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ABSTRACT  
Nanofluids have shown significant promise in the thermal enhancement of many industrial systems. They 

have been developed extensively in energy applications in recent years. Solar energy systems are one of 

the most promising renewables available to humanity and these are increasingly being re-designed to 

benefit from nanofluids. Most designs of solar collectors involve fixed (rigid) geometries which may be 

cylindrical, parabolic, tubular or flat-plate types. Modern developments in biomimetics have identified that 

deformable conduit structures may be beneficial for sustainable energy systems. Motivated by these aspects, 

in the current work we present a novel model for simulating a biomimetic peristaltic solar 

magnetohydrodynamic nanofluid-based pump. The working fluid is a magnetized nanofluid which 

comprises a base fluid containing suspended magnetic nano-particles. The novelty of the present work is 

the amalgamation of biomimetics (peristaltic propulsion), magnetohydrodynamics and nanofluid dynamics 

to produce a hybrid solar pump system model. Heat is transferred via distensibility of the conduit in the 

form of peristaltic thermal waves and buoyancy effects. An externally applied magnetic field achieves the 

necessary circuit design for generating Lorentzian magnetic body force in the fluid. A variable viscosity 

modification of the Buongiorno  nanofluid model is employed which features thermophoretic body force 

and Brownian dynamic effects. To simulate solar loading conditions a thermal radiative flux model is also 

deployed. An asymmetric porous channel is investigated with multiple amplitudes and phases for the wall 

wavy motion. The channel also contains a homogenous, isotropic porous medium which is simulated with 

a modified Darcy model. Heat generation/absorption effects are also examined. The electrically-conducting 

nature of the nanofluid invokes magnetohydrodynamic effects. The moving boundary value problem is 

normalized and linearized using the lubrication approach. Analytical solutions are derived for axial velocity, 

temperature and nanoparticle volume fraction. Validation is conducted with Maple numerical quadrature. 

Furthermore, the salient features of pumping and trapping phenomena discourse briefly. The observations 

demonstrate promising features of the solar magnetohydrodynamic peristaltic nanofluid pump which may 

also be exploited in spacecraft applications, biological smart drug delivery etc. 
 

KEYWORDS: Peristaltic solar pump; magnetohydrodynamics; nanofluids; porous medium; thermal radiation; 

perturbation analysis. 

 

1. INTRODUCTION 

Modern trends in renewable and sustainable energy systems have witnessed a proliferation of 

novel designs. Pre-eminent in such systems is the solar energy collector which exploits, the key 
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energy source available to the earth, namely the sun. Pioneering studies of radiative transport in 

solar collectors and surface properties were led by Hottel at MIT from the 1930s to the 1960s and 

much of this work is summarized in an excellent monograph [1]. Since 1970 a worldwide effort 

has been underway to increase the durability, resilience and thermal efficiency of solar collector 

systems. Solar technology has subsequently infiltrated a vast array of devices including solar ponds 

[2], solar absorption chillers [3], solar towers [4], solar cooling systems [5], CHP refrigeration 

solar hybrid plants [6], solar-petrochemical steam control plants [7], green buildings (photovoltaic 

facades) [8] and solar automobiles [9]. Another important application of solar technology is the 

solar-powered pump [10] which has many uses including heating, waste transport, medical 

fermentation batch processing etc. A significant development in solar technology has also been 

the advent of nanofluids. Nanofluids were introduced by Choi [11] constitute a significant advance 

in fluid dynamics technology and are synthesized by doping conventional base fluids (e.g. water, 

mineral oil, air, etc.) with carefully designed nano-particles. The resulting suspension achieves 

improved thermal conductivity and modified viscosity properties. The surface area per unit volume 

of nanoparticles is much larger (millions of times) than that of conventional microparticles. The 

number of surface atoms per unit of interior atoms of nanoparticles is very large. These 

characteristics can be exploited in many complex systems including medical engineering, energy 

engineering and materials processing. Nanofluids have infiltrated into many areas of energy and 

also biomedical technology as they may be manipulated to yield more biologically friendly, 

sustainable and durable products. Khanafer and Vafai [12] presented a lucid summary of solar 

nanofluid device applications, emphasizing that efficiency of any solar thermal system is dictated 

by thermophysical properties (viscosity, density, thermal conductivity and specific heat) of the 

operating fluid and the geometric characteristics. Critical features of nanofluids for improving 

solar collector and pump efficiency are types of the nanoparticles (metallic based work best e.g. 

copper, silver, titanium), nanoparticles volumetric concentration in the base fluid and the nanofluid 

viscosity and conductivity. The inclusion of copper nanoparticles considerably elevates the heat 

gain capacity of a solar pump. Carbon nanotube nanofluids not only improve the efficiency of 

solar collectors but have the added advantage of decreasing CO2 emissions. It should also be noted 

that there are a diverse range of mathematical models available for simulating nanofluid transport 

phenomena which have also been addressed in  Khanafer and Vafai [12]. These include the 

Buongiorno two-component model [13] which emphasizes thermophoretic forces and Brownian 
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motion dynamics as the key contributors to thermal conductivity enhancement. The other popular 

model is Tiwari and Das model [14] which simulates the nanoscale effect based on volume fraction 

(concentration) of the nano-particles. This model prioritizes thermal conductivity and viscosity of 

the nanofluid by appropriate functions formulated in terms of the nanoparticle volume fraction. 

However, it is restricted only to a momentum and energy balance and does not feature a separate 

species concentration balance equation for the nano-particles. The Tiwari-Das model has the 

serious drawback of confining the nanoparticle contribution to volume fraction rather than via a 

separate species conservation equation. The Buongiorno model therefore while it ignores volume 

fraction effects does compensate for this by a discrete equation for the nano-particle concentration 

diffusion and is more comprehensive therefore for complex flow simulations where Brownian 

motion can be modelled.  Many recent studies have been communicated on nanofluid solar pumps 

and collector systems including Shamshirgaran et al. [15] (on energy dynamics of copper nanofluid 

flat plate collectors), Owlabi et al. [16] (on integrated silver oxide doped nano-solar cells), 

Cingarapu et al. [17] (on tin-based nanofluids for solar pumping designs), Ravindran [18] (on 

nano-fuels for rocket propulsion and solar power), Abid et al. [19] (on salt-based ionic nanofluids 

for parabolic collectors) and Alashkar and Gadalla [20] (focused on gold and zinc oxide nanofluids 

for solar power pumps). All these studies confirmed the considerable elevation in thermal 

efficiency and sustainability of solar power designs attained with judicious deployment of metallic 

nano-particles.  

Another important renewable pump design is the magnetohydrodynamic (MHD) pump [21, 22]. 

These pumps employ the Lorentz magnetic body force effect, based on the injection of an electric 

current into two electrodes located at sidewalls facing each other in a microchannel. This charge 

injection produces a significant transversal ionic current in the microchannel, which is 

simultaneously subjected to a magnetic field oriented at an angle of 90° to the current direction 

and microchannel axis. Conventional MHD micropumps can generate only small values for pump 

rate and achievable pressure and the performance is strongly controlled by the ionic conductivity 

of the pumping fluid. In DC MHD pumps, in particular, electrolytic bubble generation at the 

injection electrodes can is a key problem [23–25]. However, recent studies with magnetized 

nanofluids have largely mitigated these and other issues and have simultaneously achieved the 

marked enhancement in pump efficiency and longevity. Important efforts in this regard include 

the work of Shahidian et al. [26] which explored the impact of different electrical conductivities 
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of nano-particle doped ionic fluids on overall efficiency. Further studies emphasizing the promise 

of nanofluid-based MHD pumps includes Qian and Bau [27], Shahidian et al. [28] and Joo and 

Lee [29]. Another exciting development in renewable energy has been the amalgamation of solar 

pump technology with magnetohydrodynamics (MHD). Recent Work at RPI [30], has established 

that due to higher temperature generated, solar MHD pumps attain a demonstrably greater 

efficiency than standard solar thermal pump technologies which only operate at a much lower 

temperature. This new branch of renewables is termed concentrating solar MHD Power Utility and 

is currently being commercialized in the USA. It combines the benefits of high energy radiative 

power sources (solar) with excellent flow control abilities of magnetohydrodynamic pumps. Other 

excellent investigations of this technology include Satyamurthy et al. [31] (for liquid metal solar 

MHD pumps, based on an extension of the Faraday law of induction to liquid metals), Kaushik et 

al. [32] (on solar-powered liquid metal LMMHD power generation systems with smaller cost per 

unit of installed power), Romero and González-Aguilar [33] (on MHD concentrating solar thermal 

(CST) central tower systems). 

Although purely nanofluid media have been exploited to great effect in modern solar and solar 

MHD pumps, it is also possible to enhance heat transfer characteristics via the incision of a porous 

material in the pumping duct (channel). Solar porous absorbers have demonstrated exceptional 

benefits in regulating flows in such pumps and concurrently elevating thermal transfer efficiencies. 

Wang et al. [34] showed the optimal performance was possible in solar collectors containing a 

variable porosity medium. Other examples of porous media solar pump systems include the solar 

pond studied by Shi et al. [35] (where hydrodynamic stability is controlled more effectively with 

permeability) and Ren et al. [36] who observed that porous media solar pumps and receivers with 

larger thickness produce better retention of solar thermal energy. Vasiliev et al. [37] have explored 

the advantages of porous media in solar–gas solid sorption heat pumps.  Al-Nimr et al. [38] have 

analyzed the benefits of porous media matrices in tubeless solar collectors and pumps.   

A critical aspect of accurately simulating and designing solar pumps is the proper simulation of 

thermal radiative heat transfer. Radiation is the dominant mode of heat transfer in sunlight and is 

the most complex mode of thermal transport. It involves many complex features including spectral 

effects, optical thickness, reflection, absorption, transmission etc. To simulate radiative heat 

transfer problems, very sophisticated numerical algorithms must be employed to cater for a 
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multitude of thermo-physical phenomena which is both time-consuming and expensive. Many 

approaches have been developed to overcome this challenge and popular models emerging in 

engineering sciences include the Milne-Eddington approximation, Chandrasekhar discrete 

ordinates method, P1 differential approximation, Schuster-Schwartzchild two-flux model and the 

Rosseland diffusion model. These methods convert the integro-differential radiative equation into 

either partial differential equations or algebraic flux equations which are much easier to 

implement. Many simulations have been presented using these radiative models and are lucidly 

summarized in Tien and Vafai [39]. Radiative (optical) properties of nanofluids are also crucial in 

their efficient implementation in solar power technology. Said et al. [40] described the application 

of a direct absorbing nanofluid (suspension formed by mixing nanoparticles and a liquid) for 

harvesting solar thermal energy, providing extensive details of radiative properties of nanofluids 

(optical thickness, scattering coefficients etc). Du and Tang [41] elaborated on the transmission 

and scattering characteristics of nanofluids with agglomeration effects. Bég et al. [42] utilized both 

network electro-thermal and finite difference algorithms to simulate thermal convection and 

radiation heat transfer in an annular porous medium solar energy absorber with a Trauggot’s P1-

radiative differential approximation.  

Recent trends in engineering design have strongly gravitated towards bio-inspired designs. 

Biological systems have perfected many intricate mechanisms which can be applied to upgrade 

conventional engineering systems to a new level of performance and endurance. One of these 

mechanisms is known as peristalsis and features in an impressive spectrum of natural phenomena. 

Peristalsis embodies continuous contraction and expansion of a flexible hollow, tubular structure 

containing fluid. Peristaltic pumping uses this mechanism where direct contact of any inside 

moving parts with the fluid is undesirable or inefficient. It is ideal for transferring fluids from 

lower pressure to higher pressure regions. This mechanism is observed in reptilian breathing [43], 

robotic endoscopy [44], intestinal physiology [47], human speech (laryngeal phonation) [45], and 

multidrug efflux pumps to export toxic substrates through their cell membranes [46]. Many 

excellent mathematical models for peristaltic pumping dynamics have been developed. Pal and 

Brasseur [47] who showed that in esophageal peristalsis, local pressure and shear stress in the 

contraction zone are strongly diminished via local longitudinal shortening (LLS)and that a 

peristaltic wave of local longitudinal muscle contraction coordinated with the circular muscle 

contraction wave has served to concentrate circular muscle fibers and reduces the magnitude of  
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contractile force required to transport a parcel of trapped fluid (bolus), collectively enhancing 

circular muscular efficiency. Tsui et al. [48] conducted numerical computations on peristaltic 

pumping in a finite length distensible channel in which the unstructured computational grid moved 

according to the oscillation of the wall. Dobrolyubov and Douchy [49] developed a theory of 

peristaltic waves based on the travelling deformation waves and wave mass transfer theory. Kumar 

et al. [50] presented perturbation solutions for peristaltic transport due to a sinusoidal wave 

travelling on the boundary of a permeable tube filled with an incompressible fluid. Moradi et al. 

[51] described a spectrally accurate algorithm for peristaltic flows in annular geometries and 

deployed a numerical discretization method based on Fourier and Chebyshev expansions in the 

streamwise and radial directions, showing that modifications in the mean axial pressure gradient 

vary proportionally to the second power of the wave amplitude for waves with small enough 

amplitudes. Further Newtonian viscous peristaltic pumping modelling studies include Reddy et al. 

[52] and Mandviwalla and Archer [53]. Ramesh [54] considered magnetohydrodynamic thermo-

solutal peristaltic pumping of a Stokesian couple stress non-Newtonian fluid in a two-dimensional 

inclined channel containing a permeable medium. Tripathi and Bég [55] presented closed-form 

solutions for time-dependent peristaltic magnetohydrodynamic heat transfer through a finite length 

channel. Nanofluid peristaltic pumping has also been addressed in recent years. Bég and Tripathi 

[56] presented the first analytical study of thermo-solutal nanofluid peristaltic dynamics in a 

channel, explicitly considering thermal and species Grashof number buoyancy effects. Further 

investigations have considered non-Newtonian effects and titanium nano-particles [57], shape 

geometric effects [58], combined electrical and magnetic field effects [59].  

As noted earlier in solar magnetohydrodynamic pumps, radiative heat transfer is a key 

consideration. The purpose of the present work is to further modify this concept to include 

biomimetic channel wall features, specifically deformability of the walls. Peristaltic 

magnetohydrodynamic nanofluid solar pumps must, therefore, feature wall distensibility, 

nanofluid behavior, magnetohydrodynamics and radiative heat transfer characteristics. The current 

study uses a Rosseland optically-thick radiative flux model to simulate uni-directional thermal 

radiation effects. This approach has been utilized in many analyses of peristaltic pumping 

including Bhatti et al. [60] for two-phase viscoelastic working fluids and Hayat et al. [61] for 

magnetic nanofluids. A variable-viscosity model is employed for the nanofluid. Darcy’s law is 

employed to simulate porous medium drag effects. Heat source/sink and buoyancy effects are 
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included. The conservation equations for mass, momentum, energy and nano-particle volume 

fraction (concentration) are transformed from a stationary to a moving coordinate system with 

lubrication theory. The resulting non-dimensional two-point boundary value problem is solved 

with both a perturbation method and an efficient numerical quadrature technique (Maple 17). The 

influence of relevant physical parameters on axial velocity, temperature, nanoparticle volume 

fraction and stream function distributions are depicted and discussed briefly. It is envisaged that 

the current theoretical and computational model will motivate solar engineers to conduct 

laboratory investigations of solar MHD nanofluid peristaltic pumps and accelerate the 

implementation of this promising technology in the near future. 

2. MATHEMATICAL FORMULATION 

Let us consider two-dimensional flow of magnetite nanofluids driven by peristaltic pumping 

through an asymmetric channel containing a homogenous, isotropic porous wafer material, in the 

presence of an externally applied transverse magnetic field. The channel walls are propagating 

with constant wave velocity (c) as sinusoidal wave trains. Let 1Y H= , and 2Y H=  be respectively 

the left and right wall boundaries of the asymmetric channel of width )( 21 dd + . The temperature 

(T ) and nanoparticle volume fraction (C ) are prescribed values of 0T , 0C   and 1T , 1C  at 1Y H=

and 2Y H= respectively.  The geometry of the biomimetic solar magnetohydrodynamic nanofluid 

pump is depicted in Fig.1 and mathematically expressed as:  

( ) ( )1 1 1

2
, cos ,H X t d a X ct





 
= + − 

             

(1a)

( ) ( )2 2 2

2
, cos .H X t d a X ct






 
= − − − + 

             

(1b)

 

in which 1 2, , ,a a t and are the amplitudes of the left and right waves, wavelength, dimensional 

time and  phase difference,  further 1 2 1, ,a a d and 2d satisfy the inlet of the condition:

 

( )
22 2 2 2

1 2 1 2 1 22 cos .a a a a d d+ +  +               (2) 

Buongiorno’s [13] model is deployed for the nanofluid. This emphasizes thermophoretic forces 

and Brownian motion dynamics as the key contributors to thermal conductivity enhancement. This 

model which has the advantage of being very easily incorporated into the framework of viscous 
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fluid dynamics. It also allows the inclusion of a species diffusion (concentration) boundary layer 

equation which is not possible with other models such as the Tiwari-Das model [14]. It is a two-

component laminar four-equation non-homogeneous equilibrium model for mass, momentum, and 

heat transport in nanofluids highlights the dominance of Brownian diffusion and thermophoresis 

over other nanoscale mechanisms e.g. diffusion-phoresis, Magnus effect, fluid drainage, micro-

convection and ballistic collisions. The model further assumes that energy transfer via nano-

particle dispersion is negligible and that Dufour (diffuso-thermal) effects may be negated.  

 

 

Fig.1. Schematic diagram of the solar magnetic nanofluid peristaltic pump (asymmetric channel). 

 

Implementing the Buongiorno formulation [13] the resulting governing unsteady equations for 

conservation of mass, momenta (incorporating external magnetic field and Darcy porous matrix 

resistance), energy and nanoparticle volume fraction (nano-species concentration) in an (X, Y) 

coordinate system emerge as [62]: 

0,
U V

X Y

 
+ =

 
                  (3) 
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( ) ( )
2 2

2 2

2 2

0

0

,

ef Bf p

T r

T T T T T C T C T
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        (6) 

2 2 2 2

2 2 2 2

0

,T
B

DC C C C C T T
U V D

t X Y X Y T X Y

          
+ + = + + +     

           
           (7) 

where, U , V  are the velocity components in X , Y  directions, f  is fluid density, P  is pressure, 

( )T  is temperature dependent viscosity,  0k  is the permeability parameter,  is electrical 

conductivity, oB  is transverse magnetic field, g  isacceleration due to gravity, t is volumetric 

thermal expansion coefficient of the fluid, c  is volumetric solutal expansion coefficient of the 

fluid, 0 is the nanofluid density at the reference temperature ( 0T ), p  is nanoparticle mass density, 

( )
f

C   is heat capacity of fluid, efk is thermal conductivity, ( )
p

C   is effective heat capacity of 

nanoparticle, BD  isBrownian diffusion coefficient, TD  is thermophoretic diffusion coefficient, , 0Q  

is the constant heat addition/absorption.We further note that in the solar MHD nanofluid pump 

circuit, the direction of the current density J determines whether the system behaves as a pump or 

as a generator. When electric current passes through an electrically-neutral conducting medium in 

the presence of a magnetic field, a vector body force per unit volume F (N/m3) affects the medium. 

F is referred to as Lorentz force and is given by –Bo
2u i.e. the fifth term on the right-hand side of 

the X-momentum equation (4). We consider the case where the current density accelerates the 
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flow i.e. works as a pump (the opposite case of a generator is produced when the current density 

is reversed and as a result so is the Lorentz body force).We neglect magnetic field leakage and 

assume that the magnetic field is uniform during operation. Since the magnetic Reynolds number 

of the flow is taken to be very small, the induced magnetic field is negligible and it is further 

assumed that no external electric field is applied. Therefore, the electric field due to polarization 

of charges is negligible so that no energy is added or extracted from the fluid by electrical means. 

Ohmic (Joule) heating is neglected as are Soret and Dufour cross-diffusion effects. The radiative 

heat flux ( rq ) is given by using Rosseland’s approximation. This approximation is valid for 

optically-thick fluids which can absorb or emit radiation at their boundaries [1].  

44 *
.

3 *
r

T
q

k Y

 
= −


                (8) 

Here * and *k are the Stefan-Boltzmann constant and the mean absorption coefficient, 

respectively. We assume that the temperature difference within the flow is adequately small. The 

term 
4T is expanded as a Taylor series about a free stream temperature 0T  and ignoring higher 

order terms in the first order in 0( ),T T− we get: 

.
Y

T

*k

T*
qr




−=

3

16 3

0
                (9) 

The transformations from the fixed frame of reference (X, Y) to the wave frame of reference ( x ,

y ) are given by: 

, , ,x X ct y Y u U c v V= − = = − = and ( )( ) , .p x P X t=         (10) 

After utilizing the transformations (10), equations (1) - (7) retract to the following form:  

0,
u v

x y

 
+ =

 
               (11) 

( ) ( ) ( )
( )

( ) ( ) ( )

0

2

0 0 0 0 0 0

2

1 ( ) ,

f

t p
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u c v T T u
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B u C g T T g C C


  

    

            
+ + = − + + + −                 

− + − − − − −

    (12) 
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   (13) 
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2 2
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0
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      (14)
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2 2 2 2

2 2 2 2

0

.T
B

DC C C C T T
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x y x y T x y

         
+ + = + + +    

          
         (15) 

We now introduce the following dimensionless variables: 

( )
( )

( )
( )2

1 21 1 2
1 2

1 1 0 1 1 1 1
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= = = = = = = = = =
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0 0 0
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− −− −
= = − = =
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1 0 1 01 0

01 0 0

, , .
T Bp p

ef eff

T T D C C C C Dd Q
Nt Nb

k T kT T C

 




 − −
= = =

−
        (16) 

Here R , ,Rn ,d a and b , , ,M K Gr , Br , Pr, , ,Nb Nt , and are the Reynolds number, radiation 

parameter, width of the channel, amplitudes of left and right walls, Hartmann number, permeability 

parameter, thermal Grashof number, local nanoparticle Grashof number, Prandtl number, heat 

source/sink parameter, Brownian motion parameter, thermophoresis parameter, non-dimensional 

temperature and nano-particle volume fraction, respectively. 

Applying the long wavelength and low Reynolds number approximations and introducing the 

stream functionu
y


=


, eqns. (12-15) reduce to:
 

( )
2

2

2

1
0 1 ,

p
M Gr Br

x y y K y

 
   
       

= − + − + + + +    
      

        (17) 

0 ,
p
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12 
 

22

2

1
0 ,

Pr
Rn Nb Nt

y y y y

   


       
= + + + +    

        
          (19) 

2 2

2 2
0 .

Nt

y Nb y

  
= +
 

              (20)

 

Eqn.(18) implies that p is not function of y. Differentiating Eqn. (17) with respect to y, yields: 

( )
2 2 2

2

2 2 2
0 N Gr Br

y y y

 
   
   

= − + + 
   

,           (21) 

Where 
2 21

N M
K

= + . 

The volumetric flow rate in the wave frame is given by: 

2 2

1 1

( 1)

h h

h h

q ud y U dy= = −  ,                                                                                                (22) 

On integration, eqn. (22) yields:  

1 2q Q h h= + − ,                                                                                                                    (23) 

Averaging the volumetric flow rate along one time-period, we get: 

1 1

2 1

0 0

( ) ,Q dt q h h dt = = + −           (24)  

which yields: 

1q d = + + .                                                                                                        (25) 

The appropriate boundary conditions may be presented in the following form:     

, 1,
2

q

y





= = −


0 =  and 0 = at 1( ) 1 cos 2 ,y h x a x= = +       (26a) 

 

, 1,
2

q

y





= − = −


1 =  and 1 = at ( )2 ( ) cos 2y h x d b x = = − − + ,                    (26b) 

which satisfy the condition:
2 2 22 cos( ) (1 ) .a b ab d+ +  +    

Solving the Eqns. (19-20) subject to boundary condition (26), the temperature and nanoparticle 

fraction field are obtained as: 

1 2
3 4

1

( ) ,
A y A y

y A e A
A

−
 = − −              (27) 

1

5 6 7( ) .
A y

y A y A e A
−

 = − −                   (28) 
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3. PERTURBATION SOLUTION 

Although in most previous studies of fluid mechanical problems for the sake of simplicity of the 

analysis, fluid viscosity has been taken to be constant, in many real MHD pump flows the viscosity 

is a function of temperature. Keeping this in mind, in the present study temperature-dependent 

fluid viscosity has been included and simulated as a linear function of temperature. Thus, for the 

analysis, we adopt Reynolds’ model of viscosity as: 

( ) 1- 1for  =    .             (29) 

Applying Eqn. (29) to Eqn. (21), we obtain: 

( )
4 3 2 2

2

4 3 2 2
0 1 2 ,N Gr Br

y y y y y y y

      
  

       
= − − − + + + 

       
        (30) 

The case for a nanofluid with constant viscosity can be retrieved as a special case of the present 

investigation when we assume 0 = .Eqn.(30) is a highly nonlinear partial differential equation 

and it is not possible to derive exact solutions. However we may deploy a perturbation method in 

terms of  (viscosity parameter), by expanding   and F in the following forms: 

 ( )0 1 2 ,o   = + +
             

(31) 

( )0 1 2 .F F F o F= + +
             

(32) 

Inserting the above expressions into Eqn. (30) and boundary conditions Eqn. (26), the following 

systems emerge: 

3.1. For the system of order ( )0  

4 2
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          (34b) 

3.2. For the system of order ( )1  
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1 1
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 = = =


          (36a) 

1 1
1 2, 0 at .

2

q
y h

y


 = − = =


          (36b) 

3.3. Solution for system of order ( )0  

Solution of Eqn. (33) subject to boundary conditions Eq.(34a&b) can be derived as:   

12 8
0 5 6 10 11 72
( ) .A yNy Nyc y
y c c e L y L e c e

N
 −−= + + − + +           (37) 

3.4. Solution for system of order ( )1  

Using Eqn.(37) into Eqn.(35) and invoking the boundary conditions (36 a & b), we arrive at: 

( ) ( )

1 1 1

1 1

212
1 9 10 11 1 2 3 4 52

6 7 8 9

( ) A y A y A yNy Ny Ny

A N y A N yNy Ny

c y
y c c e c e L e L L e L ye L e

N

L e L ye L e L e

 − − −− −

− + − −

= + + − + + + + +

+ + + +

                  (38) 

The stream function of the nanofluid is given by the expression: 

( )0 1 2 ,o   = + +
 

( ) ( )
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1 1
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+
 
 + + + + + 

       (39)
 

Axial velocity can also be derived as: 

( ) ( )

( ) ( ) ( ) ( )
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−
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 + − + + − −
 
− + 
 
 

       (40) 

All the coefficients featured in the above closed-form solutions, are presented in the Appendix. 
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4. VALIDATION WITH MAPLE17   

The linear dimensionless two-point moving boundary value problem (BVP) i.e. eqns. (19), (20) 

and (21) with conditions (26a, 26b) are easily solved using Runge–Kutta–Merson numerical 

quadrature to yield temperature, nano-particle volume fraction and stream function. The axial 

velocity is then computed in a sub-iteration loop based on the definitionu
y


=


. The computations 

are executed in MAPLE17 software (RK45 algorithm). This approach has been extensively 

implemented recently in non-Newtonian nanofluid flows [63].The robustness and stability of this 

numerical method is therefore well established- it is highly adaptive since it adjusts the quantity 

and location of grid points during iteration and thereby constrains the local error within acceptable 

specified bounds. In the current problem, the wall boundary conditions given in Eqns. (26a, b) are 

easily accommodated. The stepping formulae although designed for nonlinear problems, are even 

more efficient for any order of linear differential equation and are summarized below [63]: 

( )0 , ,i ik f x y=                (41) 

1 0

1 1
, ,

4 4
i ik f x h y hk

 
= + + 

 
             (42) 

2 0 1

3 3 9
, ,

8 32 32
i ik f x h y k k h

  
= + + +  

  
            (43) 

3 0 1 2

12 1932 7200 7296
, ,

13 2197 2197 2197
i ik f x h y k k k h

  
= + + − +  

  
          (44) 

4 0 1 2 3

439 3860 845
, 8 ,

216 513 4104
i ik f x h y k k k k h

  
= + + − + −  

  
         (45) 

5 0 1 2 3 4

1 8 3544 1859 11
, 2 ,

2 27 2565 4101 40
i ik f x h y k k k k k h

  
= + + − + − + −  

  
        (46) 

1 0 2 3 4

25 1408 2197 1
,

216 2565 4101 5
i iy y k k k k h+

 
= + + + − 

 
          (47) 

1 0 2 3 4 5

16 6656 28561 9 2
.

135 12825 56430 50 55
i iz z k k k k k h+

 
= + + + − + 

 
         (48) 

Here 𝑦 denotes fourth-order Runge-Kutta phase and 𝑧is the fifth-order Runge-Kutta phase. An 

estimate of the error is achieved by subtracting the two values obtained. If the error exceeds a 
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specified threshold, the results can be re-calculated using a smaller step size. The approach to 

estimating the new step size is shown below: 

1
4

1 1

.
2

old
new old

i i

h
h h

z y



+ +

 
=   − 

             (49) 

A comparison of the analytical and MAPLE numerical quadrature solutions (blue dots) is 

documented in Figs. 2a-ffor pressure rise profile with variation in (a) , (b) ,M (c) ,K (d) ,Rn

(e)   and (f) Br  and also Figs. 3a-f for axial velocity distributions (axial velocity vs. transverse 

coordinate) for (a) M , (b) Rn ,  (c) Pr , (d) K , (e)  , (f)   and finally in Figs 4a-d for 

temperature and nanoparticle volume fraction profiles with variation in (a) , (b) ,Nt  (c) ,Pr (d)

.Rn Only one case is validated in each plot. Excellent correlation is achieved in all cases.  

Confidence in the present analytical solutions is therefore high. Maple quadrature is of comparable 

accuracy to many other sophisticated semi-numerical methods including homotopy analysis 

methods (HAM), Adomian decomposition methods (ADM), spectral collocation Chebyschev 

polynomial methods and Variational iterative methods (VIMs) which accurately compute series 

solution, although Maple quadrature is less algebraically rigorous and can be applied directly for 

all types of differential and integral equations, linear or nonlinear, homogeneous or 

inhomogeneous, with constant coefficients or with variable coefficients. Another important 

advantage is that the method is capable of greatly reducing the size of computation work while 

still maintaining high accuracy of the numerical solution [63]. 

5. NUMERICAL EVALUATION OF RESULTS AND DISCUSSION 

The primary aim of this investigation is to analyze the influence of temperature-dependence of the 

nanoliquid viscosity, thermal radiative flux, wafer permeability and heat source/sink effects on 

thermal flow characteristics of the solar peristaltic nanofluid magnetohydrodynamic micro-pump. 

In this regard, herein we elaborate on the impact of various pertinent hydrodynamic, magnetic, 

thermal and porous medium parameters i.e. Reynolds number viscosity parameter )( , heat 

source/sink parameter )( , Prandtl number (Pr), Hartmann number )(M , thermal radiation )(Rn , 

Permeability parameter )(K  and local nanoparticle Grashof number )(Br  at a pre-determined axial 

location along the pump channel ( 5.0=x ) on the evolution of axial velocity of the fluid )(u , 
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pressure gradient )/( dxdp , temperature distribution )( and nanoparticle volume fraction of the 

fluid )( . The distributions are depicted in Figs.2-7. Evaluation of the closed form solutions is 

conducted via the symbolic software Mathematica which is very versatile for peristaltic and 

hydromagnetic pump simulations. 
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Fig.2. Pressure rise profile with variation in (a) , (b) ,M (c) ,K (d) ,Rn (e)   and (f) Br . 
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Fig.3. Axial velocity distributions (axial velocity vs. transverse coordinate) for (a) M , (b) Rn ,  

(c) Pr , (d) K , (e)  , (f)  . 
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Figure 4 Temperature and nanoparticle volume fraction profiles with variation in (a) , (b)

,Nt  (c) ,Pr (d) .Rn  
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                                                                           (a) 

 

 

 

 

 

 

 

 

 

 

 

                                                                              (b)                                                                 

Fig.5. Stream lines at ,3.0=a ,2.0=b ,7.0Pr = ,5.0=Rn 5.0= ,5.0=Nb ,5.0=Nt ,1=M

,1.1=d ,3=Br ,2= ,2.0=K ,1,2Pr,2,4/ ==== NtGr  for (a) ,0=  (b) 1.0= . 
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                                                                              (b)                                                                 

Fig.6. Stream lines at ,3.0=a ,2.0=b ,7.0Pr = ,5.0=Rn ,0= ,5.0=Nb ,5.0=Nt ,1=M

,1.1=d ,3=Br ,2= ,2.0=K ,1,2Pr,2,4/ ==== NtGr  for (a) 0=  (b) 5.0= . 
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(b) 

 

 

Fig.7. Stream lines at ,3.0=a ,2.0=b ,7.0Pr = ,5.0=Rn ,0= ,5.0=Nb ,5.0=Nt ,25.0=

,1.1=d ,3=Br ,2= ,2.0=K ,1,2Pr,2,4/ ==== NtGr  for (a) ,0=M  (b) 1=M . 
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Figure 8. Comparison result of stream function versus transverse axis. 

 

5.1. Pumping characteristics 

The pressure rise per wavelength can be calculated by using the form

1

0

.
p

p dx
x

 
 =  

 


 

The pressure 

rise is computed numerically using the symbolic software Mathematica for the perturbation 

solutions and MAPLE17 for the Runge-Kutta-Merson numerical solutions. The pressure rise 

)( p versus mean flow rate )( for various values of , ,M ,K ,Rn   and Br is illustrated in 

Figs. 2 (a-f). Fig.2(a) portrays that the influence of Reynolds viscosity parameter on the pressure 

rise versus the mean flow rate.  One can insure that the pressure rise increases with increasing 

Reynolds viscosity parameter )(  for the pumping region ( 0, 0p    ). It is also evident that 

volumetric flow rate is elevated for Newtonian nanofluid )0( = and depressed for non-

Newtonian nanofluid i.e. for non-zero Reynolds viscosity parameter )0(  . Additionally, 

peristaltic pumping is inhibited with increasing temperature-dependence of the nanofluid 
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viscosity. This is also consistent with the simultaneous deceleration in the axial flow with greater 

nanofluid viscosity. Pressure and velocity (linked to flow rate) respond in opposite ways in 

hydrodynamics- the inverse relationship is clearly demonstrated in all the negative gradients in the 

profiles in the plot. Evidently pressure rise is minimized with the Newtonian nanofluid (least 

viscosity) and maximized with strongly non-Newtonian nanofluid (highest viscosity). The 

implication for solar pump performance is that if greater pressures are required (as opposed to flow 

acceleration), this may be achieved via increased doping of the working fluid with nano-particles.  

 

Choi [11] has highlighted the strong modification in nanofluid rheology with increased 

concentrations of nano-particles. The change in viscosity is intimately related to heat transfer 

enhancement of nanofluids in particular when buoyancy forces are present, as in the present study, 

as will be elaborated in due course. Thus viscosity variation as studied by the Reynolds model may 

provide a good insight into the improved efficiencies reported in solar energy systems doped with 

nanofluids at higher temperatures as noted by Cingarapu et al. [17], Alashkar and Gadalla [20]. 

Furthermore, since magnetic pumping is also present it is noteworthy that the present computations 

are consistent with the earlier simulations of Shahidian et al. [26] where rheological and higher 

viscosity was observed to also generate pressure difference elevation in pump operations.  In Fig. 

2(b), we examine the effect of Hartmann number ( )M  on the pressure rise verse mean flow rate.  

Clearly pressure rise diminishes with growing values of Hartmann number for the peristaltic 

pumping region ( 0, 0p    ). The Lorentz magnetic drag force i.e. -M 22/y2 in eqn. (21) 

is generated by the application of magnetic field in the Y-direction (transverse to the axial velocity 

direction i.e. the X-direction). This accelerates the flow and concurrently depletes the pressure rise 

in the solar magnetic pump channel. The profiles are all therefore linear decays i.e. with maximum 

pressure rise there is a corresponding minimal flow rate and vice versa. This concurs with the 

findings of Lim and Choi [21] for the similar scenario of a two-dimensional channel with side-

walled electrodes, although in our study wall deformability is present i.e. the channel walls 

propagate peristaltic waves (we have set the amplitudes of left and right walls i.e. a, b as 0.3 and 

0.2 respectively and also the phase difference is prescribed as /4). Similar observations have also 

been reported by Das et al. [22], Ho [23] and Leboucher et al. [24]. These studies have also shown 

in agreement with our computations that pressure rise in magnetohydrodynamic pumping is lowest 

with strong magnetic field (M = 0.5) and highest with absence of magnetic field i.e. electrically-
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non-conducting nanofluid (M = 0). These trends are sustained at all values of volumetric flow rate 

(). Fig. 2(c) depicts the influence of permeability parameter ( K ) on the pressure rise versus mean 

flow rate distributions.  From this figure, we discern that an increase in the permeability parameter 

initially depresses the pressure difference; however, with subsequent increase in volumetric flow 

rate the pattern is strongly reversed with a significant upsurge in pressure difference during 

peristaltic pumping. Permeability is a key characteristic of porous media. This parameter 

characterizes the hydrauic transmissivity of the porous medium. It does not however relate to the 

porosity of the medium which is connected to the relative volume of voids to the volume of solids. 

Permeability features in the linear Darcian impedance term in the reduced momentum equation 

(21), namely the term –(1/K) 2/y2 and this is associated with the retarding effect of the porous 

solar wafer fibers. Darcy’s law is generally valid for Reynolds numbers less than 10 i.e. it is 

applicable for viscous-dominated pumping dynamics as opposed to inertially-dominated transport 

(this requires a Forchheimer-extended Darcy model to simulate second or higher order drag effects 

and is presently being considered as an extension to the current work to extend the operational 

range to higher Reynolds numbers). With increasing permeability, the regime solid fibers 

progressively decrease. This results in effective enhancement in pressure differences across the 

channel length i.e. a boost in p . This behavior is sustained for the majority of positive volumetric 

flow rates. The initial depletion in pressure rise is more associated with the entry length 

hydrodynamics and negative flow rates (back flow) and a threshold volumetric flow rate is 

necessary to enforce the dominant effect of permeability as elucidated in detail by Wang et al. [25] 

and also earlier by Nimr and Alkam [38] for different solar cell and pump configurations i.e. the 

permeability effect is independent of conduit geometry and is controlled by the nature of the wafer 

material. The presence of a low permeability porous medium (solar wafer) i.e. K=0.1 generally 

damps the pressure difference generated in the pump whereas higher permeability i.e. K=0.3 

induces the opposite effect. It is also pertinent to note that the permeabilities studied are high i.e. 

the medium is sparsely packed which obviates the possibility of compressibility effects, 

consolidation effects or compaction phenomena, as further highlighted by Ren et al. [36].  Fig. 

2(d) presents the impact of thermal radiation flux on pressure rise versus mean flow rate profiles. 

It is remarked that there is a strong presence of positive pumping ( 0 and 0p ) when 0=Rn  

as compared with 0Rn . Thermal radiation is the most significant contribution from solar heat 
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loading [1]. The parameter Rn arises in the augmented energy equation (19) i.e. in the term Rn 

2/y2.  

Rosseland’s model assumes radiative equilibrium and that the nanofluid has gray properties which 

are popular in solar pump designs. Furthermore, Rosseland’s model assumes that the intensity is 

the black-body intensity at the nanofluid temperature and since it is generally confined to 

incompressible flows it is particularly appropriate for low speed transport characteristic of porous 

media hydromagnetic pumping. The parameter Rn embodies the relative contribution of 

conduction heat transfer to thermal radiation transfer. It is variously known in thermal physics as 

the Stark number and Rosseland-Boltzmann number [1]. Large Rn values imply small radiation 

contribution and small Rn values correspond to high radiative flux. As Rn →0, thermal radiation 

flux contribution vanishes and the dominant mode of heat transfer is thermal conduction. Hence 

with smaller Rn values, thermal radiation is stronger than thermal conduction (the contribution is 

only equal for both modes of heat transfer when Rn = 1). Thermal radiation supplements the fluid 

thermal conductivity via the energy equation and serves to increase temperatures, simultaneously 

reducing momentum transfer which serves to decrease pressure difference at positive flow rates 

(the converse effect is induced at negative flow rates). The influence of radiative flux on velocity, 

temperature and nano-particle volume fraction distributions is described in due course. The 

variation in pressure rise for different values of heat source/sink parameter ( )  is illustrated in 

Fig. 2(e). It is evident that pressure rise is assisted with an increase in heat source (generation) 

parameter in all the peristaltic pumping regions. The maximum peristaltic pumping is achieved 

when 0  as compared with the least efficient pumping attained with 0= . Generally, the 

presence of heat generation (mimicking for example thermal hot spot zones in solar pumps) 

strongly elevates temperatures (see fig 4a). This also assists in momentum development and 

manifests in pressure difference depletion. The influence is maintained at both negative and 

positive flow rates i.e. whether correct pumping or reverse flow is present. The observations are 

consistent with the findings of Tien and Vafai [39]. The heat source effect is also particularly 

relevant to ground-heat source solar pumps [33]. It works effectively to energize the pumping fluid 

and aids in increasing thermal pumping efficiency. Figs. 2(f) display the influence of the species 

buoyancy force (simulated via local nanoparticle i.e. solutal Grashof number Br ) on the pressure 

rise )( p versus mean flow rate )( . Br arises in the species buoyancy term in the reduced 

momentum eqn. (21) i.e. Br and this term couples the momentum field with the nano-particle 
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species concentration field described by eqn. (20). It represents the relative magnitude of the 

species buoyancy force to the viscous hydrodynamic force in the channel. When Br →0 species 

(solutal) buoyancy effects vanish. Thermal Grashof number (Gr) is prescribed a value of 2 

implying the thermal buoyancy force is double the magnitude of the viscous hydrodynamic force. 

Pressure rise is considerably elevated with increasing solutal Grashof number Br . This applies at 

both negative and positive flow rates and in the pumping region (p > 0), the augmented pumping 

region (p < 0), and the free pumping region (p = 0). Pressure rise is clearly suppressed with 

absence of species buoyancy forces indicating that the presence of nano-particles is beneficial to 

solar peristaltic pump performance. Nano-particle solutal buoyancy is shown therefore to be a 

critical characteristic which modifies the pump hydrodynamic regime. It is also judicious to 

mention that positive values of Br correspond to nano-particle transfer from the channel walls by 

natural species convection currents which implies a reduction in wall mass transfer rate (channel 

wall nano-particle concentration gradient). 

 

5.2. Axial Velocity distribution 

The effects of the principal flow parameters i.e. Hartmann magnetic number, thermal conduction-

radiation parameter (Stark number), Prandtl number, permeability parameter, heat source 

parameter and Reynolds viscosity parameter on axial velocity distribution )( 10 uuu += are 

visualized in Fig. 3 (a-f) at the axial location 5.0=x . It is observed that the axial velocity 

distributions exhibit a parabolic nature in which the maximum/minimum axial velocity appears at 

the core zone of the channel. However, there is a slight dis-symmetry which is a manifestation of 

the different amplitudes of left and right walls i.e. a, b as 0.3 and 0.2 respectively i.e. the profiles 

are either skewed to the left or to the right wall. The influence of Hartmann number )(M  on axial 

velocity distribution versus transverse coordinate is plotted in Fig.3 (a).  It is noticed that the 

performance of axial velocity near the channel walls and at the core part of the channel 

demonstrates a reflective symmetry approximately about the channel centre line (y = 0). Axial 

velocity enhances with an increase in Hartmann number near the lower deformable channel wall. 

However, it reduces in the core region of the porous medium channel and all profiles merge 

towards the upper wall i.e. there is invariance in the magnetic field effect near the upper wall. The 

presence of magnetic field in the electrically-conducting magnetized nanofluid, as explained 

earlier, mobilizes the Lorentz magnetic force. This acts to resist the channel flow in magnetic 
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generator operations but accelerates the flow in magnetic pumping operations (as considered here). 

Fig.3 (b) shows the effect of thermal radiation on axial velocity distribution. It is noticed that 

velocity is depressed in the lower channel half space i.e.  2499.0,07.1 −−y  whereas it is 

enhanced in the upper channel half space, with increasing Rn  i.e. with decreasing thermal radiative 

flux.  Energization of the nanofluid with stronger solar radiative flux therefore decelerates the 

pumping flow. The Prandtl number effect on the axial velocity distribution is plotted in Fig.3(c). 

It is apparent that the axial velocity is raised with an elevation in Prandtl number over the lower 

channel half-space range  2386.0,07.1 −−y ; however, in the upper channel half space range 

velocity is strongly decreased with increasing Prandtl number.  The no-slip condition requires that 

the flow velocity at the surface of the channel walls is zero and that the nanofluid temperature is 

equal to the surface temperature. Prandtl number defines the relative rate of momentum diffusion 

to energy (heat) diffusion in the regime. For Prandtl number of unity, both heat and momentum 

diffuse at the same rate. In the entry length zone of the magnetohydrodynamic solar pump channel, 

for Prandtl number below unity, the thermal boundary layer is thicker than the velocity boundary 

layer. The flow is also accelerated with increasing Prandtl number in the lower channel half space 

since this is closer to the entry length zone whereas the converse effect is induced in the upper 

channel half space. As elaborated in Shahidian et al. [26] it is unfeasible to achieve a consistent 

acceleration or deceleration throughout the entire magnetohydrodynamic pump with purely an 

increase in Prandtl number. Fig.3 (d) displays the axial velocity distribution for three different 

value of the permeability parameter 2.0,1.0( =K  and )1 . It is viewed that the axial velocity is 

suppressed in the region ]2846.0,07.1[ −−y , whereas it is magnified in the region

]64.0,2846.0[−y . The switch-over for this behavior is located to the left of the channel centre 

line. Maximum axial flow is generated mid-way within the upper channel half space with 

maximum permeability i.e. minimal Darcian retarding force. Increasing permeability parameter 

results in depletion in resistance of the solid fibers to the percolating nanofluid. This accelerates 

the nanofluid pumping and increases the shearing effect at the channel walls leading to greater 

shearing stresses at these boundaries. As K→∞ the porous matrix disappears and the regime 

becomes pure nanofluid. In the opposite limit as K → 0, the medium permeability vanishes and 

the pump is completely filled with solid material preventing pumping operations. Many studies 

including Vasiliev et al. [37] and Ramesh [54] have confirmed that optimum solar and peristaltic 
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pump performance and flow control is attainable with high but not excessive permeabilities.  Fig. 

3 (e) shows the influence of the three different values of heat source parameter 5.0,0( = and )1  

on the axial velocity distribution for the fixed values of other parameters.  It is evident that with 

increasing heat source/sink parameter,  , the axial velocity field is depleted in the lower channel 

half space  ,4046.0,07.1 −−y  where as it is enhanced in the upper channel half space in the 

range  64.0,4046.0−−y . The influence of the Reynolds viscosity )(  parameter on u is 

presented in Fig. 3(f).  Axial velocity distribution (u) reduces with the increase in Reynolds 

viscosity effect )( in the lower channel half space (here the boost in viscosity inhibits strongly the 

entry flow in the solar pump channel duct) whereas the contrary behavior is computed in the upper 

channel half space (right hand side of the channel geometry). This trend is consistent with several 

studies on nanofluid non-Newtonian viscosity behavior, including Choi [11], and Shahidian et al. 

[26, 28]. The latter investigation has confirmed experimentally that viscosity abnormally increases 

when an increase in volume concentration of nano-particles is present and this leads to deceleration 

in flows earlier in micro-channels with subsequent acceleration. 

 

5.3 Temperature and Nanoparticle volume fraction distributions 

In Figs.4 (a-d) the evolution of nanofluid temperature distribution )(  and nanoparticle volume 

fraction )( with respectively different values of heat source parameter (β), thermophoretic 

nanoscale parameter (Nt), Prandtl number (Pr) and conduction-radiation Stark number (Rn). A 

significant feature of the temperature distributions is the concave upward profile whereas a 

downward concave topology is exhibited by the nanoparticle volume fraction distributions. The 

heat source parameter influences on temperature and nanoparticle fraction distributions are 

presented in Fig. 4(a). It is evident that the temperature increases with enhancing the heat source 

parameter effects (since thermal energy is imparted to the nanofluid with heat source in the pump) 

whereas the nanoparticle volume fraction (i.e. nano-particle concentration magnitude) is clearly 

reduced with increasing the heat source parameter.  The implication is that the heat generation 

effect only assists thermal distribution homogeneity in the channel whereas it is counter-productive 

for the diffusion of nano-particles. The temperature and nanoparticle volume fraction distributions 

for the various values of thermophoresis parameter )(Nt  are presented in Fig.4 (b). Inspection of 

the graph reveals that the temperature distribution increases with an increase in the thermophoresis 
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parameter. It also noticed from this figure that the nanoparticle volume fraction reduces with an 

increase in the thermophoresis parameter. Different nanoparticles types transport differently under 

the thermophoretic force which is associated with migration of nano-particles from hot to cold 

surfaces. This is of great utility in solar magnetic nanofluid pumps [26-28] since via selection of 

specific nano-particles, customized performance may be achieved. It is further of interest to 

consider the mechanism of thermal enhancement in nanofluids under solar radiative conditions. It 

is also noted that the Brownian motion parameter (Nb) is fixed at 0.6. Since Brownian dynamics 

is also present, the nanofluid molecules are organized into an ordered layer at the nano-particle 

solid-liquid interface which results in thermal conductivity in that ordered layer being lower than 

thermal conductivity of the solid particles but larger than that of the base fluid.  As earlier 

suggested by Buongiorno [13], this interfacial layer is a solid-like structure, and it is referred to as 

nanolayer. This hypothetical nanometre size layer is considered as a thermal layer between the 

solid particle surface and the base fluid and to the current state of knowledge of nanofluid 

mechanics, this nanolayer is one of the most probable mechanisms producing the popular thermal 

conductivity enhancement. Infact the existence of even a thin nanolayer at relatively high 

Brownian motion parameter values still may contribute markedly to the elevation in thermal 

conductivity of nanofluids, mainly when the particle diameter is smaller than 10 nm. In 

conjunction with thermophoresis, the extra energy transport of nanoparticles is due to result of 

Brownian motion. The relative motion between nanoparticles and base fluid molecules generates 

micro-convection which when summated over the entire body of the nanofluid results in an 

effective boost in heat transfer i.e. temperatures. The present theoretical results confirm these 

observations. However, it is sincerely hoped that experimental solar engineering researchers will 

be motivated to verify actual performance in both laboratory models and scale-up processes to 

actual implementation of the current solar magnetic biomimetic nanofluid pump configuration. 

The influences of four different value of Prandtl number (i.e., Pr = 1, 2, 3 and 4) on temperature 

and nanoparticle volume fraction are computed in Figs. 4(c). In is found that elevation in Prandtl 

number leads to a strong enhancement in fluid temperature whereas it depletes the nanoparticle 

volume fraction. Generally, higher Pr nanofluids will have relatively low thermal conductivities 

which will suppress thermal conduction heat transfer from the wall and reduce thermal boundary 

layer thickness, resulting in higher nanofluid temperatures throughout the channel space. Smaller 

values of Pr are equivalent to increasing thermal conductivities, and therefore heat is able to diffuse 
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away from the deformable pump walls more rapidly than for higher values of Pr. Hence in the case 

of smaller Pr the boundary layer is thicker and the rate of heat transfer to the wall is reduced. This 

has important implications in practical solar pump operations. In Fig. 4(d), we observe that with 

increasing thermal radiation (lower Rn values) there is a substantial elevation in fluid temperature. 

It is also noticed that the thermal radiation effect suppresses nanoparticle volume fraction 

magnitudes i.e. counter-acts diffusion of nano-particles, which has been confirmed in many 

experimental investigations including Said et al. [40] and Du and Tang [41].  

 

5.4 Trapping phenomena 

A unique characteristic of the present solar pump design is the peristaltic wave feature achieved 

with distensible channel walls. This generates an intriguing phenomenon known as trapping, the 

formulation of an inside circulating bolus of nanofluid which migrates together with the wave at a 

fixed mean flow rate. In axisymmetric peristaltic flows, the positive motion displacing fluid 

forward manifests in a torus shape. The bolus is trapped by the wave and therefore propagates 

forward with the same speed as that of the wave. However, in the current analysis, non-symmetric 

peristaltic pumping is studied owing to the difference in amplitudes of left and right walls i.e. a, b 

as 0.3 and 0.2 respectively. However, a single phase difference of /4 between the left and right 

wall peristaltic waves is assumed. Although asymmetric peristaltic flows may generate reflux (or 

retrograde flux), that is, reversed motion of fluid in the opposite direction opposite to the net flow 

(i.e. in the negative x-direction) this has not been observed in the current work. The streamlines 

for different Reynolds viscosity parameter )( , heat source/sink parameter )(  and Hartmann 

magnetic number )(M  for fixed values of other parameters are illustrated in Figs.5-7. Fig. 5(a-b) 

indicate that with increasing Reynolds number viscosity )(  the size of trapped bolus increases in 

amplitude in the right part (upper half space) of the channel and the reverse situation is generated 

in the left part (lower half space) of the channel wall. The impact of two different values for heat 

source parameter 0( = and )5.0=  on trapping is shown in Fig. 6(a-b). One can notice that the 

size of the bolus increases in the vicinity of the right part of the channel with increasing heat source 

parameter.  Fig. 7(a-b) clearly reveals that the size of tapped bolus increases with magnetic field 

effect i.e. as Hartmann number increases from the non-magnetic case ( )0=M  to the strongly 

magnetic case (M=1) trapping is more potent in the channel regime.  
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5.5 Further Validation with Published Literature  

Fig.8 is explained to authenticate the results of proposed model without buoyance forces 

( )0Br Gr= = , Permeability parameter ( )K  and Reynolds number viscosity parameter )(  with 

existing results Srinivas and Kothandapani [64] in the asymmetric channel. It is perceived that the 

results of proposed model is significantly close to that described by Srinivas and Kothandapani 

[64] in the entire width of the channel.  

 

6. CONCLUDING REMARKS 

A theoretical study has been presented to simulate the influence of temperature-dependent 

viscosity, thermal radiation flux, nanoscale phenomena, heat generation, solutal (nano-particle) 

buoyancy force and magnetic field on the two-dimensional flow, heat and species diffusion in a 

solar biomimetic (peristaltic) magnetohydrodynamic nanofluid pump containing a homogenous, 

isotropic porous medium. A modified Buongiorno [13] nanofluid  model is deployed which 

emphasizes thermophoretic body force and Brownian dynamic effects. To simulate solar thermal 

loading conditions the Rosseland radiative diffusion flux model is implemented and heat 

generation is included.  Multiple amplitudes and phases are considered for the deformable channel 

walls. The moving boundary value problem is non-dimensionalised and perturbation solutions are 

derived for axial velocity, temperature and nanoparticle volume fraction. Validation is conducted 

with Maple numerical quadrature and volumetric flow rate, pressure difference and streamline 

distributions are also computed. The impact of Reynolds number viscosity )( , heat source/sink 

parameter )( , Prandtl number (Pr), Hartmann number )(M , thermal radiation )(Rn , permeability 

parameter )(K  and local nanoparticle Grashof number )(Br on thermal and flow characteristics is 

visualized. The important findings in the current study may be summarized as follows: 

➢ The free pumping flux for a fluid with variable viscosity is greater than that for a fluid 

with constant viscosity.  

➢ Greater peristaltic work has to be expended versus a greater pressure for a fluid with 

constant viscosity when compared with that fluid of variable viscosity. 

➢ Pressure rise increases as the Reynolds viscosity of nanofluid and the heat generation 

effects are increased.  
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➢ Fluid axial velocity distribution is only enhanced with Reynolds viscosity increasing, 

in the inner core zone of pump channel, owing to the lesser impact of shear stress (wall 

friction) in the inner core.  

➢ The nanoparticle fraction distribution exhibits the reverse behavior as compared with 

the temperature distribution under the influence of thermophoresis, Reynolds viscosity, 

Prandtl number and magnetohydrodynamic Hartmann number.  

➢ With increasing Reynolds viscosity, the size of trapped bolus decreases in amplitude in 

the left section of the channel whereas the opposite behavior is observed in the right 

channel half space.  

➢ Increasing radiation solar flux significantly heats the nanofluid whereas it inhibits 

nano-particle diffusion in the regime. 

➢ Increasing magnetic Hartmann number serves to reduce pressure differences in the 

pumping channel with a corresponding acceleration in the axial flow.  

➢ Excellent accuracy, stability and convergence is achieved with both the perturbation 

solutions and MAPLE17 computations. 

➢ Pressure difference is strongly boosted with increasing solutal Grashof number at both 

negative and positive flow rates and in all three solar peristaltic pumping regimes i.e. 

the pumping region (p > 0), the augmented pumping region (p < 0), and the free 

pumping region (p = 0). 

➢ Solar thermal radiation flux energizes the nanofluid in the pump and elevates 

temperatures via the augmentation of the nanofluid thermal conductivity; however, 

increasing radiation flux acts to reduce pressure difference at positive flow rates (the 

reverse trend is computed at negative flow rates). 

➢ The presence of a low permeability porous medium (solar wafer) is observed to 

strongly decelerate axial flow and suppress pressure difference generated in the pump 

whereas higher permeability manifests in flow acceleration and pressure difference 

elevation. 

➢ At all values of Pressure rise in magnetohydrodynamic pumping is stifled with strong 

magnetic field whereas it is enhanced for electrically-non-conducting nanofluids (i.e. 

when the external magnetic field in the pump circuit is switched off).   
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The present study constitutes a first attempt to simulate a novel hybrid solar magnetohydrodynamic 

nanofluid micro-pump for implementation in astronautics, biomedical systems and 

environmentally-sustainable energy generation. Promising results have been obtained. However, 

the current work has been confined to two-dimensional optically-dense nanofluids. Future work 

will consider three-dimensional numerical simulations with ANSYS CFD software and 

furthermore will explicitly explore the impact of more complex thermal radiation effects. In this 

regard, optical thickness and absorption coefficient are key aspects to study since they quantify 

how much a given medium retards the passage of thermal radiation. Radiative intensity falls by an 

exponential factor when optical thickness is unity. Physically optical thickness will be a function 

of the absorption coefficient, medium density and propagation distance in actual solar pumps.  It 

may be advantageous to explore the P1 radiative flux model which although more computationally 

expensive predicts the actual influence of solar radiative flux more accurately than the Rosseland 

model and also is applicable to non-gray nanofluids although it may slightly over-predict radiative 

fluxes from localized heat sources or sinks. Non-Darcy porous media effects are also being 

considered in order to extend the operational Reynolds number range for the current solar pump 

to higher values encroaching into the inertially-dominant range. Finally, supplementary 

electromagnetic phenomena may also be examined in refinements of the present solar magnetic 

nanofluid peristaltic pump model, including Hall currents, Maxwell displacement currents, 

magnetic induction, Joule heating and ion slip. 
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