5,6]. In improving the performance of magnetic biomedical technology, magneto-fluid dynamic 

simulation plays a critical role since it is non-invasive and multiple scenarios can be studied 

relatively inexpensively. Most endoscopic designs comprise an annular geometry with deformable 

walls. The walls distend to generate peristaltic motion which allows navigation of the device 

intelligently. The technology has been widely embraced worldwide and includes the Siemens-

Olympus design (Siemens Medical, Erlangen, Germany and Olympus America, Center Valley, 

Pennsylvania, USA) [7] which consists of a guidance magnet, an image processing and guidance 

information system (console viewed by the operator and a scanner for the patient to lie in), and a 

capsule endoscope. The magnet system generates varying magnetic fields which can be very 

precisely regulated via a smart “joystick” to navigate the capsule. Cameras at both ends of the 

capsule transmit images. This constitutes an excellent real-world clinical example of annular 

magnetohydrodynamic peristaltic propulsion. Electromagnetic pumping flows of this type also 

feature in numerous other magneto-biomedical engineering devices including extra-corporeal 

surgical control, bio-magnetic therapy, nano-pharmacological delivery systems etc [8-10]. 

To optimize such magnetohydrodynamic medical devices, it is important to continuously develop 

robust mathematical multi-physical magnetohydrodynamic peristaltic pumping models. 

Furthermore, the working fluids in the annular space may be heated, contain suspensions and 

manifest a variety of electromagnetic effects depending on the strength of the administered 

magnetic field e.g. Hall currents, Maxwell displacement currents etc. All these aspects must be 

correctly simulated to provide a complete picture of the hydrodynamic processes intrinsic to 

efficient pumping performance. In the formulation of such models either nonlinear partial or 

ordinary differential equation boundary value problems arise. These require advanced analytical 

or numerical methods for their robust solution. A comprehensive review of such methods for a 

wide spectrum of magnetofluid dynamics problems including medical, energy, aerospace and 

materials processing has been presented by D'Ambrosio and Giordano [11].  

Central to the successful operation of the magnetic endoscope biomedical device is peristalsis. 

Peristalsis [12] is a mechanism utilized for both internal transport of biological liquids and also 
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external animal motion, that arises when smooth muscles in a living body or artificially engineered 

device contract and expand along the length of a conduit e.g. channel, tube. It is a hereditary 

property in various biological systems which feature smooth muscles that permit the trans-location 

of many kinds of biological fluids (e.g. blood, semen, chyme) by a rhythmic propulsive action. 

This mechanism also characterizes urine transport in the excretory system (kidney to bladder), 

vasomotion of tiny blood vessels in the capillary system, cardio-vascular pumping in the 

embryonic heart etc. Additionally, it features in the movement in phloem in trees and plants and 

the locomotion of earthworms and snakes. Owing to the exceptional efficiency of the peristaltic 

process, it has been frequently mimicked in various industrial applications. Examples include 

blood pumps, hazardous waste (sanitary, corrosive, nuclear fluid) pumps, rocket fuel connection 

systems (for preventing backflow of fuels) etc. Important experimental studies concerning 

peristalsis have been communicated, notably by Shapiro et al. [13] and Brown and Hung [14] 

Various authors have analyzed the peristaltic motion of various biological fluids in different 

geometrical configurations. For instance, Vajravelu et al. [15] investigated the peristaltic motion 

of second order fluid through a tube. Vajravelu et al. [16] examined the peristaltic flow with heat 

transfer through a vertical porous annulus. Akbar and Nadeem [17] explored the peristaltic 

transport of Phan-Thien-Tanner (PTT) nanofluid through a diverging tube. Tripathi et al. [18] 

studied the peristaltic channel flow of a viscoelastic fluid with a fractional Maxwell model. Series 

solutions for magnetic peristaltic flow of non-Newtonian Jeffrey fluid through an eccentric 

cylinder were derived by Ellahi et al. [19]. Other investigations of annular magnetohydrodynamic 

peristaltic pumping flows in non-Newtonian media have been communicated in [20]-[25] with 

multi-physics included (heat transfer, mass transfer, rheology etc). 

The multi-phase nature of real blood makes it extremely sophisticated and difficult to simulate 

precisely with fluid dynamic models. Blood is often approximated as a particle-fluid suspension 

(platelets immersed in plasma) and the platelets exhibit deformation during motion and also from 

interaction with surfaces. For example, red blood cell behavior at the mesoscopic scale plays a 

critical role in different pathological and physiological mechanisms in the microcirculation. These 

include thrombo-genesis in which the rotation and transverse motion of red blood cells in shear is 

critical. According to theoretical and experimental studies [26, 27], blood in narrow arteries cannot 

be treated as a homogeneous Newtonian single-phase fluid. It is therefore necessary to simulate 

blood flow in narrow conduits as a non-Newtonian two-phase fluid (particle-fluid suspension). 
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The annular channel designs in magnetic endoscopes are also very narrow and similar 

methodologies should be applied in simulating hemodynamic pumping. Accurate constitutive 

modelling is therefore recommended for improving the performance of such devices and leads to 

significant benefits in clinical engineering [28]. Two-phase hemodynamic transport has been 

extensively studied by engineering scientists with many different analytical and computational 

methods in recent decades. Examples include peristaltic flows [29], geometric design of bypass 

graft-ends and the prediction of local aerosol depositions in the human upper airways [30], 

coronary atherogenesis arterial dynamics [31], annular peristaltic flows [32], 

magnetohydrodynamic Hall current pulsatile-peristaltic hemodynamics [33], dialysis filtration 

simulation [34], slip endoscopic peristaltic pumping flows [34], thermal purification biomedical 

systems modelling [35]. Further examples include blood purification auto-transfusion porous 

media hybrid devices [36], electro-conductive geothermal buoyancy-driven flows [37], eccentric 

peristaltic annular pumping [38], variable-viscosity clot peristaltic hemodynamics [39] and 

viscoelastic slip magneto-hemodynamic peristaltic pumping in straight and curved ducts [40, 41].  

 

As elaborated earlier, endoscopy is also a very important diagnostic device in medical engineering 

and has also stimulated some attention in mathematical modelling.  In terms of fluid dynamics, 

there is no difference between catheters and endoscopes. Xiong et al. [42] employed ANSYS 

FLUENT computational fluid dynamic (CFD) software to simulate the nasal cavity airflow pre 

and post-virtual functional endoscopic surgery (FESS). Al Misiery et al. [43] deployed 

perturbation methods to analyze the wave amplitude effects in peristaltic endoscopic flow with the 

Reynolds exponential viscosity model. Tripathi [44] employed the homotopy perturbation method 

and variational iteration method to derive solutions for axial velocity, volume flow rate, pressure 

gradient and stream function in peristaltic endoscopic pumping of generalized Burgers fluids. 

Hayat et al. [45] considered the magnetic peristaltic motion of power-law fluid in an endoscopic 

geometry. Mekheimer et al. [46] studied particle-fluid suspension propulsion by peristaltic waves 

in an eccentric cylindrical annular endoscope. Rashidi et al. [47] utilized the multi-step differential 

transform algorithm to compute the wave amplitude, Hartmann number and viscoelastic effects in 

peristaltic transport of electro-conductive viscoelastic fluids in a porous vertical pipe. Tripathi and 

Bég [48] derived homotopy perturbation solutions for magnetic pumping of Stokes’ micro-

structural couple stress fluids in endoscopic geometries filled with non-deformable high-
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permeability media, observing that pressure is reduced with Stokes coupling and permeability 

parameters whereas it is enhanced with magnetic Hartmann number and channel width ratio. 

Further studies include Tripathi et al. [49] (on electro-magneto peristaltic pumping of Stokes 

couple stress fluids in endoscopic tubes) and Rashidi et al. [50] (on heat and mass transfer in 

magnetized blood flow using Casson fluid model). 

  

Inspection of the literature reveals that very few studies have addressed Hall 

magnetohydrodynamic fluid-particle suspension pumping by peristaltic waves in an endoscope 

with clot effects. Furthermore, the Prandtl non-Newtonian model has thus far not been explored to 

any great extent in peristaltic rheological simulations. In the present work, therefore, we study the 

effects of coagulation (blood clotting) on peristaltic-induced Hall current magnetohydrodynamic 

transport of a two-phase Prandtl non-Newtonian suspension through a homogenous high-

permeability porous medium in the annular geometry of a magnetic endoscope. The governing 

flow problem for both fluid and particle phases is mapped from the moving frame to the stationary 

frame, simplified via lubrication theory, normalized via appropriate transformations and solved as 

a transformed ordinary differential boundary value problem with the homotopy perturbation 

method (HPM). Validation with Maple numerical quadrature is included. It is envisaged that the 

present computations will provide deeper insight into actual magnetic endoscopy hemodynamics 

and furthermore will furnish a robust benchmark for more general computational fluid dynamics 

simulations.  

 

2. Magnetic Two-Phase Endoscopic Porous Media Pumping Model   

The working biofluid (blood) in the magnetic endoscope annular geometry is considered as the 

non-Newtonian Prandtl model which contains tiny spherical particles with irrotational, constant 

and incompressible properties. The biofluid is moving through the inner gap between two co-axial 

tubes (annular geometry) and these are permeable i.e. wall mass flux is permitted. We adopt a 

cylindrical coordinate system  ( , )r z   in which r   designates the radial direction and z  the axial 

coordinate which is orientated along the longitudinal axis of the endoscope, as depicted in Fig. 1. 

The geometry of a wall surface is simulated analytically by the following expressions which 

realistically describe endoscopic configurations [32, 33, 41, 45]:  
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Fig. 1: Annular geometry of magnetic porous medium endoscopic model with coordinate system  

Hall current is present in the magnetohydrodynamic regime and this generates a cross-flow [51-

53].  

 

In the above equation, c is the velocity of the peristaltic wave propagating along the inner and 

outer walls of the annulus, 0b   is a radius of the outer tube inlet,  K   is constant (its magnitude is 

a function of the length of the annulus),  a   is amplitude of the peristaltic wave,  ( )b z   is radius 

of the outer tube,     is a wavelength, a is an inner tube radius that defines the clot axial location, 

( ),f z t the arbitrary shape along the axial direction that can be selected through a suitable choice, 

and t   is a time. The governing equations for the annular magnetized peristaltic two-phase Prandtl 

suspension flow may be summarized as follows: 
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The Prandtl fluid stress tensor is defined as [54]: 
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 Following Bhatti et al. [40] and Hayat et al. [45] we have: 
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The corresponding boundary conditions are 

( )1 0 ,fU r cv= at 1,r r=          (11a) 
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( )2 0,fU r =  at 2 ,r r=           (11b) 

Where fU  and pU  are the particle and fluid phase velocities, 0B  is the radius of a spherical particle 

suspended in the biofluid,  C   is a particle volume fraction, s  is the apparent (effective) viscosity,

S  is a drag coefficient, T  is a temperature (measured in Kelvin), 0B   is a applied radial magnetic 

field,  0   is the biofluid dynamic viscosity,  J   is a current density,    is biofluid electrical 

conductivity,  V  is the velocity vector of the biofluid,  e  is an electron charge and n  is the number 

of density electrons (associated with the Hall current effect), respectively. The conservation 

equations are normalized via the following non-dimensional variables:  
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The parameters in Eqn. (12) denote respectively the normalized (dimensionless) versions of radial 

coordinate, axial coordinate, radial components of fluid and particle velocities, axial components 

of fluid and particle velocity components, time, pressure, viscosity, wall lateral mass flux velocity, 

inner tube radius, outer tube radius, amplitude ratio, interphase momentum transfer coefficients 

for the fluid and particle phases, magnetohydrodynamic body force parameter (Hartmann number), 

Darcy number (permeability parameter), and Prandtl rheological material constants. Taking the 

approximation of a creeping flow regime with long wavelength and using Eq. (12) in Eq. (3) to 

Eq. (9), we obtain the reduced conservation equations: 
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It emerges that p  does not depend on r (see Eq. (14)). The respective boundary conditions on the 

inner and outer walls of the annular zone are:  
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In the above equations,     is the maximum height of clot, 
dz  describes the axial displacement of 

a clot and m  is the Hall parameter. 

 

3. ANALYTICAL SOLUTION WITH HPM  

The series solution of Eq. (14) can be obtained using homotopy perturbation method (HPM). This 

is a semi-numerical/analytical method introduced by He [55]. It has found immense popularity in 

recent years and has been implemented successfully in peristaltic flows and nonlinear mechanics 

extensively- see [56-58]. The homotopy for Eq. (14) is defined as: 
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 where  ̂   denotes the embedding parameter. The following linear operator is selected: 
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An initial guess is selected of the following form: 
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 Defining the following expansion: 
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 Now, using Eq. (21) in Eq. (18), we obtained a set of differential equations along with the 

corresponding boundary conditions. Using a key property of He’s homotopy perturbation method, 

we obtain the solution as  ˆ 1 →  , i.e.  
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The solution for velocity profile are obtained as  
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The constants in the above equations can be obtained using MATHEMATICA symbolic software. 

The instantaneous volumetric flow rate for the particulate and fluid phase is given by: 
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The pressure elevation and friction forces (on the outer and inner tube) along the whole length of 

annulus are computed according to the following formulae:  
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In the analytical evaluations (plotted in section 5), we have considered the volumetric flow rate 

which is periodic in  ( )z t−   of the following form: 
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 In the above equation, the following parameter values [32-34, 41-45] i.e.

0 01.25cm, 0 0.6, 8.01cm, 3 /b C L b = = − = = =K  have been utilized to calculate the expression 

of friction forces and pressure rise. We considered this form of  ( , )Q z t   due to the fact that for a 

constant value of  ( , )Q z t , pressure rise shows negative values and as a result no pumping action 

is observed.  

 

4. VALIDATION WITH MAPLE QUADRATURE 

The linear dimensionless two-point moving boundary value problem (BVP) i.e. eqns. (13)-(15) 

under boundary conditions (16) and (17) are easily solved using Runge–Kutta–Merson numerical 

quadrature to yield fluid velocity and particle phase velocity. The pressure difference and friction 

forces are then subsequently computed with Eqns. (26)-(28). The computations are executed in 

MAPLE17 software (RK45 algorithm). This approach has been extensively implemented recently 

in non-Newtonian nanofluid flows [59], magnetohydrodynamics [60] and biological 

hydrodynamics [61]. The robustness and stability of this numerical method is therefore well 

established - it is highly adaptive since it adjusts the quantity and location of grid points during 

iteration and thereby constrains the local error within acceptable specified bounds. In the current 

problem, the complex wall boundary conditions given in Eqns. (16, 17) are easily accommodated. 

The stepping formulae, although designed for nonlinear problems, are even more efficient for any 

order of linear differential equation and are summarized below [59-61]: 

          (30) 
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  (35) 

   (36) 

  (37) 

Here 𝑦 denotes fourth-order Runge-Kutta phase and 𝑧 is the fifth-order Runge-Kutta phase. An 

estimate of the error is achieved by subtracting the two values obtained. If the error exceeds a 

specified threshold, the results can be re-calculated using a smaller step size. The approach to 

estimating the new step size is shown below: 

       (37) 
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A comparison of the analytical and MAPLE17 numerical quadrature solutions (blue dots) is 

documented in Fig. 2 for pressure rise profile with variation in Hall current parameter and Prandtl 

first material constant over time. The comparison case is for m = 0.1,  = 3. Data is based on real 

blood properties under magnetic field and extracted from Mekheimer et al. [32], Gad et al. [33], 

Ramesh et al. [41] and Hayat et al. [45]. 

  

  

 

 

 

 

 

 

 

 

Fig. 2: Pressure rise for multiple values of m and (Dashed line:  = 4; Solid line:  = 3) 

Excellent correlation is achieved. Confidence in the present analytical HPM solutions is therefore 

high. Maple quadrature is of comparable accuracy to many other sophisticated semi-numerical 

methods including homotopy analysis methods (HAM), Adomian decomposition methods 

(ADM), spectral collocation Chebyschev polynomial methods and variational iterative methods 

(VIMs) which accurately compute series solution, although Maple quadrature is less algebraically 

rigorous and can be applied directly for all types of differential and integral equations, linear or 

nonlinear, homogeneous or inhomogeneous, with constant coefficients or with variable 

coefficients. Another important advantage is that the method is capable of greatly reducing the size 

of computation work while still maintaining high accuracy of the numerical solution [59-61]. It is 

also worth mentioning here that, the current model reduces to that studied by Mekheimer et al. 

MAPLE 17 
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[32] by taking  0, 1, 0, , 0M k  = = = → = .  

 

5. RESULTS AND DISCUSSION 

In this section, the HPM theoretical results are presented graphically as transient distributions. A 

parametric analysis of the key parameters on pressure elevation and friction forces is conducted. 

The symbolic software Mathematica has been utilized to evaluate the expressions for pressure 

rise ( Lp ), friction force on the outer tube surface ( Of )  and friction force on the inner tube 

surface ( If ) . In particular, the impact of all the pertinent parameters such as clot height ( ), 

particle volume fraction  (C ), Prandtl first and second rheological material parameters ( ,  ), 

Hartmann (magnetohydrodynamic body force) number ( M ), medium permeability parameter i.e. 

Darcy number ( k )  and Hall parameter (m)  is addressed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Transient pressure rise with variation in M and  .[Dashed line:  = 0:5; Solid line:  = 0:1] 
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Fig. 4: Transient pressure rise with variation in Darcy number (k) and particle fraction (C). 

[Dashed line: C = 0:1; Solid line: C = 0] 

 

 

 

 

 

 

 

 

Fig. 5: Pressure rise for multiple values of v0 and . [Dashed line:  = 0:1; Solid line:  = 0]  
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(a)Outer tube (b)Inner tube 

Fig. 6: Friction forces for multiple values of m and . [Dashed line:  = 4; Solid line:  = 3] 

 

 

 

 

 

 

 

 

 

(a)Outer tube (b)Inner tube 

Fig. 7: Friction forces for multiple values of M and  . [Dashed line:  = 0:5; Solid line: = 0:1] 
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(a)Outer tube (b)Inner tube 

Fig. 8: Friction forces for multiple values of k and C. [Dashed line: C = 0:1; Solid line: C = 0] 

 

 

 

 

 

 

 

 

 

(a)Outer tube (b)Inner tube 

Fig. 9: Friction forces for multiple values of v0 and . [Dashed line:  = 0:1; Solid line: = 0] 
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Furthermore, the results for a Newtonian fluid may be retrieved by taking  1, 0 = =   (see Eq. 

(14)). Hence the first Prandtl material constant must be unity and the second Prandtl material 

constant must be zero to obtain the Newtonian viscous case.  

Fig. (2) shows the behavior of dimensionless pressure versus time for different values of Hall 

parameter (m) and first Prantl rheological parameter (). We can observe that pressure rise 

increases with the increment in hall parameter m . However, in this figure, we can also see that 

when the fluid parameter  increases then the pressure rise also increases significantly.  The Hall 

parameter arises in the magnetic body force term, -[ M2/(1+m2)]uf associated with the fluid phase 

longitudinal (axial) velocity in the normalized axial momentum Eqn. (13). There is an inverse 

quadratic relationship between Hall current parameter and the overall Lorentzian drag. The ionized 

biofluid contains electrons which make cyclotron orbits between the collisions and are diverted 

in a direction mutually perpendicular to the magnetic and electric field directions. Thus, if an 

electric field is applied perpendicular to the magnetic field then whole current will not pass along 

the electric field. This complex phenomenon of flow of the electric current across an electric field 

with an orthogonal magnetic field constitutes the Hall effect, and the associated electrical current 

is known as the Hall current. The enhancing influence on pressure rise implies that the primary 

(axial flow) is retarded by Hall current (there is generally an inverse relationship between pressure 

and velocity field). The Prandtl first rheological parameter,  = A/0C
/ is inversely proportional 

to dynamic viscosity for constant values of the other parameters. It is coupled to the radial velocity 

gradient term, uf /r in the dimensionless momentum Eqn. (13), and clearly greater values of this 

rheological parameter will serve to decelerate the longitudinal flow. This will manifest in an 

elevation in pressure difference, pL, as observed in fig.2. Similar findings have been reported in 

Riaz et al. [54]. We further note that in the present analysis, Ohmic (Joule) dissipation and 

magnetic induction effects are negated i.e. the magnetic field is not distorted by fluid vorticity 

owing to sufficiently low magnetic Reynolds numbers in the regime, although this can be 

addressed in future studies. 

Fig. (3) illustrates the evolution in dimensionless pressure rise Lp with time for various values of 

the Hartmann number (M) and the Prandtl second rheological fluid parameter (  ). As noted earlier 

the periodic nature of the peristaltic pumping is clearly captured in the undulatory profile with time 

elapse. Increasing Hartmann number (M) causes a marked reduction in a pressure rise. When the 
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fluid is non-Newtonian  0  . For lower values of this parameter, pressure rise is reduced, 

however when this rheological parameter  0    increases, there is a significant elevation in the 

pressure rise. The effect is more significant than for the Prandtl first rheological parameter (fig. 2) 

and this is probably attributable to the coupling of the Prandtl second rheological fluid parameter 

(  ) with a cubic velocity gradient term in Eqn. (13) i.e. (uf /r)3 in the modified shear 

contributions. This term is completely absent when the fluid is Newtonian (β→0) whereas the 

first shear term, ruf /r merely contracts to ruf /r (since →1 for Newtonian fluids). Overall 

the pressure difference is minimized for the case M = 2 (for which Lorentz magnetic drag is 

double the magnitude of the viscous force) and β =0.1. The general trends are in good agreement 

also with Akbar [62], Yıldırım and Sezer [63] and Hayat et al. [64]. 

Fig. (4) visualizes the collective influence of an increment in the Darcy number, k (i.e. permeability 

parameter) and particle fraction ( C ) over time. The Darcian porous medium resistance (produced 

by solid fibers in the regime e.g. blockages, debris, clusters etc) is inversely proportional to the 

Darcy number, as embodied in the term – (1/k) u f in Eqn. (13). With increasing Darcy number, 

the solid matrix fibers progressively decrease and the permeability increases, as elaborated by Bég 

et al. [65], Bejan [66] and Scheidegger [67]. The Darcy impedance is thereby reduced. In the limit, 

as k →, the solid matrix fibers vanish completely and effectively therefore the regime becomes 

purely viscous electrically-conducting Prandtl fluid. With increasing particle fraction, C, from 0 

(single phase flow case) to 0.1, the inter-phase momentum coefficient N1 is invoked so that the 

fluid-particle relative velocity term, -N1(up-uf) is then activated in Eqn. (13). This results in greater 

impedance to the pressure development and manifests in a decrease in pressure difference in fig. 

4. The presence of two-phase flow therefore has a non-trivial influence on one of the key 

performance criteria in peristaltic endoscopic pumps i.e. pressure field. Neglecting the particle 

phase results in an over-prediction in pressure elevation which is undesirable for medical 

applications. The oscillatory (sinusoidal) distribution of pressure rise with time is clearly reflected 

in fig. 4 and characterizes the sinusoidal peristaltic wave propagation along the annulus walls. 

Fig. (5) presents the transient evolution in pressure rise along the length of the endoscopic annulus 

with a variation in the height of clot,   and wall transpiration velocity, 0v . It can be observed from 

this figure that pressure rise increases with the increment in height of clot,  . Moreover, the results 

for non-clotted endoscope can be recovered by taking 0 = . This follows logically since the 
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presence of a clot adds a significant impedance to the flow and strongly alters vorticity in the 

vicinity of the clot. The pumping is therefore inhibited and pressure elevation along the length of 

the duct is adversely affected. Furthermore, with suction at the wall (i.e. removal of Prandtl fluid 

from the annular region to the external space) the longitudinal (axial) flow will be impeded 

(deceleration) and pressure rise will also be reduced. The converse effect is generated with wall 

injection (blowing of Prandtl fluid into the annular region), i.e. pressure rise is boosted. The case 

of solid walls corresponds to v0=0 i.e. zero lateral mass flux and naturally falls in between the 

blowing and suction scenarios. Inspection of Fig. (2) and Fig. (5), also reveals that maximum 

pressure is attained at 0.3t = . 

Fig. (6a,b) present the transient profiles for friction force elevation on the inner tube ( If ) and 

outer tube ( Of ) of the annulus, for different values of Hall parameter ( m ) and Prandtl first 

rheological parameter ( ). An increase in the Hall parameter strongly reduces both friction force 

increments i.e. induces significant deceleration on both the outer and inner tube surfaces. However, 

there is no tangible modification in the friction force increments with an increase in Prandtl 

behaviors remains similar for fluid parameter, . Rheology of the Prandtl fluid will affect the 

velocity distributions across the annular cross-section. However, at the walls it will exert a trivial 

effect. It is also pertinent to note that the magnitudes of the outer tube friction are significantly 

higher (an order of magnitude) compared with the inner tube friction forces. 

Fig. (7a,b) illustrates the evolution in friction force elevation on the inner tube ( If ) and outer 

tube ( Of ) of the annulus, for different values of Hartmann magnetic number (M) and Prandtl 

second rheological parameter (  ). A significant enhancement in outer tube friction force and a 

weaker elevation in inner tube friction force accompanies an increase in Hartmann number ( M ) 

indicating that flow is significantly influenced at the walls of the annulus. Conversely the opposite 

behavior is induced in the friction force on the inner tube with an increase in the second rheological 

parameter (  ) i.e. friction force is decreased. However, no marked alteration is induced in the 

outer tube friction force. 

Fig. (8a, b) presents the distributions for friction force elevation on the inner tube ( If ) and outer 

tube ( Of ) of the annulus, with different values of Darcy number (k) and particle volume fraction 

(C). With an increase in Darcy number there is a significant reduction in both outer and inner 

friction forces and again the periodic nature of the peristaltic flow is amply demonstrated. When 
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the particle volume fraction increases from C = 0 (single phase flow) to C = 0.1 (two-phase 

suspension) there is no tangible modification in the magnitude of the friction forces on either 

surface of the annular tube.  

Fig. (9) depicts the evolution in friction force elevation on the inner tube ( If ) and the outer tube 

( Of ) of the endoscopic annulus, for different values of clot height () and wall transpiration (v0). 

The presence of a clot (thrombosis, obstruction etc) generates greater resistance to the shearing 

(friction) forces especially for the inner tube and decreases values. The effect is simulated via the 

complex boundary condition (15), viz, 
2 2( 0.5)

1 0 1 0( ) , ( ) ,dz z

fu r v r a z a e
 − − −

= = = + and is significant. 

Friction force for the outer tube increases with wall injection ( 0v  >0) and reduces with wall suction 

( 0v <0) whereas the contrary response is computed for the friction force on the inner tube i.e. a 

reduction is induced with wall injection whereas an elevation is caused with wall suction. 

Generally, as with other plots, friction force on the outer tube attains substantially greater 

magnitude as compared to friction force on the inner tube surface. 

 

6. CONCLUSIONS 

As a simulation of more realistic obstructed magnetic endoscope fluid dynamics, a mathematical 

model has been developed in this article for the influence of a clot in peristaltic 

magnetohydrodynamic non-Newtonian two-phase (fluid-particle suspension) through an annular 

geometry containing a homogenous, isotropic high-permeability porous medium under the action 

of a radial static magnetic field. Hall current magneto-dynamic effect has been incorporated in the 

model and the classical Darcy model for viscous-dominated flow has been used. The rheology of 

the two-phase biofluid is analyzed with the Prandtl two-parameter model. The mathematical 

problem is reduced in complexity via lubrication approximations, normalized with appropriate 

transformations and the resulting boundary value problem is solved with He’s homotopy 

perturbation method. Thereafter fluid and particle velocity solutions are computed with 

Mathematica symbolic software. The analytical solutions are verified with Maple17 numerical 

quadrature. The present computations have illustrated the variation of key flow characteristics with 

time and have shown that: 

i. Pressure rise increases with increasing height of the clot. 

ii. Pressure rise increases with Prandtl’s first and second rheological material parameters and 
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also Darcy number (permeability parameter). 

iii. Pressure rise decreases markedly for higher values of particle volume fraction and 

Hartmann (magnetic body force) number. 

iv. Friction forces on the inner and outer tube surfaces of the annular region in the magnetic 

endoscope generally increase with an increment in the height of the clot. 

v. Friction forces increase due to an increment in particle volume fraction, with the opposite 

behavior computed with increasing Prandtl rheological material parameters.  

vi. Friction forces are reduced with Hall current parameter and Darcy number (permeability 

parameter). 

vii. The general mathematical model developed can be reduced to the Newtonian, electrically 

non-conducting case (as considered in previous studies) by considering 1, 0. = =  and 

M = 0 (vanishing Lorentz magnetic body force)  

viii. The case of an unobstructed endoscope is retrieved by setting clot height to zero ( 0 = ). 

ix. The inclusion of a particle phase results in non-trivial modifications to the pressure and 

friction force distributions in magnetic annular endoscopic hemodynamics and produces 

superior results to conventional single-phase models. 

 

The current simulations have neglected heat and mass diffusion in peristaltic magnetic pumping 

which may arise via, for example, nano-doping of working fluids [67]. These will be considered 

in the future.  
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Nomenclature 

( , )r z   Cylindrical coordinate system 

c   Velocity of the peristaltic wave 

0b     Radius of the outer tube inlet 

K   Constant 

a   Amplitude of the peristaltic wave 

( )b z   Radius of the outer tube 

   Wavelength 

a   Inner tube radius 

( ),f z t  Arbitrary function 

t   Time 

0v   Constant 

,U V   Velocity components 

0B   Radius of a spherical particle suspended in the biofluid 

C    Particle volume fraction 

s   Apparent (effective) viscosity 

S    Drag coefficient 

T    Temperature 

0B     Applied radial magnetic field 

J     Current density 

0     Fluid dynamic viscosity 
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     Electrical conductivity 

V    Velocity vector of the fluid 

e    Electron charge 

n    Number of density electrons 

   Maximum height of clot 

dz    Axial displacement of a clot 

m    Hall parameter 

̂     Embedding parameter 

( , )Q z t   Volume flow rate 

   Stress tensor 

M   Hartmann number 

   Amplitude ratio 

,    Prandtl fluid parameters 

P   Pressure 

   Wave number 

K   Permeability parameter 

Subscripts 

p   Particle phase 

f   Fluid phase 

 


