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Abstract

Nanofluids are becoming increasingly popular in novel hematological treatments and also advanced nanoscale
biomedical devices. Motivated by recent developments in this area, a theoretical and numerical study is described for
unsteady pulsatile flow, heat and mass transport through a tapered stenosed artery in the presence of nanoparticles.
An appropriate geometric expression is employed to simulate the overlapping stenosed arterial segment. The Sisko
non-Newtonian model is employed for hemodynamic rheology. Buongiorno’s formulation is employed to model
nanoscale effects. The two-dimensional non-linear, coupled equations are simplified for the case of mild stenosis. An
explicit forward time central space (FTCS) finite difference scheme is employed to obtain a numerical solution of
these equations. Validation of the computations is achieved with another numerical method, namely the variational
finite element method (FEM). The effects of various emerging rheological, nanoscale and thermofluid parameters on
flow and heat/mass characteristics of blood are shown via several plots and discussed in detail. The circulating regions
inside the flow field are also investigated through instantaneous patterns of streamlines. The work is relevant to nano-
pharmacological transport phenomena, a new and exciting area of modern medical fluid dynamics which integrates
coupled diffusion, viscous flow and nanoscale drug delivery mechanisms.

Keywords: Pharmacodynamic Simulation: Nanoparticles; Stenosis Hemodynamics; Impedance; Heat and mass
transfer; Sisko hon-Newtonian fluid; FTCS numerical method; Finite Element Method.
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1. INTRODUCTION

The analysis of blood flow through diseased arteries is an important area of bioengineering
research which has attracted increasing attention in recent years with developments in
computational tools and improved clinical data for mathematical models. The most common
arterial ailment is atherosclerosis, in which plaque builds up inside the arterial wall. The narrowing
of arterial lumen caused by such plaque (which reduces the space of lumen) is usually called
stenosis. Essentially a stenosis is a condition where an artery wall thickens as a result of fatty
materials such as cholesterol. It is quite apparent that development of stenosis in an artery results
in the reduction of the blood flow rate or ischemia. In the coronary artery, ischemia may cause
myocardial infarction while the same process in an artery to the brain can lead to a stroke.
Hemodynamic studies reveal that the development of plaques in vessels causes sporadic blood
flow rate, boundary layer detachment and high arterial wall shear stress. An excellent review of
studies up to the late 1990s has been given by Ku (1997) in which turbulence, energy losses and
other aspects are covered. Moreover, the modified hemodynamics in the neighborhood of a gentle
stenosis may result in the formation of another stenosis. The combination of two stenosis to form
an overlapped stenosed arterial segment can increase vulnerability to ruptures in contrast to a single
stenotic arterial segment because of increased wall shear stress and strong recirculating zones.
Numerous, theoretical studies, based on the principles of fluid dynamics, are available in the
medical engineering literature which address blood flow through overlapping stenosis. Excellent
reviews of recent progress in general cardio-vascular applications and specific cerebral
applications, respectively, have been provided by Sforza et al. (2009), Duraiswamy et al. (2007)
respectively. Chakravarty and Mandal (1994) studied blood flow through an overlapping arterial
stenosis, observing that flow velocity diminishes downstream from its value at the onset of the

stenosis and further increases upstream towards the overlapping region. Many experimental,



theoretical and numerical studies of specific aspects stenotic flows have also been reported. Pinto
et al. (2012) used ANSYS FLUENT computational finite volume software to investigate the
hemodynamics of a bifurcating channel with stenosis, as a simulation of the left coronary artery.
Both a moderate stenosis (65% of occlusion) and a severe stenosis (90% of occlusion) were
considered and it was demonstrated that in the severe case, higher static pressure drop is achieved
with a larger deviation between mass flow rates in both branches of the bifurcation accompanied
with small recirculation zones downstream of the stenosis region. Karri and Vlachos (2010)
measured the influence of phase angle between pressure and flow waveforms for stenosed
compliant vessels in coronary and peripheral flows using time resolved digital particle image
velocimetry, and provided data for Reynolds numbers of 250, 350, and 450 and corresponding
Womersley parameters of 2.7, 3.2, and 3.7. They also determined wall-shear stresses (WSSs),
oscillatory shear index (OSI), and recirculation lengths for different stenosed cases. Further studies
have been reported in Yap et al. (2010); Boyd et al. (2005); Qiao and Zhang (2014); Chakravarty
and Mandal (2000); Maleki et al. (2014); Riahi et al. (2011); Haghighi et al. (2015); Mekheimer
and Elkot (2012); Hung and Tsai (1996).

The above studies while categorically establishing the great sensitivity of hemodynamic
arterial flows to stenotic geometry, were however all confined to Newtonian (Navier-Stokes
viscous) flow models which are generally valid only for larger vessels. For decades however, it
has been firmly established that blood comprises a sophisticated composite suspension of proteins,
lipoproteins, ions, white and red blood cells suspended in plasma (water). Erythrocytes alone
constitute 40% of blood by volume and owing to the small semi-solid and toroidal geometry of
these cells, they result in a non-trivial elevation in blood viscosity of blood — this contributes to

the fact that normal human blood is approximately four times more viscous than water by Merrill



et al. (1963). Furthermore, this viscosity varies in the human circulation system and assumes very
strong rheological properties in the microcirculatory system as predicted theoretically and
confirmed experimentally by Chien et al. (1984). Moreover, strongly non-Newtonian character-
istics are observed in small branches and capillary sections of the body wherein cell-free skimming
leads to a decrease in viscosity. Hemo-rheology of blood is in all these cases significant, largely
due to the shear-dependent viscous properties caused by the non-homogeneous nature of blood at
the micro scale. It is therefore essential to modify Newtonian flow models to non-Newtonian
models to simulate correctly the dynamics of blood flow in smaller vessels. This has stimulated
significant interest in transferring rheological theories developed in chemical engineering to
hemodynamics, in particular in the past two decades. Many different constitutive models have
been explored with varying degrees of success. In this regard Ikbal et al. (2012) applied both a
power-law and a viscoelastic Oldroyd-B model to analyse hemodynamics, Ramana Reddy and
Srikanth (2015) addressed slip flow of blood through a catheterized overlapping artery using
Eringen’s micropolar model and the Carreau rheological model was implemented by Ali et al.
(2015) to investigate the pulsatile flow of blood in a catheterized artery for the case of a mild
stenosis. Numerous other models and computational techniques have been implemented in stenotic
fluid dynamics and the reader is referred to Chakravarty and Datta (1989); Sankar and Lee (2009);
Shupti et al. (2015); Razavi et al. (2011); Shaw et al. (2009); Cho and Kensey (1991); Amorn-
samankul et al. (2006); Jeong and Rhee (2009); Zaman et al. (2015).

In the above investigations, generally only hydrodynamics has been considered. Heat and
mass transfer, which are also significant features of real blood flows have been ignored. Thus far
very few attempts have been made to investigate the collective flow, heat and mass transfer in

pulsatile transport in overlapping stenotic arteries. In both non-stenosed and stenosed blood flows,



the significance of both mass transfer by Tarbell (2003) and heat transfer by Chato (1980) is well-
established. For example, Tarbell (2003) has identified that interaction of fluid mechanics and
mass transfer is fundamental to many aspects of arterial transport and has highlighted four mass
transport mechanisms which may contribute to localized atherosclerosis, namely blood phase-
controlled hypoxia, leaky endothelial junctions, transient intercellular junction remodeling, and
convective clearance of the subendothelial intima and media. The transport of oxygen as a species
in hemodynamic mass transfer is fundamental to health. Furthermore, other bio-chemicals and
macromolecules such as plasma proteins and lipoproteins which are manufactured within the blood
vessel wall are re-located via Fickian mass diffusion. Mass transfer is therefore integral to a proper
understanding of circulatory hemodynamics. Chato (1980) has elaborated on the heat-conducting
nature of blood which is essential in transporting thermal energy around the circulation system and
explains the “warm feeling” accompanying consumption of food where heat is given off as a
byproduct in the body. Several researchers have investigated computationally the rheological
blood flow and/or heat/mass transfer problem. Bhargava et al. (2007) used variational finite
elements, implicit finite differences and a non-Darcy drag force model to simulate biomagnetic
hemodynamics and species diffusion as a model of drug delivery (pharmaco-dynamics) in impeded
vessels, evaluating in detail the effects of Schmidt number on the transport phenomena. Zhang et
al. (2008) utilized a sudden tubular expansion to simulate arterial stenosis and reported both
theoretical and laboratory-based results for the effects of mass transfer from the arterial wall to
flowing blood, observing that rate of mass transfer is much greater in zones of disturbed flow with
a local maximum around the reattachment point where the wall shear rate is zero. Riahi and Garcia,
(2013) considered coupled fluid dynamics and heat diffusion in stenosed arteries for dissipative

flow and computed blood plasma and red cell velocities, blood pressure force, blood temperature



and the heat flux on the artery at different axial locations of the stenosis. Further studies of heat
and/or mass transfer in stenotic flows include Sarifuddin et al. (2009) who considered non-
Newtonian properties. Wang (2008) who studied thermal convection in blood flow in narrow
vessels (30-1000 mum) with a two-fluid model, Akbar (2014) who employed a Carreau rheological
model for coupled heat and mass transfer in tapered stenotic arterial flow and Bég et al. (2008)
who analysed biomagnetic microstructural thermal convection in hemodynamic in capillaries
containing porous media using a finite element model.

In recent years another significant development in medical engineering has been the
application of nanofluids. Nanofluids were pioneered by Choi (1995) initially for thermal
enhancement in the transport industries (aerospace, automotive) and energy sectors. They
comprise base fluids containing nanoparticles which are nanometer-sized particles. The
nanoparticles are normally fabricated from metals, oxides, carbides, or carbon nanotubes owing to
high thermal conductivities associated with these materials. Normally the conventional base
liquids are water, ethylene glycol and oil. Nanofluids achieve demonstrably higher thermal
conductivities compared with base liquids alone and significantly enhance heat exchange rate in
the base fluid. In a medical engineering context, nanoparticles have been found to achieve
exceptional performance in enhancing thermal and mass diffusion properties of for example drugs
injected into the blood stream. An excellent perspective of diverse areas of nanofluid deployment
in the treatment of neural, pharmacokinetic, diabetic, cancer and other disorders has been recently
presented by Boston Scientific corporation, USA Patent, (2007). Harris and Graffagnini (2007)
have also identified new potential applications for nanoparticles in for example nanoparticle blood
diagnostic systems, asthma sensors, carbon nanotubes in catheters and stents and anti-bacterial

treatment for wounds. In neuro-pharmacological hemodynamics, it has been clinically verified that



nanoparticles can easily penetrate the blood brain barrier (BBB) facilitating the introduction of
therapeutic agents into the brain by Spuch et al. (2012). Fullstone et al. (2015) have also recently
described the exceptional characteristics of nanoparticles (size, shape and surface chemistry) in
assisting effective delivery of drugs within cells or tissue (achieved via modulation of immune
system interactions, blood clearance profile and interaction with target cells). They have further
shown that erythrocytes aid in effective nanoparticle distribution within capillaries. Further
investigations endorsing the promise of nanoparticles in hemodynamic diseases include Owens
and Peppas (2006); Yoo et al. (2010) the latter with regard to nano-engineering particle morph-
ology and hitchhiking on red blood cells. A number of mathematical fluid dynamic studies have
also explored the influence of nanoparticles on transport phenomena in medical engineering
including Tripathi and Bég (2014) who examined peristaltic nanofluid drug delivery systems,
Nadeem and ljaz (2015) who studied nanofluid transport in stenosed blood flow and Akbar et al.
(2014) who analyzed nano-particle diffusion in tapered stenotic arteries with wall mass flux.
Further investigations of nano-particle dynamics in hematological systems include Tan et al.
(2012) and Gentile et al. (2008) who considered nanoparticle mass transfer in intra-vascular rheo-
dynamic Casson blood flow with Taylor-Aris dispersion theory.

The present study is devoted to understanding the effects of nanoparticle diffusion on
characteristics of blood through overlapping stenosed artery. The Sisko rheological model is
employed to simulate blood flow by Sisko (1958) and the Buongiorno model Buongiorno (2006)
for nanofluid transport. The Buongiorno formulation, which emphasizes Brownian motion and
thermophoresis effects, has been successfully deployed in studies as diverse as peristaltic pumping
by Bég and Tripathi (2012) and microbial fuel cell bioconvection exploiting micro-organism

propulsion by Bég et al. (2015). The model is aimed at elucidating the interactional effects of



nanoparticles and coupled heat, mass and momentum transfer in rheological stenotic blood flow.
Representative Reynolds numbers range from 1 (creeping viscous-dominated flow) in small
arterioles to approximately 4000 in the largest artery, the aorta. Owing to the focus on smaller
vessels, laminar flow is considered for which turbulence effects may be neglected. Both finite
difference and finite element solutions for the derived nonlinear boundary value problem are
presented, achieving very good agreement. The present study is to the authors’ knowledge the first
comprehensive computational investigation of simultaneous nano-rheological flow, heat and mass

transfer in overlapping stenotic hemodynamics.

2. GEOMETRIC STENOSIS MODEL

Let us consider viscous incompressible rheological blood flow through a tapered overlapping
stenotic artery in the presence of nanoparticles. Both heat and mass transfer occur simultaneously
and therefore the blood flow is assumed to be heat-conducting and species diffusivity of nano-
particles is distinct from the mass diffusivity of the blood. A cylindrical coordinate system is

utilized i.e. (r, 6, z),where r, z are the radial and axial components respectively. The mathematical

equation for the geometry of the overlapping stenosed artery is represented following Ismail et al.

(2007) as:

. 64 (11 47 1 3
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(f*z + a), otherwise.

1)

In the above expression d represents the length of non-stenotic arterial region, a is radius of normal
artery, |, the length of stenotic region and & (= tan ¢) the parameter controlling the convergence

or divergence of the post-stenotic region. The geometry of a non-tapered artery is shown in Fig. 1

(). The parameter 7 is defined as in Ismail et al. (2007):
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in which 6~ denote the critical height of the stenosis appearing at two specific locations i.e.,
z=d+%,and z=d+61|°. (3)
25 50

2.1 Mathematical Rheological Nanoparticle Transport Model
Assuming azimuthal symmetry, the flow of blood through the stenosed arterial segment can be
treated as unsteady and two-dimensional. Therefore, the velocity, temperature and concentration

fields are defined as:

V=[u(r,zt),0w(r,zt)],
T=T(r,zt), )
C=C(r,z,t),

where u and w are the velocity components along the radial and axial directions, respectively.
The vessel walls are assumed isothermal and thermal dispersion and viscous heating effects are
negated. In view of (4), the continuity, momentum, energy and nanoparticle conservation
equations may be written by amalgamating the Sisko hemodynamic model of Mekheimer and El
Kot (2012) and the Buongiorno nanofluid model by Buongiorno (2006) as follows:
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In the above equations , is the fluid density, ¢, is the specific heat, «, is the coefficient of
thermal expansion, g is the acceleration due to gravity, k is the thermal conductivity, «,is the

coefficient of thermal expansion with nano-concentration, (pc), describes the effective heat

capacity of the nanoparticle material, (,oc)f denotes heat capacity of the fluid, D, is the Brownian

diffusion coefficient, T, is the blood reference temperature, C, is reference nanoparticle
concentration, Ty is the arterial wall temperature, D, as the thermophoretic diffusion coefficient.

Now to eliminate the component of extra stress appearing in Eq. (6) and (7), we utilize the

constitutive law of a Sisko model which reads Zaman et al. (2015); Yilmaz and Gundogdu (2008):

S—[,uw—hu(nz) JAl. (10)
In Egn. (10), x# and g, are the dynamic and infinite-shear-rate viscosities of blood, respectively,

n is the power law index and A, is the first Rivlin-Ericksen tensor given by:
A=AV +AV', (11)
The second invariant of first Rivlin-Ericksen tensor, 77, is defined as:

M= %tra(Af). (12)

In view of (4), the constitutive relation (10) yields:
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2.2 Non- dimensionlization of transport model

The problem defined by Egs. (5) - (9) and (13) - (15) can be made dimensionless by defining
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Here r is dimensionless radial coordinate, W is dimensionless axial velocity, t is dimensionless

time, z is dimensionless axial coordinate, R is dimensionless radius, p is dimensionless

pressure, Mo is dimensionless zero shear rate viscosity, Np is Brownian motion parameter,

S,,, S, S,, are dimensionless stress components of the rheological stress tensor, 6 is dimensionless

rz1~rro

blood temperature, m is dimensionless infinite shear rate viscosity, Gr, the local nanoparticle

(species) Grashof number, o is dimensionless nanoparticle concentration function, Le is the Lewis

number, Pr is Prandtl number, Gr, the local thermal Grashof number, Re is the Reynolds number

and N is the thermophoresis parameter. The non-dimensional geometric parameters appearing in

the terms defined above are stenosis height parameter (5 =5*/a << 1), and vessel aspect ratio
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&= (a/lo). Also U, designates the average velocity of the blood. Introducing the above variables,

Egns. (5) -(9) and (13) - (15) after dropping the bars, now assume the form:
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(18)
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(20)

(21)

(22)

For the subsequent analysis, we shall assume that 6 <<1and ¢ =0(1) i.e. the maximum height of

the stenosis is small in comparison with the radius of the artery and also that the radius of artery

and length of the stenotic region are of comparable magnitude. As a consequence of these

assumptions, Eqns. (17) - (22) readily contract to:
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Following Burton (1996), we define the axial pressure gradient as:
ap
——=AD+AlCOS(27ra)pt), t>0 (27)

0z
where A, is the mean pressure gradient and A is the amplitude of the pulsatile component which is

responsible for systolic and diastolic pressures. In dimensionless form, Eqn. (27) becomes:

_op_
pe B, (1+e cos(c;t)), (28)

aw 2
A1 P,BI_A)a

e=—1,¢c = = .
A ' Us #,U, (29)
Inserting —op/éz into the axial momentum Eqn. (24), we get:
n-1
ow 10 ow ow
Re— =B, (1+ecos(ct))+——|rsm+||— — |+ G0 +Gro.
ot (L (Cl))+r6r[ { +(6rj }ar]Jr 10T e (30)

Egns. (25), (26) and (30) are subject to following boundary and initial conditions:
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w(r.t)| _, =0, % =0, w(r,0)=0.0,
(31)0(r )|, =1 aeé:’t) ~0, 6(r,0)=00,
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The appropriate formulae for volumetric flow rate, wall shear stress (WSS) and resistance

impedance in the new variables become:

szwrdr, (34)
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or or .
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° (36)
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In Eqgn. (37),¢ = (tan ¢) is termed the tapering parameter and ¢ is the associated taper angle. The

cases ¢ >0,¢ =0, ¢ <0correspond to the converging, non-tapered and diverging tapering artery

scenarios, respectively. These cases are illustrated in Fig. 1 (b).

Proceeding with the analysis we employ a radial coordinate transformation Ling and Atabek

(1972):

r
X = @ (38)
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Egns. (24), (25) and (26) are thereby rendered into the following form:
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Similarly, the dimensionless boundary and initial conditions become:

M _ow =0 w _ =0, (42)
OX |y _o i1 =
P _o4 -1 ) (43)
OX |, _ o 1 =
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In a similar fashion, the volumetric flow rate, shear stress at the wall and resistance (impedance),

respectively assume the form:

Q =R? Uw xdx], (45)

n-1 aw
i)
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0z

Q- (47)
Substituting the dimensionless form of the pressure gradient in Eqn. (47), we can write:

A=

B, (1+ecos(2zt))

[ijdx) R?(2) |

A= (48)
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3. FTCSFINITE DIFFERENCE NUMERICAL SOLUTION

It is difficult if not intractable to derive analytical solutions for the nonlinear Eqgns. (39) - (41).
Therefore, a suitable numerical method is employed for the solution. This method, which is lucidly
detailed in Hoffmann and Chiang (2000) with further examples of medical flow applications in
Ali et al. (2015); Zaman et al. (2015) is forward in time (FT) and central in space (CS). It is
therefore frequently designated as the FTCS difference algorithm in computational fluid

dynamics. We denote w* as the value of w at node x;, and similarly t« denotes the k™ time instant.

In this notation, the finite difference formulation of various partial derivatives is given as:

k k
@: Wiy = Wi

X M (49)
and
% - wik“A; W (51)

Using the above formulae for derivatives, Egns. (39)- (41), are readily reduced to the following

form:

. At Wy "
2 o ) o

+& i{m+(|wx|)n1}+%(m+(|wx|)nl)wxx:|+GrT g +Gr, of, (52)

R? ox
. At 1 1 2
o =as RePrR? {F(QXX +;€Xj+ N (G )+ N () } 9
o=y At {LZ(O-XX +laxj+ﬁ(exx +lt9xj}.
RelLe |R X N, X (54)

The prescribed boundary conditions are given by:
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The numerical solution is pursued for N+1 uniformly discrete points x,(i=12,....N +1) with a
space grid sizeAx:%\l .1 atthetime levels t, =(k -1)At, where At is the small increment in time.

At a particular cross-section of the arterial geometry, the simulations are executed for a specific

value of temporal and spatial step sizes At = At, and Ax = Ax, . Indeed, it is anticipated that for

this specific choice the numerical values of velocity, temperature or nano-particle species

concentration, may not attain convergence. Convergence to the correct solution is assured by

choosing lower values of At=At, (< At,) and Ax=Ax, (<Ax ) and then comparing the numerical

value of velocity (or temperature or nanoparticle species concentration) with the previously
obtained values. To obtain the accuracy of the order ~10~", we have taken the following step sizes:

Ax =0.025and At =0.00001. Fast convergence and stable solutions are achieved. The FTCS scheme
is relatively easy to implement since the values of, for example, the velocity i.e. w*" may be

updated independently of each other. The entire solution is contained in two loops: an outer loop
over all time steps and an inner loop over all interior space nodes. The algorithm behaves more
like the solution to a hyperbolic differential equation than a parabolic differential equation. The
solutions to the dimensionless transport equations (39)- (41) under conditions (42)- (44) i.e. the
initial and boundary conditions are in fact, as pointed out by Burden and Faires (1997) all bounded,
decaying functions. Therefore, the magnitude of the solution will decrease from the initial
condition to a constant. The FTCS may if proper care is not taken, yield unstable solutions that
oscillate and grow if the time step At is too large. However, the FTCS scheme is superior in

efficiency and compiles swifter than BTCS (Backward Time Centered Space) scheme.



18

4. FINITE ELEMENT METHOD VALIDATION OF COMPUTATIONS

The nonlinear boundary value problem described by the coupled egns. (39)- (41) under conditions
(42)- (44) has also been solved with a finite element algorithm. Employing numerical integration
rather than numerical differentiation, the adaptability of FEM is well documented. Although
numerous formulations are available for this numerical method, the variational weak formulation
is particularly adept at solving diffusion phenomena in fluid mechanics. Indeed, it has been applied
to some degree of success in recent years in a considerable spectrum of biomechanical transport
phenomena problems including pulsating rheological hemodynamics by Beg et al. (2012),
nanofluid biopolymer enrobing flows by Latiff et al. (2015), biomagnetic hemodynamics in porous
media by Hoque et al. (2013) and very recently magnetized nanofluid coating flows by Rana and
Beg (2014). The FEM code, Bio flow in Bhargava et al. (2010) has been modified to stenotic
hemodynamics with heat and mass transfer. Pressure gradient is re-defined and time conditions
(temporal) also re-defined. Following some numerical tests, mesh-independence is confirmed for
the present scenario with approximately 500 finite elements. The whole domain is delineated into
a set of 500-line elements of equal width, each element being two-noded. Line elements are
adequate since only one spatial variable i.e. normalized radial coordinate, (x) is involved. A
variational form is derived for each of the transport egns. (39)- (41) with the lead master variables
w, 6, o. The numerical integration is performed over the artificial finite element domain in terms
of the normalized radial coordinate (Xe; Xe+1) using arbitrary test functions (W1, W2) which can be
viewed as the variation in the master variables, following Reddy (1985). The nonlinear terms in
eqns. (39)- (41) are easily accommodated. The finite element form of the variational equations is
achieved by appropriate substitutions based on the following approximations for velocity,

temperature and nanoparticle species concentration, respectively:
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The weighting functions as in Reddy (1985) are:
Wy =W, =y, i=12 (57)
The shape (interpolation) functions for a typical line element (Xe, Xe+1) in eqn. (57) are prescribed

as follows:

(e)  Xetl =X . (e)_ X—Xe
L6 N X4 —X
e+l ~ "€ e+l ~ "€

, X, XX

e el (58)
The matrix-vector form of the finite element model is then generated. For brevity details are
excluded here and the reader is referred to Bég et al. (2012); Hoque et al. (2013); Rana and Bég
(2014); Latiff et al. (2015). This system of non-linear algebraic equations produced after assembly
of the element equations is linearized by incorporating functions w, 6, o, which are assumed to be
known. Boundary conditions (42)- (44) are also easily set up. Following imposition of the initial
(time) and boundary conditions, the matrix system is condensed and solved iteratively with a
modified Householder elimination method, maintaining an accuracy of 0.0005. The comparison
of finite difference method (FTCS) and finite element method (FEM) solutions is documented in
each of Figures. 2-10 in the next section where the FEM solution is denoted by ©® and
corresponds only to the solid black line (-) case in each figure. Very close correlation is achieved
for radial distributions of velocity, temperature and concentration at different values of m
(dimensionless infinite-shear-rate viscosity) in Figures 2-7 for t =0.45 (prescribed time) and
furthermore exceptional agreement is also attained in Figures 7-10 for temporal distributions of
flow rate, wall shear stress and impedance function (flow resistance). Tables 1 and 2 also show
the correlation of FTCS and FEM solutions for the temperature and concentration (nano-particle

species) gradients and again very good agreement is obtained. Confidence is therefore very high

in the present FTCS computations, which furthermore provide a solid benchmark for future
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extensions to the present study and experimentation with other non-Newtonian models. Readers
are therefore encouraged to refine the present simulations to consider more complex effects
including multiple species diffusion (oxygen, protein equations), variable species diffusivity,

variable thermal conductivity and elasticity of the blood vessel.

5. RESULTS AND DISCUSSION

In the following section selected graphical results are displayed using the following set of
parameters: d=051,=1 L=225=1,n=0.7,6=01B =4, Re=1. It is important to
emphasize that this data correlates closely to actual physical conditions in real blood flow. For
example, Prandtl number is prescribed a value of 21, following actual clinical data of Charm et al.
(1968) based on room temperature conditions. We note in line with Charm et al. (1968) that
although the viscosity, specific heat under constant pressure, and indeed the thermal conductivity
of any fluid, including blood, are temperature-dependent, the composite of these three properties
may be kept constant via a fixed Prandtl number. This has been confirmed to give reasonable
accuracy in computational blood flow modelling in Yang (1989). Under the low Reynolds number
approximation, which is consistent with rheological flow in small capillaries, Re is prescribed as
unity i.e. viscous and inertial forces are of the same order of magnitude in the regime. Lewis
number which quantifies the ratio of thermal to species (nano-particle mass) diffusivity is
prescribed unity implying that both heat and nanoparticles diffuse at the same rate in the blood
flow. This is based on data from Lightfoot (1974). Geometric data has been prescribed based on
numerous computational (and experimental) studies. The primary objective is to analyze the

effects of nanoparticle diffusion and haemo-rheology on various characteristics of flowing blood.
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Fig. 2 illustrates the dimensionless velocity profiles for different values of m
(dimensionless infinite-shear-rate viscosity) at a specific location of the arterial segment z = 0.77
in the stenotic region. This figure indicates that axial velocity of blood is a progressively decreasing
function of m. This would appear to agree with the nature of more viscous flows in which greater
momentum is required to achieve higher velocity. Blood flow deceleration is therefore anticipated
for greater viscosity effect. This is however important in achieving many mass transfer functions
in real blood flows as elucidated by Tarbell (2003). The implication for nano-particle diffusion is
that it also will be encouraged and more effective in trans-membrane operations since a slower
blood flow will enable engineered nano-particles to diffuse better across the vessel into the
confining walls and beyond. The trends observed in Fig. 2 indeed concur with numerous other
investigations of stenotic rheological hemodynamics including Shaw et al. (2009) for Casson fluids
and Cho and Kensey (1991) for many different non-Newtonian multi-parameter models (e.g.
Carreau fluids). In the present computations the Sisko rheological power-law index is set as n =
0.7 corresponding to shear thinning blood. The thermal and species Grashof numbers linked to
buoyancy-driven convection both have values of 2 implying that both thermal and species
buoyancy forces are twice the viscous hydrodynamic force in the regime. These are entirely
reasonable for actual transport in clinical blood flows as confirmed in Yang (1989); Lightfoot
(1974).

Fig. 3 presents the evolution of dimensionless velocity profiles for different values of N
and Ny . Figure 3(a) indicates that the value of axial velocity of blood increases with increasing
the thermophoresis parameter Ni. On the contrary, the axial velocity of blood decreases with
increasing Brownian motion parameter Ny. The thermophoresis and Brownian motion parameters

arise in both the heat conservation (energy diffusion) and mass conservation (nano-particle species
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diffusion equations), i.e. egns. (40) and (41). In the former the terms associated with these

parameters are all first order radial temperature or concentration gradients i.e. ND(E— and
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field is sustained via coupling between the energy and species egns. (40, 41) and the thermal
buoyancy (Grr6) and species buoyancy (Grn o) linear terms in the momentum eqn. (39). Thermal
field will clearly exert influence via the former term and species diffusion field via the latter. The
value of Ny is intimately linked with the size of nano-particles. Low Ny values correspond to larger
nano-particles and vice versa. The concentration of nano-particles in blood flow will be enhanced
with larger Ny (high values of smaller nanoparticle concentrations). This will boost the dominance
of the conduction heat transfer which opposes the axial momentum diffusion (heat diffuses faster
in this case than momentum). The elevation in thermal conductivity will also result in an increase
in thermal diffusivity. This effectively decelerates the axial flow. There are many mechanisms
which link the nanoparticle presence to thermal conduction and to fluid mechanical phenomena.
These include interfacial layers, Brownian motion, clustering of nanoparticles and the convection-
type effects at the nanoscale (nano-convection) which is associated with the nature of heat
transport. With regard to the last of these mechanisms, Brownian motion of nanoparticles can
produce thermal conduction elevation either indirectly via nano-convection of the fluid
surrounding individual nanoparticles or directly via movement of nanoparticles which convey
thermal energy (heat) i.e. particle to particle direct solid-solid transport of heat. Whichever

mechanism is in action, the global effect on axial flow is a deceleration i.e. slowing. This again is
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advantageous to the distribution of carriers in nanofluids which can be transported radially more
effectively across the vessel wall into the surrounding tissue. The potential for enhanced and
targeted drug delivery is very attractive therefore via the deployment of nanofluids. The boost in
axial velocity with thermophoresis effect is linked to the nature of nanoparticle migration towards
colder zones in the blood flow. Thermophoresis is the physical manifestation of averaged
Brownian motion of particles in a fluid, under the action of a steady temperature gradient. After
adequate time elapse, the more vigorous molecular impulses in the hotter fluid region compel the
re-location of nano-particles towards the colder region, where weaker molecular impulses are
present. On a molecular dynamics level, the stochastic Brownian force imparts molecular impulses
on nano-particles. In nanofluids, this force is applied to an ensemble of particles and the
corresponding thermophoretic velocity is the mean velocity of the ensemble. Stronger
thermophoresis therefore encourages species diffusion towards colder zones which further aids the
momentum diffusion. Axial acceleration is therefore assisted by increasing thermophoretic effect.
It is also noteworthy that axial velocity is maximized at the vessel centerline and vanishes at the
extreme radial coordinate which corresponds to the no-slip condition at the vessel walls. The semi-
parabolic profile is evident and characteristic of blood flows in small vessels.

The effects of thermal Grashof number (Gr; ) and nanoparticle Grashof number (Gr,, ) are
shown in Figs. 4a, b. The Grashof number Gr is the ratio of thermal buoyancy force to the viscous
force while the Grashof of number Gr, is the ratio of nanoparticle (species) buoyancy force to the
viscous force. An increase in Gr; corresponds to progressively stronger thermal buoyancy force.
Similarly, greater values of Gr, imply stronger nanoparticle species buoyancy force generated by

concentration differences in nanoparticles. The axial flow of blood accelerates with an increase in

either of Gr;and Gr, . The assistive nature of dual buoyancy forces to momentum diffusion and
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therefore hemodynamic acceleration is therefore clearly demonstrated. Greater temperature and
concentration differences therefore can be exploited in generating more vigorous buoyancy forces
in flowing blood and this can benefit axial targeting of drugs. In other words, for specific
pharmaco-kinetic agents, the drug can be transported faster along the axial direction via thermal
and species buoyancy when nano-particles are present compared to when they are absent. This
may be beneficial in for example situations where drugs introduced at one arterial location may be
aimed at a significant distance away from that location also i.e. so-called remote
pharmacodynamics. Researchers Li et al. (2014) have shown that nano-particles may act as
engineered carriers for other agents by electrodeposition synthesis. In this way different types of
nano-particles e.g. nano-spheres, nano-ellipses or nanorods can be functionalized by attaching
DNA plasmids to the nickel segments and attaching transferrin, a cell-targeting protein, to the gold
(metallically bio-compatible) segments, using molecular linkages that selectively bind to only one
metal and thus impart bio-functionality to the nanorods in a spatially defined manner. There is
further scope infact to map supplementary segments to e.g. nanorods, in order to embed extra bio-
functionalities (e.g. endosomolytic agents) or specific drugs for blood disease treatment. In order
to maximize effects of pharmacological agents, they are designed to interact in a structurally
specific way with a protein receptor or influence positively particular physiological processes
within the body, as described by Florence and Attwood (1998). This activates a secondary
messenger system which engineers a carefully elected and targeted physiological effect. The new
wave of nano-drug therapy can improve on existing methodologies by embedding directionality
and accelerating with greater confidence the reversal of required modifications during illnesses in
the body to assist its return in a more speedy and effective manner back to the homeostatic state.

All bodily functions are a result of interactions of various chemicals and nano-drugs are proven to
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achieve better performance in interfering advantageously with these processes. The distinction
between nano-pharmaco-fluid mechanics (of which the present work is an example) and
pharmaco-kinetics, is that the latter totally negates all fluid dynamics and heat transfer aspects and
focuses solely on chemical and mass balances, even in the most sophisticated efforts.
Pharmacokinetics only describes the relationship between drug dose and the drug receptor and the
time course of drug concentration in the body. It addresses drug dynamics by assuming that the
concentration that a drug reaches at its site of action is influenced by the rate and extent to which
a drug is absorbed, distributed, metabolized and excreted. Pharmaco-kinetics, as practiced by
pharmacists and medical scientists, therefore significantly over-simplifies actual physiological
transport phenomena in drug conveyance in the blood and can never truly represent the real picture
since viscosity, thermos-physics, arterial geometry and indeed the many interactional aspects of
these aspects with mass transfer, cannot be simulated with simple pharmaco-kinetic models. The
present study may be one of a number of investigations which could lead to a new era in pharmaco-
transport modelling. It is sincerely hoped by the authors that the present work stimulates more
interest among engineering scientists to engage in this growing area of medical flow simulation.
Fig. 5 illustrates the dimensionless temperature profiles for different values of Prandtl
number (Pr) (panel (a)) and thermophoresis parameter (N¢) (panel (b)) at the stenotic throat of the
arterial segment. Figure 5 (a) shows the profiles of temperature of blood inside the artery for Pr
=14, 21, 25. The Prandtl number is the ratio of momentum diffusivity to the thermal diffusivity.
Larger values of Prandtl number correspond to the case of less heat transfer from the boundary to
the fluid. Prandtl number is also the product of dynamic viscosity and specific heat capacity
divided by the thermal conductivity of the fluid. Although for simplicity we have constrained each

of these physical properties of blood to be constant, tentatively a variation in Prandtl number
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implies that one or more of these individual properties changes, and indeed variation in clinical
testing of blood flows has confirmed this. The reader is referred to the seminal study of Victor and
Shah (1976). For example, it is known that thermal conductivity of whole blood at 37°C (normal
body temperature) is 0.492W/mK and thermal diffusivity is 1.19 x10—7 m?/s, compared with pure
plasma which has at 21°C, a thermal conductivity of 0.570 W/mK and thermal diffusivity of 1.21
x10—7 m?/s. Blood thermal conductivity however varies considerably from one zone to another
and indeed body temperature varies depending on illness. Therefore, an approximation must be
made for thermal effects in simulation since it is not possible to have location-specific Prandtl
numbers. One reason why heat transfer has been included in the present simulations is that
thermophysical effects are intimately associated with homeostasis which is the biological
mechanism for maintaining temperature equilibrium within a wide range of environments. The
circulatory system of mammals maintains homeostasis by the heart and blood vessels working in
unison to sustain a healthy blood flow in the entire circulatory system. Although the geometric
model we have considered is much simpler than full clinical systems, it is a good first step in
understanding thermal (and other) diffusion processes in real blood flows. Of course, upscaling of
the model is needed, and this is best achieved via computational fluid dynamics interfaced with
MRI scanned models of actual arterial a stenotic geometry, which is a future objective of the
authors Weinbaum et al. (1984). As elaborated earlier Prandtl number is inversely proportional to
thermal conductivity (for fixed viscosity and specific heat capacity). Greater Prandtl number
therefore implies that less heat is conducted in the blood. The trends in Figure 5(a) are evidently
consistent with this logic - a decrease in blood temperature is computed with increasing Prandtl
number. It is further observed that the temperature is more sensitive to the increase in Prandtl

number near the arterial wall (larger dimensional radius) and no significant variation is observed
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in temperature in the vicinity of the center (small dimensional radius), where convection effects
dominate thermal conduction effects (absence of tissue suppresses the role of thermal conduction
in the bulk flow whereas it maximizes the effect at the wall). This has also been observed and
reported by many seminal investigations of blood heat transfer including Weinbaum et al. (1984);
Chato (1990). These studies specifically addressed thermally significant small vessels and were
not focused on major supply blood vessels. They are therefore relevant to the present work which
dwells on smaller vessels where rheological effects are important. However, this also raises other
issues. The blood viscosity in these vessels will be more temperature-dependent than in larger
vessels, and this will also influence Prandtl number. Furthermore, the pulsatile nature of actual
blood flow and the interference effects of a stenosis are probably better analyzed using the wave
theory of heat conduction and also improved bio-conduction models for the blood vessel walls.
With regard to the latter efforts have been made by Ozisik and Tzou (1994) over two decades ago
to integrate wave heat conduction with biological heat transfer and more recently by EIl Sayed and
Bég (2014) to consider non-Fourier bioheat transfer in tissue (vessel walls) with thermal relaxation
effects. These aspects we hope to consider in future refinements of the present model which is a
platform for doing precisely this. Readers are also encouraged to explore these modifications.
There is now a strong consensus that in thermo-fluid simulations of blood flows, especially where
the focus is thermal treatment (and this includes nano-drug delivery) the classical method of
simulating blood flow as a distributed heat source (or sink) incorrectly presumes that the capillary
vasculature is the principal location of heat exchange and that the blood flow term is a scalar
property. Kotte et al. (1996) have shown that in reality, the blood flow in a tissue usually has a
direction from artery to vein passing through the capillary bed and that blood and proximate tissues

do not sustain thermal equilibrium when the blood vessel diameter exceeds 500um and therefore
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heat transfer models for tissue and blood in significantly large vessels must be treated individually.
However, this modification is not needed for smaller vessels (rheology is important in these
geometries) which we have considered, and the present approximations are certainly justifiable.
The effect of thermophoresis parameter (Nt) on blood temperature inside the artery is shown in
Figure 5(b). No significant quantitative is observed with increasing the values of thermophoresis
parameter. The temperature only slightly increases in the vicinity of the arterial wall with
increasing thermophoresis parameter. The thermophoretic effect is a species-dominated effect and
is linked to nano-particle diffusion. Although this does affect the hydrodynamics of stenotic blood
flow, it does not impact substantially significantly on thermal diffusion in such flows. Indeed,
clinical studies Dhont et al. (2007) have confirmed that thermophoresis influence is felt primarily
in the velocity field in drug delivery, not in thermal fields, and this is attributable to the fact that
physically thermophoresis takes place on a different timescale is essentially a diffusion limited
transport process. However other studies have shown that via other procedures such as IR-Laser
heating in tissue treatment, thermophoretic effects of associated drugs can be elevated with greater
time elapse. Thermophoretic mobility as dictated by the nano-species diffusivity requires a very
large thermal load to exert any major influence and laser heating therapy achieves this in Wienken
et al. (2010). However, in conventional drug injection into the diseased artery it is not expected
that thermophoresis will tangibly modify the thermal distribution in flowing blood and our results
concur with these observations.

Fig. 6 illustrates the dimensionless concentration profiles or nanoparticle fraction for
different values of thermophoresis parameter (N:) (panel (a)), Brownian motion parameter (Np)
(panel (b)) and Lewis number (Le) pane (panel (c)) at the stenotic throat of the arterial segment.

Panel (a) shows a strong increase in that the concentration profile with the increase of
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thermophoresis parameter (Nt), while it demonstrates the opposite trend with increasing Brownian
motion parameter (Nb). The observed behavior of nanoparticle fraction profile with increasing
Lewis number is quite similar to its corresponding behavior with increasing Brownian motion
parameter. It is also interesting to note that in contrast to the observation made through Figures.
6(a) and 6(b), Figure 6(c) show that the dimensionless concentration profile is less sensitive to
Lewis number in the vicinity of the arterial wall. This is probably largely attributable to the absence
of trans-wall diffusion (it is impermeable) which reduces the influence of species diffusivity.
Lewis number embodies the relative role of thermal diffusion to mass (species) diffusion i.e. it
simulates the energy diffusion rate relative to the species diffusion rate. Near the centerline of the
artery where convective processes are strongest, Lewis number will be influential- significant
modifications in the concentration distributions of nanoparticles are observed here. However, with
progression away from the bulk flow region (low dimensionless radius) towards the vessel
periphery (higher dimensional radius) the convective process will be stifled, and Lewis number
will exert a diminished effect. The profiles are observed to converge in the near-wall region
testifying to the weak influence of Lewis number here. It is also noteworthy to mention that when
Le=1 both the heat and nanoparticles will diffuse at the same rate. When Le >1, a scenario of most
relevance in clinical hemodynamics, as emphasized by Lightfoot (1974), thermal diffusivity
exceeds the species diffusivity. We further note that for Le > the peak concentration in nanoparticle
species is significantly higher further from the artery centerline compared with Le =1. The profiles
grow more sharply in this central core zone of the flow for higher Lewis number than they do for
lower Lewis number. The implication is that for nano-drugs with lower species diffusivity than
blood thermal diffusivity a greater concentration growth is achieved radially than for drugs which

have the same diffusivity as flowing blood. We note also that the finite element method (FEM)
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computations achieve exceptionally good correlation with the FTCS finite difference computations
in all the figures 2-6 for all values of dimensionless radius i.e. across the artery cross-section.
Fig 7-8 illustrate the time series of volumetric flow rate. In Figure 7, the solid line curve

corresponds to a specific set of parameters values i.e. Nt = 0.5, Np = 0.5, Gr, =2, Gr, =3,n =
0.7. The others three curves in this figure are produced by varying either of N, Np and Gr,, . A

comparison of the solid line curve and of the curve with super imposed circles indicates an increase

in volumetric flow rate by increasing Gr, . Similarly, a comparison of solid line curve with that of

curve with superimposed squares reveals an increase in volumetric flow rate with increasing

thermophoresis parameter. The effects of Grashof number Gr, on volumetric flow rate are similar

to the effects of thermophoresis parameter (see the axial velocity response in figure 3a) i.e. species
Grashof number boosts the volumetric flow rate. The trends in both Figures 7 and 8 are consistent
with the assistive influence of both Grashof numbers i.e. both thermal and species buoyancy forces
on velocity. Acceleration in the flow enhances volumetric flow rate since for a fixed arterial cross
section (and therefore dimensionless radius value), the volumetric flow rate, Q, as defined by eqn.
(45) is directly proportional to the axial velocity. Conversely the flow rate is found to decrease
with increasing Brownian motion parameter. Again, this concurs with the influence of Brownian
motion on axial velocity (fig. 3b) where it induces deceleration. Brownian motion will therefore
also deplete the volumetric flow rate. In both figures 7 and 8, the flow rate is found to consistently
grow with greater elapse of time. The implication in pharmaco-dynamics is that greater transport
of nano-scale drugs is achieved as time elapses and this is precisely the objective in targeted drug
delivery and also in medical desires to enforce a particular effect over a certain time period rather

than instantaneously. The drug may travel faster in the circulatory system to the target zone.
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However, the physiological response should be not too traumatic so that it induces adverse effects
in Florence and Attwood (1998).

Fig. 9 illustrates the time series of dimensionless wall shear stress (WSS). The solid line
displays the WSS profiles for Ny = 0.5, Np = 0.5, Grr = 2, Gry = 3. The remaining curves are
produced by varying either theses parameters. It is observed that the wall shear increases with
increasing N: while it follows a converse trend with Ny i.e. it decreases with increasing N.
Moreover, it is observed that increase in both thermal and nanoparticle species Grashof numbers
is to increase the wall shear stress (WSS). Again, this follows logically from the observed

acceleration in axial flow in figs. 4 and 4b. In eqgn. (46), WSS is defined for the non-dimensional

1
case as 7, =—| {m+

axial velocity i.e. i.e. aw/ or . Since greater Brownian motion parameter (Nb) as observed in figure

ow
or

n-1
j };—aver , and is therefore strongly linked to radial gradient of the
x=1

3b clearly decelerates axial velocity it will also reduce shear stress at the wall. Velocity boundary
layer thickness at the arterial contact surface will therefore be increased. The influence of time on
wall shear stress is consistent with numerous studies of stenotic flow including for example, the
Newtonian model solutions of Hung and Tsai (1996) and non-Newtonian simulations of Razavi et
al. (2011). Axial flow is also accelerated with greater time elapse in the stenosed artery and this
manifest in a progressive escalation in the WSS magnitudes. We further note that magnitudes of
WSS remain positive indicating that back flow (blood flow reversal) never arises. The periodic
nature of the profiles in figures 7-9 is linked to the pulsatile nature of the flow i.e. oscillatory
effects.

Fig. 10 demonstrates the time evolution of impedance or resistance to flow at the stenotic

throat. Again, a similar procedure is followed to compare various curves as adopted previously. It
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is found that resistance to flow rate increases with increasing/decreasing the value of Ny/Nt. On the
contrary, the thermal Grashof number serves to reduce the impedance. This is associated with the
species buoyancy force, which quantifies the density variation that is due to variable volume
fraction of nanoparticles. This force helps the nano-particles exert strong convective heat transfer
for low concentrations in the presence of the combined effects of thermophoresis and Brownian
motion. The magnitude of resistance is also observed to fall with progression in time since as the
flow is accelerated (figure. 9 shows the progressive ascent in WSS) this implies a decreased
impedance to the flow with greater time elapse. Again, this pattern is similar to other studies
reported in the literature.

Finally, in Figure 11 we have depicted the streamlines for blood flow for specified
parameters Fig. 11. Panel (a) represents the flow pattern for specific values of Gry, Gry, 6, and &.
This panel confirms the presence of a circulating bolus of blood enclosed by two streamlines in
the overlapping stenotic region of the artery. A comparison of this panel with panels (b) and (c)
reveals that there is no significant deviation in size and circulation of the trapped bolus of blood
by varying either of Gry, Gry. This shows that the circulating bolus of blood is less sensitive to the
change in thermal and nanoparticle Grashof numbers and thereby the associated buoyancy forces.
However, it is observed through the comparison of panel (a) with panels (d)-(f) that streamline
patterns are however significantly modified with a change in the shape parameters of the stenosis.
It is noted that for a diverging artery, the outermost streamlines enclosing the circulating bolus
merge in the beginning of the overlapping region resulting in flow acceleration over the whole
stenosed segment. On the contrary for a converging artery, the outermost streamlines enclosing
the circulating bolus merge in the end of the overlapping region resulting in a flow deceleration

(back flow) over the whole stenotic region.
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6. CONCLUDING REMARKS

A theoretical and numerical study has been conducted to investigate the nanoparticles effects on
rheological blood flow, heat and transfer in an overlapping stenotic artery. The constitutive
equation based on the Sisko non-Newtonian model has been incorporated in the present analysis
to represent the blood rheology. The model is aimed at simulation of the nano-particle drug
delivery in stenosed realistic hemodynamics in small vessels of the human circulatory system. A
numerical procedure based on a forward time central space (FTCS) finite difference algorithm has
been utilized to obtain computational solutions for the unsteady, nonlinear, coupled nonlinear
partial differential equation boundary value problem. Validation of solutions for the general model
has been attained using a variational finite element method (FEM). The blood axial velocity,
volumetric flow rate, temperature and concentration distributions and also arterial wall shear stress
(WSS) and hemodynamic impedance have been computed for a wide range of the merging
transport phenomena parameters e.g. rheological index, Brownian motion parameter,
thermophoresis parameter, thermal and species (nano-particle) Grashof numbers. The key finding
of the current study are:
e The blood axial velocity at the stenotic throat increases with increasing thermal Grashof number.
On the contrary, axial flow is decelerated with increasing nanoparticle Grashof number.
e The blood axial velocity at the stenotic throat increases with increasing thermophoresis
parameter while it is progressively reduced with greater Brownian motion parameter values.
e The nano-particle species concentration at the cross-section corresponding to the stenotic throat
is found to increase by increasing thermophoresis parameter. The opposite response is computed

by increasing Brownian motion parameter.
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e The nano-particle concentration sharply changes in the vicinity of arterial wall and is generally
invariant over the remainder of the arterial cross-section.

e The blood temperature is a decreasing function of Prandtl number. However, it is less sensitive
to the change in thermophoresis and Brownian motion parameters.

e A reduction in volumetric flow rate at the stenotic throat is caused by increasing the Brownian
motion parameters.

¢ There is no significant deviation in streamlines of flowing blood by increasing both thermal and
nanoparticle Grashof numbers.

The study presented, it is envisaged, will stimulate further interest in more realistic pharmaco-

dynamic transport modelling for nano-drugs in stenosed arteries. Efforts in this regard are

underway and will be communicated imminently.
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TABLE 1: - Temperature gradient at the wall at different axial locations in the stenotic region
with Gr, = 2, Gr, = 3, Le=1,N, =0.5,56=0.1, t=0.45 Re=3,B,=4,n=0.7,m=0.175e=1.

100
R oXx |
z Pr=21,Nt=05 r=14 N¢=0.1
FDM FEM FDM FEM FDM FEM
0.5500 3.2881 3.2882 2.5749 2.5747 3.3360 3.3361
0.7700 3.2561 3.2563 2.5411 2.5412 3.2939 3.2940
1.0000 3.2657 3.2655 2.5512 2.5513 3.3063 3.3064
1.2600 3.2757 3.2756 2.5618 2.5619 3.3194 3.3195
1.7100 3.2560 3.2561 2.5410 2.5412 3.2938 3.2939
2.0000 3.2972 3.2974 2.5846 2.5848 3.3483 3.3482

TABLE 2: Concentration gradient at the wall at different axial locations in the stenotic region
with Gr, = 2, Gry, = 3, Le=1, 6§=0.1t=045Re=3,B,=4,n=0.7,m=0.175e=1.

1do
R ox |,
z Pr=21, N, =Ny=0.5 Pr=14 N;=0.1 Ny=0.1
FDM FEM FDM FEM FDM FEM FDM FEM

0.5500 -3.3174 -3.3175 -2.6348 | -2.6347 | -0.6733 -0.6734 -16.5869 | -16.5870
0.7700 -3.3256 -3.3257 -2.6407 | -2.6408 | -0.6730 -0.6731 -16.6281 | -16.6282
1.0000 -3.3246 -3.3247 -2.6404 | -2.6405 | -0.6733 -0.6734 -16.6231 | -16.6230
1.2600 -3.3223 -3.3221 -2.6388 | -2.6389 | -0.6734 -0.6735 -16.6114 | -16.6112
1.7100 -3.3256 -3.3255 -2.6407 | -2.6408 | -0.6730 -0.6732 -16.6281 | -16.6280
2.0000 -3.3123 -3.3122 -2.6302 | -2.6301 | -0.6729 -0.6728 -16.5613 | -16.5612
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FIGURE CAPTIONS

1: Geometry of the overlapping stenotic artery

2. Variation of axial velocity for different values of m with
Gr, =2,Gr, = 2,N, =N, =0.5,Pr=21, t =0.45.

3. Variation of axial velocity for different values of N (left) and Ny (right) with:
Gr, =2,Gry =2, N, =N, =05,Pr=21, t=0.45.

4 (a). Variation of axial velocity for different values of Gr; with the following data:
N, =N, =0.5 m=0.1756 = 0.1, Pr = 21, Gr, = 2, t=0.45.

4 (b). Variation of axial velocity for different values of Gry with the following data:
N, =N, =05 m=0.1755 = 0.1, Pr = 21, Gr, = 2, t =0.45.

5 (a). Temperature profile at different values of P, with the following data:
Gr, =2, Gr, =2, N,=0506 = 0.1,t=0.45.

5 (b). Temperature profile at different values of Nt with the following data:
Gr, =2, Gr, =2, Pr=21,6 = 0.1, t=0.45.

6(a). Concentration of mas profile at different values of Nt with the following data:
Gr, =2,Gry =2, Le=1,N, =056 = 0.1,Pr = 21, t=0.45.

6 (b). Concentration of mas profile at different values of Ny with the following data:
Gr, =2,Gr, =2, N, =05Le=1,6 = 0.1,Pr = 21, t=0.45.

6 (c). Concentration of mas profile at different values of Le with the following data:
Gr, =2,Gr, =2, N, =N, =056 = 0.1,Pr = 21, t =0.45.

7. Flow rate profile at different values with the following data Gr, = 3,6 = 0.1, Pr=21.
8. Flow rate profile at different values with the following data Gr. = 2,5 = 0.1, Pr=21.
9. Wall Shear Stress profile at different values with the following data §=0.1, Pr=21.

10. Resistance to flow or impedance at different parameters with the following data
o = 0.1Pr=21.

11. Streamline of blood flow in artery with the following data N, =N, =0.5,t =0.45.
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Figure 1: Geometry of the overlapping stenotic artery
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Figure 2. Variation of axial velocity for different values of m with
Gr, =2,6r, =2 N, =N, =05Pr=21, t=0.45.
(N.B. FEM solutions correspond to blue dot in Figs 2-10)
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Figure 3. Variation of axial velocity for different values of N; (left) and Ny, (right) with:
Grr =2,6r, =2 N, =N, =05Pr=21, t=0.45.
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Figure 4 (a). Variation of axial velocity for different values of Gr; with the following data:
N,=N, =05 m=0.1756 = 0.1, Pr = 21, Gr; = 2, t=0.45.

Figure 4 (b). Variation of axial velocity for different values of Gry with the following data:
N,=N, =05 m=0.1756 = 0.1, Pr = 21, Gr, = 2, t=0.45.
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Figure 5 (a). Temperature profile at different values of P, with the following data:
Gr, =2,6Gr, =2,N,=05¢6 = 0.1,t=0.45.

Figure 5 (b). Temperature profile at different values of N; with the following data:
G, =2,Gry, =2, Pr=21,6 = 0.1, t=0.45.
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Figure 6(a). Concentration of mas profile at different values of N; with the following data:
Gr, =2, Gry =2, Le=1,N, =056 = 0.1,Pr = 21, t=0.45.
Figure 6 (b). Concentration of mas profile at different values of N, with the following data:
Gr, =2,Gry = 2,N,=05Le=16 = 0.3,Pr = 21, t=0.45.
Figure 6 (c). Concentration of mas profile at different values of Le with the following data:
Gr, =2, 6ry =2, N, =N,=05,6 = 0.1Pr = 21, t=0.45.
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Figure 7. Flow rate profile at different values with the following data Gr, = 3,6 = 0.1, Pr=21.
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Figure 8. Flow rate profile at different values with the following data Gr, = 2,6 = 0.1, Pr=21.
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Fig. 9. Wall Shear Stress profile at different values with the following data 6 =0.1, Pr=21.
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Figure 10. Resistance to flow or impedance at different parameters with the following data: & = 0.1, Pr=21.
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Figure 11. Streamline of blood flow in artery with the following data: N, = N, =0.5,t =0.45.



