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Abstract 

Owing to major technological advances, bioacoustics has become a burgeoning field in 

ecological research worldwide. Autonomous passive acoustic recorders are becoming widely 

used to monitor aerial insectivorous bats, and automatic classifiers have emerged to aid 

researchers in the daunting task of analyzing the resulting massive acoustic datasets. 

However, the scarcity of comprehensive reference call libraries still hampers their wider 

application in highly diverse tropical assemblages. Capitalizing on a unique acoustic dataset 

of more than 650,000 bat call sequences collected over a 3-year period in the Brazilian 

Amazon, the aims of this study were (a) to assess how pre-identified recordings of free-flying 

and hand-released bats could be used to train an automatic classification algorithm (random 

forest), and (b) to optimize acoustic analysis protocols by combining automatic classification 

with visual post-validation, whereby we evaluated the proportion of sound files to be post-

validated for different thresholds of classification accuracy. Classifiers were trained at species 

or sonotype (group of species with similar calls) level. Random forest models confirmed the 

reliability of using calls of both free-flying and hand-released bats to train custom-built 

automatic classifiers. To achieve a general classification accuracy of ~85%, random forest 

had to be trained with at least 500 pulses per species/sonotype. For seven out of 20 sonotypes, 

the most abundant in our dataset, we obtained high classification accuracy (>90%). Adopting 

a desired accuracy probability threshold of 95% for the random forest classifier, we found that 

the percentage of sound files required for manual post-validation could be reduced by up to 

75%, a significant saving in terms of workload. Combining automatic classification with 

manual ID through fully customizable classifiers implemented in open-source software as 

demonstrated here shows great potential to help overcome the acknowledged risks and biases 

associated with the sole reliance on automatic classification. 
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1. Introduction

Bioacoustics is a rapidly expanding field and of increasing importance for informing 

conservation projects. This is largely due to recent technological advances and the rising 

number of long-term monitoring programs which are being established for a number of taxa 

(Dickinson et al. 2010; Kershenbaum et al. 2014), including birds (Gregory et al. 2005), 

reptiles (Sewell et al. 2012), arthropods (Penone et al. 2013) and bats (Barlow et al. 2015). 

Interest in bat monitoring has increased over the last decades since bats have been 

acknowledged to provide important ecosystem services such as pest control (Boyles et al. 

2013; Puig-Montserrat et al. 2015) and have been identified as good bioindicators of 

ecosystem health (Jones et al. 2009; Cunto & Bernard 2012). 

Autonomous ultrasound detectors have proven essential for optimizing surveys of aerial 

insectivorous bats worldwide (Murray et al. 1999; Law et al. 2015). In the Neotropics, in 

contrast to phyllostomid bats, aerial insectivores are rarely captured in mist-nets (MacSwiney 

et al. 2008) and therefore, although they represent a high proportion of Neotropical bat 

diversity (Jung & Kalko 2011), the ecology of many species remains elusive and their 

echolocation calls poorly described (e.g. López-Baucells et al. 2014; López-Baucells et al. 

2017a). In fact, despite enormous recent advances in recording technology and equipment, 

comprehensive regional bat reference call libraries are currently lacking for much of the 

tropics (Walters et al. 2013; Madhukumar Menon et al. 2018). 

Reference call libraries containing echolocation calls from a wide range of locations and 

habitats are crucial to reliably identify bat species acoustically. Although many species have 

distinctive echolocation calls, those of others can be very ambiguous due to producing very 

similar calls with overlapping characteristics (Russo & Voigt 2016). Moreover, weather 

conditions (e.g. Lawrence & Simmons 1982), geographical location (e.g. López-Baucells et 

al. 2017b), sex (e.g. Puechmaille et al. 2014), body condition (e.g. Puechmaille et al. 2014), 



age (e.g. Jones & Kokurewicz 1994), reproductive status (e.g. Jones & Ransome 1993) or 

habitat structure (e.g. Pedro & Simonetti 2014) are all factors that contribute to substantial 

variation in call structure within species. 

Different algorithms such as discriminant function analysis and random forest have already 

been used to automatically classify bat pulses (Russo & Jones 2002; MacSwiney et al. 2008; 

Armitage & Ober 2010; Walters et al. 2012; Zamora-Gutiérrez et al. 2016). However, 

substantial controversy still exists around the trade-off between the use of automatic 

classifiers versus manual species identification (Kershenbaum et al. 2014; Russo & Voigt 

2016). While the former allows for the rapid analysis of a large number of recordings using an 

objective and repeatable protocol, manual identification provides more accurate, yet highly 

subjective and non-reproducible results, apart from being considerably more time-consuming 

(Kershenbaum et al. 2014). Unfortunately, even though considered a vital analysis step when 

relying on automated classifiers, posterior visual cross-checking by an expert is all too often 

neglected (Russo & Voigt 2016). Moreover, no study so far has quantified the potential time 

savings from using automatic classifiers as a function of the classification accuracy threshold 

adopted. Automatic classifiers have been criticised because of the inability to distinguish 

amongst species with similar calls, and because their algorithms are typically trained with 

calls from hand-released bats (Russo & Voigt 2016). It has been suggested that the use of 

hand-release calls can compromise the reliability of species identifications since these calls 

might be strongly affected by handling-related stress of the animal (Szewczak 2000). 

Given that automatic classifiers are now widely available, there is a substantial risk that 

beginners solely rely on automated species identification without proper manual post-

validation, which can result in incorrect identifications and thus wrong management decisions 

and negative conservation outcomes (Russo & Voigt 2016). Automatic classifiers were first 

applied to bat species identification in temperate areas as a direct consequence of the massive 



acoustic datasets that are now typically accumulated using passive bat recorders (Russo & 

Voigt 2016). However, the scarcity of suitable reference call libraries and the controversy 

around automatic vs. manual classification still hamper their wider application, especially in 

mega-diverse tropical regions. 

The present study is the first to attempt to test the suitability of combining automatic 

classifiers trained with pre-identified recordings of free-flying bats obtained in the study area 

(which are much easier to obtain than reference calls from hand-released bats) with posterior 

manual validation (Fig. 1). This approach addresses the aforementioned issues of geographic 

variability, only classifies calls to the taxonomic level that the researcher can visually confirm 

with certainty and gives the user full control and flexibility concerning implementation of the 

algorithm. Capitalizing on a unique acoustic dataset collected over a 3-year period in the 

Central Amazon, here we use random forest, a machine learning algorithm that has performed 

well in previous bat acoustic studies (Zamora-Gutiérrez et al. 2016; Bas et al. 2017), to 

automatically classify aerial insectivorous bats. We evaluated the discriminative ability of the 

classifier by training it with a) previously identified calls from free-flying bats and those of 

hand-released bats; and b) datasets of different sizes of reference echolocation calls. To 

effectively combine the advantages of an automatic classifier with those of manual 

identification requires establishing a “correct classification probability” threshold below 

which a recording will need to be visually post-validated. Thus, to evaluate how acoustic 

studies could be optimized in terms of time commitment for the analyses, we also calculated, 

for different thresholds, the percentage of sound files from the full dataset that would need to 

be visually post-validated. 



Figure 1. Diagram illustrating the classification process from automatic classification to 

posterior visual validation.  Squares represent the datasets and selections of recordings; 

arrows and red text represent the analytical processes. 

2. Material and Methods

2.1 Study site 

The study was conducted at the Biological Dynamics of Forest Fragments Project (BDFFP), a 

large-scale fragmentation experiment located ~80 km north of Manaus (Brazil) in the Central 

Amazon (2°20’S, 60°6’W), aimed at assessing the impacts of fragmentation on tropical forest 

communities (Laurance et al. 2011). Beginning in 1979, the BDFFP established 11 

experimental forest fragments, which at the time of isolation were separated from continuous 

forest by distances of 80-650 m. Nowadays the fragments are surrounded by a matrix of 

secondary forest at varying successional stages (Laurance et al. 2017). The area is currently 

composed of a mosaic of unflooded lowland forest (80-160 m a.s.l.), pastures and secondary 

regrowth forest. Primary forest reaches 30-37 m in mean canopy height, with isolated trees up 



to 55 m tall (Laurance et al. 2011). Annual rainfall varies between 1900 and 3500 mm per 

year, with a rainy season between November and June and a dry season from July to 

November (Ferreira et al. 2017), while mean annual temperature usually oscillates between 

26-30 ºC (de Oliveira & Mori 1999). 

2.2 Mist-netting and hand-release recordings 

Intensive bat sampling was carried out in the context of a larger project assessing 

fragmentation effects on bats in the BDFFP landscape over a period of four years (2011-

2014), using both ground- and canopy-level mist-netting. Sampling covered various types of 

rainforest habitats including continuous primary forest, forest fragments and secondary 

regrowth (Farneda et al. 2015; Rocha et al. 2017a; Rocha et al. 2017b). Sporadic sampling 

was also done over temporary lakes, small ponds and streams, as well as campsites, roads, 

and pastures (Torrent et al. 2018). Mist-netting was usually conducted from 18:00 to 00:00, 

except for some lakes where high capture rates sometimes required closing the nets earlier. 

Captured bats were identified using different keys (Lim & Engstrom 2001; Gardner 2007). 

Echolocation call recordings of captured aerial insectivorous bats were made with a 

Pettersson D1000 bat detector (Pettersson Elektronik, Sweden), using 384 kHz sampling 

frequency in full spectrum (16-bit resolution) and no triggers or filters. Release calls were 

obtained after hand release of bats in either clearings or open areas within the forest (N=722 

individuals). The detector was placed 5-10 m from the point of release (depending on the 

species) and once the individual was in flight, the microphone was pointed towards it to 

record as many search pulses as possible. For analysis, all pulses recorded immediately after 

release were discarded, as were overloaded calls, those too faint (for which it was impossible 

to distinct the shape from the background noise), social or stress calls, calls emitted in passive 

hunting mode and feeding buzzes. 



2.3 Acoustic monitoring dataset 

A total of 50 sites across the BDFFP landscape were acoustically surveyed 2012-2014, 

including the same sites used for mist-netting as described in Rocha et al (2017a,b). These 

comprised different-sized forest fragments (N=8), continuous forest (N=9), forest edges 

(N=11), secondary forest (N=11) and forest clearings (N=11). At each recording point, an 

automatic SM2Bat detector with an omnidirectional ultrasonic SMX-US microphone 

(Wildlife Acoustics, Inc., USA) was placed ca. 1.5 m above the ground. Acoustic surveys 

covered both dry and wet seasons and were conducted twice per season. Detectors were set to 

automatically record bats from 18:00 to 06:00 in real time with a full spectrum resolution of 

16 bit, a high-pass filter set at fs/32 (12 kHz), an adaptive trigger level relative to noise floor 

of 18 SNR, and for periods of five consecutive nights per site. All recordings were split into 

five-second long sequences. Within such a five-second sound file, a bat pass was defined as a 

sequence with a minimum of two recognizable echolocation pulses per species (Millon et al. 

2015; Appel et al. 2017; Torrent et al. 2018). This unit was used as a measure of activity 

levels. A total of 1,088,940 sound files were acquired during the study period in which 

~650,000 bat passes were identified. 

2.4 Echolocation call analysis 

Kaleidoscope v.4.0.4 software (Wildlife Acoustics Inc., USA) was used to visualize and 

manually classify all bat passes from the acoustic monitoring dataset. Call sequences were 

manually identified to species/sonotype level as in previous studies (Silva & Bernard 2017; 

Torrent et al. 2018). For the purpose of this study, a sonotype was defined as a category that 

grouped species with similar calls when it was not possible to clearly assign a call to a 

particular species (Table S1). Call identification was based on a series of acoustic features and 

standard measurements - call shape (CS), frequency of maximum energy (FME), start (SF), 

end (EF), maximum (MaxF) and minimum (MinF) frequency and duration (Dur) - and 



followed the echolocation key in López-Baucells et al. (2016). Moreover, recordings were 

also compared with a local reference call library compiled for the same study area over the 

course of the whole 3-year sampling period. Call sequences or pulses that were too faint for 

reliable identification (< 10 dB difference in power between background noise and FME of 

the echolocation pulses) were discarded from the analysis. 

In addition to this manual identification, the same recordings were also subjected to an 

automatic identification process whereby pulse measurements were automatically extracted 

(~4,788,000 pulses) using SCAN’R (Snapshot Characterization and Analysis Routine) v1.7.4. 

(Binary Acoustic Technology, USA). Settings were adjusted as specified in Table S2 to 

minimize the confusion between noise and bat calls. The following measurements were 

extracted for all pulses: Duration (Dur, ms), Maximum frequency (Fmax, kHz), Minimum 

frequency (Fmin, kHz), total bandwidth (BW, ms), Frequency at strongest sound pressure 

level (Fdom, kHz; equivalent to FME or Frequency of maximum energy), percentage in 

duration of Fdom (Ldom, %), High end of characteristic frequency (HiFc, kHz; equivalent of 

the knee frequency), Low end of characteristic frequency (LowFc, kHz), global slope of the 

call (Slope, kHz/ms), curvature (Curv) (SCAN'R 2009). After extraction, a Principal 

Component Analysis (PCA) was performed, separately for each bat family, in order to 

visualise how different species/sonotypes clustered based on the similarity of their acoustic 

parameters. 

2.5 Supervised machine learning 

Supervised classification based on a machine learning algorithm (random forest, RF) was 

conducted using the R package “caret” (Classification and Regression Training) (Kuhn 2008). 

Random forest has performed well in several bat studies and is currently the preferred 

machine learning algorithm for the classification of bat echolocation calls (e.g. Zamora-

Gutiérrez et al. 2016; Bas et al. 2017). Random forest models are built by comparing and 



averaging decision tree classifiers that are designed by bootstrapping random samples of the 

training dataset (Breiman 2001). Amongst its advantages, random forest is not affected by 

heteroscedasticity, is not strongly affected by outliers or low-informative variables, and is 

relatively easy to use computationally (Olden et al. 2008), which makes it the method of 

choice for large acoustic datasets. In our case we selected three separate 10-fold cross-

validations to tune the training model, with a final value of mtry of 2 (chosen for their highest 

accuracy) (Breiman 2001). 

Data preparation. All pulse measurements were centred and scaled (Mukherjee & Manna 

2006; Kuhn 2008) to make them comparable. The global dataset (~4,178,000 pulses) was split 

into different training and testing subsets. Training datasets were composed of 50, 100, 500, 

1000 and 2000 reference pulses per species/sonotype, which were randomly selected from all 

recordings (except for Rhynchonycteris naso and Furipterus horrens, for which we only had 

data from 12 and 1,000 pulses respectively). 

Data classification. Using the 1000-pulse training dataset, we evaluated classification 

accuracy and predictive power of the RF algorithm. Evaluation of performance of the training 

algorithm on the testing datasets was based on the performance metrics accuracy and kappa. 

Kappa measures inter-rater agreement for qualitative items (usually considered to be more 

robust than other measures as it also takes into account the agreement occurring by chance) 

(Viera & Garrett 2005). The same metrics were then additionally assessed for the different-

sized training datasets, ranging from 50 to 2000 pulses/sonotype. Variable (feature) 

importance scores were also obtained using the R package caret (Kuhn 2008). The 

contribution of each variable is measured as follows: For each tree, the prediction accuracy is 

recorded removing each predictor variable. The average of the differences between all 

accuracies is normalized by the standard error. 



Classification success for each species/sonotype was evaluated using 1) a RF model trained 

with the 2000-pulse dataset based on calls of free-flying bats and 2) a RF model trained with 

the complete reference call library based on hand-release calls compiled during the whole 3-

year study period. The latter unfortunately included less than 2000 pulses for many species 

(Table S3) due to the inherent difficulty to capture enough individuals from which to obtain 

release calls. Both training datasets were classified using the same species/sonotype labels in 

order to make both classifications comparable. Amongst the whole set of metrics commonly 

used to evaluate classifiers, we selected sensitivity and positive predictive value (PPV) as the 

most conservative for evaluating the performance of the acoustic classification task because 

they highlight the true positives in the classification process (Jennings et al. 2008) (Fig. S1). 

While sensitivity is the proportion of calls correctly identified as one species/sonotype out of 

the total number of calls, positive predictive value is the proportion of calls correctly 

identified as one species/sonotype out of the total number of calls identified as such. Other 

metrics such as specificity or negative predictive value highlight the certainty of true 

negatives, which is quite unreliable in multicategory classifications (Fig. S1). 

The estimation of the percentage of recordings that would need to be manually checked 

depending on several classification accuracy thresholds was also based on the 2000-pulse 

training dataset. Classification accuracy thresholds considered in the analyses ranged from 60 

to 95%, in 5% increments. 

3. Results

3.1 Acoustic discrimination at family level 

A total of 27 aerial insectivorous bat species from six different families were captured and 

recorded during the study period, representing 20 different species/sonotypes (Table S1). 

PCAs based on acoustic features showed that, for mormoopids, automatic parameter 



extraction often resulted in measurement values coming from different harmonics (Fig. 2). 

Pteronotus alitonus and P. rubiginosus clearly separated as distinct clusters and, although less 

evident, P. personatus and P. gymnonotus were also quite distinctly separated. Similarly, 

species with modulated calls such as vespertilionid or furipterid bats were split in rather well-

defined bands. In contrast, except for Saccopteryx bilineata and S. leptura, emballonurid and 

molossid bats showed less defined limits between groups. 



Figure 2. Principal component analyses (PCA) based on measurements of a series of acoustic 

parameters (see Methods) that were automatically extracted with SCAN’R, and manually 

classified to species/sonotype level following López-Baucells et al. (2016). 

 3.2 Minimum training dataset size and variable importance 

We found that, in order to achieve a minimum general accuracy of ~85%, a training dataset of 

more than 500 pulses per species/sonotype was required (Fig. 3A). Classifications undertaken 

with training datasets based on only 50 pulses showed large variation in accuracy, reaching 

values below 75%. Classification performance was consistent between accuracy and kappa 

metrics. “High end of characteristic frequency” (equivalent to the frequency of the knee) was 

the most important variable in the RF model, followed by “Maximum frequency” and 

“Dominant frequency” (equivalent to the frequency of maximum energy). However, except 

for “Length of the dominant frequency”, “Duration”, “Bandwidth” and “Curvature”, all the 

variables showed quite similar importance values (Fig. 3B) 



Figure 3. A) Classifier performance, evaluated as general accuracy and kappa, for a random 

forest model built with different-sized training datasets (50 to 2000 pulses/sonotype). The x-

axis has been scaled to allow better visualization. Dots are medians, boxes 25% and 75% 

quartiles and whiskers denote the range. B) Importance of each variable in the random forest 

model trained with 2000 reference pulses per species/sonotype. 

3.3 Classifier performance at species/sonotype level 

Algorithm performance varied substantially among species/sonotypes (Table S4). Seven had 

values above 90% for both sensitivity and PPV (P. alitonus, P. rubiginosus, Vespertilionidae 

1, Myotis nigricans, Centronycteris maximiliani, Myotis riparius and S. bilineata), indicating 



not only that most of the recordings were correctly assigned, but also that few other 

recordings were confused with these species (Table 1, Table S4). On the other hand, for other 

species such as Furipterus horrens, Emballonuridae 1, P. gymnonotus, Molossidae 3, 

Promops spp. and P. personatus there were considerable differences between metrics. For 

these, we found a low number of false negatives but a large number of false positives (low 

PPV). Molossidae 1 and 2 were the sonotypes with poorest levels of correct identifications, 

and R. naso (for which we had a very limited number of recordings) was the only species for 

which the classifier completely failed. Comparing the RF models trained with calls from free-

flying vs. hand-released bats, the former nearly always outperformed the latter (Table 1). 

Pteronotus alitonus and P. rubiginosus obtained a similar proportion of correct identifications 

in both HR and FF algorithms, and Molossidae 3 was the only sonotype for which higher 

sensitivity scores were obtained using calls from hand-released bats, although it also had 

lower PPV. 



Table 1. Performance of the random forest classifier for each species/sonotype based on calls 

from either free-flying (FF) or hand-released (HR) bats. Classification performance is ranked 

according to sensitivity and positive predictive value (see Methods for an explanation of the 

rationale underpinning this selection) as > 90% (dark green), 80 - 90% (olive green), and < 

80% (light green). 

Species/sonotypes Acronym Sensitivity 

Positive 

Predictive 

Value (PPV) 

FF HR FF HR 

Pteronotus alitonus PA 0.96 0.92 0.99 0.80 

Pteronotus rubiginosus PR 0.96 0.95 0.99 0.73 

Vespertilionidae 1 V1 0.95 0.76 0.96 0.51 

Myotis nigricans MN 0.93 0.32 0.96 0.70 

Furipterus horrens FH 0.93 0.88 0.00 0.00 

Centronycteris maximiliani CM 0.92 0.76 0.96 0.65 

Myotis riparius MR 0.91 0.83 0.98 0.97 

Saccopteryx bilineata SB 0.91 0.42 0.93 0.96 

Emballonuridae 1 E1 0.90 0.00 0.21 0.02 

Cormura brevirostris CB 0.89 0.58 0.85 0.95 

Peropteryx kappleri PK 0.89 0.95 

Peropteryx macrotis PM 0.88 0.27 0.60 0.02 

Saccopteryx leptura SL 0.88 0.76 0.95 0.89 

Pteronotus gymnonotus PG 0.86 0.17 0.17 0.05 

Molossidae 3 M3 0.84 0.92 0.24 0.06 

Promops sp. P 0.82 0.11 



Pteronotus personatus PP 0.80 0.01 0.09 0.81 

Molossidae 1 M1 0.71 0.01 0.37 0.01 

Molossidae 2 M2 0.59 0.27 0.44 0.17 

Rhynchonycteris naso RN 0.00 0.00 0.00 0.00 

3.4 Combining automatic classification with manual post-validation 

The total number of files to be visually confirmed after automatic classification ranged from 

~20%, when the desired accuracy threshold was set to 60%, to ~30%, when it was set to 95% 

(Fig. 4). Following the same pattern found for species/sonotype-specific predictive 

performance (Table 1), for some categories the number of files to be post-validated did not 

differ substantially for the different accuracy thresholds mentioned previously, while for 

others, this percentage varied up to 30%. Only in few cases was there marked variation 

depending on the chosen accuracy threshold (from 40 to 90% for Emballonuridae 1 and P. 

personatus). 



Figure 4. Percentage of files requiring visual post-validation as a function of the desired 

accuracy threshold for identification acceptance. Shaded area: Percentage of the whole 

dataset. Coloured lines: Percentage for each family; Species acronyms are as given in Table 1. 

Analysis was based on a random forest model, trained with 2000 pulses per species/sonotype 

(with the exception of Rhynchonycteris naso and Furipterus horrens, for which we had fewer 

recordings, see Methods). 



4. Discussion

Our analyses suggest an inexpensive and relatively user-friendly approach (Fig. 1) to 

automatically classify large amounts of bat echolocation data, followed by visual post-

validation of a reduced proportion of the original acoustic dataset. This approach overcomes 

the acknowledged risks and biases associated with the exclusive reliance on current automatic 

classifiers (Russo & Voigt 2016). Using recordings obtained under real field conditions from 

a 3-year-long study in the Central Amazon, we confirmed the reliability of using locally-

recorded echolocation calls from free-flying bats to train a custom-built classifier that 

automatically identifies the calls of a large subset of the species/sonotypes in the local 

assemblage with high accuracy (>90%) and leaves the rest to be manually classified. This 

automatic pre-classification reduces the total number of recordings to be visually inspected, 

therefore optimizing the classification process. This equates to considerable time savings, 

especially in the case of projects that accumulate massive acoustic data. However, due to the 

customizable nature of this approach, the advantages of using recordings from free-flying bats 

hinge on manually pre-identifying a decent amount of calls from free-flying bats using release 

calls as references, literature and echolocation keys. This obviously entails the risk of 

including misidentified calls as a source for training the algorithm, a problem we overcame by 

restricting the classification of the recordings to easily distinguishable species/sonotypes, 

therefore avoiding misidentifications. 

Being non-intrusive, automated recording systems and soundscape studies have recently 

become very popular, and have considerably improved our knowledge about the natural 

history of elusive bat species, anthropogenic impacts and wildlife conservation in habitats 

where sampling by traditional methods such as mist-netting would be inefficient or unfeasible 

(Kubista & Bruckner 2017). However, in developing countries where funding is particularly 

limited, the widespread use of bioacoustics is still severely hampered by its elevated costs and 



cost-effective alternatives need to be found quickly. This has inspired a new trend towards 

developing user-friendly detectors and automatic classifiers which are fully customizable at 

reduced cost (Whytock et al. 2017; Hill et al. 2018). Reliance on self-built classification 

algorithms could greatly contribute to studies in regions for which no automatic classifier is 

available as part of commercially available software packages. 

4.1 Minimum training dataset size and variable importance 

We identified the minimum number of pulses that should be used in the training dataset in 

order to achieve general accuracy levels between 75 and 95%. Our results show that training 

the algorithm with 500 pulses per species/sonotype results in average classifier performance > 

85%. However, this reference value should be interpreted carefully as it depends on whether 

the species that are most frequently detected in a region are also those whose echolocation call 

characteristics are more clearly distinct and thus the species more easily identifiable or not. In 

our case, the most common species (P. rubiginosus, Myotis nigricans and M. riparius), all 

easy to identify, might be positively biasing general accuracy, thus masking lower accuracies 

for the remaining categories (Biscardi et al. 2004). 

The variables that contribute most to separating species may not be the same in all 

assemblages. For example, Monadjem et al. (2017) found that call duration represented one of 

the most relevant parameters to distinguish between species, while in our study, we obtained 

higher importance weights for several other variables. This probably reflects the diversity of 

pulse shapes and structures found in Neotropical aerial insectivorous bats. By including 

different variables in the algorithm, one can probably achieve better classification 

performance in such highly diverse areas (Walters et al. 2013). 

4.2 Classifier performance at species/sonotype level 



Random forest performed very well with our dataset, confirming its potential use for 

analysing bat acoustic datasets. Among the available machine learning algorithms, random 

forest has already been successfully used in automatic species classification for bats 

(Armitage & Ober 2010; Zamora-Gutiérrez et al. 2016) and other taxa such as birds (Briggs et 

al. 2009) and dolphins (Barkley et al. 2011). We obtained similar mean accuracies to those 

found in previous studies, although results varied among species and families (e.g. 

MacSwiney et al. 2008; Pio et al. 2010; Britzke et al. 2011; Zamora-Gutiérrez et al. 2016). 

For Neotropical bats, large variability in predictive power is found for Vespertilionidae and 

Molossidae, while Emballonuridae and Mormoopidae are usually more accurately identified 

(Zamora-Gutiérrez et al. 2016). Previous studies have evaluated the performance of automatic 

algorithms for classifying bat calls at species, genus, family or guild level (Zamora-Gutiérrez 

et al. 2016; Vassilios et al. 2017). However, it is now widely accepted in the scientific 

community that automatic classification must be used cautiously (Russo & Jones 2002; Russo 

& Voigt 2016; Monadjem et al. 2017). In this study, we aimed to optimize the classifiers not 

at species level but using sonotypes. Although classifying all calls to species level would be 

ideal, using sonotypes may be sufficient in most cases, obviously depending on a project’s 

specific aims (Redgwell et al. 2009; Armitage & Ober 2010). 

For seven out of 20 species/sonotypes we obtained very high values (>90%) for both 

sensitivity and PPV, proving that our random forest algorithm could be used with great 

confidence to detect and automatically classify them in our recordings. Very few false 

positives and false negatives were found, indicating that our classifier neither gets them 

wrong, nor ignores them when they are present (see Table 1). These species are also the most 

predominant in our dataset, which turns our classifier into a great tool due to its potential to 

greatly reduce the number of files to be manually analysed (Andreassen et al. 2014). One of 

the main reasons to explain the classification failure of some categories is the limited capacity 



of SCAN’R to detect and characterize pulses of different lengths (our SCAN’R pulse 

detection settings were more suitable for long pulses). This will certainly improve soon with 

new technological advances, or alternatively, could be better implemented through R sound 

packages. Previous studies have exclusively used accuracy as a means of evaluating algorithm 

performance and predictive capacity (i.e. Wordley et al. 2014; Zamora-Gutiérrez et al. 2016). 

However, other more conservative metrics such as positive predictive value and sensitivity 

are often neglected. We encourage developers of algorithms and researchers to better 

scrutinize classifier performance by focusing on these more reliable metrics. 

4.3 Classifier trained with calls from free-flying versus hand-released bats 

We compared the performance of the random forest classifier trained with calls from free-

flying versus hand-released bats, using only data collected during the 3-year-period of the 

project. Classifier performance was substantially better using recordings from free-flying bats, 

probably due to the low number of recordings from hand-released bats for most of the species. 

In this regard it is important to mention that the effort required to compile complete reference 

call libraries of good quality using hand-released bats and which cover different 

environmental situations is titanic (O'Farrell et al. 1999). In fact, this has probably 

discouraged many researchers from developing their own classifiers so far. 

Globally, echolocation call libraries are incomplete, especially in understudied regions such 

as most of the tropics (Aguilar 2017). Due to species elusiveness, whispering behaviour or 

rarity, call libraries are usually only built with calls from a few hand-released individuals 

(Gager et al. 2016; Zamora-Gutiérrez et al. 2016; Monadjem et al. 2017). Although some 

studies have not found marked differences in automatic classifiers trained with data from 

distant regions (e.g. Zamora-Gutiérrez et al. 2016), other authors highlight the importance of 

taking these differences into consideration (Thomas et al. 1987; Barclay et al. 1999; O'Farrell 

et al. 2000; López-Baucells et al. 2017b). Although we urge and support the compilation of 



comprehensive reference call libraries, our study suggests that training automatic classifiers 

with manually identified free-flying bats is a very valid option if it is cautiously used in 

conjunction with conservative classification criteria. As stressed by Jakobsen et al. (2013), it 

is of vital importance to record calls from naturally behaving bats in the wild and use these 

recordings to improve classifier performances. 

4.4 Combining automatic classifiers with manual post-validation 

No classifier has proved to provide 100% accuracy so far (Russo & Voigt 2016). Therefore, 

some authors have recommended to manually validate all sound files (Kubista & Bruckner 

2017), which inevitably annihilates or at least greatly reduces the advantages of having 

automatic algorithms. In other cases, posterior cross-validation is completely neglected, 

which greatly affects the reliability of the study. According to our findings, even when aiming 

for an accuracy threshold of 95%, the remaining amount of data to be visually validated could 

be reduced by up to 75%. This represents a substantial saving in terms of workload. 

Different acoustic analysis software with automatic classifiers has been released on the 

market in the last decades: batIdent (ecoObs, GmbH, Nürnberg, Germany), Kaleidoscope 

(Wildlife Acoustics, USA), Sonochiro (Sonochiro, France), Sonobat (Sonobat, USA), 

SCAN’R (Binary Acoustic Technology, USA) and more recently Tadarida (Bas et al. 2017), 

multiplying the options available to researchers to use technological advances to aid acoustic 

species identification. The best option for analysing the massive amounts of acoustic data 

generated by the latest recording devices without compromising the reliability of results, 

inevitably, lies in finding the right balance between automatic classification and manual 

cross-validation. This is especially true for threatened or rare species for which false positives 

will have greater conservation impact (Clement et al. 2014). 

4.5 Recommendations for effectively combining automatic and manual classification 



Our approach, while highly versatile, requires that researchers must: A) have good knowledge 

about the bat fauna of the region (avoiding novice errors that result in misidentifications or 

passive acceptance of the results from any classifier and acknowledging regional and habitat 

variation), B) work together with experts on local call libraries and manual identifications, C) 

be skilled in programming in R or similar software packages, thus being able to adjust 

machine learning algorithms to particular situations, D) take into consideration both 

sensitivity and positive predictive values rather than global accuracies, E) define their own 

sonotypes conservatively (preventing classification to taxonomic levels that are not even 

visually distinguishable). We also recommend to base selection criteria on the PPV as the 

most conservative metric of performance (Armitage & Ober 2010) since false negatives are 

always better than false positives. 

5. Conclusions

Further research should focus on isolating and analysing individual call sequences instead of 

pulses, and analyse the whole sonogram rather than the pulses one by one (Ren et al. 2009; 

Damoulas et al. 2010; Kershenbaum et al. 2014). Our study shows how open-source 

statistical tools and software can be used to develop algorithms attaining similar levels of 

accuracy as commercial classifiers. However, their potential for wider application should be 

further explored with echolocation datasets from other regions. We also demonstrated that 

training algorithms with recordings from free-flying bats is possible and advisable if designed 

to classify recordings at sonotype level. This approach is not conceived to replace the use of 

calls from hand-released bats, but to aid in data management and classification with massive 

datasets. Combined with the availability of new low-cost automatic detectors and powerful 

supervised machine-learning algorithms, our analysis approach opens new opportunities for 

long-term monitoring programs to be undertaken by researchers in megadiverse regions 

where echolocation libraries are still scarce. In fact, in these regions, extended acoustic bat 



monitoring is urgently needed, and fortunately, the technical and analytical tools are now at 

hand to do so. 
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