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Abstract 

Nanofluids are becoming increasingly popular in novel hematological treatments and also advanced nanoscale 

biomedical devices. Motivated by recent developments in this area, a theoretical and numerical study is described for 

unsteady pulsatile flow, heat and mass transport through a tapered stenosed artery in the presence of nanoparticles. 

An appropriate geometric expression is employed to simulate the overlapping stenosed arterial segment. The Sisko 

non-Newtonian model is employed for hemodynamic rheology. Buongiorno’s formulation is employed to model 

nanoscale effects. The two-dimensional non-linear, coupled equations are simplified for the case of mild stenosis. An 

explicit forward time central space (FTCS) finite difference scheme is employed to obtain a numerical solution of 

these equations. Validation of the computations is achieved with another numerical method, namely the variational 

finite element method (FEM). The effects of various emerging rheological, nanoscale and thermofluid parameters on 

flow and heat/mass characteristics of blood are shown via several plots and discussed in detail. The circulating regions 

inside the flow field are also investigated through instantaneous patterns of streamlines. The work is relevant to nano-

pharmacological transport phenomena, a new and exciting area of modern medical fluid dynamics which integrates 

coupled diffusion, viscous flow and nanoscale drug delivery mechanisms. 
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1. INTRODUCTION 

The analysis of blood flow through diseased arteries is an important area of bioengineering 

research which has attracted increasing attention in recent years with developments in 

computational tools and improved clinical data for mathematical models. The most common 

arterial ailment is atherosclerosis, in which plaque builds up inside the arterial wall. The narrowing 

of arterial lumen caused by such plaque (which reduces the space of lumen) is usually called 

stenosis. Essentially a stenosis is a condition where an artery wall thickens as a result of fatty 

materials such as cholesterol. It is quite apparent that development of stenosis in an artery results 

in the reduction of the blood flow rate or ischemia. In the coronary artery, ischemia may cause 

myocardial infarction while the same process in an artery to the brain can lead to a stroke. 

Hemodynamic studies reveal that the development of plaques in vessels causes sporadic blood 

flow rate, boundary layer detachment and high arterial wall shear stress. An excellent review of 

studies up to the late 1990s has been given by Ku (1997) in which turbulence, energy losses and 

other aspects are covered. Moreover, the modified hemodynamics in the neighborhood of a gentle 

stenosis may result in the formation of another stenosis. The combination of two stenosis to form 

an overlapped stenosed arterial segment can increase vulnerability to ruptures in contrast to a single 

stenotic arterial segment because of increased wall shear stress and strong recirculating zones. 

Numerous, theoretical studies, based on the principles of fluid dynamics, are available in the 

medical engineering literature which address blood flow through overlapping stenosis. Excellent 

reviews of recent progress in general cardio-vascular applications and specific cerebral 

applications, respectively, have been provided by Sforza et al. (2009), Duraiswamy et al. (2007) 

respectively. Chakravarty and Mandal (1994) studied blood flow through an overlapping arterial 

stenosis, observing that flow velocity diminishes downstream from its value at the onset of the 

stenosis and further increases upstream towards the overlapping region. Many experimental, 
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theoretical and numerical studies of specific aspects stenotic flows have also been reported. Pinto 

et al. (2012) used ANSYS FLUENT computational finite volume software to investigate the 

hemodynamics of a bifurcating channel with stenosis, as a simulation of the left coronary artery. 

Both a moderate stenosis (65% of occlusion) and a severe stenosis (90% of occlusion) were 

considered and it was demonstrated that in the severe case, higher static pressure drop is achieved 

with a larger deviation between mass flow rates in both branches of the bifurcation accompanied 

with small recirculation zones downstream of the stenosis region. Karri and Vlachos (2010) 

measured the influence of phase angle between pressure and flow waveforms for stenosed 

compliant vessels in coronary and peripheral flows using time resolved digital particle image 

velocimetry, and provided data for Reynolds numbers of 250, 350, and 450 and corresponding 

Womersley parameters of 2.7, 3.2, and 3.7. They also determined wall-shear stresses (WSSs), 

oscillatory shear index (OSI), and recirculation lengths for different stenosed cases. Further studies 

have been reported in Yap et al. (2010); Boyd et al. (2005); Qiao and Zhang (2014); Chakravarty 

and Mandal (2000); Maleki et al. (2014); Riahi et al. (2011); Haghighi et al. (2015); Mekheimer 

and Elkot (2012); Hung and Tsai (1996). 

 The above studies while categorically establishing the great sensitivity of hemodynamic 

arterial flows to stenotic geometry, were however all confined to Newtonian (Navier-Stokes 

viscous) flow models which are generally valid only for larger vessels. For decades however, it 

has been firmly established that blood comprises a sophisticated composite suspension of proteins, 

lipoproteins, ions, white and red blood cells suspended in plasma (water). Erythrocytes alone 

constitute 40% of blood by volume and owing to the small semi-solid and toroidal geometry of 

these cells, they result in a non-trivial elevation in blood viscosity of blood – this contributes to 

the fact that normal human blood is approximately four times more viscous than water by Merrill 
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et al. (1963). Furthermore, this viscosity varies in the human circulation system and assumes very 

strong rheological properties in the microcirculatory system as predicted theoretically and 

confirmed experimentally by Chien et al. (1984). Moreover, strongly non-Newtonian character-

istics are observed in small branches and capillary sections of the body wherein cell-free skimming 

leads to a decrease in viscosity. Hemo-rheology of blood is in all these cases significant, largely 

due to the shear-dependent viscous properties caused by the non-homogeneous nature of blood at 

the micro scale. It is therefore essential to modify Newtonian flow models to non-Newtonian 

models to simulate correctly the dynamics of blood flow in smaller vessels. This has stimulated 

significant interest in transferring rheological theories developed in chemical engineering to 

hemodynamics, in particular in the past two decades. Many different constitutive models have 

been explored with varying degrees of success. In this regard Ikbal et al. (2012) applied both a 

power-law and a viscoelastic Oldroyd-B model to analyse hemodynamics, Ramana Reddy and 

Srikanth (2015) addressed slip flow of blood through a catheterized overlapping artery using 

Eringen’s micropolar model and the Carreau rheological model was implemented by Ali et al. 

(2015) to investigate the pulsatile flow of blood in a catheterized artery for the case of a mild 

stenosis. Numerous other models and computational techniques have been implemented in stenotic 

fluid dynamics and the reader is referred to Chakravarty and Datta (1989); Sankar and Lee (2009); 

Shupti et al. (2015); Razavi et al. (2011); Shaw et al. (2009); Cho and Kensey (1991); Amorn-

samankul et al. (2006); Jeong and Rhee (2009); Zaman et al. (2015). 

 In the above investigations, generally only hydrodynamics has been considered. Heat and 

mass transfer, which are also significant features of real blood flows have been ignored. Thus far 

very few attempts have been made to investigate the collective flow, heat and mass transfer in 

pulsatile transport in overlapping stenotic arteries. In both non-stenosed and stenosed blood flows, 
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the significance of both mass transfer by Tarbell (2003) and heat transfer by Chato (1980) is well-

established. For example, Tarbell (2003) has identified that interaction of fluid mechanics and 

mass transfer is fundamental to many aspects of arterial transport and has highlighted four mass 

transport mechanisms which may contribute to localized atherosclerosis, namely blood phase-

controlled hypoxia, leaky endothelial junctions, transient intercellular junction remodeling, and 

convective clearance of the subendothelial intima and media. The transport of oxygen as a species 

in hemodynamic mass transfer is fundamental to health. Furthermore, other bio-chemicals and 

macromolecules such as plasma proteins and lipoproteins which are manufactured within the blood 

vessel wall are re-located via Fickian mass diffusion. Mass transfer is therefore integral to a proper 

understanding of circulatory hemodynamics. Chato (1980) has elaborated on the heat-conducting 

nature of blood which is essential in transporting thermal energy around the circulation system and 

explains the “warm feeling” accompanying consumption of food where heat is given off as a 

byproduct in the body. Several researchers have investigated computationally the rheological 

blood flow and/or heat/mass transfer problem. Bhargava et al. (2007) used variational finite 

elements, implicit finite differences and a non-Darcy drag force model to simulate biomagnetic 

hemodynamics and species diffusion as a model of drug delivery (pharmaco-dynamics) in impeded 

vessels, evaluating in detail the effects of Schmidt number on the transport phenomena. Zhang et 

al. (2008) utilized a sudden tubular expansion to simulate arterial stenosis and reported both 

theoretical and laboratory-based results for the effects of mass transfer from the arterial wall to 

flowing blood, observing that rate of mass transfer is much greater in zones of disturbed flow with 

a local maximum around the reattachment point where the wall shear rate is zero. Riahi and Garcia, 

(2013) considered coupled fluid dynamics and heat diffusion in stenosed arteries for dissipative 

flow and computed blood plasma and red cell velocities, blood pressure force, blood temperature 
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and the heat flux on the artery at different axial locations of the stenosis. Further studies of heat 

and/or mass transfer in stenotic flows include Sarifuddin et al. (2009) who considered non-

Newtonian properties. Wang (2008) who studied thermal convection in blood flow in narrow 

vessels (30-1000 mum) with a two-fluid model, Akbar (2014) who employed a Carreau rheological 

model for coupled heat and mass transfer in tapered stenotic arterial flow and Bég et al. (2008) 

who analysed biomagnetic microstructural thermal convection in hemodynamic in capillaries 

containing porous media using a finite element model.  

 In recent years another significant development in medical engineering has been the 

application of nanofluids. Nanofluids were pioneered by Choi (1995) initially for thermal 

enhancement in the transport industries (aerospace, automotive) and energy sectors. They 

comprise base fluids containing nanoparticles which are nanometer-sized particles. The 

nanoparticles are normally fabricated from metals, oxides, carbides, or carbon nanotubes owing to 

high thermal conductivities associated with these materials.  Normally the conventional base 

liquids are water, ethylene glycol and oil. Nanofluids achieve demonstrably higher thermal 

conductivities compared with base liquids alone and significantly enhance heat exchange rate in 

the base fluid. In a medical engineering context, nanoparticles have been found to achieve 

exceptional performance in enhancing thermal and mass diffusion properties of for example drugs 

injected into the blood stream. An excellent perspective of diverse areas of nanofluid deployment 

in the treatment of neural, pharmacokinetic, diabetic, cancer and other disorders has been recently 

presented by Boston Scientific corporation, USA Patent, (2007). Harris and Graffagnini (2007) 

have also identified new potential applications for nanoparticles in for example nanoparticle blood 

diagnostic systems, asthma sensors, carbon nanotubes in catheters and stents and anti-bacterial 

treatment for wounds. In neuro-pharmacological hemodynamics, it has been clinically verified that 
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nanoparticles can easily penetrate the blood brain barrier (BBB) facilitating the introduction of 

therapeutic agents into the brain by Spuch et al. (2012). Fullstone et al. (2015) have also recently 

described the exceptional characteristics of nanoparticles (size, shape and surface chemistry) in 

assisting effective delivery of drugs within cells or tissue (achieved via modulation of immune 

system interactions, blood clearance profile and interaction with target cells). They have further 

shown that erythrocytes aid in effective nanoparticle distribution within capillaries. Further 

investigations endorsing the promise of nanoparticles in hemodynamic diseases include Owens 

and Peppas (2006); Yoo et al. (2010) the latter with regard to nano-engineering particle morph-

ology and hitchhiking on red blood cells. A number of mathematical fluid dynamic studies have 

also explored the influence of nanoparticles on transport phenomena in medical engineering 

including Tripathi and Bég (2014) who examined peristaltic nanofluid drug delivery systems, 

Nadeem and Ijaz (2015) who studied nanofluid transport in stenosed blood flow and Akbar et al. 

(2014) who analyzed nano-particle diffusion in tapered stenotic arteries with wall mass flux. 

Further investigations of nano-particle dynamics in hematological systems include Tan et al. 

(2012) and Gentile et al. (2008) who considered nanoparticle mass transfer in intra-vascular rheo-

dynamic Casson blood flow with Taylor-Aris dispersion theory.  

The present study is devoted to understanding the effects of nanoparticle diffusion on 

characteristics of blood through overlapping stenosed artery. The Sisko rheological model is 

employed to simulate blood flow by  Sisko (1958) and the Buongiorno model Buongiorno (2006) 

for nanofluid transport. The Buongiorno formulation, which emphasizes Brownian motion and 

thermophoresis effects, has been successfully deployed in studies as diverse as peristaltic pumping 

by Bég and Tripathi (2012) and microbial fuel cell bioconvection exploiting micro-organism 

propulsion by Bég et al. (2015). The model is aimed at elucidating the interactional effects of 
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nanoparticles and coupled heat, mass and momentum transfer in rheological stenotic blood flow. 

Representative Reynolds numbers range from 1 (creeping viscous-dominated flow) in small 

arterioles to approximately 4000 in the largest artery, the aorta. Owing to the focus on smaller 

vessels, laminar flow is considered for which turbulence effects may be neglected. Both finite 

difference and finite element solutions for the derived nonlinear boundary value problem are 

presented, achieving very good agreement. The present study is to the authors’ knowledge the first 

comprehensive computational investigation of simultaneous nano-rheological flow, heat and mass 

transfer in overlapping stenotic hemodynamics.  

 

2. GEOMETRIC STENOSIS MODEL 

Let us consider viscous incompressible rheological blood flow through a tapered overlapping 

stenotic artery in the presence of nanoparticles. Both heat and mass transfer occur simultaneously 

and therefore the blood flow is assumed to be heat-conducting and species diffusivity of nano-

particles is distinct from the mass diffusivity of the blood. A cylindrical coordinate system is 

utilized i.e. ( ,  ,  ),r z where r, z are the radial and axial components respectively. The mathematical 

equation for the geometry of the overlapping stenosed artery is represented following Ismail et al. 

(2007) as: 

( )
( ) ( ) ( ) ( ) ( )
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0 0 0 0
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In the above expression d represents the length of non-stenotic arterial region, a is radius of normal 

artery, 0l  the length of stenotic region and ( )*
 tan =  the parameter controlling the convergence 

or divergence of the post-stenotic region. The geometry of a non-tapered artery is shown in Fig. 1 

(a). The parameter   is defined as  in Ismail et al. (2007): 
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2.1 Mathematical Rheological Nanoparticle Transport Model 

Assuming azimuthal symmetry, the flow of blood through the stenosed arterial segment can be 

treated as unsteady and two-dimensional. Therefore, the velocity, temperature and concentration 

fields are defined as: 

( ) ( )
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                                                                                                         (4)                                      

where u  and w  are the velocity components along the radial and axial directions, respectively. 

The vessel walls are assumed isothermal and thermal dispersion and viscous heating effects are 

negated. In view of (4), the continuity, momentum, energy and nanoparticle conservation 

equations may be written by amalgamating the Sisko hemodynamic model of Mekheimer and  El 

Kot (2012) and the Buongiorno nanofluid model by Buongiorno (2006) as follows: 
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In the above equations   is the fluid density, 
pc  is the specific heat, t  is the coefficient of 

thermal expansion, g is the acceleration due to gravity, k is the thermal conductivity, c is the 

coefficient of thermal expansion with nano-concentration, ( )
p

c  describes the effective heat 

capacity of the nanoparticle material, ( )
f

c denotes heat capacity of the fluid, D  is the Brownian 

diffusion coefficient, 1T  is the blood reference temperature, 1C  is reference nanoparticle 

concentration, Tw is the  arterial wall temperature, TD  as the thermophoretic diffusion coefficient. 

Now to eliminate the component of extra stress appearing in Eq. (6) and (7), we utilize the 

constitutive law of a Sisko model which reads Zaman et al. (2015); Yilmaz and Gundogdu (2008): 

( )
1

2
2

1.

n

 

−

 = +
 
 
 
 

AS                                                                                                               (10) 

In Eqn. (10),   and   are the dynamic and infinite-shear-rate viscosities of blood, respectively, 

n is the power law index and 1A  is the first Rivlin-Ericksen tensor given by: 

1 .T=  +A V V
                                                                                                                                                    

(11) 

The second invariant of first Rivlin-Ericksen tensor, , is defined as: 

( )2

1

1
= 

2
tra A .                                                                                                                                                        (12) 

In view of (4), the constitutive relation (10) yields: 
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2.2 Non- dimensionlization of transport model  

The problem defined by Eqs. (5) - (9) and (13) - (15) can be made dimensionless by defining  
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(16) 

Here r  is dimensionless radial coordinate, w  is dimensionless axial velocity, t  is dimensionless 

time, z  is dimensionless axial coordinate, R  is dimensionless radius, p  is dimensionless 

pressure, µ0 is dimensionless zero shear rate viscosity, Nb is Brownian motion parameter, 

zzrrrz SSS ,, are dimensionless stress components of the rheological stress tensor,  is dimensionless 

blood temperature, m is dimensionless infinite shear rate viscosity, GrN the local nanoparticle 

(species) Grashof number,   is dimensionless nanoparticle concentration function, Le is the Lewis 

number, Pr is Prandtl number, GrT the local thermal Grashof number, Re is the Reynolds number 

and Nt is the thermophoresis parameter. The non-dimensional geometric parameters appearing in 

the terms defined above are stenosis height parameter ( )1 ,a 


=   and vessel aspect ratio
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( )0 .a l =  Also 0U designates the average velocity of the blood. Introducing the above variables, 

Eqns. (5) -(9) and (13) - (15) after dropping the bars, now assume the form:  
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For the subsequent analysis, we shall assume that 1 and (1)O  = i.e. the maximum height of 

the stenosis is small in comparison with the radius of the artery and also that the radius of artery 

and length of the stenotic region are of comparable magnitude. As a consequence of these 

assumptions, Eqns. (17) - (22) readily contract to: 
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Following Burton (1996), we define the axial pressure gradient as: 
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p
A A t

z
cos t


− = + 
                                                                                            

(27) 

where 0A is the mean pressure gradient and 1A  is the amplitude of the pulsatile component which is 

responsible for systolic and diastolic pressures. In dimensionless form, Eqn. (27) becomes: 
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Inserting p z−  into the axial momentum Eqn. (24), we get: 
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Eqns. (25), (26) and (30) are subject to following boundary and initial conditions: 
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The appropriate formulae for volumetric flow rate, wall shear stress (WSS) and resistance 

impedance in the new variables become: 
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In Eqn. (37), ( )tan =  is termed the tapering parameter and  is the associated taper angle. The 

cases 0  , 0, = 0  correspond to the converging, non-tapered and diverging tapering artery 

scenarios, respectively. These cases are illustrated in Fig. 1 (b).  

Proceeding with the analysis we employ a radial coordinate transformation Ling and Atabek 

(1972): 
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Eqns. (24), (25) and (26) are thereby rendered into the following form: 
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Similarly, the dimensionless boundary and initial conditions become: 
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In a similar fashion, the volumetric flow rate, shear stress at the wall and resistance (impedance), 

respectively assume the form: 
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Substituting the dimensionless form of the pressure gradient in Eqn. (47), we can write: 
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3. FTCS FINITE DIFFERENCE NUMERICAL SOLUTION 

 

It is difficult if not intractable to derive analytical solutions for the nonlinear Eqns. (39) - (41). 

Therefore, a suitable numerical method is employed for the solution. This method, which is lucidly 

detailed in Hoffmann and Chiang (2000) with further examples of medical flow applications in 

Ali et al. (2015); Zaman et al. (2015) is forward in time (FT) and central in space (CS). It is 

therefore frequently designated as the FTCS difference algorithm in computational fluid 

dynamics. We denote k

iw  as the value of w at node xi, and similarly tk denotes the kth time instant. 

In this notation, the finite difference formulation of various partial derivatives is given as: 
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2Δ

i i

k

x

kw ww
w

x x

+ −−
 =

                                                                                                                      
(49) 

( )

2

1 1

22

2
,

Δ

i i i
x

k k k

x

w ww
w

x x

w + −− +
 =


                                                                                                       

(50) 

and                                             
1

.
Δ

k k

i iw

t

ww

t

+ −


                                                                                                                             
(51) 

Using the above formulae for derivatives, Eqns. (39)- (41), are readily reduced to the following 

form: 
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The prescribed boundary conditions are given by: 
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The numerical solution is pursued for N+1 uniformly discrete points ( ), 1,2, .. 1ix i N=  +   with a 

space grid size 1Δ
1

x
N

=
+

 at the time levels ( )1 Δkt k t= − , where Δ𝑡 is the small increment in time. 

At a particular cross-section of the arterial geometry, the simulations are executed for a specific 

value of temporal and spatial step sizes t  = 1t  and x  = 1x . Indeed, it is anticipated that for 

this specific choice the numerical values of velocity, temperature or nano-particle species 

concentration, may not attain convergence. Convergence to the correct solution is assured by 

choosing lower values of ( )2 1t t t =    and ( )2 1x x x =    and then comparing the numerical 

value of velocity (or temperature or nanoparticle species concentration) with the previously 

obtained values. To obtain the accuracy of the order 7~ 10 ,− we have taken the following step sizes: 

Δ 0.025x = and 0.00001t = . Fast convergence and stable solutions are achieved. The FTCS scheme 

is relatively easy to implement since the values of, for example, the velocity i.e. 1+k

iw  may be 

updated independently of each other. The entire solution is contained in two loops: an outer loop 

over all time steps and an inner loop over all interior space nodes. The algorithm behaves more 

like the solution to a hyperbolic differential equation than a parabolic differential equation. The 

solutions to the dimensionless transport equations (39)- (41) under conditions (42)- (44) i.e. the 

initial and boundary conditions are in fact, as pointed out by Burden and Faires (1997) all bounded, 

decaying functions. Therefore, the magnitude of the solution will decrease from the initial 

condition to a constant. The FTCS may if proper care is not taken, yield unstable solutions that 

oscillate and grow if the time step ∆t is too large. However, the FTCS scheme is superior in 

efficiency and compiles swifter than BTCS (Backward Time Centered Space) scheme.  
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4. FINITE ELEMENT METHOD VALIDATION OF COMPUTATIONS 

The nonlinear boundary value problem described by the coupled eqns. (39)- (41) under conditions 

(42)- (44) has also been solved with a finite element algorithm. Employing numerical integration 

rather than numerical differentiation, the adaptability of FEM is well documented. Although 

numerous formulations are available for this numerical method, the variational weak formulation 

is particularly adept at solving diffusion phenomena in fluid mechanics. Indeed, it has been applied 

to some degree of success in recent years in a considerable spectrum of biomechanical transport 

phenomena problems including pulsating rheological hemodynamics by Bég et al. (2012), 

nanofluid biopolymer enrobing flows by Latiff et al. (2015), biomagnetic hemodynamics in porous 

media by Hoque et al. (2013) and very recently magnetized nanofluid coating flows by Rana and 

Bég (2014). The FEM code, Bio flow in Bhargava et al. (2010) has been modified to stenotic 

hemodynamics with heat and mass transfer. Pressure gradient is re-defined and time conditions 

(temporal) also re-defined. Following some numerical tests, mesh-independence is confirmed for 

the present scenario with approximately 500 finite elements. The whole domain is delineated into 

a set of 500-line elements of equal width, each element being two-noded. Line elements are 

adequate since only one spatial variable i.e. normalized radial coordinate, (x) is involved. A 

variational form is derived for each of the transport eqns. (39)- (41) with the lead master variables 

w, , . The numerical integration is performed over the artificial finite element domain in terms 

of the normalized radial coordinate (xe; xe+1) using arbitrary test functions (W1, W2) which can be 

viewed as the variation in the master variables, following Reddy (1985). The nonlinear terms in 

eqns. (39)- (41) are easily accommodated. The finite element form of the variational equations is 

achieved by appropriate substitutions based on the following approximations for velocity, 

temperature and nanoparticle species concentration, respectively: 
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The weighting functions as in Reddy (1985) are: 
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The shape (interpolation) functions for a typical line element (xe, xe+1) in eqn. (57) are prescribed 

as follows: 
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The matrix-vector form of the finite element model is then generated. For brevity details are 

excluded here and the reader is referred to Bég et al. (2012); Hoque et al. (2013); Rana and Bég 

(2014); Latiff et al. (2015). This system of non-linear algebraic equations produced after assembly 

of the element equations is linearized by incorporating functions w, , , which are assumed to be 

known. Boundary conditions (42)- (44) are also easily set up. Following imposition of the initial 

(time) and boundary conditions, the matrix system is condensed and solved iteratively with a 

modified Householder elimination method, maintaining an accuracy of 0.0005. The comparison 

of finite difference method (FTCS) and finite element method (FEM) solutions is documented in 

each of Figures. 2-10 in the next section where the FEM solution is denoted by and 

corresponds only to the solid black line (-) case in each figure. Very close correlation is achieved 

for radial distributions of velocity, temperature and concentration at different values of m 

(dimensionless infinite-shear-rate viscosity) in Figures 2-7 for t =0.45 (prescribed time) and 

furthermore exceptional agreement is also attained in Figures 7-10 for temporal distributions of 

flow rate, wall shear stress and impedance function (flow resistance).  Tables 1 and 2 also show 

the correlation of FTCS and FEM solutions for the temperature and concentration (nano-particle 

species) gradients and again very good agreement is obtained. Confidence is therefore very high 

in the present FTCS computations, which furthermore provide a solid benchmark for future 
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extensions to the present study and experimentation with other non-Newtonian models. Readers 

are therefore encouraged to refine the present simulations to consider more complex effects 

including multiple species diffusion (oxygen, protein equations), variable species diffusivity, 

variable thermal conductivity and elasticity of the blood vessel. 

 

5. RESULTS AND DISCUSSION 

In the following section selected graphical results are displayed using the following set of 

parameters: 0 10.5,  1,  2.25,  e = 1, , 0.1,   .d l L n = 0.7 B = 4, Re  = 1= = = =  It is important to 

emphasize that this data correlates closely to actual physical conditions in real blood flow. For 

example, Prandtl number is prescribed a value of 21, following actual clinical data of Charm et al. 

(1968) based on room temperature conditions. We note in line with Charm et al. (1968) that 

although the viscosity, specific heat under constant pressure, and indeed the thermal conductivity 

of any fluid, including blood, are temperature-dependent, the composite of these three properties 

may be kept constant via a fixed Prandtl number. This has been confirmed to give reasonable 

accuracy in computational blood flow modelling in Yang (1989). Under the low Reynolds number 

approximation, which is consistent with rheological flow in small capillaries, Re is prescribed as 

unity i.e. viscous and inertial forces are of the same order of magnitude in the regime. Lewis 

number which quantifies the ratio of thermal to species (nano-particle mass) diffusivity is 

prescribed unity implying that both heat and nanoparticles diffuse at the same rate in the blood 

flow.  This is based on data from Lightfoot (1974). Geometric data has been prescribed based on 

numerous computational (and experimental) studies. The primary objective is to analyze the 

effects of nanoparticle diffusion and haemo-rheology on various characteristics of flowing blood.  
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Fig. 2 illustrates the dimensionless velocity profiles for different values of m 

(dimensionless infinite-shear-rate viscosity) at a specific location of the arterial segment z = 0.77 

in the stenotic region. This figure indicates that axial velocity of blood is a progressively decreasing 

function of m. This would appear to agree with the nature of more viscous flows in which greater 

momentum is required to achieve higher velocity. Blood flow deceleration is therefore anticipated 

for greater viscosity effect. This is however important in achieving many mass transfer functions 

in real blood flows as elucidated by Tarbell (2003). The implication for nano-particle diffusion is 

that it also will be encouraged and more effective in trans-membrane operations since a slower 

blood flow will enable engineered nano-particles to diffuse better across the vessel into the 

confining walls and beyond. The trends observed in Fig. 2 indeed concur with numerous other 

investigations of stenotic rheological hemodynamics including Shaw et al. (2009) for Casson fluids 

and Cho and Kensey (1991) for many different non-Newtonian multi-parameter models (e.g. 

Carreau fluids). In the present computations the Sisko rheological power-law index is set as n = 

0.7 corresponding to shear thinning blood. The thermal and species Grashof numbers linked to 

buoyancy-driven convection both have values of 2 implying that both thermal and species 

buoyancy forces are twice the viscous hydrodynamic force in the regime. These are entirely 

reasonable for actual transport in clinical blood flows as confirmed in Yang (1989); Lightfoot 

(1974).  

Fig. 3 presents the evolution of dimensionless velocity profiles for different values of Nt 

 and Nb . Figure 3(a) indicates that the value of axial velocity of blood increases with increasing 

the thermophoresis parameter Nt. On the contrary, the axial velocity of blood decreases with 

increasing Brownian motion parameter Nb. The thermophoresis and Brownian motion parameters 

arise in both the heat conservation (energy diffusion) and mass conservation (nano-particle species 
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diffusion equations), i.e. eqns. (40) and (41). In the former the terms associated with these 

parameters are all first order radial temperature or concentration gradients i.e. 
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. The influence on the velocity 

field is sustained via coupling between the energy and species eqns. (40, 41) and the thermal 

buoyancy (GrT ) and species buoyancy (GrN ) linear terms in the momentum eqn. (39). Thermal 

field will clearly exert influence via the former term and species diffusion field via the latter. The 

value of Nb is intimately linked with the size of nano-particles. Low Nb values correspond to larger 

nano-particles and vice versa. The concentration of nano-particles in blood flow will be enhanced 

with larger Nb (high values of smaller nanoparticle concentrations). This will boost the dominance 

of the conduction heat transfer which opposes the axial momentum diffusion (heat diffuses faster 

in this case than momentum). The elevation in thermal conductivity will also result in an increase 

in thermal diffusivity. This effectively decelerates the axial flow.  There are many mechanisms 

which link the nanoparticle presence to thermal conduction and to fluid mechanical phenomena. 

These include interfacial layers, Brownian motion, clustering of nanoparticles and the convection-

type effects at the nanoscale (nano-convection) which is associated with the nature of heat 

transport. With regard to the last of these mechanisms, Brownian motion of nanoparticles can 

produce thermal conduction elevation either indirectly via nano-convection of the fluid 

surrounding individual nanoparticles or directly via movement of nanoparticles which convey 

thermal energy (heat) i.e. particle to particle direct solid-solid transport of heat. Whichever 

mechanism is in action, the global effect on axial flow is a deceleration i.e. slowing. This again is 
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advantageous to the distribution of carriers in nanofluids which can be transported radially more 

effectively across the vessel wall into the surrounding tissue. The potential for enhanced and 

targeted drug delivery is very attractive therefore via the deployment of nanofluids. The boost in 

axial velocity with thermophoresis effect is linked to the nature of nanoparticle migration towards 

colder zones in the blood flow. Thermophoresis is the physical manifestation of averaged 

Brownian motion of particles in a fluid, under the action of a steady temperature gradient. After 

adequate time elapse, the more vigorous molecular impulses in the hotter fluid region compel the 

re-location of nano-particles towards the colder region, where weaker molecular impulses are 

present. On a molecular dynamics level, the stochastic Brownian force imparts molecular impulses 

on nano-particles. In nanofluids, this force is applied to an ensemble of particles and the 

corresponding thermophoretic velocity is the mean velocity of the ensemble. Stronger 

thermophoresis therefore encourages species diffusion towards colder zones which further aids the 

momentum diffusion. Axial acceleration is therefore assisted by increasing thermophoretic effect. 

It is also noteworthy that axial velocity is maximized at the vessel centerline and vanishes at the 

extreme radial coordinate which corresponds to the no-slip condition at the vessel walls. The semi-

parabolic profile is evident and characteristic of blood flows in small vessels. 

The effects of thermal Grashof number ( TGr ) and nanoparticle Grashof number ( NGr ) are 

shown in Figs. 4a, b. The Grashof number TGr is the ratio of thermal buoyancy force to the viscous 

force while the Grashof of number NGr is the ratio of nanoparticle (species) buoyancy force to the 

viscous force. An increase in TGr  corresponds to progressively stronger thermal buoyancy force. 

Similarly, greater values of NGr  imply stronger nanoparticle species buoyancy force generated by 

concentration differences in nanoparticles. The axial flow of blood accelerates with an increase in 

either of TGr and GrN . The assistive nature of dual buoyancy forces to momentum diffusion and 
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therefore hemodynamic acceleration is therefore clearly demonstrated. Greater temperature and 

concentration differences therefore can be exploited in generating more vigorous buoyancy forces 

in flowing blood and this can benefit axial targeting of drugs. In other words, for specific 

pharmaco-kinetic agents, the drug can be transported faster along the axial direction via thermal 

and species buoyancy when nano-particles are present compared to when they are absent. This 

may be beneficial in for example situations where drugs introduced at one arterial location may be 

aimed at a significant distance away from that location also i.e. so-called remote 

pharmacodynamics. Researchers Li et al. (2014) have shown that nano-particles may act as 

engineered carriers for other agents by electrodeposition synthesis. In this way different types of 

nano-particles e.g. nano-spheres, nano-ellipses or nanorods can be functionalized by attaching 

DNA plasmids to the nickel segments and attaching transferrin, a cell-targeting protein, to the gold 

(metallically bio-compatible) segments, using molecular linkages that selectively bind to only one 

metal and thus impart bio-functionality to the nanorods in a spatially defined manner. There is 

further scope infact to map supplementary segments to e.g. nanorods, in order to embed extra bio-

functionalities (e.g. endosomolytic agents) or specific drugs for blood disease treatment. In order 

to maximize effects of pharmacological agents, they are designed to interact in a structurally 

specific way with a protein receptor or influence positively particular physiological processes 

within the body, as described by Florence and Attwood (1998). This activates a secondary 

messenger system which engineers a carefully elected and targeted physiological effect. The new 

wave of nano-drug therapy can improve on existing methodologies by embedding directionality 

and accelerating with greater confidence the reversal of required modifications during illnesses in 

the body to assist its return in a more speedy and effective manner back to the homeostatic state. 

All bodily functions are a result of interactions of various chemicals and nano-drugs are proven to 
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achieve better performance in interfering advantageously with these processes. The distinction 

between nano-pharmaco-fluid mechanics (of which the present work is an example) and 

pharmaco-kinetics, is that the latter totally negates all fluid dynamics and heat transfer aspects and 

focuses solely on chemical and mass balances, even in the most sophisticated efforts. 

Pharmacokinetics only describes the relationship between drug dose and the drug receptor and the 

time course of drug concentration in the body. It addresses drug dynamics by assuming that the 

concentration that a drug reaches at its site of action is influenced by the rate and extent to which 

a drug is absorbed, distributed, metabolized and excreted. Pharmaco-kinetics, as practiced by 

pharmacists and medical scientists, therefore significantly over-simplifies actual physiological 

transport phenomena in drug conveyance in the blood and can never truly represent the real picture 

since viscosity, thermos-physics, arterial geometry and indeed the many interactional aspects of 

these aspects with mass transfer, cannot be simulated with simple pharmaco-kinetic models. The 

present study may be one of a number of investigations which could lead to a new era in pharmaco-

transport modelling. It is sincerely hoped by the authors that the present work stimulates more 

interest among engineering scientists to engage in this growing area of medical flow simulation. 

Fig. 5 illustrates the dimensionless temperature profiles for different values of Prandtl 

number (Pr) (panel (a)) and thermophoresis parameter (Nt) (panel (b)) at the stenotic throat of the 

arterial segment. Figure 5 (a) shows the profiles of temperature of blood inside the artery for Pr 

=14, 21, 25. The Prandtl number is the ratio of momentum diffusivity to the thermal diffusivity. 

Larger values of Prandtl number correspond to the case of less heat transfer from the boundary to 

the fluid. Prandtl number is also the product of dynamic viscosity and specific heat capacity 

divided by the thermal conductivity of the fluid. Although for simplicity we have constrained each 

of these physical properties of blood to be constant, tentatively a variation in Prandtl number 
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implies that one or more of these individual properties changes, and indeed variation in clinical 

testing of blood flows has confirmed this. The reader is referred to the seminal study of Victor and 

Shah (1976). For example, it is known that thermal conductivity of whole blood at 37˚C (normal 

body temperature) is 0.492W/mK and thermal diffusivity is 1.19 ×10–7 m2/s, compared with pure 

plasma which has at 21˚C, a thermal conductivity of 0.570 W/mK and thermal diffusivity of 1.21 

×10–7 m2/s. Blood thermal conductivity however varies considerably from one zone to another 

and indeed body temperature varies depending on illness. Therefore, an approximation must be 

made for thermal effects in simulation since it is not possible to have location-specific Prandtl 

numbers. One reason why heat transfer has been included in the present simulations is that 

thermophysical effects are intimately associated with homeostasis which is the biological 

mechanism for maintaining temperature equilibrium within a wide range of environments. The 

circulatory system of mammals maintains homeostasis by the heart and blood vessels working in 

unison to sustain a healthy blood flow in the entire circulatory system. Although the geometric 

model we have considered is much simpler than full clinical systems, it is a good first step in 

understanding thermal (and other) diffusion processes in real blood flows. Of course, upscaling of 

the model is needed, and this is best achieved via computational fluid dynamics interfaced with 

MRI scanned models of actual arterial a stenotic geometry, which is a future objective of the 

authors Weinbaum et al. (1984). As elaborated earlier Prandtl number is inversely proportional to 

thermal conductivity (for fixed viscosity and specific heat capacity). Greater Prandtl number 

therefore implies that less heat is conducted in the blood. The trends in Figure 5(a) are evidently 

consistent with this logic - a decrease in blood temperature is computed with increasing Prandtl 

number. It is further observed that the temperature is more sensitive to the increase in Prandtl 

number near the arterial wall (larger dimensional radius) and no significant variation is observed 
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in temperature in the vicinity of the center (small dimensional radius), where convection effects 

dominate thermal conduction effects (absence of tissue suppresses the role of thermal conduction 

in the bulk flow whereas it maximizes the effect at the wall). This has also been observed and 

reported by many seminal investigations of blood heat transfer including Weinbaum et al. (1984); 

Chato (1990). These studies specifically addressed thermally significant small vessels and were 

not focused on major supply blood vessels. They are therefore relevant to the present work which 

dwells on smaller vessels where rheological effects are important. However, this also raises other 

issues. The blood viscosity in these vessels will be more temperature-dependent than in larger 

vessels, and this will also influence Prandtl number. Furthermore, the pulsatile nature of actual 

blood flow and the interference effects of a stenosis are probably better analyzed using the wave 

theory of heat conduction and also improved bio-conduction models for the blood vessel walls.  

With regard to the latter efforts have been made by Ozisik and Tzou (1994) over two decades ago 

to integrate wave heat conduction with biological heat transfer and more recently by El Sayed and 

Bég  (2014) to consider non-Fourier bioheat transfer in tissue (vessel walls) with thermal relaxation 

effects. These aspects we hope to consider in future refinements of the present model which is a 

platform for doing precisely this. Readers are also encouraged to explore these modifications. 

There is now a strong consensus that in thermo-fluid simulations of blood flows, especially where 

the focus is thermal treatment (and this includes nano-drug delivery) the classical method of 

simulating blood flow as a distributed heat source (or sink) incorrectly presumes that the capillary 

vasculature is the principal location of heat exchange and that the blood flow term is a scalar 

property. Kotte et al. (1996) have shown that in reality, the blood flow in a tissue usually has a 

direction from artery to vein passing through the capillary bed and that blood and proximate tissues 

do not sustain thermal equilibrium when the blood vessel diameter exceeds 500μm and therefore 
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heat transfer models for tissue and blood in significantly large vessels must be treated individually. 

However, this modification is not needed for smaller vessels (rheology is important in these 

geometries) which we have considered, and the present approximations are certainly justifiable. 

The effect of thermophoresis parameter (Nt) on blood temperature inside the artery is shown in 

Figure 5(b). No significant quantitative is observed with increasing the values of thermophoresis 

parameter. The temperature only slightly increases in the vicinity of the arterial wall with 

increasing thermophoresis parameter. The thermophoretic effect is a species-dominated effect and 

is linked to nano-particle diffusion. Although this does affect the hydrodynamics of stenotic blood 

flow, it does not impact substantially significantly on thermal diffusion in such flows. Indeed, 

clinical studies Dhont et al. (2007) have confirmed that thermophoresis influence is felt primarily 

in the velocity field in drug delivery, not in thermal fields, and this is attributable to the fact that 

physically thermophoresis takes place on a different timescale is essentially a diffusion limited 

transport process. However other studies have shown that via other procedures such as IR-Laser 

heating in tissue treatment, thermophoretic effects of associated drugs can be elevated with greater 

time elapse. Thermophoretic mobility as dictated by the nano-species diffusivity requires a very 

large thermal load to exert any major influence and laser heating therapy achieves this in Wienken 

et al. (2010). However, in conventional drug injection into the diseased artery it is not expected 

that thermophoresis will tangibly modify the thermal distribution in flowing blood and our results 

concur with these observations.  

Fig. 6 illustrates the dimensionless concentration profiles or nanoparticle fraction for 

different values of thermophoresis parameter (Nt) (panel (a)), Brownian motion parameter (Nb) 

(panel (b)) and Lewis number (Le) pane (panel (c)) at the stenotic throat of the arterial segment. 

Panel (a) shows a strong increase in that the concentration profile with the increase of 
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thermophoresis parameter (Nt), while it demonstrates the opposite trend with increasing Brownian 

motion parameter (Nb). The observed behavior of nanoparticle fraction profile with increasing 

Lewis number is quite similar to its corresponding behavior with increasing Brownian motion 

parameter. It is also interesting to note that in contrast to the observation made through Figures. 

6(a) and 6(b), Figure 6(c) show that the dimensionless concentration profile is less sensitive to 

Lewis number in the vicinity of the arterial wall. This is probably largely attributable to the absence 

of trans-wall diffusion (it is impermeable) which reduces the influence of species diffusivity.  

Lewis number embodies the relative role of thermal diffusion to mass (species) diffusion i.e. it 

simulates the energy diffusion rate relative to the species diffusion rate. Near the centerline of the 

artery where convective processes are strongest, Lewis number will be influential- significant 

modifications in the concentration distributions of nanoparticles are observed here. However, with 

progression away from the bulk flow region (low dimensionless radius) towards the vessel 

periphery (higher dimensional radius) the convective process will be stifled, and Lewis number 

will exert a diminished effect. The profiles are observed to converge in the near-wall region 

testifying to the weak influence of Lewis number here. It is also noteworthy to mention that when 

Le=1 both the heat and nanoparticles will diffuse at the same rate. When Le >1, a scenario of most 

relevance in clinical hemodynamics, as emphasized by Lightfoot (1974), thermal diffusivity 

exceeds the species diffusivity. We further note that for Le > the peak concentration in nanoparticle 

species is significantly higher further from the artery centerline compared with Le =1. The profiles 

grow more sharply in this central core zone of the flow for higher Lewis number than they do for 

lower Lewis number. The implication is that for nano-drugs with lower species diffusivity than 

blood thermal diffusivity a greater concentration growth is achieved radially than for drugs which 

have the same diffusivity as flowing blood. We note also that the finite element method (FEM) 
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computations achieve exceptionally good correlation with the FTCS finite difference computations 

in all the figures 2-6 for all values of dimensionless radius i.e. across the artery cross-section. 

Fig 7-8 illustrate the time series of volumetric flow rate. In Figure 7, the solid line curve 

corresponds to a specific set of parameters values i.e. Nt = 0.5, Nb = 0.5, TGr  = 2, NGr  = 3, n = 

0.7. The others three curves in this figure are produced by varying either of Nt, Nb and NGr . A 

comparison of the solid line curve and of the curve with super imposed circles indicates an increase 

in volumetric flow rate by increasing TGr . Similarly, a comparison of solid line curve with that of 

curve with superimposed squares reveals an increase in volumetric flow rate with increasing 

thermophoresis parameter. The effects of Grashof number NGr on volumetric flow rate are similar 

to the effects of thermophoresis parameter (see the axial velocity response in figure 3a) i.e. species 

Grashof number boosts the volumetric flow rate. The trends in both Figures 7 and 8 are consistent 

with the assistive influence of both Grashof numbers i.e. both thermal and species buoyancy forces 

on velocity. Acceleration in the flow enhances volumetric flow rate since for a fixed arterial cross 

section (and therefore dimensionless radius value), the volumetric flow rate, Q, as defined by eqn. 

(45) is directly proportional to the axial velocity. Conversely the flow rate is found to decrease 

with increasing Brownian motion parameter. Again, this concurs with the influence of Brownian 

motion on axial velocity (fig. 3b) where it induces deceleration. Brownian motion will therefore 

also deplete the volumetric flow rate. In both figures 7 and 8, the flow rate is found to consistently 

grow with greater elapse of time. The implication in pharmaco-dynamics is that greater transport 

of nano-scale drugs is achieved as time elapses and this is precisely the objective in targeted drug 

delivery and also in medical desires to enforce a particular effect over a certain time period rather 

than instantaneously. The drug may travel faster in the circulatory system to the target zone. 
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However, the physiological response should be not too traumatic so that it induces adverse effects 

in Florence and Attwood (1998). 

Fig. 9 illustrates the time series of dimensionless wall shear stress (WSS). The solid line 

displays the WSS profiles for Nt = 0.5, Nb = 0.5, GrT = 2, GrN = 3. The remaining curves are 

produced by varying either theses parameters. It is observed that the wall shear increases with 

increasing Nt while it follows a converse trend with Nb i.e. it decreases with increasing Nb. 

Moreover, it is observed that increase in both thermal and nanoparticle species Grashof numbers 

is to increase the wall shear stress (WSS). Again, this follows logically from the observed 

acceleration in axial flow in figs. 4 and 4b. In eqn. (46), WSS is defined for the non-dimensional 

case as 
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 and is therefore strongly linked to radial gradient of the 

axial velocity i.e. i.e. r/w  . Since greater Brownian motion parameter (Nb) as observed in figure 

3b clearly decelerates axial velocity it will also reduce shear stress at the wall. Velocity boundary 

layer thickness at the arterial contact surface will therefore be increased. The influence of time on 

wall shear stress is consistent with numerous studies of stenotic flow including for example, the 

Newtonian model solutions of Hung and Tsai (1996) and non-Newtonian simulations of Razavi et 

al. (2011). Axial flow is also accelerated with greater time elapse in the stenosed artery and this 

manifest in a progressive escalation in the WSS magnitudes.  We further note that magnitudes of 

WSS remain positive indicating that back flow (blood flow reversal) never arises. The periodic 

nature of the profiles in figures 7-9 is linked to the pulsatile nature of the flow i.e. oscillatory 

effects.  

Fig. 10 demonstrates the time evolution of impedance or resistance to flow at the stenotic 

throat. Again, a similar procedure is followed to compare various curves as adopted previously. It 
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is found that resistance to flow rate increases with increasing/decreasing the value of Nb/Nt. On the 

contrary, the thermal Grashof number serves to reduce the impedance. This is associated with the 

species buoyancy force, which quantifies the density variation that is due to variable volume 

fraction of nanoparticles. This force helps the nano-particles exert strong convective heat transfer 

for low concentrations in the presence of the combined effects of thermophoresis and Brownian 

motion. The magnitude of resistance is also observed to fall with progression in time since as the 

flow is accelerated (figure. 9 shows the progressive ascent in WSS) this implies a decreased 

impedance to the flow with greater time elapse. Again, this pattern is similar to other studies 

reported in the literature.  

Finally, in Figure 11 we have depicted the streamlines for blood flow for specified 

parameters Fig. 11. Panel (a) represents the flow pattern for specific values of 𝐺𝑟𝑇, 𝐺𝑟𝑁, δ, and . 

This panel confirms the presence of a circulating bolus of blood enclosed by two streamlines in 

the overlapping stenotic region of the artery. A comparison of this panel with panels (b) and (c) 

reveals that there is no significant deviation in size and circulation of the trapped bolus of blood 

by varying either of 𝐺𝑟𝑇, 𝐺𝑟𝑁. This shows that the circulating bolus of blood is less sensitive to the 

change in thermal and nanoparticle Grashof numbers and thereby the associated buoyancy forces. 

However, it is observed through the comparison of panel (a) with panels (d)-(f) that streamline 

patterns are however significantly modified with a change in the shape parameters of the stenosis. 

It is noted that for a diverging artery, the outermost streamlines enclosing the circulating bolus 

merge in the beginning of the overlapping region resulting in flow acceleration over the whole 

stenosed segment. On the contrary for a converging artery, the outermost streamlines enclosing 

the circulating bolus merge in the end of the overlapping region resulting in a flow deceleration 

(back flow) over the whole stenotic region. 
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6. CONCLUDING REMARKS 

 

A theoretical and numerical study has been conducted to investigate the nanoparticles effects on 

rheological blood flow, heat and transfer in an overlapping stenotic artery. The constitutive 

equation based on the Sisko non-Newtonian model has been incorporated in the present analysis 

to represent the blood rheology. The model is aimed at simulation of the nano-particle drug 

delivery in stenosed realistic hemodynamics in small vessels of the human circulatory system. A 

numerical procedure based on a forward time central space (FTCS) finite difference algorithm has 

been utilized to obtain computational solutions for the unsteady, nonlinear, coupled nonlinear 

partial differential equation boundary value problem. Validation of solutions for the general model 

has been attained using a variational finite element method (FEM). The blood axial velocity, 

volumetric flow rate, temperature and concentration distributions and also arterial wall shear stress 

(WSS) and hemodynamic impedance have been computed for a wide range of the merging 

transport phenomena parameters e.g. rheological index, Brownian motion parameter, 

thermophoresis parameter, thermal and species (nano-particle) Grashof numbers. The key finding 

of the current study are: 

• The blood axial velocity at the stenotic throat increases with increasing thermal Grashof number. 

On the contrary, axial flow is decelerated with increasing nanoparticle Grashof number. 

• The blood axial velocity at the stenotic throat increases with increasing thermophoresis 

parameter while it is progressively reduced with greater Brownian motion parameter values. 

• The nano-particle species concentration at the cross-section corresponding to the stenotic throat 

is found to increase by increasing thermophoresis parameter. The opposite response is computed 

by increasing Brownian motion parameter. 
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• The nano-particle concentration sharply changes in the vicinity of arterial wall and is generally 

invariant over the remainder of the arterial cross-section. 

• The blood temperature is a decreasing function of Prandtl number. However, it is less sensitive 

to the change in thermophoresis and Brownian motion parameters. 

• A reduction in volumetric flow rate at the stenotic throat is caused by increasing the Brownian 

motion parameters. 

• There is no significant deviation in streamlines of flowing blood by increasing both thermal and 

nanoparticle Grashof numbers. 

The study presented, it is envisaged, will stimulate further interest in more realistic pharmaco-

dynamic transport modelling for nano-drugs in stenosed arteries. Efforts in this regard are 

underway and will be communicated imminently. 
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TABLES  

TABLE 1: - Temperature gradient at the wall at different axial locations in the stenotic region 

with 
1  2,    3,   0.5, 0.1,  0.45, Re 3, 4, 0.7, 0.Gr Gr 175, 1.= = = = = = = = = =T N bLe = 1, N t B n m e  

1

1

=



 xR x


 

z Pr = 21, Nt = 0.5 Pr = 14 Nt = 0.1 

FDM FEM FDM FEM FDM FEM 

0.5500 3.2881 3.2882 2.5749 2.5747 3.3360 3.3361 

0.7700 3.2561 3.2563 2.5411 2.5412 3.2939 3.2940 

1.0000 3.2657 3.2655 2.5512 2.5513 3.3063 3.3064 

1.2600 3.2757 3.2756 2.5618 2.5619 3.3194 3.3195 

1.7100 3.2560 3.2561 2.5410 2.5412 3.2938 3.2939 

2.0000 3.2972 3.2974 2.5846 2.5848 3.3483 3.3482 

 

 

TABLE 2: Concentration gradient at the wall at different axial locations in the stenotic region 

with 
1  2,    3,  ,  0.1, 0.45,Re 3, 4Gr Gr , 0.7, 0.175, 1.= = = = = = = = =T N Le = 1 t B n m e  

1

1

=



 xR x


 

z  Pr = 21, Nb = Nt = 0.5 Pr = 14 Nt = 0.1 Nb = 0.1 

FDM FEM FDM FEM FDM FEM FDM FEM 

0.5500 -3.3174 -3.3175 -2.6348 -2.6347 -0.6733 -0.6734 -16.5869 -16.5870 

0.7700 -3.3256 -3.3257 -2.6407 -2.6408 -0.6730 -0.6731 -16.6281 -16.6282 

1.0000 -3.3246 -3.3247 -2.6404 -2.6405 -0.6733 -0.6734 -16.6231 -16.6230 

1.2600 -3.3223 -3.3221 -2.6388 -2.6389 -0.6734 -0.6735 -16.6114 -16.6112 

1.7100 -3.3256 -3.3255 -2.6407 -2.6408 -0.6730 -0.6732 -16.6281 -16.6280 

2.0000 -3.3123 -3.3122 -2.6302 -2.6301 -0.6729 -0.6728 -16.5613 -16.5612 
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FIGURE CAPTIONS 

FIG.  1: Geometry of the overlapping stenotic artery 
 

FIG.  2. Variation of axial velocity for different values of m with 

  2,    2,  Gr G 0.5 ,  0.r 45.t bT N N N , Pr = 21 t= = = = =  

 

FIG. 3.  Variation of axial velocity for different values of Nt (left) and Nb (right) with:  

  2,    2,  Gr G 0.5 ,  0.r 45.t bT N N N , Pr = 21 t= = = = =  

FIG. 4 (a). Variation of axial velocity for different values of 𝐺𝑟𝑇  with the following data:

0.5,  0.175,   0.1,  Pr  21,    2,  0.45r .Gt b TN N m t= = = = = = =  

FIG. 4 (b). Variation of axial velocity for different values of 𝐺𝑟𝑁 with the following data:

N0.5,  0.175,   0.1,  Pr  21,    2,  0.45.Grt bN N m t= = = = = = =  

 

FIG. 5 (a). Temperature profile at different values of Pr with the following data: 

  2,    2,  0.5,   0.1, 0.45r Gr .G tT N N  t= = = = =  

 

FIG.  5 (b). Temperature profile at different values of Nt with the following data: 

  2,    2,  ,   0.1,  0.45.Gr GrT N Pr = 21 t= = = =  

 

FIG. 6(a). Concentration of mas profile at different values of Nt with the following data: 

  2,    2,   0.5,   0.1,Pr  21,  0.4Gr G .r 5bT N Le = 1, N t= = = = = =  

 

FIG. 6 (b). Concentration of mas profile at different values of Nb with the following data: 

  2,    2,  0G .5,   0.1,Pr  21,  0.4r r 5.GT N tN Le = 1, t= = = = = =  

 

FIG. 6 (c). Concentration of mas profile at different values of Le with the following data: 

  2,    2,  0.5,   0.1,PGr Gr r  21,  0.45.T N t bN N t= = = = = = =  

 

FIG. 7. Flow rate profile at different values with the following data   3,   0.1, .GrN  Pr = 21= =  

 

FIG. 8. Flow rate profile at different values with the following data   2,   0.1, .GrT  Pr = 21= =  

 

FIG.  9. Wall Shear Stress profile at different values with the following data 0.1, Pr = 21. =  

 

FIG. 10. Resistance to flow or impedance at different parameters with the following data 

  0.1,Pr = 21. =                                                                                                                                                                                                                                                      

FIG. 11. Streamline of blood flow in artery with the following data  0.5, 0.45.t bN N t= = =  
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FIGURES 

 

 

 

                                         

Figure 1: Geometry of the overlapping stenotic artery 
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Figure 2. Variation of axial velocity for different values of m with 

  2,    2,  Gr G 0.5 ,  0.r 45.t bT N N N , Pr = 21 t= = = = =  

(N.B. FEM solutions correspond to blue dot in Figs 2-10)  

 

  

Figure 3. Variation of axial velocity for different values of Nt (left) and Nb (right) with:  

  2,    2,  Gr G 0.5 ,  0.r 45.t bT N N N , Pr = 21 t= = = = =  
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Figure 4 (a). Variation of axial velocity for different values of 𝐺𝑟𝑇  with the following data:

0.5,  0.175,   0.1,  Pr  21,    2,  0.45r .Gt b TN N m t= = = = = = =  

Figure 4 (b). Variation of axial velocity for different values of 𝐺𝑟𝑁 with the following data:

N0.5,  0.175,   0.1,  Pr  21,    2,  0.45.Grt bN N m t= = = = = = =  

 

   

Figure 5 (a). Temperature profile at different values of Pr with the following data: 

  2,    2,  0.5,   0.1, 0.45r Gr .G tT N N  t= = = = =  

Figure 5 (b). Temperature profile at different values of Nt with the following data: 

  2,    2,  ,   0.1,  0.45.Gr GrT N Pr = 21 t= = = =  
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Figure 6(a). Concentration of mas profile at different values of Nt with the following data: 

  2,    2,   0.5,   0.1,Pr  21,  0.4Gr G .r 5bT N Le = 1, N t= = = = = =  

Figure 6 (b). Concentration of mas profile at different values of Nb with the following data: 

  2,    2,  0G .5,   0.1,Pr  21,  0.4r r 5.GT N tN Le = 1, t= = = = = =  

Figure 6 (c). Concentration of mas profile at different values of Le with the following data: 

  2,    2,  0.5,   0.1,PGr Gr r  21,  0.45.T N t bN N t= = = = = = =  
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Figure 7. Flow rate profile at different values with the following data   3,   0.1, .GrN  Pr = 21= =  

    

Figure 8. Flow rate profile at different values with the following data   2,   0.1, .GrT  Pr = 21= =  
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Fig. 9. Wall Shear Stress profile at different values with the following data 0.1, Pr = 21. =  

 

  

  

Figure 10. Resistance to flow or impedance at different parameters with the following data:   0.1,Pr = 21. =  
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Figure 11. Streamline of blood flow in artery with the following data:  0.5, 0.45.t bN N t= = =  
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