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ABSTRACT 

A global increase in industrialisation has resulted in the rapid growth of textile industries in 

developing countries, leading to a high rise in the overall discharge of a broad range of 

pollutants. Amongst these pollutants is dye wastewater, which frequently has mutagenic and 

carcinogenic effects on humans and animals, depending on the receiving watercourses as a 

source for drinking water. In contrast to traditional high-rate wastewater treatment units, 

passive biological treatment technologies, such as constructed wetlands are a sustainable and 

cost-effective alternative technology to treat large quantities of contaminated water, 

especially in places where land costs are low. 

Four small scale experiments were conducted between July 2014 and June 2017 using plastic 

containers simulating constructed wetland planted with Common Duckweed (Lemna minor) 

for assessing the system performance, as a polishing stage, for the treatment of synthetic 

wastewater containing dyes: acid blue 113 (AB113), reactive blue 198 (RB198), basic red 

46 (BR46) and direct orange 46 (DO46), with the main focus on removal of the dyes.  

The novelty of this research was to cover five prominent gaps in the literature, related to the 

treatment of dye effluents using free-floating plant-based constructed wetland systems under 

hydroponic conditions. These gaps have not been previously investigated with this system, 

which include: treatment of four dyes, which have not been treated before using this 

economic system;  evaluate the system performance and the removal mechanism, in detail, 

for long-term operation as a polishing stage; assess the performance of identical systems for 

treating the same dye wastewaters under both semi-natural and controlled conditions; 

studying the effect of pH adjustment during the operation period; and treatment of mixed 

dyes (real cases) of textile effluents. 

The overall findings showed that the systems removed BR46 more efficiently than the other 

dyes studied, and ponds containing L. minor significantly (p < 0.05) outperformed algae-

dominated and control ponds. The potential of L. minor ponds for the treatment of BR46 

was significantly (p < 0.05) better under controlled conditions than those under semi-natural 

conditions. The impact of pH was negligible concerning the treatment of BR46. In addition, 

the potential for BR46 degradation when it forms only part of a dye mixture is lower, 

compared to its corresponding removal as an individual dye. Furthermore, only ponds 
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containing L. minor completely eliminated BR46 by removing the aromatic amines after dye 

decolourisation. Regarding the main water quality parameters, the findings showed that the 

removal efficiencies of chemical oxygen demand were not significantly different in all 

design variables. The reduction of nutrients was considerably higher in planted ponds than 

in controls. Based on L. minor monitoring, all dyes reduced the growth of L. minor, and the 

synthetic textile wastewater negatively affected the plants’ growth compared with 

wastewater containing fertiliser. 

The overall outcomes of this research provide a better understanding of the long-term 

performance of shallow ponds technology using different al conditions and design 

variables for the treatment of dye wastewater. Consequently, this will be a tremendous value 

for wetland ponds engineers to foster the practical development of this system as a low-cost 

alternative for helping developing countries.
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Chapter 1                                      
Introduction 

1.1 Overview 

This chapter briefly demonstrates the adverse impact of textile factories focusing on their 

contaminated effluents, and the valuable approach of such wastewater treatment for 

environmental protection and subsequently to reduce the related water shortage problem. 

The chapter is partitioned into five sections. Section 1.1 presents an overview to the chapter. 

Section 1.2 defines the main textile industry problems and wetland features as a promising 

treatment technology, which is also the main motivation of the research. The gaps in 

knowledge, study problem and contribution are presented in Section 1.3. The aim and 

objectives are introduced in Section 1.4, and finally, Section 1.5 presents the thesis outline. 

1.2 Research background and motivations 

Population growth, economic improvement and rapid industrialisation have resulted in a 

higher demand for textile materials, which have consequently increased the number of textile 

industries and their effluents. This is one of the major causes of global environmental 

pollution challenges, particularly in the developing world (Dos Santos et al., 2007; Khataee 

et al., 2012; Gupta et al., 2015; Yaseen & Scholz, 2016). It is common for the textile industry 

to release huge amounts of wastewater, as well as using a large quantity of potable water 

(Babu et al., 2007; Hai et al., 2007; Ohioma et al., 2009; Carmen & Daniela, 2012; Zhang et 

al., 2012; Kamat, 2014; Sivakumar, 2014). It is estimated that between 200 litres (Ntuli et 

al., 2009; Kant, 2012; Ghaly et al., 2014; Suresh, 2014; Holkar et al., 2016) and 500 litres 

(Kalliala & Talvenmaa, 2000; Karcher et al., 2002) of fresh water is used to produce 1 kg of 

textile material. It is utilised during the processes of applying the chemical onto the fabric 

materials and washing the final products (Ntuli et al., 2009; Ananthashankar, 2012; Ghaly 

et al., 2014). This huge quantity of water consumed is unacceptable, especially in countries 

that are threatened by or are suffering from water scarcity problems (Dos Santos et al., 2007; 

Reham, 2011). This extensive use of natural water resources via fabric industries leads to 

disturbance of the environmental equilibrium, and consequently contributes to increasing the 
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risk of water shortage. It is reported that industrial activities in time will lead to the existing 

potable water resources becoming even more scarce (Research priorities for earth science 

and public health, 2007; Reddy & Lee, 2012; Tahir et al., 2016). The Food and Agricultural 

Organisation (FAO) (2012) stated that even the regions that are characterised by plentiful 

resources of freshwater could also become under risk of water scarcity and drought. The 

issue of water scarcity has worsened and is set to worsen even further, according to the FAO 

(2016); the estimations report that by 2025 two-thirds of the world will live in regions under 

the risk of water scarcity, and around 1.8 billion people will be suffering from total water 

shortage problems in their areas (Chartres & Varma, 2010; Al-Isawi, 2016), which 

consequently makes the utilisation of natural water by textile mills even more unacceptable 

worldwide. In addition to using vast quantities of water, textile industries discharge 

approximately 1000–3000 m3 of wastewater daily, whilst processing 12–20 tonnes of fabric 

(Pegga & Brown, 1986; Kdasi et al., 2004; Ananthashankar, 2012; Ghaly et al., 2014). This 

wastewater contains a mixture of dyes, auxiliaries, and heavy metals (e.g., zinc, copper, 

chromium, and lead), which are added during the textile production process and this causes 

serious environmental concerns (Cheng et al., 2002; Merzouk et al., 2009; Ananthashankar, 

2012; Carmen & Daniela, 2012; Paul et al., 2012; Sekomo, 2012; Gupta et al., 2015; Holkar 

et al., 2016). However, the main problematic pollutants from textile mills in aquatic life are 

dyes (Dos Santos et al., 2007; Morali, 2010; Reema et al., 2011; Yaseen et al., 2017; Yaseen 

& Scholz, 2018). 

Dyes are generally classified according to their origin into natural and synthetic; synthetic 

dyes are widely used as colouring agents and textile mills utilise around 60% of the dyes 

produced globally (Morali, 2010). In commercial terms, azo dyes are seen as the largest 

group of synthetic dyes (Stolz, 2001; Kim et al., 2004; Pandey et al., 2007; Joshi et al., 2008; 

Lim et al., 2011) and it is estimated that between 60% and 70% of the dyes applied in the 

textile industry are azo compounds (Van Der Zee et al., 2003; Davies et al., 2006; 

Puvaneswari et al., 2006; Cumnan & Yimrattanabovorn, 2012; Solis et al., 2012; Al-Amrani 

et al., 2014). This group of dyes is defined by the presence of one or more double bonds 

between nitrogen atoms (Zollinger, 1991; Wallace, 2001; Pandey et al., 2007; Yaseen & 

Scholz, 2016). In textile dye-baths, most azo dyes cannot bind with fabrics completely, 

resulting in some of the dyes being lost and therefore released into the environment (Manu 

& Chaudhari, 2003; Pearce et al., 2003; Van Der Zee & Villaverde, 2005; Ratna & Padhi, 

2012). The degree of loss varies between 2% and 50% depending on the type of dye (Ganesh 
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et al., 1994; O’Neill et al., 1999; Pandey et al., 2007; Bedekar et al., 2015). Typically, textile 

industry processing effluents contain dyes in the range between 10 and 200 mg/l which 

means they are highly coloured (O’Neill et al., 1999; Saleh, 2005; Pandey et al., 2007; 

Arslan-Alaton et al., 2008; Shertate & Thorat, 2014; Yaseen & Scholz, 2016). The dye 

wastewater effluents are also high in pH, suspended solids (SS), chemical oxygen demand 

(COD), biochemical oxygen demand (BOD), salts, total dissolved solids (TDS) and metals 

(Sekomo et al., 2012; Verma et al., 2012; Kabra et al., 2013; Chandanshive et al., 2016). 

Consequently, the dissemination of these dye effluents into the environment, in addition to 

their unacceptable appearance (Banat et al., 1996; Nguyen & Juang, 2013), can cause many 

environmental problems, such as inhibiting the aquatic life in receiving watercourses, 

contaminating the water surface vicinity and contaminating the groundwater and the soil 

layer properties (Carmen & Daniela, 2012; Sivakumar, 2014; Tahir et al., 2016; Yaseen & 

Scholz, 2016). Furthermore, some textile dyes and their intermediate products, such as 

aromatic amine, which occurs after dye decolourisation when the azo bond breaks down, are 

deleterious due to their toxicity, mutagenicity and carcinogenicity to all life forms (Forgacs 

et al., 2004; Moussavi & Mahmoudi, 2009; Ong et al., 2010; Kabra et al., 2011; Khataee et 

al., 2012; Balarak et al., 2015; Yaseen & Scholz, 2017a). Accordingly, these dyes should be 

decolourised and degraded prior to their discharge, not only to solve the aesthetic problem, 

but also to detoxify and disinfect the contaminated site (Hai et al., 2007; Joshi et al., 2008; 

Tahir et al., 2016). 

In developing countries, where water scarcity may already exist, the problems are 

exacerbated, since the extreme usage of freshwater resources (Sekomo, 2012) is combined 

with the “direct” discharge of untreated or poorly treated effluents to the natural water 

resources (Sekomo, 2012; Rane et al., 2014; Chandanshive et al., 2016). These effluents are 

loaded with pollutants at concentrations exceeding standards limits and their reuse for 

agriculture (irrigation) and industrial purposes is unacceptable. Hence, it has become 

necessary to solve the problems associated with textile industries by treating their effluents 

using adequate economic and effective strategies for environmental protection and/or for 

reuse purposes (Mugdha & Usha, 2012; Tahir et al., 2016). Various efficient methods have 

been used for dye wastewater purification, including physical, chemical and biological 

processes (Kumar & Bhat, 2012; Holkar et al., 2016). The known chemical and physical 

treatment methods are advanced oxidation, ozonation, ion exchange, coagulation and 

flocculation, membrane filtration and adsorption by activated carbon or other cheap 
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adsorbent materials, such as fly ash or peat (Golob et al., 2005; Zonoozi et al., 2008; 

Vijayaraghavan et al., 2009; Aouni et al., 2012; Syafalni, 2012; El Haddad et al., 2014; 

Sheshdeh et al., 2014). However, each method has some drawbacks, such as expense and the 

generation of large quantities of sludge, which is then difficult to dispose of and may cause 

secondary pollution problems. Other drawbacks include the inefficient removal of colour or 

dye intermediates, low COD reduction, involving complex processes, regeneration 

difficulties of adsorbent materials, and dealing with a small volume of effluents (Robinson 

et al., 2001; Forgacs et al., 2004; Gupta et al., 2011; Saratale et al., 2011; Babuponnusami 

& Muthukumar, 2014; Gosavi & Sharma, 2014; Adegoke et al., 2015; Asghar et al., 2015; 

Gupta et al., 2016). In addition, it is difficult to apply most of these methods under field 

conditions (Ji et al., 2007; Sani, 2015). Furthermore, conventional aerobic treatment methods 

in municipal sewage were found to be unsuitable to operate, due to the toxicity effect of 

some textile dyes on the living micro-organisms in the treatment plants (Wilimott et al., 

1998; Otero et al., 2003; Reema et al., 2011). Consequently, it remains imperative to search 

for natural, low cost and simple techniques to treat contaminated water, especially dye 

effluents. 

Biological treatment alternatives using constructed wetlands (CWs) are sustainable and cost-

effective compared with conventional methods of remediation, especially when land value 

is low (Vymazal, 2007; Kadlec & Wallac, 2009; Kayranli et al., 2010; Wu et al., 2014; 

Scholz, 2015; Yaseen & Scholz, 2016). This technology is well-accepted as being 

environmentally friendly, cheap, simple-to-use, and effective to treat diverse domestic and 

municipal sewage, storm water, agricultural runoff, and industrial wastewaters worldwide 

(Scholz & Xu, 2002; Scholz & Lee, 2005; Scholz, 2006; Singh & Singh, 2006; Ozengin & 

Elmac, 2007; Patel & Kanungo, 2010; Sekomo et al., 2012; Sani et al., 2013; Vymazal, 2014; 

Scholz, 2015). CWs are man-made wetland or marsh created as a new or redesigned habitat 

for plants, organisms and other wildlife to emulate the optimal biological, chemical and 

physical conditions that occur in natural wetlands, which act as a biofilter, (Kadlec & Knight, 

1996; Cooper et al., 1997; Vymazal et al., 1998; Scholz, 2010, 2015; Al-Isawi et al., 2017) 

to purify different types of contaminated water at different concentrations and under various 

climate conditions (Kadlec & Wallace, 2009). Literature indicates promising results in the 

treatment of textile dye effluents using artificial wetland systems planted with emergent 

plants, such as Phragmites australis (Cav.) Trin. ex Steud. (Davies et al., 2005; Mbuligwe, 

2005; Bulc & Ojstrsek, 2008; Ong et al., 2009a, 2010, 2011; Cumnan & Yimrattanabovorn, 
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2012; Hussein & Scholz, 2017) and Echinodorus cordifolius L. (Noonpui & Thiravetyan, 

2011), submerged plants such as Myriophyllum spicatum and Ceratophyllum demersum 

(Keskinkan & Lugal Goksu, 2007), and free-floating plants such as Lemna minor L. 

(Sivakumar, 2014) and Eichhornia crassipes (Mart.) Solms (Muthunarayanan et al., 2011). 

The high removal efficiency in CWs for dyes, metals, nutrients, COD and other 

contaminants was found to be due to the complex interactions between plants, water, soil 

and micro-organisms (Yaseen & Scholz, 2016).  

Recently, among all types of CWs, there has been increased attention towards using free- 

floating macrophytes-based CWs systems, which refer to shallow ponds vegetated with free-

floating plants, to treat dye wastewater, as the cheapest method in addition to its 

effectiveness and sustainability (Dalu & Ndamba, 2003; Tsalkatidou et al., 2009; Babu, 

2011; United States Environmental Protection Agency (USEPA), 2011; Mburu et al., 2013; 

Yaseen & Scholz, 2016). CWs with free-floating macrophytes consist of one or more 

shallow earthen, concrete, plastic, or steel basins (pits) constructed in or on ground level as 

shallow ponds, in which free-floating plants float on the water surface (Kadlec et al., 2000; 

Adeola, 2007; Vymazal, 2008), and could exist in combination with other treatment systems 

for primary, secondary or polishing units (Faleschini et al., 2012). The presence of algae 

bloom on the surface of ponds instead of aquatic plants refers to the difference between 

stabilisation ponds and CWs with free-floating plants (Kadlec et al., 2000; Vymazal, 2008), 

although some authors indicate that the term ‘wetlands’ refers to all marshlands and ponds 

(Mitsch & Gosselink, 1993, 2000; Ramsar, 2010). The main feature of using constructed 

wetlands technology with free-floating plants (shallow ponds) as a method for management 

and purification of wastewater, is that it enhances the eco-friendly values as well as being 

inexpensive to establish (Scholz, 2011; Sani, 2015). In developing countries, where much 

lower capital cost of treatment system is preferable, this system, compared with other 

wetland systems, is beneficial because free-floating plants normally do not require substrates 

to support their roots, that grow hydroponically (Chen et al., 2016), which saves the extra 

charge involved for soil and/or gravel (Vymazal, 2010). Regarding the operation and 

maintenance, such as pumping energy, screen cleaning, plant harvesting, and equipment 

repairs, the costs are very low for all wetlands (Vymazal, 2010). Several investigations 

confirmed the effectiveness of different algae species and free-floating plants-based systems 

for the treatment of effluents from the textile industry (Lim et al., 2010; Sekomo, 2012; 

Sivakumar et al., 2013; Uysal et al., 2014) and other effluents (Al-Nozaily et al., 2000; 
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Zimmo et al., 2005; Ozengin & Elmaci, 2007; Tsalkatidou et al., 2009; Patel & Kanugo, 

2010; Babu, 2011; Mburu et al., 2013). Generally, the treatment of wastewater using these 

systems is based on the ability of living organisms, such as algae and/or bacteria to clean up 

pollutants, and the ability of plants to assimilate and accumulate soil, wastewater, water and 

air contaminants (Sivakumar, 2014; Yaseen & Scholz, 2017a). However, the performance 

abilities of the systems vary depending on the design variables and operational conditions, 

such as system arrangement, contact time, environmental conditions, plants and/or algae 

species, types of substrate (if applicable), types of wastewater, and pollutant concentrations 

(Scholz, 2011; Sani, 2015). Another variable is the growth rates of plants utilised in the 

system (Picard et al., 2005; Sani et al., 2013; Sani, 2015). Therefore, these parameters must 

be considered carefully for achieving optimal results.  

As a result, this research is motivated by all these challenges linked with textile factories in 

the low-income developing countries, including the environmental pollution by dye effluents 

and the consequent water scarcity problems, which necessitate a solution by treating the 

textile effluents using an adequate economic and effective strategy that helps to protect the 

eco-system and enable subsequent recycling of the treated effluents for irrigation purposes 

or reuse within the textile factory processes (Mugdha & Usha, 2012; Chandran, 2016). 

Additionally, although previous studies highlighted the importance of using free-floating 

plants-based treatment systems for the remediation of textile dye wastewater as an effective, 

green, sustainable and cheap method, the application of these systems during the polishing 

stage is still limited in this field and there are only short-term (few weeks) studies treating 

wastewater contaminated with textile dyes in Turkey and India without full assessment of 

the system performance (Muthunarayanan et al., 2011; Sivakumar et al., 2013; Sivakumar, 

2014; Uysal et al., 2014). This lack of clear data was the main motivation for this study, in 

order to address the ecological problems caused by textile industries. The polishing stage is 

the last purification stage for pollutants in a multi-stage treatment system, which deals with 

wastewater characterised by relatively low concentrations of contaminants (Reed et al., 

1995). The importance of this stage has increased as secondary treatment systems of a 

biological, chemical or physical nature are unable to remove dye contaminations completely, 

and therefore, a further step is required (Bejarano, 2005). 
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1.3 Problem statement, knowledge gaps, and 

contribution 

This research is driven by the need to address problems associated with the effluents from 

the textile industry, including the dyes used in the production process. A solution using 

constructed wetlands with free-floating plants that simulate shallow ponds is suggested in 

this research as a cheap, effective and green technology.  

There have been some investigations of free-floating plants-based treatment systems to treat 

textile effluents in recent years (Sekomo et al., 2012; Sivakumar et al., 2013; Chandanshive 

et al., 2016). However, the literature in this area is still limited, and there are only few 

previous studies that focus particularly on removing textile dyes from contaminated 

wastewater using free-floating plants-based systems (Muthunarayanan et al., 2011; 

Sivakumar, 2014; Uysal et al., 2014). In addition, the available publications have not 

considered the mechanism of dye removal in detail, and there is a lack of information 

concerning the main water quality parameters and the system performance from an 

engineering point of view.  

Several reports have been published for wastewater treatment by constructed wetland 

systems planted with emergent and submerged macrophytes as a post (polishing) treatment 

stage (Keskinkan & Lugal Goksu, 2007; Ayaz, 2008; Sekomo et al., 2012), and despite the 

importance of this stage, the literature review showed limited attention towards operating 

wetland systems with free-floating plants for dye wastewater treatment during the polishing 

stage.  

The previous few investigations on free-floating plants-based treatment systems provide 

promising results for treating wastewater containing dyes (Muthunarayanan et al., 2011; 

Sivakumar, 2014; Uysal et al., 2014; Chandanshive et al., 2016). However, there remain 

prominent gaps in all these studies concerning the system performance for dye effluents 

treatment in long-term operation, as well as the treatment of mixed dyes (real case of textile 

effluents), which have not been investigated using constructed wetlands planted with free-

floating plants. In addition, many approaches showed a noticeable impact for the pH factor 

on the dye molecule removal (Deniz & Karaman, 2011; Reema et al., 2011; Khataee et al., 

2012; Movafeghi et al., 2013; Shirzad-Siboni et al., 2014; Balarak et al., 2015, 2016a). 

Surprisingly, no articles have focused on studying the effect of pH adjustment on the full 

assessment of long-term performance of free-floating plants-based treatment systems in 
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terms of the removal of dyes and other contaminants. Furthermore, researchers concentrated 

on examining small-scale experimental wetlands for dye effluent treatment under either 

controlled (indoor) conditions (Ong et al., 2010; Noonpui & Paitip, 2011; Sivakumar, 2014) 

or semi-natural (outdoor) conditions (Mbuligwe, 2005; Davies et al., 2009; Muthunarayanan 

et al., 2011). However, the performance of identical systems for treating the same dye 

wastewaters under both semi-natural and controlled conditions has not been previously 

published. With regard to the dyes tested in this research, there is no previous literature about 

using them with free-floating plants-based constructed wetland systems, and this will be the 

first study to examine the feasibility of removing these dyes using this system.  

Therefore, it is necessary to fill the gaps in knowledge in this field by operating small-scale 

free-floating plants-based constructed wetlands simulated shallow ponds for the treatment 

of textile azo dyes containing wastewater, and evaluating the system performance in terms 

of different design variables and operational conditions in long-term experiments during the 

polishing stage. 

This work would offer valuable data to allow for a sustainable solution using a promising 

strategy to mitigate water pollution problems, particularly for developing countries which 

suffer from the impact of dye effluents, especially when financial resources are limited and 

land costs are relatively cheap. Also, the research provides a practical contribution to 

designers and operators of wetland ponds, in terms of the information about the system 

performance for treating textile dyes and related water. Furthermore, the findings are 

expected to support the possible application of large-scale treatment plants. 

1.4 Aim and objectives 

The overall aim of the research study is to assess the potential of constructed wetland systems 

vegetated with free-floating plants (Lemna minor L.), simulating shallow pond systems 

(SPSs), for the treatment of synthetic wastewater containing textile azo dyes, as a polishing 

stage, in a long-term study.  

To achieve the study aim, the specific objectives are as follows: 

1. To examine the influence of different design variables on the SPS performance for 

treating synthetic wastewater contaminated with 5 mg/l of four azo dyes, under 

different environmental conditions, and to evaluate the inflow and outflow water 

quality parameters including dyes and COD. 



Chapter 1: Introduction 

9 

 

2. To compare the SPS efficiency using L. minor under controlled and uncontrolled 

(semi-natural) conditions in Salford, for remediation of synthetic wastewater 

contaminated with 5 mg/l of four azo dyes and to evaluate the main water quality 

parameters including dye removal. 

3. To assess the impact of pH variations on the SPS performance (with/without L. 

minor) under controlled conditions for the treatment of 10 mg/l of azo dyes 

containing synthetic textile wastewater with and without dilution, and to evaluate dye 

removal and other water quality parameters (COD, nutrients, etc.). 

4. To investigate the SPS performance with/without L. minor under controlled 

conditions for the handling of diluted synthetic textile wastewater comprising three 

mixtures of RB198 and BR46 in different percentages at a total concentration of 10 

mg/l, and to evaluate the dye removal and other water quality parameters (COD, 

nutrients, etc.). 

5. To assess the impact of operating conditions, synthetic wastewater, pH variation and 

dye accumulation on L. minor growth rate, by monitoring and comparing the growth 

parameters with ponds without dyes and synthetic wastewater. 

Figure 1.1 demonstrates the methodology of the research and how objectives are linked to 

achieve the aim. 

1.5 Thesis structure 

This thesis is organised into the following seven chapters: 

Chapter One: Introduction 

This chapter includes the background information on environmental problems caused by the 

effluents from the textile industry, and previous studies related to this research. It is also 

presents the research motivation, gaps in knowledge, problem statement, contribution, aim 

and objectives. 

Chapter Two: Critical Literature Review 

This chapter provides a background to the textile industry, and includes an overview of 

textile wastewater characteristics, variation and simulation, textile dye classification and 

environmental challenges linked with textile dye effluents. A critical review of previous 

research work is also given for treatment of textile dyes containing wastewater using CWs 
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and algae ponds. Furthermore, a significant part of the chapter is focused on the literature 

related to the role of different contaminant treatment mechanisms. 

Chapter Three: Materials and Methods 

This chapter describes the research methodology including materials, experimental set-up 

and system operation, under controlled and uncontrolled (semi-natural) environmental 

conditions. Furthermore, the sampling procedure and subsequent data analysis are also 

stated. 

Chapter Four: Impact of Design Variables and Environmental Conditions on System 

Efficiency 

This chapter presents the overall treatment results and related discussion of pond 

performance using different design variables for treating synthetic wastewater containing 5 

mg/l of dyes under laboratory and semi-natural conditions, as well as the comparison 

between them. 

Chapter Five: Impact of pH Adjustment on System Performance 

This chapter presents the overall treatment results and discussion related to the short-term 

and long-term impact of pH variation on system performance in terms of dye removal at 

concentration of 10 mg/l, and for improvement of other water quality parameters. 

Chapter Six: Assessment of System Performance for Treating Dye Mixtures 

This chapter presents the overall results and discussion of the system performance for the 

treatment of diluted synthetic textile wastewater containing three mixtures of two dyes at 

concentration of 10 mg/l. 

Chapter Seven:Conclusions and Recommendations 

This chapter concludes the main results of each experiment. In addition, suggestions for 

further related work are also provided. 
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Figure 1.1 Research aim and related objectives diagram. Note: SPSs, shallow pond 

systems; COD, chemical oxygen demand; PO4–P, ortho-phosphate-phosphorus; NH4–N, 

ammonium-nitrogen; NO3–N, nitrate-nitrogen; SS, suspended solids; TDS, total dissolved 

solids; TBD, turbidity; EC, electrical conductivity; mV, redox potential; DO, dissolved 

oxygen; AB113, acid blue 113; RB198, reactive blue 198; BR46, basic red 46; DO46, direct 

orange 46; FW, fresh weight; DW, dry weight; RGR, relative growth rate; RFN, relative 

frond number; CA, coverage area, P1, Lemna minor L. and algae; P2, algae; P3, Lemna 

minor L.; P4, control; P5, Lemna minor L. at pH of 9; P6, control at pH of 9; P7, Lemna 

minor L. at pH of 6; P8, control at pH of 6; SWW, Synthetic wastewater; STWW, synthetic 

textile wastewater; GCMS, gas chromatography mass spectrometry; HPLC, high-

performance liquid chromatography; UV, ultraviolet; SPSS, statistical package for social 

sciences
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Chapter 2                                                                  
Critical Literature Review  

2.1 Overview 

This chapter introduces the processes of the textile industry and includes the effluent 

characteristics of the real, typical and synthetic wastewaters. In addition, dye classifications 

and the environmental challenges related to textile dye effluents are discussed in this chapter. 

A critical literature review is presented regarding the reported chemical constituents used to 

prepare the synthetic textile wastewater containing dyes. Also, a critical review is given 

about the constructed wetland systems, including the wetland types for dye wastewater 

treatment and the mechanism of pollutants removal. This chapter is divided into thirteen 

sections as follows: Section 2.1 presents an overview of the chapter; Section 2.2 explains the 

types of textile industry and the main processes of textile production; Section 2.3 

characterises typical and real textile industry effluents; Section 2.4 presents the synthetic 

textile wastewater inputs and some corresponding characteristics; Section 2.5 defines and 

classifies textile dyes; Section 2.6 defines the importance of azo dyes; Section 2.7 describes 

the environmental pollution problems associated with textile effluents and azo dyes. The 

development of wetland systems for treating wastewater, and constructed wetlands 

classification are both highlighted in Sections 2.8 and 2.9, respectively. Section 2.10 defines 

the algae based systems and their efficiency for dye remediation; Section 2.11 demonstrates 

the composition of wetlands. Lastly, the process of pollutants removal within wetland 

systems is shown in Section 2.12, and the chapter summary is presented in Section 2.13. 

Figure 2.1 below shows the different constructs of the literature review.  



Chapter 2: Critical Literature Review 

13 

 

 

Figure 2.1 Constructs of the literature review 

2.2 Textile industry 

The textile industry is one of the largest and oldest sectors present globally, which provides 

career opportunities with no required specific skills or expertise and consequently positively 

affects the economy worldwide (Ananthashankar, 2012; Sekomo, 2012; Upadhye & Joshi, 

2012; Ghaly et al., 2014; Suresh, 2014), more so in the developing countries. In Europe, for 

example, there are around 110,000 textile production companies, which provides around 

€200 billion as income per year (Morali, 2010). China is the most important exporter of all 

types of textiles, followed by the European Union, India and then the United States (Saranraj, 

2013; Ghaly et al., 2014). Figure 2.2 shows the major exporters for textiles, the percentage 

of market share and the related yearly income. One of the key issues associated with textile 

factories is the undesirable dye effluents, which are difficult to degrade (He et al., 2004; 

Nguyen & Juang, 2013). 

The classification of textile industries depends on the type of fabrics they produce, including 

cellulosic materials obtained from plants (e.g., cotton, rayon and linen), protein fabrics which 

come from animals (e.g., wool, silk and mohair), and synthetic fabrics produced artificially 

(e.g., nylon, polyester and acrylic) (Bledzki & Gassan, 1999; Ananthashankar, 2012; Ghaly 

et al., 2014). In the textile industry, the final fabric is manufactured by converting the fibres 

into yarn and then to fabric or other related products that pass through wet processing, ending 
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with the dyeing and finishing stages (Ghosh & Gangopadhyay, 2000; Babu et al., 2007; 

Upadhye & Joshi, 2012). The wet process uses a considerable quantity of potable water and 

releases highly contaminated liquid waste due to the addition of a wide range of chemicals, 

such as dyes, soaps, starch, metals, acids and alkalis (Mishra & Tripathy, 1993; Banat et al., 

1996; Vandevivere et al., 1998; Talarposhti et al., 2001; Paul et al., 2012; Holkar et al., 

2016). This process mainly consists of sizing, de-sizing, sourcing, bleaching, mercerising, 

dyeing, printing and finishing techniques (United State Environmental Protection 

Engineering (USEPA), 1997; Babu et al., 2007; Kumar et al., 2009; Liu et al., 2010; Vigo, 

2013). The sizing process is the first step for preparation of the fabric and involves adding 

sizing agents, such as starch, polyvinyl alcohol and carboxymethyl cellulose (Liu et al., 

2010, Carmen & Daniela, 2012) to make the fibre stronger and reduce ruptures. However, 

these agents hinder other processes such as dyeing, printing and finishing. For example, 

starch impedes dye penetration into the fibre. Therefore, de-sizing is required as a second 

step for eliminating all materials added during the sizing step by applying hydrolysis or an 

oxidation agent (Babu et al., 2007) such as enzymes, sodium bromide, sodium chlorite and 

hydrogen peroxide. The scouring step is the process of adding an alkali solution, such as 

sodium hydroxide, potassium hydroxide or sodium carbonate to remove the oils and waxes, 

and suspend contaminations from the fibres. After that, the bleaching process is used for 

removing the undesirable colour or creamy appearance, improving the whiteness and 

brightness of the fibres by adding bleaching chemicals, such as hydrogen peroxide, sodium 

hypochlorite, hypochlorite and peracetic acid (Rott & Minke, 1999; Babu et al., 2007). The 

mercerising process follows, increasing the fibres’ appearance, strength, and dye uptake by 

adding a concentrated alkaline solution (sodium hydroxide) and acid solution. The 

application of neutralisation agents, including acetic acid or formic acid (Bradbury et al., 

2000) is required to neutralise the fibres after the scouring, bleaching, reduction and 

mercerising processes. The dye process is an important step in textile manufacturing; during 

this stage, the colour is added as a solution to the fibres (Kanawade et al., 2010; Sivakumar 

et al., 2013). To improve the binding between the dyes and the fabric, other different 

chemicals are added, such as metals, salts, surfactants, organic processing aids, sulphide and 

formaldehyde. Regarding the printing step, this involves the same reactions as the dye stage, 

however in printing, the colour is added as a thick paste. The final part of the textile process 

is the finishing step, where some properties are imparted to the fabric, such as softening, 

waterproofing, antibacterial and ultraviolet protection, by adding formaldehyde-based 

agents (Babu et al., 2007; Holkar et al., 2016). Thus, during the wet process many of these 
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chemicals and additives become part of the final product, while the rest are released as waste 

into textile effluents (Dos Santos et al., 2007; Carmen & Daniela, 2012). This release is 

attributed to the impact of the washing, rinsing, and drying steps required between the main 

stages of wet processing. Consequently, a large amount of contaminated wastewater is 

generated from these stages forming one of the main problems related to the textile industry. 

Figure 2.3 shows the steps of the wet process and the main pollutants in the wastewater 

discharge from each step, as indicated by Kant (2012) and Holkar et al. (2016). 

 

Figure 2.2 Major exporters for textiles, market share and income (after Ghaly et al., 

2014) 
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Figure 2.3 Main pollutants discharged from each step of textile wet processing (after 

Kant, 2012; Holkar et al., 2016) 

2.3 Textile wastewater characteristics 

The effluents discharged from textile factories are heavily polluted with a mixture of organic 

(e.g., carbohydrates, fats and oils, dyestuffs, phenols, and detergents) and inorganic (e.g., 

acids, alkalis, metals, other salts, phosphates, nitrates, and sulphides) compounds that are 

applied during the textile manufacturing processes and then released as unused substances 

to the receiving watercourses (Brik et al., 2006; Hassani et al., 2008; Palácio et al., 2012; 

Upadhye & Joshi, 2012; Gupta et al., 2015; Verma et al., 2015). Many authors have 

confirmed that the textile effluents containing dyes are characterised by high values in the 

main water quality parameters, such as chemical oxygen demand (COD), biochemical 

oxygen demand (BOD5), colour, total dissolved solids (TDS), suspended solids (SS), 

turbidity, salinity, heavy metals, and pH values (Globo et al., 2005; Dos Santos et al., 2007; 

Kabra et al., 2012; Shah et al., 2013; Daud, 2014; Suresh, 2014). However, the most 

important parameters in textile wastewater are COD, BOD, pH, SS, fats, oil, nitrogen, 

sulphate and phosphorus (Tufekci et al., 2007). Therefore, during the treatment processes, it 
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is important to monitor and compare most of these parameters with the standard 

concentrations before discharging the effluent to the receiving watercourse.  

The composition of textile wastewater varies from mill to mill and from country to country, 

which consequently affects the wastewater characteristics, dependent on the process, the 

equipment used in the factory, type of fabric produced, chemicals used, the weight of the 

fabric, colouring materials, as well as the dye constituents, season and the trend in fashion 

(Brik et al., 2006; Sekomo, 2012; Hussein, 2013; Kehinde & Aziz, 2014). Table A.1 

(Appendix A) summarises the typical characteristics of textile wastewater and Table A.2 

(Appendix A) presents the wastewater characteristics of the main processes used in textile 

manufacture. These characteristics exhibit differences among their values from one 

reference to another, which was confirmed by Khandare et al. (2013), indicating that typical 

textile wastewater is difficult to define because the textile application methods, even in the 

same process, are different from one industry to another. Table A.3 (Appendix A) shows the 

reported characteristics of actual textile effluent before treatment, belonging to different 

sources and countries. Some of these real effluent characteristics are not within the typical 

range of values given in Table A.1 (Appendix A), demonstrating the wide range of variety 

in real wastewater. This may be because these effluents are related to a particular step in the 

textile industrial processes (Almazan-Sanchez et al., 2016; Tomei et al., 2016) or passed 

from a specific treatment stage (Nopkhuntod et al., 2012; Qian et al., 2013) to the next. 

It is reported that around 93% of the water used in the textile production industry discharges 

as dyeing wastewater (Wijannarong et al., 2013; Gupta et al., 2014; 2015), and may contain 

considerable concentrations of heavy meals as well (Tsezos, 2001; Cheng et al., 2002; 

Merzouk et al., 2009; Fu & Wang, 2011; Sekomo, 2012). These two pollutants (the dyes and 

metals) require more attention due to their toxic impact in the receiving streams. Metal 

contamination in textile effluents occurs due to the presence of the dyes and the additives 

used, e.g., caustic soda, sodium carbonate and salts, during the textile manufacturing steps. 

The main metals, which cause environmental challenges, are copper, chromium, zinc, iron, 

mercury, and lead (Hussein, 2013). However, the main metals found within the dye 

chromophores in textile effluents are zinc, cobalt, copper, and chromium (Adinew, 2012; 

Kaur & Sharma, 2015). The concentrations of the main metals (elements) in real textile 

wastewater are presented in Table A.4.(Appendix A). Dye concentrations in textile 

wastewater are reported over a wide range of values. Laing (1991) indicated that the dye 

level in the textile effluent is 10–50 mg/l. However, the reactive dyes in cotton factories are 
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reportedly discharged at a concentration of 60 mg/l (Pierce, 1994; Shelley, 1994), and a 

concentration between 100 and 200 mg/l (Gahr et al., 1994). A concentration of the reactive 

dye effluent of 7000 mg/l was reported by Koprivanac et al. (1992). This concentration is 

extremely high, compared to other references, and may refer to effluent discharge from a 

specific textile industry (O’Neill et al., 1999). Vandevivere et al. (1998), Jadhav et al. (2007) 

and Saratale et al. (2011) referred to dye effluents ranging between 600 and 800 mg/l. 

Sivakumar (2014) mentioned that the outflow concentration of the dye acid orange 10 from 

the final clarifier of the textile industry in India is 45 mg/l, which is within the range of 

concentrations reported previously by Abid et al. (2012), that is, between 20 and 50 mg/l, 

from the 14-Ramadhan textile industry in Iraq. However, Ghaly et al. (2014) mentioned that 

the dye concentrations discharged from dye houses ranged from 10–250 mg/l, and this range 

covers most of the above values which were referred to by the authors, except the extreme 

concentrations indicated by Koprivanac et al. (1992) and Vandevivere et al. (1998). The 

concentrations of textile dyes in real wastewater are presented in Table A.5 (Appendix A). 

Thus, all available literature regarding the treatment of real textile effluents, as well as the 

reported outflow dye and heavy metal concentrations, have a wide variation of textile 

wastewater characteristics (Al-Kdasi et al. 2004), which makes the composition used for 

preparing synthetic textile wastewater containing dye varied as well (Ong et al., 2010; Punzi 

et al., 2015). 

2.4 Synthetic textile wastewater  

Many authors have examined treatment technologies and corresponding dye removal 

efficiencies from either an aqueous solution or a prepared synthetic textile wastewater. This 

is firstly due to the common absence of raw textile wastewater as a local and permanent 

source, and secondly to keep the composition of the untreated wastewater constant to make 

valid comparisons of treatment system evaluations (O’Neill et al., 1999). A wide range of 

investigations have been carried out regarding the removal efficiency of different textile dyes 

from aqueous solutions prepared by mixing dye with tap water, deionised water or distilled 

water (Ncibi et al., 2007; Mehta et al., 2011; Mezenner et al., 2013; Rajkumar et al., 2013; 

Sun et al., 2013; Aysu & Kucuk, 2015; Castaneda-Diaz et al., 2017; Dehghani et al., 2017). 

Below are some of the reported methods used in this field. 

Davies et al. (2005, 2006, 2009) assessed the performance of constructed wetland (CW) 

using Phragmites australis for the treatment of wastewaters prepared by dissolving the dye 
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acid orange 7 with tap water (dye inflow concentrations were 130 and 700 mg/l). 

Chatzisymeon et al. (2006) prepared synthetic wastewater to investigate the electrochemical 

oxidation method for dye wastewater treatment. The composition contained 16 dyes and the 

total dye concentration was equal to 361 mg/l. Kashefialasl et al. (2006) treated the dye acid 

yellow 36 in aqueous solution by the electrocoagulation method using iron electrodes. 

Noonpui and Thiravetyan (2011) examined the performance of CW vegetated by 

Echinodorus spp. Richard ex Engelmann in A. Gray, 1848 (burhead) under both soil and 

soil-free conditions for the treatment of three reactive azo dyes of different molecule sizes: 

reactive red 2, reactive red 120 and reactive red 141 in aqueous solution. Shirzad-Siboni et 

al. (2014) studied the removal of acid blue 113 and reactive black 5 in aqueous solution 

using activated red mud as a cheap adsorbent material. Other adsorbents have been used for 

dye removal such as fly ash (Sun et al., 2013) and activated carbon (Aysu & Kucuk, 2015). 

Textile dye removal from aqueous solution was also evaluated using plant species in batch 

test studies such as Posidonia oceanica (L.) Delile (Neptune grass) (Ncibi et al., 2007), 

Calotropis procera (Aiton) W.T.Aiton (apple of Sodom) (Ali & Muhammad, 2008) and 

Lemna minor (Reema et al., 2011; Movafeghi et al., 2012; Salman et al., 2016). 

The treatment of dyes in aqueous solutions has been applied using a wide range of different 

methods. However, studies using this type of wastewater are unable to provide a full 

understanding of the treatment performance regarding the impact of other missing 

contaminants (nutrients, chemicals and additives) on the removal efficiency (Gupta et al., 

2015) since, as mentioned by Bulc and Ojstrsek (2008), the pollutants’ reduction in treatment 

systems depends mostly on composition of textile wastewater, and the chemical constitution 

of applied organic substances in addition to other factors. This has led many authors to 

prepare synthetic textile wastewater contaminated with textile dyes, which have been 

arranged by mixing the dye with a water source and nutrients or different chemicals in 

specific concentrations. This mixture aims to, according to Verma et al. (2012, 2015), match 

the wastewater characteristics with those of real effluents containing various chemicals, 

auxiliaries and dyes added during the textile manufacturing steps. A wide variety of 

compositions have been suggested in the literature for the simulation of textile effluents, to 

mimic the effluent either in a particular country or a specific textile factory. These synthetic 

effluents, which have been treated by different chemical, physical and biological methods, 

consist of some common chemicals corresponding to specific steps in the textile 

manufacturing processes (Panswad & Luangdilok, 2000; Ojstrsek et al., 2007; Avlonitis et 



Chapter 2: Critical Literature Review 

20 

 

al., 2008; Cumnan & Yimrattanabovorn, 2012; Mountassir et al., 2015). The following 

sections will highlight the available reported constituents for preparing synthetic textile 

wastewater according to the method of treatment. 

2.4.1 Constituents of wastewater treated by chemical and 

physical methods 

The chemicals, concentrations and methods of preparation for the simulated textile 

wastewater treated by chemical and physical methods, are described clearly by many 

researchers. Regarding the chemical approaches used for treating simulated wastewater, 

Alaton et al. (2002) focused on studying the efficiency of different advanced oxidation 

processes (O3/OH-, H2O2/UV-C and TiO2/UV-A) for treatment of simulated wastewater 

comprising a mixture of five reactive dyes and different auxiliaries in concentrations, which 

matched those of the reactive dye effluents discharged from a cotton factory. The chemicals 

used in the mixture were acetic acid, sodium chloride, sodium carbonate, sodium hydroxide, 

polyether based co-polymer micro-dispersion, acryl co-polymer-phosphor mixture and alcyl 

phenol polyglycol ether. The mixture of the dyes and auxiliaries was first dissolved in boiling 

deionised water to ensure that all the chemicals hydrolysed, and then stored for 12 hours in 

a cool room before use. Kang et al. (2002) studied the ‘Fenton Process’ (involving oxidation 

and coagulation) for the treatment of synthetic textile wastewater containing polyvinyl 

alcohol mixed with reactive blue dye R94H to simulate COD and colour, respectively. 

Sakkayawong et al. (2005) focused on chemical adsorption by chitosan for the treatment of 

synthetic wastewaters containing a mixture of the dye reactive red 141 at a concentration of 

400 mg/l, sodium carbonate and sodium sulphate, which was prepared according to the dye 

procedures in the textile factory. Bali and Karagozoglu (2007) studied the Fenton process 

(involving oxidation and coagulation), ferric coagulation and the H2O2/pyridine/Cu(II) 

system for the removal of colour from a synthetic textile wastewater containing polyvinyl 

alcohol and a reactive dye (remazol turquoise blue G-133). Verma et al. (2012) studied the 

effectiveness of magnesium chloride and ferrous sulphate as chemical coagulant materials 

with lime as a coagulant aid for treating synthetic textile wastewater. They introduced a 

composition for a synthetic textile wastewater to simulate the characteristics of the real 

textile effluents in Tirupur (India) reported on by Eswaramoorthi et al. (2008). The 

composition consisted of starch, acetic acid, sucrose, sodium hydroxide, sulphuric acid, 

sodium carbonate, sodium chloride, sodium lauryl sulphate and dye, which were mixed using 
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tap water. The dyes used were reactive black 5, congo red and disperse blue 3 at total 

concentrations of 200 mg/l. Later, Verma et al. (2015) used an anaerobic sludge blanket 

reactor as a pre-treatment step of the same synthetic textile wastewater using a magnesium 

chloride and aluminium chlorohydrate mixture. Mountassir et al. (2015) treated synthetic 

textile effluents by an electro-coagulation method with an aluminium electrode in the 

presence of clay particles. The wastewater was prepared by mixing the dye reactive violet 4, 

starch, ammonium sulphate and disodium phosphate in deionised water. Punzi et al. (2015) 

proposed a novel method for treating synthetic textile effluents using an anaerobic biofilm 

reactor followed by ozonation. The synthetic effluent contained starch dissolved in heated 

water and mixed with sodium hydroxide, sodium chloride and the azo dye remazol red.  

Concerning the reported constituents treated by physical treatment technology, Marquez and 

Costa (1996) prepared synthetic textile effluent for evaluation by the powdered activated 

carbon treatment process. The mixture contained peptone, meat extract, urea, potassium 

hydrogen phosphate, sodium chloride, calcium chloride dihydrate, magnesium sulphate 

heptahydrate and the dye acid orange 7. Avlonitis et al. (2008) examined the impact of 

various operational conditions concerning the performance of a nanofiltration membrane 

technique for treatment of three synthetic textile dyeing wastewaters. The synthetic 

wastewaters were prepared by dissolving salts and the dye reactive black 5 using tap water 

at concentrations higher than the typical ranges found in the effluents of the cotton dye 

industry. However, Hassani et al. (2008) studied the impact of different TDS values (1000, 

2000, and 3000 mg/l) on dye removal efficiency by mixing the dyes with sodium chloride 

(salt source) using the nanofiltration technique as well. Aouni et al. (2012) evaluated 

ultrafiltration and nanofiltration methods for the treatment of synthetic dye wastewater in 

Spain. The synthetic reactive dye wastewater was prepared by mixing 15 gram from each 

dye separately (everzol black, everzol blue, and everzol red) with 2 litres ultra-pure water. 

This was followed by mixing with 12.5 gram sodium chloride and ultra-pure water to prepare 

25 litres of dye solution in total. Sodium hydroxide was added for pH adjustment to reach a 

pH value of 10. The dye concentration was 600 mg/l. Nopkhuntod et al. (2012) conducted a 

batch test using shale as an adsorbent material before the main experiment to examine the 

operational parameters for removing the dyes reactive red, blue and yellow separately by 

preparing synthetic dye wastewater. The synthetic effluents contained reactive dye and 

sodium chloride in a specific concentration dissolved with distilled water. The mixture was 

heated to 60C for two hours and sodium carbonate was added  within the first hour.   After  

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjflPGv7bzRAhViBcAKHeb5AsAQFggdMAA&url=http%3A%2F%2Fwww.endmemo.com%2Fchem%2Fcompound%2Fmgso47h2o.php&usg=AFQjCNEOMdTMCl6HuHZhvYswSfFazZbmOw&bvm=bv.143423383,d.bGg
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that, sodium hydroxide was added for preparing 1 litre of wastewater solution. 

All these compositions aimed to simulate the real textile effluents, however most of them 

did not contained the main chemicals used in a textile factory and the related synthetic 

wastewater was prepared to remove specific parameters (in most cases, the colour and COD), 

which limits the full simulation of textile effluents, as not all the main parameters are 

covered, such as ammonium-nitrogen (NH4‒N), nitrate-nitrogen (NO3‒N), and ortho- 

phosphate-phosphorus (PO4–P) (Kang et al., 2002; Bali & Karagozoglu, 2007; Aouni et al., 

2012). Regarding the composition reported by Verma et al. (2012, 2015), this was the most 

appropriate one compared to other reported compositions, due to the presence of most of the 

chemicals used in textile processing. However, a source of metals is still required in this 

mixture to fully simulate the synthetic wastewater compounds. 

2.4.2 Constituents of wastewater treated by biological methods 

Many authors concentrated on preparing synthetic textile wastewater to examine different 

biological approaches, in terms of the treatment of textile pollutants. The compounds and 

the related concentrations, as well as the process of preparation, are documented in detail.  

Regarding the anaerobic/aerobic or anoxic/aerobic sequential batch reactor methods, 

Basibuyuk and Forster (1997) operated four up-flow aerated biofilters in sequence for 

treatment of simulated textile wastewater using activated sludge. The synthetic textile 

wastewater contained the dye maxilon red at two concentrations (25 mg/l and 50 mg/l), 

starch, lab lemco, diammonium phosphate, magnesium sulphate heptahydrate, calcium 

chloride, iron(II) sulphate heptahydrate, nickel(II) sulphate heptahydrate, manganese(II) 

chloride tetrahydrate, zinc sulphate heptahydrate, boric acid, cobalt(II) chloride hexahydrate 

and copper(II) sulphate pentahydrate. Panswad and Luangdilok (2000) investigated the 

efficiency of an anaerobic/aerobic sequential batch reactor system for treatment of simulated 

dye wastewater. The synthetic wastewater contained 20 mg/l of four dyes (reactive black 5, 

reactive blue 19, reactive blue 5 and reactive blue 198) mixed with glucose, acetic acid, urea, 

potassium dihydrogen phosphate, sodium hydrogen carbonate, magnesium sulphate 

heptahydrate, calcium chloride and iron(III) chloride hexahydrate. Later, Panswad et al. 

(2001) evaluated the treatment of synthetic wastewater contaminated with remazol black B 

using an anaerobic/aerobic sequential batch reactor with sludge. The wastewater consisted 

of nutrient broth, sodium acetate, glucose, urea, potassium dihydrogen phosphate, sodium 

bicarbonate, iron (III) chloride hexahydrate, magnesium sulphate heptahydrate and calcium 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwji5ffWgb7RAhUBK8AKHYg_Bx0QFgglMAI&url=http%3A%2F%2Fwww.endmemo.com%2Fchem%2Fcompound%2Ffecl36h2o.php&usg=AFQjCNEQz7ovfWDxGuSA_d5rMtvrMWQDaQ
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chloride. The authors mixed all chemicals with nutrient broth and sodium acetate in different 

concentrations, providing in total around 500 mg/l COD. Mohan et al. (2002) used Spirogyra 

spp. (O.F.Müller) Dumortier (water silk) for the treatment of synthetic effluents containing 

the azo dye reactive yellow 22. The simulated wastewater was prepared by mixing a 

proportion of the stock solution for reactive yellow 22 with D-glucose, sodium chloride and 

1 ml/l trace element solution with distilled water. Tap water was used for further dilutions. 

The trace element solution consisted of different chemicals as reported previously by Aziz 

and Ng (1988). Khehra et al. (2006) operated a sequential anoxic/aerobic bioreactor for the 

treatment of simulated wastewater containing the dye acid red 88. The synthetic wastewater 

consisted of 100 mg/l of the dye mixed with yeast extract, glucose and mineral salts. The 

mineral salt medium consisted of disodium phosphate, ammonium sulphate, potassium 

dihydrogen phosphate, magnesium sulphate heptahydrate, ammonium ferric citrate, calcium 

chloride dihydrate and trace elements. The trace element solution comprised of zinc sulphate 

heptahydrate, manganese(II) chloride tetrahydrate, cobalt(II) chloride hexahydrate, 

nickel(II) chloride hexahydrate, sodium molybdate dihydrate, boric acid and copper(II) 

chloride dihydrate. Muda et al. (2010) used granular sludge in a single sequential batch 

reactor with anaerobic and aerobic conditions for treatment of simulated textile effluents. 

The synthetic wastewater consisted of glucose, ethanol, sodium acetate, ammonium 

chloride, potassium dihydrogen phosphate, dipotassium phosphate, calcium chloride 

dihydrate, magnesium sulphate heptahydrate, ethylenediaminetetraacetic acid, dye mixture 

(sumifix black EXA, sumifix navy blue EXF and synozol red K-4B) and 1 ml/l of trace 

element solution. The composition of the trace elements solution, as reported by Smolders 

et al. (1995), included among other ingredients boric acid, zinc chloride (ZnCl2), 

manganese(II) chloride tetrahydrate, copper(II) chloride dihydrate, sodium molybdate, 

cobalt(II) chloride hexahydrate and potassium iodide. Aldoury et al. (2014) studied the 

ability of sequential anaerobic/aerobic reactors for treatment of synthetic wastewater 

contaminated with two dyes (acid orange 12 and disperse red 17). The wastewater was 

prepared by mixing potassium hydrogen phosphate, calcium chloride, magnesium sulphate 

heptahydrate, zinc sulphate, iron(III) chloride, sodium bicarbonate, ammonium chloride, 

peptone, dyes and tap water. Al-Amrani et al. (2014) examined the performance of an 

anoxic/aerobic sequential batch reactor system for azo dyes (acid orange 7, acid orange 10, 

acid yellow 9 and acid red 14) and COD removal. A suitable amount of dye solutions mixed 

with sucrose, bacto-peptone, iron (III) chloride hexahydrate, calcium chloride, magnesium 

sulphate, sodium hydrogen carbonate, ammonium chloride and potassium dihydrogen 
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phosphate was used to prepare the synthetic dye wastewater. Dhaouefi et al. (2018) 

examined the suitability of using an anoxic/aerobic photobioreactor for carbon and nutrient 

removal from synthetic textile wastewater. The mixture of synthetic wastewater contained 

soaping agent, anticrease, dispersing agent, electrolyte, alkaline agent, reducing agent, acid 

generation, as well as the dyes disperse blue 1 and disperse orange 3.  

The above constituents, except those reported by Basibuyuk and Forster (1997), Nopkhuntod 

et al. (2012), and Punzi et al. (2015), simulated the textile effluents as the mixtures included 

most of the chemicals used in textile processes. 

Based on biological treatment using CWs, it was documented that some compositions of 

synthetic textile wastewater can be treated by this system. For example, Mbuligwe (2005) 

investigated the potential of two types of aquatic plants using engineered wetland systems 

for the treatment of synthetic effluents. The dye-rich synthetic wastewater was prepared by 

mixing caustic soda, sodium hydrosulphate and dye powder with tap water. However, this 

new composition was linked with a COD concentration lower than the typical values. 

Keskinkan and Lugal Goksu (2007) treated synthetic wastewater contaminated with basic 

blue 41 using CW technology vegetated by submerged plants Myriophyllum spicatum L. 

(Eurasian watermilfoil) and Ceratophyllum demersum L. (hornwort). The mixture contained 

11 mg/l of the dye with 5% Arnon-Hoagland nutrients, which included chemicals, such as 

potassium nitrate, calcium nitrate, ammonium dihydrogen phosphate, magnesium sulphate 

heptahydrate, boric acid, manganese(II) chloride tetrahydrate, molybdenum (VI) acid 

monohydrate and iron(II) sulphate heptahydrate. However, this composition contained very 

low chemical concentrations. Ojstrsek et al. (2007) operated CW systems for the treatment 

of three dyebath wastewaters. These baths contained the dyes reactive red 22, reactive black 

5 and vat red 13 (one for each bath) mixed with sodium hydroxide, sodium chloride and 

auxiliaries (irgapadol MP, alvirol AGK, cibaflow PAD and alviron VKSB) to simulate dye-

rich textile wastewater. The dyebaths were prepared by dissolving the dye and the auxiliaries 

with tap and distilled water. Then, Bulc and Ojstrsek (2008) investigated the ability of a 

wetland system using the same chemicals and auxiliaries except for alviron VKSB. The dyes 

used in each bath were reactive black 5, disperse yellow 211 and vat yellow 46. The 

compositions used by Ojstrsek et al. (2007) and Bulk and Ojstrsek (2008) provided COD 

values within the typical range in all dye baths. Nevertheless, the authors examined the 

system without vegetation and the wastewater impact on aquatic plants is unknown, which 

limited the use of these chemicals with planted systems. Noonpui and Thiravetyan (2011) 
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examined the potential of Echinodorus spp. in a CW system for removing reactive red 141 

at a concentration of 20 mg/l. They used the same synthetic wastewater proposed by 

Sakkayawong et al. (2005). However, the authors focused on including salt sources only in 

their mixture. Ong et al. (2009a, 2010), and Cumnan and Yimrattanabovorn (2012) studied 

the ability of a CW system planted with emergent macrophytes for the treatment of synthetic 

textile wastewater consisting of ammonium nitrate, magnesium chloride hexahydrate, 

calcium chloride dihydrate, sodium benzoate, sodium acetate, potassium phosphate and 

sodium chloride mixed with dye. The dye concentration used by Ong et al. (2009a, 2010) 

was 50 and 100 mg/l. However, Cumnan and Yimrattanabovorn (2012) reduced the 

concentration of the dye to 11.5 mg/l, and the sodium benzoate by half. 

The compositions suggested by Ong et al. (2009a, 2010) and Cumnan and Yimrattanabovorn 

(2012) are rich in salts, nutrients, sodium and carbon sources. The inflow parameters were 

within the typical range of textile industry effluents (Ghaly et al., 2014), except for NO3–N 

and NH4–N concentrations which were high. In addition, Ong et al. (2009a, 2010) clearly 

documented the characteristics of the main parameters present in the related synthetic 

wastewater. Thus, the two compositions reported by Ong et al. (2009a, 2010), and Cumnan 

and Yimrattanabovorn (2012) typically simulate the textile effluents compared with other 

reported compositions. The chemical constituents of synthetic textile wastewaters prepared 

by various researchers which were treated by chemical, physical, and biological methods are 

summarised in Table A.6 (Appendix A), and the corresponding water quality characteristics 

are shown in Table A.7 (Appendix A). 

2.5 Textile dyes  

Dyes are natural and synthetic compounds used to add colour to products or goods, helping 

to make things more attractive. The history of natural dyes goes back over hundreds of years, 

since 2600 BC, when dyes were extracted by the ancient Chinese from the natural resources 

of plants and animals (Carmen & Daniela, 2012; Saranraj, 2013; Ghaly et al., 2014). In 1856, 

the English student William Henry Perkin, at the Royal College of Chemistry, discovered 

the first synthetic dye accidently (Welham, 2000; Zollinger, 2003; Saranraj, 2013; Kamat, 

2014; Shertate & Thorat, 2014) and by the beginning of the 20th century, more than ten 

thousand synthetic dyes were used in industries (Robinson et al., 2001; Deniz & Karaman, 

2011; Saratale et al., 2011; Ventura-Camargo & Marin-Morales, 2013). Thereafter, the 

available commercial synthetic dyes increased to around 100,000, and the annual production 
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of dyes was greater than 7×105 tonnes worldwide (Nigam et al., 1996; Selvam et al., 2003; 

Zonoozi et al., 2008; Blanco-Flores et al., 2014; Castaneda-Diaz et al., 2017). 

The synthetic dyes are cheap, produced easily, formed in different colours, and characterised 

by their fastness when exposed to water or sunlight, which makes them extensively used in 

preference to natural dyes (Robinson et al., 2001; Khehra et al., 2006; Gupta & Suhas, 2009; 

Samanta & Agarwal, 2009; Da-Silva et al., 2010; Kant, 2012; Kamat, 2014). They are widely 

used as colouring agents in a variety of technological fields, such as the textile dye industry 

(Gupta et al., 1992; Shukla & Gupta, 1992; Sokolowska-Gaida et al., 1996; El Haddad et al., 

2014; Castaneda-Diaz et al., 2017), the paper production industry (Diyanati et a., 2013), the 

leather tanning industry (Tunay et al., 1999; Forgacs et al., 2004; Joghatayi et al., 2015), hair 

and cosmetics colouring (Scarpi et al., 1998; Dehghan et al., 2017), food industry (Bhat & 

Mathur, 1998; Slampova et al., 2001), and colour photography (O’Mahony et al., 2002; 

Selvam et al., 2003; Reema et al., 2011). However, it is worth noting that a significant 

proportion of these dyes are extensively used in textile mills for dyeing the fabrics (Walker 

& Weatherley, 1997; Pandey et al., 2007; Zonoozi et al., 2008; Shah et al., 2013; Gupta et 

al., 2015). 

The synthetic textile dye is defined as a coloured substance which is able to resist fading 

when applied to fibres, thus providing a stable colour (Saratale et al., 2011). Textile dye 

molecules consist of two components: Chromophore groups, which are responsible for the 

colour of the dye, and auxochrome groups, which are responsible for the intensity of the 

colour (Gupta & Suhas, 2009; Salleh et al., 2011). The main chromophore configurations 

include azo (-N=N-), ethylene (=C=C=), carbonyl (=C=O), methane (-CH=), carbon-

nitrogen (=C=NH; CH=N-), carbon-sulphur (=C=S; ≡CS-S-C≡), nitro (-NO2; -NO-OH), 

and nitroso (-N=O; =N-OH) groups. The most important auxochrome groups are amino (-

NH2), carboxyl (-COOH), sulphonate (-SO3H) and hydroxyl (-OH) (Welham, 2000; Suteu 

et al., 2011; Carmen & Daniela, 2012; Singh et al., 2012; Saranraj, 2013; Ventura-Camargo 

& Marin-Morales, 2013; Daud, 2014; Ghaly et al., 2014; Suresh, 2014; Tahir et al., 2016). 

In the main, synthetic textile dyes are classified either according to their mode of application, 

(e.g., acid, basic, direct, disperse, reactive, mordant, sulphur, pigment, and vat dyes) or 

according to their chemical structure (e.g., nitro, azo, anthraquinone, diphenylmethane, 

phthalocyanine, and triarylmethane) as discussed previously (Saleh, 2005; Demirbas, 2009; 

Abid et al., 2012; Carmen & Daniela, 2012; Somasekhara Reddy et al., 2012; Suresh, 2014; 

Adegoke & Bello, 2015; Salman et al., 2016). Furthermore, these dyes are also classified 
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based on the degree of dissociation in aqueous solution, into anionic (e.g., direct, acid, and 

reactive dyes), non-ionic (e.g., disperse dyes), and cationic (e.g., basic dyes) as indicated by 

Robinson et al. (2001), Salleh et al. (2011), Balarak et al. (2015), and Tahir et al. (2016). 

Among all these dye types, the azo compounds are pervasively used in the textile industry 

compared with other dye classes (Asamudo et al., 2005; Zille et al., 2005; Adinew, 2012) 

worldwide. 

2.6 Azo dyes 

Azo dyes are aromatic compounds, and one of the main groups of dyes that are widely used 

in the textile industry, due to an increasing demand for non-fading colours (Forgacs et al., 

2004; Davies et al., 2009; Daud, 2014; Yaseen & Scholz, 2016). This group of dyes have a 

complex structure and xenobiotic nature, which enhances their resistance to degradation 

(Stolz, 2001; Maddhinni et al., 2006; Savin & Butnaru, 2008; Pahlaviani et al., 2011; Solis 

et al., 2012; Saranraj, 2013; Tahir et al., 2016). The structure of these dyes possesses at least 

one azo group, which is demonstrated by two bounded nitrogens (-N=N-), and the 

categorisation of these dyes is considered according to the number of these azo linkages. 

They are classified into monoazo, diazo, triazo, and polyazo dyes that bear one azo group, 

and two, three, and four or more azo groups, respectively (Wallace, 2001; Zollinger, 2003; 

Hunger, 2007; Gupta & Suhas, 2009; Chacko & Subramaniam, 2011).  

In textile dyebaths, most dyes cannot bind with textiles entirely, which leads to the residuals 

being released into watercourses as waste (Pearce et al., 2003; Van Der Zee & Villaverde, 

2005; Ratna, 2012; Yaseen & Scholz, 2016, 2017b). The amount of dye lost usually depends 

on the type of azo dye used, the degree of shading wanted, and the method of application 

(O’Neill et al., 1999; Pandey et al., 2007; Carmen & Daniela, 2012). It is estimated that the 

textile industry discharges around 280,000 tonnes of synthetic dyes per year, and the main 

concern is related to these azo dyes and their adverse impact on the environment (Pearce et 

al., 2003; Maas & Chaudhari, 2005; Jin et al., 2007; Solis et al., 2012). Table 2.1 shows the 

typical degree of losses in the effluents and the main pollutants associated with different 

textile dyes, as indicated by the European Water Association (EWA) (2005). Although a 

high proportion of dye effluent is associated with reactive dyes, ranging between 10% and 

50%, as shown in Table 2.1, these dyes make up approximately 30% of the market share, 

due to their fading resistance (Pearce et al., 2003). In contrast, basic dyes have lower effluent 

levels compared with other dye classes. Some of the commercial dyes that are extensively 
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used in the textile industry are reactive blue 198 (Chen et al., 2003; Kim et al., 2004; Nguyen, 

2014), reactive yellow 84, reactive red 120 (Neamtu et al., 2003), basic red 46 (Deniz & 

Karman, 2011; Sheshdeh et al., 2014), acid blue 113 (Surana et al., 2010; Mehta et al., 2011; 

Balarak et al., 2016b), direct orange 39 (Chen et al., 2003), methyl orange (Mehra & Sharma, 

2012) and methylene blue (Mehra & Sharma, 2012; El-Ashtoukhy & Fouad, 2015). 

Table 2.1 Fixation and loss degree of different textile dyes (after EWA, 2005) 

Dye class Fibre 

Typical 

fixation 

(%) 

Losses to 

the effluent 

(%) 

Main pollutions 

Acid Wool and nylon 80–95 5–20 
Unstable dyes, organic 

material containing acids and 

the colour 

Basic Acrylic and some 

polyesters 
95–100 0–5 N/V 

Direct Cellulosic including 

cotton and rayon 
70–95 5–30 Unstable dye, salt and colour 

Disperse Polyester 90–100 0–10 
Unstable dyes, organic 

material containing acids, and 

phosphate 

Reactive Wool and cellulosic 

including cotton 
50–90 10–50 Unstable dye, colour, alkali, 

and salts 

Sulphur Cellulosic including 

cotton 
60–90 10–40 Unstable dye, colour, alkali, 

oxidising and reducing agent 

Vat Cellulosic including 

cotton 
80–95 5–20 Alkali, colour, oxidising and 

reducing agent 

Note: N/V, not available.  

2.7 Textile dyes and environmental challenges  

The impact of coloured effluents from textile factories on environmental sustainability is 

objectionable, because most textile dyes with a rather low concentration of 1 mg/l, treated 

or not, can be detected by the human eye, and could increase community complaints and 

concerns (Hussein, 2013; Dhaouefi et al., 2018). Therefore, this aesthetic problem is one of 

the major challenges for receiving watercourses, especially for the non-acceptable colours 

of river water such as red or purple compared to more accepted colours such as green or blue 

(Kadirvelu et al., 2005; Pandey et al., 2007; Zaharia et al., 2009; Suresh, 2014; Yaseen & 

Scholz, 2017b). In addition, a high concentration of these dyes in the receiving watercourse 

will inhibit sunlight penetration and respiration activities, consequently upsetting the 
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biological and photosynthesis processes in the aquatic environment (Vandevivere et al., 

1998; O’Mahony et al., 2002; Canizares et al., 2006; Kadirvelu et al., 2003; Arami et al., 

2006; Dincer et al., 2007; Reema et al., 2011; Saratale et al., 2011). It also contributes to 

overloading chemical oxygen demand, suspended solids, total dissolved solids, nutrients etc. 

in the receiving water streams. Moreover, these effluents pass through soil layers and may 

contaminate nearby surface water and groundwater which consequently affects fisheries, 

agriculture, farm animals and the food chain (Lin et al., 2008; Sivakumar et al., 2013; 

Sivakumar, 2014; El-Ashtoukhy & Fouad, 2015). The presence of these dyes over a long 

period of time (several years) in watercourses leads to toxic effects, due to dye accumulation 

in sediments, fish and other organisms. Also, dye decomposition and corresponding 

hazardous compounds may also have a toxic impact on aquatic life (Van Der Zee & 

Villaverde, 2005; Carmen & Daniela, 2012; Zhang et al., 2012), although some authors 

reported that the toxicity of dyes at concentrations below 1 mg/l did not inhibit the growth 

of different organisms, such as fish, rats, algae, bacteria, protozoans etc. (Greene & 

Baughman, 1996; Suresh, 2014). Moreover, azo dyes, which are widely used in textile 

manufacturing and their daughter products (aromatic amine) can cause allergies, dermatitis, 

skin irritation, carcinogenic and mutagenic actions as well as acute and chronic toxicity 

(Jain et al., 2003; Kadirvelu et al., 2003; Pinheiro et al., 2004; Megateli et al., 2009; Carmen 

& Daniela, 2012; Mesquita et al., 2012; Suresh, 2014; Almazan-Sanchez et al., 2016; 

Yaseen & Scholz, 2017a). Accordingly, human exposure to these azo dye effluents may 

lead to immunological, neurological and circulatory disorders, irritation to lung oedema, 

eye and skin infections and allergy problems (Morikawa et al., 1997; Weisburger, 2002; 

Shen et al., 2009; Foo & Hameed, 2010; Adegoke & Bello, 2015).  

Therefore, due to these environmental challenges, the textile industries are obligated by 

environmental legislation to remove the colour from their effluents, before disposal into 

receiving watercourses (McKay et al., 1985; Lee et al., 2006). For instance, the 

environmental policies in the UK have required concentrations of synthetic dye wastewaters 

to be discharged to the aquatic environment to be zero since September 1997 (Willmott et 

al., 1998; O’Neill et al., 1999; Robinson et al., 2001; Pearce et al., 2003), to ensure that dye 

effluents are treated effectively before discharge. 
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2.8 Wetlands definition and treatment stages 

Pollutants elimination (or reduction to within the allowable ranges that cause no harmful 

impact on life forms) is the main aim of wastewater treatment systems. Wetlands, both 

natural and constructed, are preferred to conventional techniques of contaminant 

remediation, due to their features of being environmentally friendly, requiring low energy 

usage and having minimal capital cost (Sekomo, 2012). Wetlands are land areas in which 

the permanent shallow or temporary standing water plays a significant role, with the help of 

vegetation, animals, and micro-organisms for controlling the environment of wetland 

systems (Ramsar, 2010; Al-Isawi, 2016), and consequently interact in the presence of light, 

soil and air, to enhance the quality of the water (Eke, 2008). The broader definition of 

wetlands, which is well accepted, was stated in the Ramsar Convention in 1980, by the 

International Union for the Conservation of Nature and Natural Resources (Scholz, 2006). 

It defined wetlands as “any areas of marsh, fen, peat land, or water, whether natural or 

artificial, permanent or temporary, fresh, brackish or salty, including areas of marine water, 

the depth of which at low tide does not exceed six metres” (Mitsch & Gosselink, 1993, 2000; 

Ramsar, 2010). This description covers a variety of coastal, marine, and inland 

environments, such as marshes, lagoons, springs, ponds, channels, marine mud-flats, 

estuaries, deltas, shallow and deep lakes, swamps, reservoirs, and beds of marine algae or 

seagrasses, in addition to estuaries and rivers comprising aquatic plants (Eke, 2008). 

Although this technology was poorly documented during the early stages of development, 

some authors mentioned the applications and types of wetland that have been used in the last 

six decades, and this provided good historical information about wastewater remediation and 

disposal using this system (Moshiri, 1993; Kadlec & Knight, 1996; Vymazal et al., 1998; 

Vymazal, 2010, 2011). Wetlands can be natural or artificial, and they are different according 

to some main factors, which include weather conditions, water chemistry, macrophyte type 

and soil type, as well as human participation (Eke, 2008). Natural wetlands are found in 

different regions with a wide range of weather conditions and in all continents except 

Antarctica (Vymazal et al., 1998). Vymazal (2011) pointed out that, for centuries, natural 

wetlands have been used in some sites for wastewater disposal rather than treatment as a 

suitable technology that easily serves the receiving effluents. However, this uncontrolled 

release of contaminated water led to full degradation of many wetland areas. The oldest 

applications of wetland sites for wastewater treatment, were in North America between 1912 

and 1939 (Kadlec & Knight, 1996; Kadlec & Wallace, 2009). The practical examination of 
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natural wetlands has been applied for more than 100 years to treat wastewater in the United 

Kingdom (UK) (Cooper & Boon, 1987). Since 1950, knowledge regarding natural wetlands 

has increased, and consequently the amount of polluted water being discharged, for disposal 

rather than treatment purposes, has reduced in some regions of the world (Vymazal, 2011). 

The natural wetland systems are still operated under controlled conditions (Kadlec, 2009), 

however, the operation of CWs has been favourable in recent years (Kadlec & Wallace, 

2009; Vymazal, 2008, 2011). Eke (2008) defined constructed wetland as “a man-made 

system designed to imitate the optimal treatment conditions found in natural wetlands, which 

filter out pollutants and act as sinks for nutrients by purifying the water through physical 

(sedimentation and filtration), physical-chemical (adsorption on plants, soil and organic 

substrates) and biochemical (biochemical degradation, nitrification, denitrification, 

decomposition and plant uptake) processes”. This artificial eco-system has proven to be 

inexpensive, green, and simple to use and operate. 

The early stage of CWs for purifying water was in 1901 by Cleophas Monjeau, as 

documented by Wallace and Knight (2006). However, the first application of planted CWs 

that mimic the natural wetlands was conducted in the 1950s by Kathe Seidel in Germany. 

She conducted many experiments during the period between 1952 and 1956 to treat phenol, 

dairy, and livestock wastewaters using wetland macrophytes (Seidel, 1955, 1961, 1965a, 

1966), as described by Vymazal (2008). In the early 1960s, Seidel worked on growing 

different plants in polluted water, and focused on developing and improving the performance 

of some ponds and ineffective septic tanks to treat wastewater in rural areas (Seidel, 1965b). 

In addition, she started to use sandy soils to improve her system, as mentioned by Vymazal 

(2011). By the mid-1960s, Seidel was working in collaboration with her student Reinhold 

Kickuth to develop horizontal flow CWs, a system known as the Root Zone Method (RZM). 

The system was brought into operation in 1974 using Common Reed plants, and was the 

early wetland system in Germany built with heavy soil media to treat municipal sewage 

(Kickuth, 1977, 1978, 1981), as reported by Vymazal (2005, 2009) and Sekomo (2012). The 

reported information about CWs technology for the period between 1970 and 1980 has 

spread gradually. Thereafter, CWs have been known as a reliable system for wastewater 

treatment (Vymazal, 2011), resulting in the establishing of around 200 systems to treat 

municipal and industrial effluents (Bastian & Hammer, 1993) in Europe. In the mid-1980s, 

CWs were well accepted and became more popular in the UK (Cooper et al., 1996). In 1987, 

a hybrid system of vertical flow-horizontal flow CW was introduced in the UK at Oaklands 
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Park (Burka & Lawrence, 1990). Regarding the United States of America (USA), the 

exploration of CWs was increased during the 1970s and 1980s. After that, in the 20th century, 

European countries used all the types of CWs, although some countries concentrated on 

using vertical flow and hybrid wetlands due to the high removal requirements for ammonia. 

Engineered wetlands were accepted officially in some countries, such as Austria in 1997, 

Denmark in 1999, Australia and the United States in 2000 (Vymazal, 2011). Sekomo (2012) 

and Vymazal (2009) reported that the early stages of using CWs for textile wastewater 

treatment were in Germany and Australia between the end of 1980 and beginning of 1990 

using horizontal flow CW systems. The studied CWs were a promising method and cost-

effective option for coloured textile wastewater treatment. 

Today, the application of CW systems to treat wastewater is being recommended and 

disseminated worldwide (Vymazal, 2011, 2014). However, the practical operation of this 

technology is not common in developing countries, especially in tropical and subtropical 

regions, such as Nigeria and Tanzania, due to the lack of knowledge about the features and 

importance of wetland systems for protecting the environment and solving the water 

pollution problems economically (Sani, 2015). Despite this, a number of research studies 

have been reported in recent years regarding CWs in some developing countries (Blackwell 

et al., 2002; Mitsch & Jorgensen, 2004; Zedler & Kercher, 2005), such as Egypt (Abou-Elela 

& Hellal, 2012; Abou-Elela et al., 2013) and Kenya (Kimani et al., 2012). On the other hand, 

it is worth noting that CWs applications in other developing countries, such as China and 

India began in 1990 and the research studies in this area have continued (Sheoran & Sheoran, 

2006; Xinshan et al., 2010; Zhang et al., 2012), as these countries have gained a sufficient 

awareness concerning the benefits of applying CWs technologies.  

Although many authors reported the use of CWs applications to treat diverse wastewater 

(Kadlec & Knight, 1996; Cooper et al., 1996; Vymazal et al., 1998; Eke, 2008; San, 2015; 

Mohammed, 2017), the experience in treating textile effluents is limited (Sekomo, 2012) and 

the internal processes applied during the treatment are not discussed in detail. Therefore, it 

is necessary to observe the performance of experimental wetlands in order to increase 

understanding, and consequently increase the awareness of wetland technology as an 

effective method for treating polluted water and saving the environment with low input cost 

(Kadlec & Wallace, 2009; Vymazal, 2014; Sani, 2015; Scholz, 2015; Al-Isawi, 2016). 
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2.9 Configurations of constructed wetlands  

Constructed wetlands for wastewater treatment are classified according to several design 

criteria which mainly include: hydrology (free water surface flow and subsurface flow), the 

type of plant used (emergent, submerged, and free-floating), and the direction of flow 

(horizontal and vertical), as described by Kadlec and Knight (1996), the International Water 

Association (IWA) (2000), Kadlec et al. (2000), and Vymazal (2005, 2008, 2011, 2010, 

2014). Further types of engineered wetlands are: the hybrid systems, which are created for 

enhancing the removal efficiency of contaminants by combining two types of CWs as a 

single system (Vymazal, 2013b; Sani, 2015); and the intensified systems, which deal with 

highly loaded effluents and are designed for achieving high removal efficiency (Al-Isawi, 

2016). Recently, a new classification of wetlands has been reported in some studies, which 

depends on the purposes for applying these systems, such as habitat creation, flood control, 

and wastewater treatment (Vymazal 2013a, 2014; Sani, 2015).  

Due to the practicability of this study, the applications of using CWs to treat textile dyes are 

considered according to the type of main macrophytes utilised in the treatment system, which 

include emergent, submerged, and free-floating macrophytes. Macrophytes are aquatic 

plants capable of eliminating or diminishing nutrients and other substances from polluted 

water through the absorption process (Keskinkan & Lugal Goksu, 2007). Figure 2.4 below 

shows the main categories of CWs. 

 

Figure 2.4 Main categories of constructed wetlands (after Vymazal, 2008; Kadlec & 

Wallace, 2009). Note, blue ellipse identifies the system used in this study. 
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2.9.1 Emergent macrophyte-based treatment systems 

These systems describe the CWs that are vegetated with rooted emergent aquatic plants for 

pollutants purification. These aquatic plants are found at the banks of rivers and lakes and 

their roots are attached to the substrate media, which allows them to absorb pollutants and 

nutrients from the soil sediment. It has been reported that the potential of emergent plants to 

assimilate the contaminants and nutrients is greater than the floating macrophytes, because 

they have more supportive tissue and their roots are deeper within the soil (Sekomo, 

2012). However, these plants are not harvested and so they act as a temporary storage for 

nutrients which are released to the water system after the plants’ decay (Kadlec & Wallace, 

2009). Generally, emergent macrophytes are the largest aquatic plants growing in CWs and 

include: Common Reed (Phragmites australis), Manchurian wild rice (Zizania latifolia), 

Burhead (Echinodorus cordifolius L.) and Narrow-leaved cattails (Typha angustifolia 

Linn.). Constructed wetlands planted with emergent plants are filled with soil, gravel or sand 

as a substrate media to support the growth of the emergent plant roots (Kadlec & Wallace, 

2008; Vymazal, 2013a). This type of wetlands has proven to be highly effective in the 

removal of diverse pollutants, such as suspended solids, biochemical oxygen demand, 

nitrogen, heavy metals and other contaminants, except phosphorus removal which is limited 

in all wetland systems (Kadlec & Knight, 1996; Vymazal, 2007; Kadlec & Wallace, 2009; 

Yaseen & Scholz, 2018). Emergent plants-based systems are divided into four main groups 

based on the flow pattern: free water surface (FWS) CWs; horizontal subsurface flow (HF) 

CWs; vertical subsurface flow (VF) CWs, which are divided further based on the flow 

direction into up flow (UF) CWs and down flow (DF) CWs; and finally hybrid or combined 

CW systems. The configuration and flow direction of each kind of CW planted with 

emergent macrophytes are shown in Figure 2.5. 

In the past few years, the literature indicates promising results for textile dye and other 

contaminants removal using free water surface, vertical, horizontal and hybrid wetland 

systems vegetated with different emergent plants (Bulc & Ojstrsek, 2008; Ong et al., 2009a; 

Cumnan & Yimrattanabovorn, 2012). These studies provide good knowledge about the 

efficiency of each system, the potential of different emergent plants, the impact of different 

contact times using a wide range of dye concentrations and under natural, greenhouse or 

laboratory conditions, although the results rarely cover all seasons (Vymazal, 2014) and all 

the main water quality parameters (Davies et al., 2005).  
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Figure 2.5 Schematic illustration of different types of rooted emergent plants-based 

constructed wetlands. Note: (a), free water surface; (b), horizontal subsurface flow; (c), 

vertical subsurface flow; (d), hybrid system (after Vymazal, 2007). 
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The performance of an aerated VFCW using a gravel-sand bed and planted with P. australis 

has been investigated by Pervez et al. (2000) to treat synthetic wastewater containing the azo 

dyes reactive blue 171 and acid blue 113. The results of ten weeks of operation showed high 

removal efficiency for both dyes of around 98%. However, the study did not focus on the 

COD and nutrients removal in wastewater.  

Davies et al. (2005) assessed the performance of DFCWs to remove the azo dye acid orange 

7 using P. australis in an outdoors experiment. The system was filled with a gravel layer 

topped by sandy-clay soil. The results indicated that the plant produced enzymes capable 

of degrading the dyes with a removal efficiency of 69% and 74% for a dye inflow 

concentration of 130 and 700 mg/l, respectively. Furthermore, Davies et al. (2006) studied 

the aerobic degradation of acid orange 7 and the removal efficiency was 99% using 127 mg/l 

of the dye in a VFCW. Moreover, Davies et al. (2009) studied the phytoremediation of acid 

orange 7 and the reaction between P. australis and the dye molecules. The results indicated 

that the dye acted as a chemical stressor agent for P. australis by activating the gene 

expression and enzymatic activities of plants with a removal efficiency of 68% for dye 

inflow concentration of 748 mg/l in a VFCW. However, these experiments operated for a 

short duration of a few months and the authors focused on the plant enzymatic activities and 

the removal efficiency of the dye, COD and total organic carbon (TOC) only. 

The performance of UFCWs planted with P. australis and filled with a small glass layer 

topped by gravel to remove the dye acid orange 7 has been reported (Ong et al., 2009a, b; 

Ong et al., 2010). The system operated under laboratory conditions with different 

concentrations, contact times (HRT - hydraulic retention time) and artificial aeration through 

three experiments using synthetic textile wastewater. The first experiment (Ong et al., 

2009a), was to compare the removal efficiency between two species of emergent plants P. 

australis and Zizania latifolia and the effect of supplementary aeration on the system 

performance using 50 mg/l dye concentration for three days. The investigations showed that 

the aerated reactor was better than the non-aerated reactor for acid orange 7 and COD 

removal with no difference between the plant efficiencies, except for the COD removal 

in the aerated reactor being higher with P. australis than with Zizania latifolia. After that, 

the effect of increasing acid orange 7 concentration (Ong et al., 2009b) was evaluated by 

using 100 mg/l with the same contact time. The results showed a high percentage of dye 

removal, whereas the supplementary aeration boosted the efficiency of aromatic amine 

removal. These results match with Ong et al.’s (2011) outcomes when using the same system 
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under semi-batch operations for two days of contact time. Finally, in the last stage, HRT was 

increased to six days (Ong et al., 2010). The overall results presented the fact that the system 

using this type of plant was efficient for the removal of acid orange 7 and COD by more 

than 96%. In addition, a high concentration of acid orange 7 reduced the dye removal under 

aerated conditions and decreased the COD removal under non-aerated conditions. However, 

the high contact time only boosted the removal efficiency in terms of COD removal. The 

authors performed these three experiments to investigate the main factors affecting the 

system performance, such as the type of the plant, contact time, dye concentration, and the 

additional aeration. They recorded the main water quality parameters including COD, NH4‒

N, NO3‒N, nitrite nitrogen (NO2–N) and PO4–P. However, each experiment operated for 

three months only. 

Further investigation of the performance of UFCWs has been conducted by Nilratnisakorn 

et al. (2009) for the treatment of synthetic reactive dye wastewater (SRDW) vegetated with 

Typha angustifolia Linn. They studied the effect of the plant and/or the substrate media on 

the removal efficiency of reactive red 141. The system was operated in a greenhouse and, 

after an experimental period of 15 days, their findings showed that the colour removal using 

the plant was only 49% at best, whilst it was very low at 2.82% with sand and 1.95% with 

gravel. Overall, the results showed that the system using both the plant and matrix was able 

to remove colour from the SRDW by up to 58%. Thereafter, Noonpui and Thiravetyan 

(2011) examined the performance of HFCWs vegetated by Echinodorus cordifolius L. 

using both soil and soil-free (hydroponic) conditions for the treatment of three reactive azo 

dyes in different molecular sizes: reactive red 2, reactive red 120 and reactive red 141 in 

aqueous solution. The results within one week of experimental work in a greenhouse 

demonstrated that the Echinodorus cordifolius L was efficient for dye removal in both soil 

and soil-free conditions and the values were 100% and 99%, respectively, though the dye 

removal efficiency for the soil condition was noticeably higher than the hydroponic 

condition within the first four days of the system operation. Regarding the molecular 

weight, dye removal increased with the reduction of it. Although, these research studies were 

performed for short periods under greenhouse conditions, the results provided an attractive 

conclusion about the very small impact of the matrix bed (gravel, sand, or soil) compared 

with plant efficiency in terms of dye removal. The low impact of a gravel bed in terms of 

dye removal by CWs was also confirmed by Ong et al. (2009a). This could help to save the 

extra cost required for the substrate media in CWs, as one of the main objectives required in 
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developing countries during treatment systems design. 

Yalcuk and Dogdu (2014) assessed the performance of VFCWs consisting of gravel, sand, 

and zeolite beds to compare the potential of two species of emergent plants (Canna idica L 

and Typha angustifolia L) to treat the dye acid yellow 2G E107. The results showed a high 

percentage of colour removal of around 98% for planted CWs and 87% for unplanted CWs, 

and the authors discussed the removal efficiencies of other main parameters, such as 

ammonia-nitrogen and ortho-phosphate-phosphorus. However, the system operated over 

three months only. 

Hussein and Scholz (2017) operated a DFCW planted with P. australis, and filled with 

gravel layers for the treatment of the dyes acid blue 113 and basic red 46 at high and low 

concentrations. Results of thirteen months of operation showed that the wetland was able to 

improve the water quality parameters and to remove the dye basic red 46 and the dye acid 

blue 113 at both studied concentrations. This system, however, operated under greenhouse 

conditions. The operation was for a long term and the results cover all the main water quality 

parameters. 

The performance of FWS engineered wetlands operated under outdoors conditions and 

backed with a river sand bed has been assessed by Mbuligwe (2005) to compare dye-rich 

wastewater treatment using different emergent plants (Cattail and Cocoyam). The 

evaluation indicated that the colour removal was between 72 and 77% in the planted wetland 

and only 14% in the control one. In addition, a Cocoyam bed upgraded the colour removal 

efficiency to 7.6% more than a Cattail bed. Although the study covered the colour, COD, 

and sulphate removal as well as the pH variations, the authors mentioned that the limited 

operation time of 75 days could affect the results of this investigation, and in addition 

nutrients removal was not recorded.  

With regard to the hybrid systems, Bulc and Ojstrsek, (2008) operated a pilot-scale system 

as a vertical horizontal sub-surface flow constructed wetland in order to treat real textile 

wastewater contaminated with dyes under natural conditions. The results proved that the 

hybrid system with the P. australis was efficient for improved water quality parameters. 

The removal efficiency in VFCW and HFCW was similar in spite of the mass load being 

different. In addition, Cumnan and Yimrattanabovorn (2012) suggest that, the integrated 

FWS and subsurface flow (SSF) wetland system planted with P. australis could treat 

synthetic textile wastewater contaminated by azo dye with a high percentage of removal, 
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although the CW of SSF-FWS outperformed the FWS-SSF in terms of colour removal. It is 

obvious that the hybrid systems are very efficient, since they achieve higher removal 

efficiency of contaminants compared with the single wetland systems (Vymazal, 2008). 

However, it incurs additional costs compared to other CW types, as it is a combination of 

two or more wetland systems.  

Emergent macrophytes-based treatment systems are normally used as a secondary treatment 

stage and the authors in this area showed attractive results that encourage operating all types 

of this system. However, there are some limitations related to each type of CW system 

vegetated with emergent plants. For example, because the processes of water treatment in 

these wetlands occur when the plant and the substrate are in contact with the wastewater, 

FWS wetlands require more surface area than SSF systems (Vymazal, 2006), thus FWS 

systems can be expensive, especially in regions characterised by high land costs. In addition, 

authors suggest operating FWS systems planted with emergent plants in tropical and 

subtropical regions only, to avoid freezing problems associated with these wetlands during 

the winter season (Vymazal, 2007), which affect the system performance (Al-Isawi, 2016). 

Furthermore, there is a possibility of mosquito growth in FWS systems planted with 

emergent plants compared with SSF wetlands (Vymazal, 2013a). On the other hand, the 

capital cost incurred for SSFCWs is more than that for FWSCWs because the soil required 

to support the emergent vegetation in FWS systems is very low and limited within the root 

zone only if compared with the soil required in SSFCWs (Vymazal, 2010). Therefore, the 

higher cost of the emergent plants-based treatment systems compared with other wetlands, 

such as free-floating plants-based treatment systems (Kadlec & Wallace, 2009; Chen et al, 

2016), may limit the utilisation of these systems, especially in low-income developing 

countries. 

2.9.2 Submerged macrophyte-based treatment systems  

Submerged macrophytes are completely submerged within the CW system which, as a 

result, means that both the roots and the leaves of these plants have a shared responsibility 

for pollutant removal (Sekomo, 2012), examples include: Water Milfoil (M. spicatum), 

Coontail (C. demersum) (Keskinkan & Lugal Goksu, 2007), Hydrilla (Hydrilla verticillata) 

(Sekomo, 2012), Dense waterweed (Egeria densa), Waterweed (Elodea canadensis and 

Elodea nuttallii) and Pondweed (Pamogeton spp.) (Moshiri, 1993). These aquatic plants are 

found in ponds, lakes, reservoirs, small rivers, estuaries and bays.  
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A comparative study established by Keskinkan and Lugal Goksu (2007) used a lab-scale 

CW system filled with a sand bed and planted with M. spicatum and C. demersum for the 

removal of basic blue 41. Results showed that the mean dye removal was around 95%, 94%, 

and 71% for M. spicatum, C. demersum, and control wetlands, respectively. The authors 

pointed out that the studied CW during the operation period of 40 days was able to remove 

the dye effluents effectively at contact times of 9 and 18 days without any adverse effect on 

the plants’ survival. However, at HRT of three or six days, the plants did not survive and the 

dye removal efficiency was lower. This result led to the conclusion that the application of 

submerged plant treatment systems require a long HRT. 

This technology deals with pollutants at low concentrations as a polishing treatment stage 

(Vymazal, 2008) and therefore it is not suitable to treat water at high turbidity level because 

the high turbidity prevents light penetration and consequently affects the photosynthesis 

process of the plants (Vymazal et al., 1998). The problem linked with submerged plants-

based systems for dye removal is that the submerged plants cannot grow well in water 

characterised by long term anoxic or anaerobic conditions (Vymazal et al., 1998; Vymazal, 

2008), and therefore bacterial degradation of coloured effluents, which mostly requires 

anoxic or anaerobic conditions (Ong et al., 2009a), may not be achieved by this system. 

Figure 2.6 shows a schematic illustration of a submerged macrophyte-based constructed 

wetland system. 

 

Figure 2.6 Schematic illustration of a submerged plants-based constructed wetlands 

(after Vymazal et al., 1998) 

2.9.3 Free-floating macrophyte-based treatment systems 

(shallow ponds) 

In these systems, the whole body of the free-floating plants is above the water except for the 

roots. These macrophytes are found in various habitats and different forms, as large 



Chapter 2: Critical Literature Review 

41 

 

floating leaves with deep submerged roots, or tiny floating fronds without or with few 

small roots. The main kinds of free-floating aquatic plants are Water hyacinth (Eichhornia 

crassipes), Water lettuce (Pistia stratiotes), Pennywort (Hydrocolyle umbellate) (Vymazal 

et al., 1998) and Common Duckweed (Lemna minor L.) (Sivakumar, 2014). Constructed 

wetlands with free-floating macrophytes, also known as shallow ponds systems (Vymazal, 

2008; Chen et al., 2016), are one or more shallow ponds containing plants floating on the 

system surface (Kadlec et al., 2000). These wetlands depend on the natural chemical, 

physical, biological and microbial processes in the presence of the plants to treat the 

wastewater (Sivakumar, 2014). A schematic illustration of free-floating macrophyte-based 

treatment system is shown in Figure 2.7. 

 

Figure 2.7 Schematic illustration of a free-floating macrophyte-based constructed 

wetlands (after Vymazal, 2007) 

The potential of an Eichhornia crassipes-based treatment system to treat two textile dyes in 

outdoor experiments using plastic containers was assessed by Muthunarayanan et al. (2011). 

The plant biomass was 400 g, which equals 12 plants in each pond. The experiment was 

conducted in aqueous solution for 168 hours at concentrations of 10–50 mg/l. The best 

removal efficiency was 95% for red RB and 99.5% for black B after 6 days in 10 mg/l 

concentration. Although the dye removal was very high, this study operated for one week 

only. In addition, there is no mention of the potential of the control (without plants) systems 

and water quality parameters.  

Previous studies regarding dye removal using Eichhornia crassipes-based CW systems are 

very limited, although the performance of other contaminants removal, such as suspended 

solids, biochemical oxygen demand, nitrogen and phosphor are well documented. In 

addition, the main recommended design criteria, such as contact time, hydraulic load, and 

water depth are reported according to the type of treatment (e.g., secondary, advanced 

secondary and tertiary) (Vymazal et al., 1998). The main drawbacks of CWs planted with E. 
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crassipes is the operation, which is restricted to greenhouse or outdoors summer conditions 

only (i.e. tropical and subtropical regions). This is because plants’ survival is strongly 

dependent on the climate temperature, as they are damaged by frost and their growth is 

reduced at temperatures below 10˚C. Furthermore, this system requires supplementary 

aeration to prevent mosquitos’ growth and odour problems (Vymazal et al., 1998). Thus, in 

addition to the cost required for this extra aeration, it is not desirable in dye effluent 

applications which, according to Ong et al. (2009a, 2011), require anaerobic or anoxic 

conditions to achieve the first stage of dye removal (decolourisation) by microbes.  

Alkhateeb et al. (2005) operated an experiment using plastic containers simulating a pond 

system planted with L. minor to assess the ability for textile effluents decolourisation under 

sun, shadow, and dark conditions. The results showed that the percentage of colour removal 

was more than 70% under sunlight conditions. However, the colour reduction rate was very 

low for systems under dark, shadow, and without plants conditions, being 3.13%, 3.33% and 

3.5%, respectively. These results showed a good potential of L. minor for colour removal in 

a pond system. However, the plant was examined for a limited period of 20 days only, and 

the system performance under natural conditions is unknown as the experiment was operated 

under laboratory conditions only. 

Sivakumar (2014) assessed the role of L. minor in constructed wetlands using plastic 

containers, and reported that L. minor was efficient in COD and colour removal. The 

experiment was, however, operated over a short period of time and conducted in plastic tanks 

treating acid orange 10 at a concentration of 45 mg/l. The results concluded that the 

percentage of colour removal in an aqueous solution was 86% higher than the removal in 

textile industry wastewater (83%) under optimum operational parameters; i.e. nutrient 

dosage (50 g of activated sludge), dilution ratio (8), pH (8) and contact time (4 days). 

The ability of pond systems to remove colour and other pollutants from textile industry 

wastewater in Bursa city (Turkey) was assessed using L. minor under controlled conditions 

by Uysal et al. (2014). The experiment was operated using different contact times (3, 7 and 

10 days). High removal was observed for a contact time of three days, and the results were 

similar (56% to 66%) during the run period (15 days). The percentage of removal decreased 

continuously from 34% to 12% and from 62% to 3% for contact times of 7 and 10 days, 

respectively. This work tested L. minor efficiency and mentioned dye and COD removal, pH 

values, and the relative growth rate of the plant. However, it did not mention the other water 

quality parameters and it was operated for a short time. Furthermore, both treatment systems 
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operated by Alkhateeb et al. (2005), Sivakumar (2014) and Uysal et al. (2014) were 

conducted only under laboratory conditions, and the mixed dyes, which exactly simulate the 

textile dye effluents (Turabik & Gozme, 2013), were not considered.  

L. minor is more efficient compared with E. crassipes as it is easily harvested (Bejarano, 

2005), and can survive and grow within a wide temperature range. In addition, further 

aeration of the L. minor system is not required due to the full cover of the water surface by 

the plant, which prevents mosquitos’ penetration (Vymazal et al., 1998) and leads to odour 

reduction (Babu, 2011). 

These systems, free-floating plants-based treatment systems, require less capital cost 

compared with other wetlands planted with emergent and submerged plants that are 

especially linked with SSFCWs systems (Kadlec & Wallace, 2009; Chen et al., 2016). This 

draws attention towards operating such systems in low-income developing countries as 

cheap, effective, and environmentally friendly techniques (Bejarano, 2005; Yaseen et al., 

2017). Therefore, information regarding the operating conditions and design variables must 

be considered carefully in order to achieve optimum performance. However, it is clear that 

the investigations using these systems for textile dyes removal are very limited and still 

require more attention and clarification (Alkhateeb et al., 2005). Table 2.2 shows a 

comprehensive summary of the available research and the dye removal findings using CWs 

systems. 
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Table 2.2 Summary of the available research and the dye removal findings using CWs systems 

Reference Wetland type 
Wetland 

plant 

Matrix bed 

(From the bed to the 

top) 

Additive 

Period 

of 

operation 

Parameters 

monitored 

Type of 

dye 
Dye concentration Dye/colour removal Mechanism 

Pervez et al. 

(2000) 

Emergent plants-
based system 

(VFCW) 

(Experiment) 

Phragmites 

australis 
Gravel, sand Fertiliser 40 days COD 

AB 113 
 

50,100, 200, 300, 
400 mg/l 

Reduction of AB113 was higher 
than RB171, higher removal was 

at lower dye concentration, 

maximum removal achieved for 

both dyes was 98%, and addition 

of peat to the substrate enhanced 

the removal efficiency  

Adsortionp 
 

RB 171 

 

50, 100, 200 mg/l 

Alkhateeb et al. 

(2005) 

Free-floating plants-

based system 

(Pond)  
(Experiment) 

Lemna minor 

L. 
Without Without 20 days Colour N/V N/V 

Colour reduction of 70%, 3.13%, 
and 3.33% in planted ponds under 

sunlight, shadow, and dark 

conditions, respectively, and 3.5% 
under sunlight conditions without 

plant  

Phytoextraction, 
phytodegradation, 

Phytovolatisation 

Davies et al. 

(2005) 

Emergent plants-

based system 

(DFCW)  

(Pilot scale) 

Phragmites 

australis 

Gravel, sandy-

clay soil 
Without 

54 days 

16 days 

Plant tissue sampling, 

peroxidases activity, 

COD, TOC, NO3, 

SO4 

AO7 
130 mg/l 

700 mg/l 

Dye removal of 69%, 74% at 
concentration of 130 mg/l and 700 

mg/l, respectively 

Degradation 

Mbuligwe 

(2005) 

Emergent plants-

based system 

(FWSCW)  
(Pilot scale) 

Cattails sp., 

Cocoyam 

River sand bed, 

at inlet and outlet 

zones gravel 
added 

Without 75 days COD Sulphate pH N/V 100.22 Pt Co 

Dye removal of 72%, 77%, 

14% for Cattail bed, Cocoyam 

bed, and Control CWs, 
respectively 

Uptake and 
chemical 

decolourisation 

Davies et al. 

(2006) 

Emergent plants-
based system 

(VFCW)  

(Pilot scale) 

Phragmites 

australis 

Gravel, sandy-

clay soil 
Without 48 days 

COD, TOC, NO3, 
pH, ORP, SO4 

2, 

plant growth, soil 

temperature 

AO7 127 mg/l Dye removal rate 99% Degradation 

Keskinkan and 

Lugal Goksu 

(2007) 

Submerged 

plants-based 

system  

(FWSCW) 

(Experiment) 

Water Milfoil, 

Coontail 
Sand bed Nutrient 40 days pH, dissolved oxygen BB41 11 mg/l 

Dye removal of 95%, 94%, 71% 
for Water Milfoil, Coontail, 

Control CWs, respectively, at 

contact time of 18 days 

N/V 

Ojstrsek et al. 

(2007) 

(DFCW) 
(Experiment) 

 

Without 

 

Gravel, sand, 
washed zeolite 

 

 

 

 

Without 24 hours pH, COD, TOC, EC 
RR22, 
RB5, 

VR13 

33.3 mg/l 
Dye reduction of 40%, 70%, 43% 

for RR22, RB5, VR13, 

respectively 

Filtration 

and/or adsorption 
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Table 2.2 (Continued) 

Bulc and 

Ojstrsek, (2008) 

Emergent plants-

based system 
(VHFCW)  

(Pilot scale) 

 

Phragmites 

australis 

Coarse sand, fine 

sand 
Without 5 months 

COD, BOD, TOC, 
N total, N organic, 

NH4-N, TSS, DO, 

temperature, EC, 
pH SO4, Anionic 

surfactant 

RB5, 
DY211, 

VY46 

30 mg/l 

Colour reduction rate 90% and the 

removal efficiency in VF was 
similar to HF bed, although the 

loading rates were lower in HF 

than the VF beds 

Filtration and/or 

adsorption 

Davies et al. 

(2009) 

Emergent plants-

based system 

(VFCW)  

(Pilot scale) 

Phragmites 

australis 

Gravel, sandy-

clay soil 
Without 60 days 

Gene-expression 

analyses, COD, TOC 

 

AO7 748 mg/l Dye removal rate 68% Degradation 

Nilratnis-

akorn (2009) 

Emergent plants-

based system 

(UFCW) 
(Experiment) 

Typha 
angustifolia 

Linn. 

Gravel, sand Without 15 days 
pH, COD, TDS, plant 

tissue analysis 
RR141 20 mg/l 

Colour removal was 49 %, 2.82%, 

1.95%, 58% for CW containing 
only planted, only sand, only 

gravel, plant with sand and gravel 

bed, respectively 

Absorption 

Ong et al. 

(2009a) 

Emergent plants-
based system 

(UFCW) 

(Experiment) 

Phragmites 
australis, 

Zizania 

latifolia 

Small glass, gravel Sludge 75 days 

 

COD, NH4-N, NO3-
N, NO2-N, TN, TP, 

ORP, DO, plant 

growth 

 

AO7 50 mg/l 

Dye reduction was similar for 

planted and control CWs and for 

both plants, 96% for non-aerated 
CWs, 98% for aerated CWs at 

HRT of 3 days 

Degradation 

Ong et al. 

(2009b) 

Emergent plants-
based system 

(UFCW) 
(Experiment) 

Phragmites 

australis 
Small glass, gravel 

Sludge 
6 months 

ORP, COD, aromatic 

amine 
AO7 100 mg/l 

Dye removal 96% for both aerated 

and non-aerated CWs 
Degradation 

Ong et al. 

(2010) 

Emergent plants-

based system 

(UFCW) 

(Experiment) 

Phragmites 

australis 
Small glass, gravel 

Sludge 

Three 

experime
nts 

within 1 

year 

COD, NH4-N, NO3-

N, NO2-N, TN, TP, 
ORP, DO, plant 

growth 

 

AO7 50 mg/l 

100 mg/l 

Reduction rate of 98% and 96% at 
HRT of 3 days and dye 

concentration of 50 mg/l, 94% and 

96% at HRT of 3 days and 
concentration of 10 mg/l, and 98% 

and 98% at HRT of 6 days and 

concentration of 100 mg/l within 
the aerated and non-aerated CWs, 

respectively 

Degradation 

Ong et al. (2011) 

Emergent plants-

based system 
(UFCW) 

(Experiment) 

Phragmites 

australis Gravel Sludge 27 days 
COD, NH4-N, DO, 

plant growth 
AO7 50 mg/l 

 

Dye reduction 94.3%, 99.6%, 

95.4% for control, aerated, non-

aerated CWs at HRT of 2 days 

Degradation 
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Table 2.2 (Continued) 

Noonpui and 

Thiravetyan 

(2011) 

Emergent plants-
based system 

(HFCW) 

(Experiment) 

Echinodorus 

cordifolius L. 

With Soil 

Without Soil 
Without 7 days 

pH, EC, TDS, plant 

growth 

RR2, 
RR1

20, 

RR141 

20 mg/l 

Dye removal 97%, 92%, 

88% for RR2, RR120, 

RR141, respectively in 
CW without soil, and 

100% and 99% for 

SRRW141 in CWs with 
and without soil, 

respectively 

Uptake 

Muthunaray-

anan et al. 

(2011) 

Free-floating plants-

based system  

(Pond)  
(Experiment) 

Eichhornia 

crassipes 
Without Without 6 days 

Functional group 
analysis for plant 

tissues 

RR198, 
RB5 

 

10-50 mg/l 
Higher removal was 95% for 
RR198 and 99.5% for RB5 at 

concentration 10 mg/l 

Bio-sorption 

Cumnan and 

Yimrattanab-

ovorn (2012) 

Emergent plants-
based system 

 (FWS and SSFCW)  

(Pilot scale) 

Phragmites 

australis 
Shale Without N/A 

COD, ORP, pH, DO, 

temperature 
Azo dye 11.5 mg/l 

SSF-FWS outperformed FWS-SSF 

in colour removal 
Adsorption 

Shehzadi et al. 

(2014) 

Emergent plants-

based system 

(VFCW) 

(Experiment) 

Typha 

domingensis 
Coconut shavings, 

gravel, sand, soil 
Without 3 days 

pH, 

colour, EC, COD, 

BOD, TDS, TSS, 

TOC 

N/V 42,53, 47,61 cm-1 

The presence of the plant only and 

the plant with bacteria enhanced 
constructed wetland efficiency in 

terms of textile effluent 

degradation 

Degradation 

Sivakumar 

(2014) 

Free-floating plants-

based system 
(CW) 

(Experiment) 

Lemna minor 
L. 

N/V Sludge 7 days COD AO10 45 mg/l 

Maximum reduction was 86% in 
real effluent, and 83% in an 

aqueous solution at pH of 8, 

dilution ration 8, nutrient dosage 
of 50 g, HRT of 4 days 

N/V 

Uysal et al. 

(2014) 

Free-floating plants-

based system 
(Pond)  

(Experiment) 

Lemna minor 
L. 

Without Without 45 days 
pH, COD, plant 

growth, MLSS N/V 2200 Pt Co 

Results were similar (56% to 66%) 

during the run period (15 days). 
The percentage of removal 

decreased continuously from 34% 

to 12% and from 62% to 3% for 
contact times of 7 and 10 days, 

respectively 

N/V 

Yalcuk and 

Dogdu 

(2014) 

Emergent plants-

based system 
(DFCW) 

(Experiment) 

Canna idica 

L., 
Typha 

angustifolia L 

Gravel, sand, zeolite Without 79 days 
COD, NH4–N, PO4–

P, pH, ORP, EC 
AY 2G 22900 Pt Co 

Colour removal of around 98.6%, 

98.2%, 87% for Typha 
angustifolia, Canna idica, and 

control CWs, respectively 

N/V 
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Table 2.2 (Continued) 

Chandanshi

ve et al. 

(2016) 

Free-floating plants-

based system 
(constructed 

lagoon) 

(Experiment) 

Salvinia 

molesta 
Without Without 8 days 

pH, COD, BOD, 
TDS, TSS, heavy 

metals 

Rubine 

GFL 
100 mg/l Colour reduction rate 97% 

Phytotransformati-

on  

Hussein and 

Scholz 

(2017) 

Emergent plants-
based system 

(DFCW)  

(Experiment) 

Phragmites 

australis 
Washed gravel Fertiliser 13 months 

COD, NH4-N, NO3-
N, PO4–P, pH, ORP, 

EC, SS, TBD, plant 

growth 

AB113 

6.6 mg/l 

 

 

Higher removal for both dyes was 

at low inflow concentration. For 
BR46, reduction rate was 97% and 

96% at low concentration planted 

and control CWs, respectively. For 
AB113 reduction rate was 86% 

and 71% at low concentration 

planted and control CWs,  
respectively. 

 

N/V 

222 mg/l 

BR46 

6.9 mg/l 
 

209 mg/l 

Note: RB171, reactive blue 171; AB113, acid blue 113; AO7, acid orange 7; BB41, basic blue 41; RR22, reactive red 22; RB5, reactive black 

5; VR13, vat red 13; RR2, reactive red 2; RR120, reactive red 120; RR141, reactive red 141; RR198, reactive red 198; AY 2G, acid yellow 2G; 

COD, chemical oxygen demands; NH4–N, ammonium-nitrogen; NO3–N, nitrate-nitrogen; NO2–N, nitrite nitrogen; TN, total nitrogen; TP, total 

phosphorus; CW, constructed wetland; VF, vertical flow; VHF, vertical and horizontal flow; UF, up flow; HF, horizontal flow; SSF, subsurface 

flow; FWS, free water surface; TOC, total organic carbon, EC, electrical conductivity; TSS, total suspended solids; TDS, total dissolved solids; 

MLSS, mixed liquor suspended solids; DO, dissolved oxygen; TBD, turbidity; PO4–P, ortho-phosphate-phosphorus; SS, suspended solids; ORP, 

oxidation redox potential; SO4 2−, sulphate; Pt Co, Platinum-Cobalt; N/V, not available. 
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2.10 Algae ponds 

Algae are micro-organisms and photosynthetic by nature. They are diverse microscopic 

organisms and can be found in waters, such as freshwater, oceans, ponds, ice, and hot 

springs, as well as in soil and other exposed locations (Mohan et al., 2002). Moreover, they 

are mostly used to treat wastewater in natural oxidation ponds. Algae are found in different 

colours, such as green, yellow, orange, blue, red, or brown and classified accordingly. 

However, the green phytoplankton algae are the predominant species that are responsible for 

the green colour in aerobic and facultative ponds (Gray, 2000). Many authors confirmed the 

capability of algae species to treat heavy metals (Gupta et al., 2006; Sekomo et al., 2012) 

and to decolourise and mineralise azo dyes (Yan & Pan, 2004; Daeshwar et al., 2007) from 

textile wastewater. For example, the decolourisation of more than thirty azo dye at 

concentration of 20 mg/l has been assessed by Jinqi and Houtian (1992) using three species 

of algae (Chlorella vrenoidosa, Chlorella vulgaris and Oscillateria tenuis). The authors 

concluded that the degree of dye decolourisation by algae depends on the structure of the 

azo dye, the species of algae and the environmental conditions. Other parameters which 

affect dye decolourisation by algae have been pointed out by Daneshvar et al. (2007), 

including the algae concentration, dye concentration, temperature and pH value. Chia and 

Musa (2014) found that high concentrations of dyes decrease the algae growth in treatment 

systems, and accordingly negatively affect the system performance and the dye degradation, 

due to several reasons: the eutrophication state, prevention of light penetration to the water, 

and the changes in the pH value (Elumalai & Saravanan, 2016). Karacakaya et al. (2009) 

pointed out that the colour removal increased when algae growth was enhanced by adding a 

plant growth regulator such as triacontanol hormone. 

Algae ponds or algae waste stabilisation ponds which mimic the natural biological processes 

of natural wetlands are the most common systems used to treat the contaminated effluents 

in low-income developing countries, particularly in tropical and subtropical locations (Babu, 

2011). The waste stabilisation ponds, however require a large area, but are characterised as 

a simple and cheap method (Kadlec & Wallace, 2009; Chen et al., 2016) in terms of the 

design, construction, operation and maintenance. The United Nations Environment 

Programme (UNEP) (1999) reported that these systems are still the cheapest method of 

wastewater treatment applied, as mentioned by Babu (2011). Algae systems consist of single 

or several large artificial shallow basins which are constructed to achieve anaerobic, 
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facultative, or maturation (aerobic) conditions dependent on the oxygen content in the 

system (Gray, 2000). The anaerobic ponds are deep basins used as a main treatment stage, 

constructed in depths ranging between 2.5 m and 4.5 m, and characterised by the absence of 

oxygen within the whole system except for the surface layer, therefore being more applicable 

for industrial wastewater treatment (USEPA, 2011). Facultative ponds normally contain 

aerobic and anaerobic bacteria as a comprehensive treatment method. The organic loads 

applied to the facultative ponds is lighter compared with the anaerobic ponds, which enhance 

the growth of algae in the top layers of the system. These algae are a source of oxygen 

(aerobic conditions) in the surface layers, however, below these layers and in the sediment 

zone, anaerobic conditions are present (Gray, 2000). Facultative ponds are typically 

constructed in depths ranging between 0.9 m and 2.4 m (USEPA, 2011). Aerobic ponds refer 

to a polishing treatment stage (Gray, 2000), and are constructed in shallow depths ranging 

between 0.18 m and 0.3 m (USEPA, 2011) to ensure that the dissolved oxygen is present 

within the entire system depth (Gray, 2000). Algae ponds have proven to be effective in 

treatment of organic matter and pathogens (Zimmo, 2003). However, there are some 

drawbacks related to these systems, such as mosquito breeding, bad odour, limited 

nitrification zone, short-circuiting, and the outflow characterised by high total suspended 

solids. (Babu, 2011). In general, algae and bacteria are the main treatment organisms in algae 

ponds, the mechanisms of treatment in the ponds are the absorption of organic and inorganic 

pollutants by the basin, settling of suspended solids by sedimentation process, and organic 

contaminants degradation to simple compounds by aerobic and anaerobic bacterium (Gray, 

2000). Then, algae uptake these compounds and produce the oxygen required for aerobic 

bacteria survival (USEPA, 2011). 

The mechanism of dye removal by both live and non-viable algae includes the bio-sorption 

and the biodegradation processes (Lim et al., 2010). Bio-sorption occurs when the dye moves 

from the water phase to the solid phase (the bio-adsorbent). However, the biodegradation 

(bioconversion or biotransformation) process occurs when algae species break down the azo 

dye to other simple compounds (conversion of dyes to colourless intermediates or CO2 and 

H2O) (Holkar et al., 2016). Marungrueng and Pavasant (2006), and Aravindhan et al. (2007) 

have studied the bio-sorption process of basic dyes using the live algae Caulerpa lentillifera 

and Caulerpa scalpelliformis, respectively. Thereafter, Khalaf (2008) investigated the 

potential of non-viable algae spirogyra as a good bio-sorbent biomass to remove the colour 

of the reactive dye Synazol. Acuner and Dilek (2004) confirmed the bioconversion of the 
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azo dye tectilon yellow 2G by Chlorella vulgaris species. They noticed that the algal 

conversion of the studied azo dye to aniline after colour removal ranged between 63% and 

69%. Other mechanism of dye degradation by live algae occurs through the consumption of 

dyes for their growth (Holkar et al., 2016). 

Algae ponds were evaluated as a polishing step to remove heavy metals from a textile factory 

(Sekomo, 2012). In addition, Chlorella ponds used for textile azo dyes removal, treated with 

a high rate algae pond, showed around 50% of colour removal (Lim et al., 2010). The role 

of algae for dye removal in stabilisation pond systems requires further investigation, as 

suggested by Jinqi and Houtian (1992). 

2.11 Components of wetland systems 

2.11.1 Overview 

All wetland systems are designed as a basin that normally contains water/wastewater, 

vascular plants, sediments, detritus and substrate, which are considered as the main 

components that characterise the wetland systems and affect the purification efficiency. 

However, other important components that grow naturally in wetland systems, both natural 

and constructed, are microbes and aquatic invertebrates. All these components interact with 

each other in wetland systems to improve the water quality (Scholz, 2006; Kadlec & 

Wallace, 2009), and therefore can be manipulated appropriately to enhance the internal 

processes within the system to improve the treatment efficiency (Scholz, 2010, 2015). 

2.11.2 Water 

The wetlands environment is controlled by the water as a main factor that also has an effect 

on aquatic plant and animal life (Al-Isawi, 2016). Wetland systems are constructed using 

relatively impermeable underlying strata to prevent water seepage, and can be established 

anywhere in the landscape by designing the system (basin) to collect and retain the water 

(Eke, 2008). Hydrology is one of the key factors in constructed wetland design as it links all 

the functions in a wetland system, and is responsible for the success or failure of treatment 

efficiency by wetlands. It is related to the water transportation through the air, above the land 

and within the earth layers. There are three main hydrological considerations which strongly 

characterise the hydrological behaviour of any wetland: water level, hydroperiod and HRT 

(USEPA, 2008), in addition to other factors, such as hydraulic loading rate, meteorological  
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conditions, evapotranspiration losses, and overall water balance.  

The wetland water level is the elevation of water relative to the ground surfaces of the 

constructed wetland system. Normally, this hydrological descriptor is used to indicate the 

type of macrophytic vegetation that is suitable or likely to grow in wetland systems (USEPA, 

2008). The water level in wetland systems is normally at or near the surface of the land or 

above the land at a shallow depth. 

The hydroperiod is the pattern of variations in wetland water level over time and space 

(USEPA, 1995), and it results from the balance between the inflow, outflow and the storage 

water in a wetland system. The wetland hydroperiod commonly refers to the timing, duration 

and distribution of the water level in a wetland system, together. It determines some of the 

environmental conditions that strongly affect wetland efficiency and can be anticipated, such 

as the dry and wet conditions, yearly water variation, precipitation and the 

evapotranspiration (USEPA, 2008).  

Hydraulic retention time is the average period of time that water remains in a treatment 

system and it is calculated by dividing the average volume of water in a wetland by the mean 

outflow rate (USEPA, 2008). HRT is a very important parameter in designing, operating, 

and evaluating the efficiency of a constructed wetlands system, as the plant uptake, 

sedimentation of solids and biochemical processes occur during this period (Kadlec & 

Knight, 1996; Sani, 2015). 

2.11.3 Macrophytes 

Macrophytic vegetation is an important component that affects the performance of natural 

and constructed wetland systems (Scholz, 2010; Vymazal, 2011, 2013a), and it is more likely 

that the CWs have been described as a green technology due to the presence of these aquatic 

plants (Eke, 2008; Stefanakis et al., 2014), which enhance the aesthetic value of CW systems 

(Sani, 2015).  

Both higher plants (vascular plants) and algae (non-vascular plants) play a prominent role in 

CWs treatment. The functions of higher plants in CWs are attributed to their life cycle 

(growth and death) during the treatment process: plant growth increases the vegetative mass 

which provides more tissue for nutrients and pollutants assimilation, and provides more 

attachment areas for micro-organisms to enhance their growth and their activities for organic 

matter degradation (Eke, 2008; Al-Isawi, 2016); plant decay generates detritus and is a 
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source of organic carbon, which is used as a fuel for bacterial metabolism (Mohammed, 

2017). With regard to the algae, they play a vital role during the photosynthesis activity by 

enhancing the dissolved oxygen level of the water in wetlands (Vymazal, 2011). However, 

in CWs that are fully covered by L. minor, algae growth, if found, is very limited (Yaseen & 

Scholz, 2016), and therefore the main source of oxygen in these shallow systems is from the 

atmospheric diffusion (Yaseen & Scholz, 2018) and the oxygen transport from the air to the 

water via the plant roots (Sekomo et al., 2012). The ability of higher plants to transport 

oxygen is not specified exactly, as a significant impact was assumed by some wetland 

researchers and a negligible impact was reported by others (USEPA, 1999; Eke, 2008; 

Yaseen & Scholz, 2017a). 

Macrophytes are the common species of plants that are widely used in treatment wetlands 

(Scholz, 2006; Vymazal, 2011; Sani, 2015; Zheng et al., 2016). The common macrophytes 

found in eutrophic water are the emergent (P. australis, Scirpu Efeocharis, Typha, 

Echinodorus cordifolius L.), submerged (Egeria densa, Pamogeton spp, Elodea nuttallii) 

and free-floating (Eichhornia crassipes, Hydrocolyle umbellate, L. minor) plants, which 

specify the type of CWs system accordingly (Vyamzal et al., 1998), as mentioned in Section 

2.9. Plants assays showed that most of these macrophytes were effective in removing diverse 

pollutants including textile dyes (Davies et al., 2006; Keskinkan & Lugal Goksu, 2007; Ong 

et al., 2011; Yalcuk & Dogdu, 2014). However, Vymazal et al. (1998) pointed out that 

Duckweed (e.g., L. minor) “has several characteristics which place them in a high potential 

category for use in wastewater treatment”.  

Despite the widespread use of L. minor and other macrophytes in treatment wetlands, Scholz 

(2006) pointed out that the role of these plants in wastewater treatment within wetlands 

systems is still a questionable issue, as several authors have reported high contaminants 

removal efficiency with planted wetlands compared with unplanted ones (Cooper et al., 

1996; Kadlec et al., 2000; Kaseva, 2004; Mbuligwe, 2005; Iamchaturapatr et al., 2007; 

Keskinkan & Lugal Goksu, 2007; Yaseen & Scholz, 2018), while other researchers found 

no significant improvement in some water quality parameters in the case of vegetated or 

non-vegetated wetlands (Huang et al., 2000; Scholz & Xu, 2002; Calheiros et al., 2007; Ong 

et al., 2009a). For example, Ong et al. (2009a) found a negligible impact from the plant (P. 

australis) in terms of dye, COD, and NH4–N reduction using vertical CW filters. However, 

Keskinkan and Lugal Goksu (2007) found a higher dye reduction rate of more than 94% by 

a planted CW compared with an unplanted system which showed a reduction rate of around 
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71%. In addition, Mbuligw (2005) found that the CWs planted with Cattail and Coco yam 

significantly removed the dye by about 72% and 77%, respectively, and the COD by about 

68% and 72%, respectively, compared with a control system which showed dye and COD 

removal efficiency of around 15% and 51%, respectively. 

2.11.4 Micro-organisms 

Many researchers have confirmed the presence of various micro-organism populations 

within the aerobic and anaerobic zones of wetland systems, including bacteria, yeasts, fungi, 

protozoa and rind algae (Moshiri, 1993; Kadlec & Knight, 1996; Scholz et al., 2001; Meng 

et al., 2014). These organisms and their metabolism largely regulate the functional 

characteristics of wetlands, and play a vital role in wastewater treatment, as they, due to their 

microscopic size, can attach and feed on the contaminants directly using their enzymatic 

activities (Truu et al., 2009; Sani, 2015). 

In wetlands, the microbial biomass acts as a sink for many organic and inorganic matters, by 

processing them into harmless or insoluble matters. In addition, microbial activities affect 

wetland processing capacity by changing the oxidation redox potential conditions of the 

matrix bed, and involve nutrients recycling (USEPA, 1995; Truu et al., 2009; Sani, 2015). 

Organic matter degradation occurs in wetlands under aerobic and anaerobic conditions by, 

in most cases, autotrophic and heterotrophic bacteria, and, in certain cases, protozoa and 

fungi (Kadlec & Wallace, 2009; Meng et al., 2014). Organic pollutants serve two purposes 

for the organisms: they provide a source of carbon, which is one of the basic building blocks 

of new cell constituents, and they provide electrons, which the organisms can extract to 

obtain energy (Al-Isawi, 2016). However, chemical compounds biodegradation by microbial 

activities consists of several complex biochemical interactions, and the process varies 

according to the microbes used (Sani, 2015). The microbial transformation of nutrients 

includes aerobic transformation (taking place in the presence of oxygen), anaerobic 

transformation (taking place in the absence of oxygen) and facultative aerobes (occurring in 

the presence or absence of oxygen). Micro-organisms live and grow naturally in soil, water, 

and on macrophyte roots of wetland systems (Al-Isawi, 2016) under favourable conditions 

with presence of sufficient nutrients. However, under unsuitable environmental conditions, 

many organisms enter a dormant period, which could last for several years until these 

conditions become suitable again (USEPA, 1995). In wetland treatment systems, microbes 

can be affected by toxic pollutants, thus care must be taken regarding the toxic chemicals in 
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wastewater which must be maintained at concentrations which prevent damage to the 

microbial community (USEPA, 1995).  

Recently, many research studies have confirmed the capability of diverse microbes for 

decolourisation and mineralisation of a wide range of textile dyes. These diverse microbes 

include bacteria (Jadhav et al., 2007; Dawkar et al., 2008), fungi (Fournier et al., 2004; 

Saratale et al., 2006), and yeasts (Lucas et al., 2006; Jadhav et al., 2007). Researchers found 

that the microbial effectiveness for dye removal is basically based on the adaptability and 

the activity of the chosen microbes (Pandey et al., 2007; Saratale et al., 2011). 

2.11.5 Substrate, sediments and detritus  

Constructed wetland beds normally include substrates, sediments and detritus (USEPA, 

1995). Substrates (also called aggregates) are used according to the treatment target in CW 

systems, and include soil, sand, gravel, rock and organic matter (Zhao et al., 2016). The 

presence of substrates in wetlands is important for several reasons: they support the 

vegetation (rooted submerged and emergent plants) and provide appropriate sites for the 

living organisms, which enhance the chemical and biological (mainly microbial) 

transformation processes; they affect the water pathway due to the substrate permeability; 

and they act as a storage for many wastewater pollutants (USEPA, 1995) as substrates are 

able to adsorb, filtrate and sediment most of these pollutants (Al-Isawi, 2016). 

Substrates characteristics change when they are saturated because water replaces the 

atmospheric gases in the pore spaces and the available oxygen consumed by microbial 

metabolism. Since oxygen is consumed more rapidly than it can be replaced by diffusion 

from the atmosphere, substrates enter anoxic conditions. These anoxic conditions are 

necessary in the removal of some pollutants such as dyes, nitrogen and metals (USEPA, 

1995). Soil is the main type of substrate used in wetland systems as it supports plant growth 

and the microbial biofilms, effectively (Meng et al., 2014; Stefanakis et al., 2014). However, 

soil is an expensive material compared with sand (USEPA, 1995), and it is also associated 

with clogging problems in SSFCWs due to the soil characteristics of small pore sizes and 

low permeability for the hydraulic and organic load (Wallace & Knight, 2006). The 

International Water Association (IWA) (2000) reported that the mixture of both gravel and 

sand as a filter media is recommended to improve contaminants removal and hydraulic 

conditions, however, these two materials dry out quickly and therefore the water level in the 

wetland should be maintained, especially during the period of plant growth (USEPA, 1995). 
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Substrates affect the total capital costs of CW systems, and therefore the applications of 

FWSCWs is more preferable than SSFCWs systems as the cost required for the substrate is 

limited to rooting soil on the bottom of the beds (Vymazal, 2010). Therefore, CWs planted 

with free-floating plants are the cheapest in terms of required substrate as these plants float 

on the top surface and their very small roots do not need any support by the substrates (Chen 

et al., 2016). In terms of the treatment of dyes using CWs, many authors have used substrates 

in their treatment systems, such as soil (Mbuligwe, 2005), gravel (Hussein & Scholz, 2017), 

sand (Keskinkan & Lugal Goksu, 2007) without mention of the exact impact of these 

materials for dye removal. However, Nilratnisakorn et al. (2009) pointed out that the sand 

and gravel beds improved the dye adsorption capacity in CWs by only 2.82% and 1.95%, 

respectively. In addition, Noonpui and Thiravetyan (2011) reported that the impact of a soil 

filter is negligible as their results showed that the dye removal was 100% and 99% in CWs 

with and without soil, respectively. Furthermore, Ong et al. (2009a) reported that the impact 

of a gravel bed in CWs is negligible (0.5% of total dye removal). Therefore, the impact of 

substrates in terms of dye elimination is not significant.  

Organic materials have been used as organic substrates, such as activated carbon, zeolite, 

sawdust and compost. These materials are used as a source of carbon, which supports the 

microbe’s activities, consumes oxygen, and thus creates anoxic conditions which are 

required for specific pollutants removal (USEPA, 1995). However, Scholz and Xu (2002) 

mentioned that there is no benefit in using costly organic materials (e.g., granular activated 

carbon) for enhancing the adsorption processes in CWs. 

Sediments accumulate, with time, in wetlands that are characterised by low water flows and 

a high rate of productivity or in stagnant systems. The presence of sediments in the wetland 

bed is important to provide more supportive area for the living organisms (USEPA, 1995).  

The term “detritus” is used to describe the small materials which accumulate in a CWs bed 

as result of plant decay and/or stem breakdown (USEPA, 1995). In wetlands, plants 

assimilate and accumulate nutrients and other pollutants in their tissues, and because the 

direct consumption of these plants by animals is very low, during the plant life cycle, most 

of the biomass and energy assimilated by the plants is converted to detritus or senesced plant 

litter (Magee, 1993). Webster and Benfield (1986) pointed out that detritus is one of the main 

substrates and energy sources in wetlands. In addition, Wallace and Knight (2006) stated 

that detritus serves as a source of carbon to wetland microbes for denitrification and helps 

with long-term phosphorus accumulation. These materials are enriched by nutrients which  
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are released, after detritus decomposition, to the wetlands water and soil, to be a good source 

of food for micro-organisms, algae, and small aquatic animals. Detritus decay occurs, 

basically, due to organic matter oxidation by microbial activates. The decayed detritus 

becomes a good site for supporting and feeding many invertebrates that in turn provide 

fodder for vertebrates, e.g., fishes and waterfowl (Magee, 1993). Through this cycle, energy 

is transferred from detritus to other wetland biotic components (Magee, 1993). The 

continuous accumulation of plants detritus or litter in the wetland bed increases the amount 

of organic matter and consequently provides more attachment sites for micro-organisms and 

for material exchange, as well as providing more carbon, the energy source responsible for 

enhancing the biological reactions (USEPA, 1995). 

2.12 Processes of pollutant removal in wetlands 

2.12.1 Overview 

The applications of CWs aim to utilise cost-effective and eco-friendly alternatives to treat 

contaminated effluents by mimicking the natural processes that occur in natural wetlands 

between the substrates, plants, and associated microbes, but with controlled conditions. 

Pollutant reduction by CWs can possibly be classified based on three processes 

encompassing physical (abiotic), chemical (abiotic), and microbial and phytological (biotic) 

processes, which are accomplished by several treatment pathways. Physical treatment 

processes in wetlands include: the trapping of sediments by the plant, as the water moves 

rather slowly due to the resistance from the wetland plants and from the uniform flow 

conditions; and the settling of the sediments due to gravity and low flow velocity (Interstate 

Technology and Regulatory Council Wetlands Team (ITRC), 2003). Concerning chemical 

treatment processes in wetlands, they include: the sorption process, occurring by moving the 

charges from liquid to solid phase, via either the adsorption process (transferring of ions to 

soil particles) or the precipitation process (converting metals to insoluble forms); the photo-

oxidation process, which utilises the sunlight for pollutants degradation and oxidation; and 

the volatilisation process, which occurs by expelling the degraded pollutant into the 

atmosphere as a gas (DeBusk, 1999). The last and main processes in wetlands are biological 

treatment processes, which include: the phytodegradation process, as a main way for 

pollutants reduction that occurs when the plant roots directly uptake pollutants (DeBusk, 

1999); the rhizodegradation process, which occurs when plants secrete contaminants that 
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add to biological degradation; the phytovolatilisation process, which occurs when the 

pollutants transpire through the macrophyte leaves after entering the macrophyte biomass 

(ITRC, 2003); the microbial metabolism process for inorganic nitrogen removal, and nutrient 

uptake by soil bacteria, which converts the energy source, carbon, found in organic matter 

to carbon dioxide or methane depending on whether the wetland conditions are aerobic or 

anaerobic, respectively (DeBusk, 1999). The treatment processes are specified relying upon 

some factors in the wetland including wetland characteristics, interaction within the wetland 

system, the quantity of wastewater, the type of wastewater, and the type of pollutant, in 

addition to the system hydrology and environmental conditions (Eke, 2008). Table 2.3 

summarises the treatment processes of specific contaminations in wetland systems, as 

indicated by Cooper et al. (1996), the United Nations Human Settlements Programme (UN-

HABITAT) (2008), and Kagalkar (2011). The following sections will highlight the pollutant 

removal processes by constructed wetlands with the main focus on dye, organic matter, 

nitrogen and heavy metals which are normally found in textile effluents. 

Table 2.3 Contaminant removal processes in constructed wetlands  

Pollutant Removal process 

Suspended solids Sedimentation 
Filtration 

Soluble organics Aerobic microbial degradation 

Anaerobic microbial degradation 

Nitrogen Ammonification followed by microbial nitrification 

Denitrification 

Plant uptake 

Matrix adsorption 

Ammonia volatilisation (mostly in FWS system) 

Phosphorous Matrix sorption 

Plant uptake 

 Microbial assimilation 

 precipitation 

Metals Adsorption and cation exchange 

Complexation 

Precipitation 

Plant uptake 

Microbial Oxidation/reduction 

Dye Microbial degradation/transformation 

 Adsorption by microbes 

 Adsorption and/or accumulation by plant 

 Rhizodegradation  

 

 Phytodegredation or phytotransformation  

 

 Phytovolatilisation  

 

 Adsorption by substrate (matrix bed) 
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2.12.2 Processes of suspended solids removal 

Wetland systems receive effluents contaminated with organic and inorganic solids particles 

that are diverse in their sizes and compositions (Sani, 2015). Constructed wetlands are able 

to produce and remove suspended solids (SS) due to the natural processes that occur in these 

treatment systems. The production of SS in wetland systems is attributed to invertebrate 

death, plant detritus, microbe production (within the water or attached to the plant surfaces), 

and formation of chemical precipitates (USEPA, 1999). However, in terms of SS 

elimination, researchers have confirmed the potential of CWs in removing solids and 

particulate matter (Kadlec & Knight, 1996; ITRC, 2003) by different pathways, which 

include: settling and sedimentation, adsorption, and microbial degradation, although 

sedimentation and filtration are the predominant effective (physical) pathways for suspended 

solids removal in constructed wetlands (Kadlec, 2009; Abou-Elela et al., 2013, Sani, 2015). 

Most of the solids particles within the inflow water are filtered out and settled within the 

nearest few metres outside the inlet zone in all wetland systems. However, accumulation of 

entrapped solids leads to the occurrence of clogging problems which affect wetland 

performance, especially in subsurface flow wetland systems (Vymazal et al., 1998).  

In FWSCWs, flocculation/sedimentation and filtration/interception, are the main removal 

processes of SS. Regarding the settling pathway by gravity, it is typically categorised into 

discrete settling, when the particles settle independently without any effect from other 

particles or conversion of their size or density, and flocculent settling, when the particles 

interact with each other resulting in conversion of their size and characteristics. Both these 

settling processes are impacted by some factors, such as the characteristics of particle size, 

specific gravity, shape, and fluid specific gravity and viscosity. The filtration process does 

not play an important role in SS removal in FWSCWs as it depends on the plant’s ability to 

trap the particles found in inflow wastewater. However, an important process for SS removal 

is the interception by and adhesion to plant surfaces, as the wetland macrophytes are coated 

by a biofilm layer that absorbs colloidal and soluble matter, which after their metabolism are 

converted to gases or biomass. Similar reactions may occur in the surface detritus (USEPA, 

1999). 

In particular, in wetland systems with free-floating plants, suspended solids removal 

basically occurs through gravity sedimentation in the layer below the surface of the floating 

mat (Vymazal, 2008). L. minor-based systems are characterised by low SS outflows 

compared with algal-based systems (Bejarano, 2005; Zimmo et al., 2005). Because algae 
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die-off enhances the SS concentrations in the system, whereas, L. minor is normally 

harvested from the wetland systems. However, in the case of L. minor being allowed to die 

in the system, the SS content will increase as well. In addition, the full coverage of L. minor 

inhibits algae growth in wetlands, causing the existing algae to die and consequently 

increasing the level of SS within the outflow water (Dalu & Ndamba, 2003). The main 

factors influencing SS removal in Duckweed-based systems are the algal growth, 

biodegradation of organic matter and sedimentation of particles, as reported by Dalu and 

Ndamba (2003), and Yaseen and Scholz (2017a). 

2.12.3 Processes of organic matter removal 

Constructed wetlands receive textile effluents containing a wide variety of organic matters 

that could be settleable and soluble compounds. The removal of these organics is assessed 

by the changes in COD, BOD and TOC concentrations before and after treatment (Eke, 

2008). Organic matter comprises around 45–50% carbon, which is used as a source of energy 

for microbial activities, and then converted into carbon dioxide which is utilised by the plants 

to produce the oxygen required in the treatment process (DeBusk, 1999). 

The main processes of organic matter elimination in CWs are, volatilisation, sorption, and 

aerobic and anaerobic microbial degradation (ITRC, 2003). Settleable compounds removal 

in wetlands occurs quickly by gravity, under quiescent conditions, and the mechanism 

includes deposition and filtration processes (USEPA, 1993; Vymazal et al., 1998; UN-

HABITAT, 2008). The biological degradation of soluble organic matter is accomplished by 

the growth of the attached and suspended microbes (Sani, 2015). Organic substances 

decompose aerobically and anaerobically depending on the oxygen content and the presence 

of heterotrophic microbes in wetlands (Ong et al., 2009a, 2010). Aerobic degradation of 

soluble organics is achieved by the aerobic heterotrophic bacteria, when oxygen is supplied 

directly from the atmosphere by diffusion or from vegetative roots by leakage. The 

degradation of organic compounds containing nitrogen under aerobic conditions is governed 

by autotrophic bacteria called nitrifying bacteria, which are responsible for the nitrification 

process in CWs. However, with the absence of oxygen, under anaerobic conditions, the 

facultative or obligated anaerobic heterotrophic bacteria are responsible for the anaerobic 

degradation of soluble organic substances (Vymazal et al., 1998; Ong et al., 2009a). The 

accretion of organic matter in wetlands provides a long-term source of carbon and a 

sustainable source of nutrients, which are required to support the microbial activities for the 
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denitrification process. Cooper et al. (1996) and Vymazal et al. (1998) pointed out that 

uptake of organic matter by the wetlands macrophytes is negligible compared to the 

biological degradation processes. 

A further process for organic matter degradation in CWs is biochemical conversion, as a 

result of mineralisation and the formation of organic matter by synthesis of fresh biomass 

(DeBusk, 1999; Sani, 2015). In addition, adsorption/absorption processes are able to remove 

organic substances, however, USEPA (1999) noted that the capacity of the adsorption 

process depends on some factors in wetland systems related to the surface media, vegetation, 

detritus and organic matter characteristics. The phytovolatilisation process of organic matter 

in CWs is accomplished as a direct process by uptake and translocation of the organic 

compounds and then volatilisation of them from the macrophyte stems or leaves, and indirect 

phytovolatilisation when organic compounds volatilise from soil due to the activities of 

macrophyte roots (Limmer & Burken, 2016). Further to phytovolatilisation, Sani (2015) and 

Al-Isawi (2016) implied that some macrophytes in CWs have the ability to absorb pollutants 

via their roots and release them to the water stream by the transpiration process. Specifically, 

organic matter in free-floating macrophytes-based systems are basically eliminated by the 

bacterial metabolism of both attached and free-living bacteria. The large surface area 

provided by the roots of free-floating plants increases the attached micro-organisms, and 

consequently improves the potential for decomposition of organic matter (Vymazal, 2008). 

2.12.4 Processes of nutrients removal 

The discharge of uncontrolled quantities of nutrients, nitrogen and phosphorus, into 

watercourses can cause many environmental problems, such as eutrophication, damaging 

the aquatic life, as ammonia and nitrite (even at low concentrations) are toxic to fish and 

other living organisms, reducing the DO content to unacceptable levels in the receiving 

watercourses, and supporting algal blooms, which all makes the removal of nutrients a very 

important parameter for wastewater treatment systems (Kadlec & Wallace, 2009; Yaseen & 

Scholz, 2018). Numerous research studies have proven the removal of various forms of 

nitrogen (organic and inorganic) by different types of CWs systems. However, in some 

cases, the system ability for meeting the high standards for nutrient discharges is limited (Al-

Isawi, 2016). According to Vymazal (2007), the removal efficiency of total nitrogen in all 

CW types ranges between 40% and 50% with the removed load ranging between 250 and 

630 g nitrogen/m2 year. Nitrogen reduction in CWs occurs by different processes, such as 
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ammonification, ammonia volatilisation, nitrification, denitrification, fixation, plant and 

microbial uptake, substrate adsorption, organic nitrogen burial, and anaerobic ammonia 

oxidation (Vymazal et al., 1998; Kadlec & Wallace, 2009), although many researchers have 

confirmed that the nitrification and denitrification processes are the dominant pathways 

responsible for nitrogen removal in most CWs systems (Lee et al., 2009). In wetland systems 

with free-floating plants, nitrogen reduction is potentially accomplished by three processes 

which are nitrification-denitrification processes, plant uptake, and ammonia volatilisation 

(Vymazal, 2008).  

The ammonification process, does not remove nitrogen, it just converts the organic nitrogen 

to the inorganic form of nitrogen, which occurs when the pH levels in the water range 

between 6.5 and 8.5, and depends on some other factors, such as the carbon/nitrogen ratio in 

the residue, temperature, and nutrient contents, as well as the soil conditions (Vymazal et al., 

1998; Vymazal, 2007). Once organic nitrogen is transformed to ammonium by 

ammonification, nitrification can take place. 

Nitrification is the process of oxidising the ammonium biologically to nitrite (first step) and 

then nitrite to nitrate (second step) in the presence of oxygen and nitrifying bacteria 

(Vymazal et al., 1998). Therefore, this process is similar to ammonification as it does not 

remove nitrogen from the wastewater in the wetland system but acts as a pathway for 

nitrogen transformation (Vymazal, 2007). The first step of nitrification occurs strictly via 

aerobic bacteria that rely on ammonia oxidation as a source of energy to grow, including 

Nitrosomonas, which is found in soil and fresh water, in addition to other types found in soil 

only (Nitrosospira, Nitrosovibrio, Nitrosolobus, and Nitrosococcus). However, the second 

step occurs via facultative bacteria that depend on nitrite oxidation and organic compounds 

as a source of energy to grow, including Nitrobacter and Nitrospina, which are found in both 

water and soil (Vymazal et al., 1998; Vymazal, 2007; Kadlec & Wallace, 2009). In both 

steps, carbon dioxide is utilised as a source of carbon. The nitrification process in wetlands 

with free-floating macrophytes occurs in the water column when the nitrifying bacteria can 

grow attached to the plant roots that supply oxygen, and when the DO contents in the water 

are suitable for supporting the nitrifying bacteria activity. It is worth noting that these 

conditions, as a result of the nitrification process, are associated with systems that are 

partially covered by plants and are at low plant densities (directly after harvest) (Vymazal, 

2008). 

Denitrification, (USEPA, 1999), is the process of nitrate reduction to molecular nitrogen or  
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nitrogen gases under anoxic conditions by heterotrophic bacteria, such as the genera of 

Bacillus, Micrococcus, Pseudomonas (which are identified in soils), Aeromonas, and Vibrio 

(which are found in water) as mentioned by Vymazal et al. (1998). In free-floating plants-

based treatment systems, the anoxic zone occurs when the plant grows well as a dense 

floating mat that covers all of the water surface, which, firstly, inhibits algae growth due to 

prevention of sunlight penetration, and, secondly, makes the DO content in the water very 

low due to the limited oxygen diffusion into the water. This resulting zone (layer) is suitable 

for the nitrate denitrification process, which may also occur beneath the anoxic zone in the 

case of the presence of a sufficient source of organic carbon (Vymazal, 2008). Therefore, 

nitrification and denitrification processes in systems with free-floating macrophytes are 

accomplished as a result of the regular growth and 

 harvest cycle of these plants. 

The uptake pathway of nutrients (ammonium-nitrogen and nitrate-nitrogen) by plants occurs 

effectively when these plants are characterised by their rapid growth rate (high productivity 

with regular harvest), high tissue nutrient level, and high ability for biomass accumulation 

per unit area. The capacity of nutrients assimilation by macrophytes, if the biomass is 

regularly harvested, indicates the nutrients removal efficiency. The higher capacity of plant 

tissue for uptake of nitrogen is linked with the highly productive free-floating macrophytes 

followed by the emergent plants, and then the submerged ones. However, it is worth noting 

that the nitrogen removal by plant harvesting, especially the emergent plants, in constructed 

wetland systems designed as a secondary treatment unit is very low compared with the high 

load of nutrients entering these systems. Therefore, this process plays a key role in wetlands 

operated as a polishing stage (Vymazal et al., 1998), such as free-floating plants-based 

systems. Brix (1996) pointed out that the nutrients assimilated by wetland plants return to 

the water column by decomposition processes if the plants are not harvested, and these 

nutrients could be stored in the wetland system over the long term in the case of plant detritus 

and the other types of undecomposed wetland litter.  

Ammonia volatilisation is the process of aqueous ammonia losses through volatilisation and 

release into the atmosphere as an ammonia gas. Nitrogen reduction by this process highly 

depends on pH values in the system, as it is not significant at pH levels of below 7.5, and 

not very significant at pH below 8. However, it is potentially effective at pH values of 9.3 

and above The presence of algae in constructed wetlands increases the pH level due to the 

photosynthesis process and consequently enhances the ammonia volatilisation process 
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(Vymazal et al., 1998). Wetlands with free-floating macrophytes are able to reduce nitrogen 

by the ammonia volatilisation pathway, as reported by Vymazal et al. (1998), however, this 

occurs in the case of the photosynthesis process by this plant creating high pH values. 

Vymazal (2007) summarised the potential of free-floating plants-based treatment systems in 

terms of each process for nitrogen transformation, which are as follows: nitrification, 

volatilisation, and microbial uptake are low; ammonification is high; ammonia adsorption is 

zero; denitrification, and plant uptake by harvesting are medium; and organic nitrogen burial 

is very low.  

It worth noting that the nitrogen removal efficiency using constructed wetlands is affected 

by the type of wetland systems, environmental conditions (such as pH, dissolved oxygen, 

and temperature) and operational parameters (such as loading rate of pollutants, hydraulic 

retention time, influent feed mode, and organic carbon sources availability) (Al-Isawi, 2016). 

For example, Kadlec (1999a) pointed out that the annual nitrogen removal is affected by 

environmental parameters such as temperature, humidity, and precipitation. In addition, the 

IWA (2000) confirmed that the activities of nitrifying bacteria are highly influenced by 

environmental conditions such as pH, dissolved oxygen, and temperature. Furthermore, 

Vymazal (2007) stated that the reduction rate of total nitrogen was very limited in a single 

stage wetland, except in the case of a large treatment surface area. 

Phosphorus is found in diverse wastewaters and used as a macronutrient for several 

organisms within the ecosystem (Al-Isawi, 2016). In wetlands, it presents as orthophosphate, 

dehydrate orthophosphate and organic phosphorus (Vymazal et al., 1998). However, the 

general form of phosphorus considered in wetlands is orthophosphate, as it is directly used 

by wetland plants to be the main link between the organic and inorganic phosphorus cycling. 

The range of phosphorus removal in all kinds of CWs is very low varying between 40% and 

60% with removed load ranging between 45 g and 75 g phosphorus/m2 year (Vymazal, 

2007). Phosphorus reduction in wetland systems is accomplished by different physical, 

chemical, and biological processes (Moshiri, 1993; Kadlec & Knight, 1996; Kadlec & 

Wallace, 2009). In particular, the main process of phosphorus removal by free-floating 

plants-based CW systems occurs by microbial assimilation, precipitation with divalent and 

trivalent cations, adsorption onto clays or organic matter, and plant uptake. However, many 

authors confirmed that plant uptake and their consequent harvesting, is the appropriate 

pathway for long-term phosphorus removal, as reported by Vymazal (2008). Plants uptake 

phosphorus by their roots, and also absorb some phosphorus in their leaves and other parts 
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during the growing season. When the plants die and decompose the stored phosphorus is 

returned to the wetland water. Therefore, the regular harvesting of wetland macrophytes 

maximises phosphorus reduction within the treatment system as it consequently reduces the 

releases of phosphorus to the wetland after plant decay. It is worth noting that some authors 

(Kadlec, 1999b) confirmed that long-term storage of phosphorus can also occur by plant 

parts that uptake phosphorus and withstand decay. Certain micro-organisms in wetlands, 

such as algae and bacteria, are able to quickly remove phosphorus by the assimilation process 

as these organisms grow rapidly, however, they are able to store only low quantities of 

phosphorus, and act as a temporary solution because once organisms decay, phosphorus is 

returned to the water (Vymazal, 2007).  

In CWs, several parameters require accurate selection to improve low phosphorus removal 

in the system, such as plant, water depth, contact time (Al-Isawi, 2016), and substrates, 

which must have at high sorption capacity (Vymazal, 2007). However, it is important to 

realise that the wetland systems are unable to meet primary phosphorus removal standards. 

2.12.5 Processes of heavy metals removal 

Textile effluents contain different toxic metals, which are quite dangerous and can cause 

health hazards to humans (Yapoga et al., 2013) either at high concentrations only, such as 

copper, selenium, and zinc, or even at low concentrations, such as cadmium, mercury, and 

lead (DeBusk, 1999). Metals occur in both soluble and particulate associated forms 

(Vymazal et al., 1998). CWs are widely used for the treatment of heavy metals from diverse 

wastewaters (Vymazal et al., 2007; Sekomo et al., 2012; Sukumaran, 2013) under 

hydroponic, laboratory (Ladislas et al., 2013) and real environmental (Ladislas et al., 2015) 

conditions. The main pathways of heavy metals removal by CWs involve filtration and 

sedimentation, precipitation, uptake by micro-organisms and plants, and adsorption to 

substrate, sediments and organic matter (DeBusk, 1999; Stottmeister et al., 2003). All these 

processes react with each other as a complicated process (Sheoran & Sheoran, 2006), which 

finally results in metals accumulation within the wetland substrate (Mohammed, 2017). 

Filtration is a simple physical process which occurs in CWs for heavy metal removal when 

the wastewater passes through the treatment system, which relies on the ability of plant roots 

and substrate pores to trap metals suspended on solids and retain them in wetlands (ITRC, 

2003). This pathway is efficient for treatment of different metals, such as cadmium, lead, 

silver and zinc (Al-Isawi, 2016). Sedimentation is also physical method widely recognised 

http://www.sciencedirect.com/science/article/pii/S0892687505002876#bib127
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as the main pathway for heavy metal removal in both natural and CWs systems. It is effective 

for the removal of metals associated with particulate matter large enough to settle in the 

wetland bed (Kadlec & Knight, 1996; ITRC, 2003) and therefore sedimentation follows 

other chemical processes (e.g., precipitation, co-precipitation or floc-formation), to 

aggregate heavy metals, as reported by Sheoran and Sheoran (2006). In wetlands with a 

floating mat of vegetation, these plants, may help somewhat as sediment traps due to the 

water conditions, of slow movement or in a calm state, within these systems. Once 

wastewater enters the wetland system, metals transport from the wastewater to plants and 

animals (biota) or to the substrate or vice versa, even when the water is stagnant, leading to 

the filtering and trapping of these metals in CWs. In calm water conditions, particles which 

are heavier than the water will settle down in the system bed. However, in the presence of 

light particles that are less dense than water, floc-formation is necessary before the 

sedimentation process. Flocs are able to settle faster than other single particles, and absorb 

other suspended particles including heavy metals (Sheoran & Sheoran, 2006). 

Plant uptake is a biological pathway for the removal of dissolved heavy metals from 

wastewater by CWs (Vymazal et al., 1998). The reduction rate of metals by this process 

varies according to the macrophyte growth rate and metals concentration in the plant tissue. 

In wetlands with emergent plants, heavy metals are taken up through plant roots and then 

passed, in small portions, to the other parts. However, in the case of systems with free-

floating or submerged macrophytes, heavy metals uptake occurs by both leaves and roots 

(Sheoran & Sheoran, 2006). Many researchers confirmed that the higher contribution of 

plant parts in heavy metals removal is by plant roots followed by the rhizomes and then, the 

lowest contribution comes from the above-ground parts (Vymazal et al., 1998). Therefore, 

harvesting of the above-ground parts slightly enhances metals removal in wetlands (Cheng 

et al., 2002). However, harvesting of the full biomass (e.g., L. minor) improves metals 

removal, to some extent, more so than the case of above-ground biomass harvesting. It is 

reported (Stottmeister et al., 2003; Mohammed, 2017) that the potential of wetland plants to 

assimilate heavy metals is 5% of the total removal of metals in CWs. However, many authors 

confirmed a higher impact of planted wetlands versus unplanted ones in terms of metal 

removal. In addition, plants, after decay, act as a source of organic matter (Stottmeister et 

al., 2003) that, over time, provides good sites for metals sorption and precipitation to enhance 

the long-term performance (Mohammed, 2017). Another biological process for heavy metals 

removal by wetlands is microbial uptake. Micro-organisms can uptake and store 
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considerable concentrations of metals from wastewater due to their metabolic processes. It 

is also reported that algae species (such as Chara and Nitella) are effective as a long-term 

method for heavy metals removal (Sheoran & Sheoran, 2006). 

Chemical processes for heavy metals removal in CWs are adsorption and precipitation. 

Adsorption is the process of ions transformation from the soluble to the solid phase. In this 

process metals are adsorbed to soil or sediment, or may be chelated with organic matter 

(Mohammed, 2017). Precipitation is a main adsorptive pathway in CWs sediments. This 

method depends on the solubility product of the metals, wetlands pH, concentration of metal 

ions and relevant anions (Al-Isawi, 2016). 

2.12.6 Processes of azo dye removal 

Textile wastewater contains high concentrations of various dyes which are organic 

contaminants and not easily biodegradable (Kagalkar, 2011). In wetlands, biological 

processes are the predominant pathway for dyes elimination, which occurs, according to 

Khelifi et al. (2008) and Reddy and Lee (2012), via the plants and micro-organisms. 

Basically, dye removal processes in wetlands include: adsorption and/or accumulation on 

and/or into plant tissues, phytodegradation or phytotransformation, phytovolatilisation, 

rhizodegradation, microbial degradation/transformation (Kagalkar, 2011; Tahir et al., 2016), 

microbial adsorption (Pearce et al., 2003), and adsorption and/or filtration by substrate 

(Ojstrsek et al., 2007). 

Macrophytes play an important role in dye removal by wetland technology (Mbuligw, 2005). 

Diverse plants possess the ability to adsorb, absorb, accumulate, detoxify and metabolise 

(degrade) a wide range of synthetic dyes and colorants (Nilratnisakorn et al., 2007; Kagalkar, 

2011). In wetlands, the binding of xenobiotic dyes to the plant roots is accomplished by the 

occurrence of adsorption subsequent to the absorption processes. The dyes, after active 

uptake, are transferred either into the cell vacuole or into the extracellular space. Thereafter, 

these dyes are combined into cell membrane components which leads to these dyes being 

non-extractable from the macrophyte roots and shoots due to the covalent associations with 

macromolecules (lignin, hemicellulose, protein, cellulose or pectin) in the cell wall (Davies 

et al., 2005). Diverse plants in constructed wetland, such as P. australis and E. crassipes 

showed their ability for dye removal by the adsorption pathway (Pervez et al., 2000; 

Muthunarayanan et al., 2011). However, it is reported that many factors could affect 

adsorption capacity by plants, such as initial dye concentration, pH, adsorbent dosage, 
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contact time and temperature (Kagalkar, 2011; Sharma et al., 2016). For example, with 

increasing dye concentration, the available adsorption sites become fewer which in turn 

reduces the dye removal efficiency (Sharma et al., 2016). Regarding the impact of pH, in 

acidic conditions, the adsorption of cationic dyes is less and of anionic dyes is greater, and 

vice versa, because as mentioned by Salleh et al. (2011), in acidic conditions, the positive 

charge in the solution increases and the adsorbent surface appears positively charged. 

Therefore, in the case of cationic dyes, the concentration of this dye will increase leading to 

a reduction of the adsorbent. However, for anionic dyes, the concentration will decrease 

leading to an increase of the adsorbent. The adsorption capacity for dye removal increases 

significantly with increasing adsorbent dosage (Khataee et al., 2012). Increasing the contact 

time up to a certain point (equilibrium) increases the dye adsorption, however, after the 

equilibrium point, the dye removal is not affected due to the lack of available adsorption 

sites (Sharma et al., 2016). In terms of temperature impact, dye adsorption improves with 

increasing temperature (Movafeghi et al., 2013; Yaseen & Scholz, 2016). Dyes also 

accumulate in the plant roots and can be further translocated to shoots and leaves (Kagalkar, 

2011), this pathway has been confirmed by many authors for dye removal over a wide range 

of concentrations of different plants, such as L. minor (Reema et al., 2011), and Rheum 

rabarbarum and Rumex hydrolapatum (Aubert & Schwitzguebel, 2004). The plant potential 

for dye accumulation is enhanced by increasing the plant biomass (Kagalkar, 2011). Both 

adsorption and accumulation processes are efficient for the removal of different dyes, 

however, these pathways contribute to, only, concentrating the dye contaminations onto 

and/or into plant surfaces and do not lead to the complete dye eradication from the treatment 

system (Kagalkar, 2011). Thus, the removal of dyes by these processes requires regular 

harvesting of plants, that must be grown easily and rapidly in the treatment system, such as 

L. minor (Reema et al., 2011; Movafeghi et al., 2013). 

Phytodegradation (also called phytotransformation) is the main pathway observed for dye 

removal by plants. In this process, dye molecules are either converted into harmless 

substances that are safely released to the environment (which refers to the breakdown and 

conversion of the dye molecules surrounding the plant through enzyme activities, which are 

produced by the plants) or completely degraded and eliminated from the system (which 

refers to the breakdown of dyes that are taken up by the plants through metabolic processes 

within the plants) (Kagalkar, 2011; Tahir et al., 2016). The phytotransformation process is 

accomplished when the plants develop detoxifying mechanisms as protection against the 
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polluted water (Davies et al., 2005). This process helps to eliminate some of the pollutants 

(e.g., aromatic compounds) that are difficult to degrade microbially (Aubert & 

Schwitzguebel, 2004). The elimination is achieved by the production of enzymes which are 

able to accept these aromatics as a substrate and process them into simpler compounds that 

are integrated with the plant tissue, which in turn, fosters plant growth. Enzymatic activities 

for textile dye degradation by plants occur either intracellularly, involving enzymes inside 

the plant tissues, or extracellularly with the help of plant enzymes in rhizosphere regions 

(Kagalkar, 2011). Authors have reported that different plants, such as P. australis (Davies 

et al., 2005), Aster amellus Linn. (Khandare et al., 2011), and L. minor (Movafeghi et al., 

2013), through their enzymatic mechanisms showed their efficiency in phytotransformation 

of diverse dyes and conversion of the daughter products to less toxic compounds. Davies et 

al. (2005) also confirmed the potential of the peroxidases enzyme produced from P. australis 

for degradation of acid orange 7 by a CW system. However, Ong et al. (2009a) pointed out 

that the plants in a wetland system slightly enhanced the degradation of aromatic amine, 

which was due to mineralisation by aerobic biomass growth near to the macrophyte roots or 

due to uptake by the plants followed by metabolic processes within the plant.  

Phytovolatilisation is the process of uptake and transpiration of the dye pollutants by a 

macrophyte, and then release of these dyes, or the modified form of the dyes, from the plant 

to the atmosphere. This pathway is accomplished by passing the dyes through the plant to 

the leaves and then evaporation or volatilisation to the atmosphere. Another pathway for dye 

removal in wetlands occurs as a contribution from plant roots and microbes called the 

rhizodegradation process. This pathway is slower than the phytodegradation process and 

refers to dye degradation by microbial activities in the soil surrounding the roots of plants, 

as their presence helps to enhance these microbial activities (Alkhateeb et al., 2005). 

Microbial adsorption of azo dyes is the simplest process for dye removal by micro-organisms 

onto their biomass. However, this pathway is not suitable for long-term treatment systems, 

such as wetland systems, as the biomass becomes saturated by dyes that are concentrated on 

it over time, during the adsorption process, and thus the saturated biomass must be disposed 

of (Pearce et al., 2003). 

Microbial degradation (biodegradation) processes of azo dyes are the main pathway for dye 

removal by microbes which refers to either the conversion of the dyes into non-toxic 

substances (biotransformation) by chemical modification produced from living organisms 

or to complete degradation and elimination of dye molecules from the system (Tahir et al., 
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2016). It is reported that different microbes possess the potential to degrade diverse dyes, 

which differ in their structure and properties (Kagalkar, 2011; Holkar et al., 2016). The 

biodegradation pathway of dye removal in constructed wetlands occurs via two stages. The 

first stage is the process of reductive or decolourisation of the azo dye, when the double bond 

between the nitrogen atoms is broken by enzymatic activities and daughter products, such as 

aromatic amines, are produced, which occurs under anaerobic conditions (within the 

anaerobic zone in wetlands) as stated by Ong et al. (2009a, 2010) and Kagalkar (2011). 

However, many authors have confirmed that this step could occur under anoxic or aerobic 

conditions as well, including Davies et al. (2006) who mentioned that the azo bond cleavage 

of acid orange 7 occurs in aerobic conditions, as these conditions were dominant in their 

constructed wetland. Stolz (2001) and Pearce et al. (2003) reported that under aerobic 

conditions, aerobic bacteria adapted for long-term aerobic growth with some structurally 

simple azo dyes and consequently produced an azoreductase enzyme, able to reductively 

cleave the azo bond. However, under anaerobic conditions, bacterial reduction is unspecific 

with regard to the type of azo dye involved, and therefore it is widely used for the 

decolourisation of azo dye. The second stage is the process of aromatic amine mineralisation, 

which occurs easily under aerobic conditions (within the aerobic zone in wetlands) (Ong et 

al., 2009a, 2010), or anoxic conditions (within the anoxic zone) by bacteria only (Pandey et 

al., 2007). Kagalkar (2011) confirmed the presence of different enzymes in different microbe 

species such as lignin peroxidase, laccase, tyrosinase, and azoreductase, which are able to 

breakdown the azo bonds in the dye and convert it into a biological form that is easily 

degraded by the plant.  

The degradation of textile dye achieved by an individual plant or microbe system could lead 

to a partial removal, and their combined synergistic approach is important for achieving a 

high degree of dye mineralization (Kagalkar, 2011). Therefore, the combination of the 

microbial and plant enzymes in wetland systems could efficiently enhance the dye molecules 

removal (Davies et al., 2009). It is worth noting that the microbial removal of dyes is affected 

by the dye characteristics. Studies have indicated that dyes characterised by low molecular 

weight, simple chemical structure (Pearce et al., 2003), and absence of sulpho or nitro groups 

(Saratale et al., 2011) are more effectively removed than dyes which have high molecular 

weight or a complex structure.  

The adsorption process of dye molecules by the substrate in CWs is reported as a negligible 

pathway by many authors (Nilratnisakorn et al., 2009; Ong et al., 2009a; Noonpui & 
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Thiravetyan, 2011). This process is not effective for long-term dye removal as the matrix 

bed reaches equilibrium after a limited period leading to dye adsorption onto the matrix bed 

being negligible. This was confirmed by Davies et al. (2006, 2009); the authors demonstrated 

that acid orange 7 adsorption onto gravel topped by a sandy clay matrix bed reached 

equilibrium after 16 days and 30 days in CWs fed by 127 mg/l (Davies et al., 2006) and 748 

mg/l (Davies et al., 2009), respectively, and the adsorption by the substrate became 

negligible after these periods. However, Ojstrsek et al. (2007) observed 70% dye removal 

by unplanted wetland filled with gavel, sand and zeolite, and therefore it is expected that this 

high removal was either because equilibrium was not reached within the 24 hour 

experimental operation period or due to the impact of zeolite, although these reasons were 

not specified by the authors. 

2.13 Chapter summary 

As the problems associated with dye wastewater from textile factories have highlighted the 

importance of treating these effluents before discharge, constructed wetlands have been 

recommended worldwide as a green alternative, characterised by low cost of construction, 

operation and maintenance, for the treatment of diverse wastewaters over the past three 

decades (Scholz & Xu, 2002; Vymazal, 2007; Kadlec & Wallac, 2009; Vymazal, 2011, 

2014; Adhikari et al., 2015). L. minor-based constructed wetlands have proved to be efficient 

for treatment of dye wastewater in recent years (Alkhateeb et al., 2005; Sivakumar, 2014; 

Uysal et al., 2014). These systems are the cheapest compared with other surface flow and 

subsurface flow wetlands planted with emergent or submerged plants (Kadlec & Wallace, 

2009; Chen et al., 2016). Furthermore, the features of L. minor within the treatment system 

compared with other free-floating plants make its utilisation promising. These features 

include: the plant fully covers the system surface providing the main (aerobic, anaerobic and 

anoxic) zones necessary for the treatment of most wastewater contaminants (Ozengin & 

Elmaci, 2007); it is harvested and adapted easily; it grows rapidly (Adhikari et al., 2015); it 

is able to grow under a wide range of temperatures; it can control algae growth, and prevent 

bad odours and mosquito growth, etc. (Vymazal et al., 1998; Bejarano, 2005). 

No long-term study treating dye wastewater using an L. minor-based treatment system was 

found in the literature. In addition, no previous study assessed the performance of identical 

systems for treating the same dye wastewaters under both semi-natural and controlled 

laboratory conditions. Furthermore, no previous work treated the dyes used in this study as 
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either individual dyes or as a mixture using this type of wetlands. Moreover, there is a lack 

of discussion of basic mechanisms regarding the treatment performance in terms of dye 

removal and other water quality parameters. The aim of this thesis was to assess in detail the 

potential of L. minor-based constructed wetlands as shallow ponds, using different design 

variables and operational conditions, and to investigate the treatment performance (as a post 

treatment stage) of synthetic wastewater contaminated by textile dyes, with the main focus 

on dye removal under hydroponic conditions as a cost-effective technology for helping low-

income developing countries. The treatment performance of algae stabilisation ponds was 

also investigated, and therefore the term ‘pond’ is considered in this thesis for both L. minor-

based constructed wetland systems and algae stabilisation ponds as L. minor ponds and algae 

ponds, respectively. Table 2.4 identifies the differences between the research of this thesis 

and other publications.  
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Table 2.4 Differences between the research of this thesis and other publications 

Reference 
Type of 

dye 

Type of plant System Conditions Matrix bed 
Operation 

period 
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Pervez et al. (2000) 
AB 113, 

RB 171 

 

√   √     √   √   √ √   

Alkhateeb et al. (2005) N/V  √     √  √   √ √  √   √ 

Davies et al. (2005, 2006, 2007) N/V √   √      √  √   √  √  

Mbuligwe (2005) AO7 √    √ √    √  √   √ √   

Keskinkan and Lugal Goksu 

(2007) 
BB41   √   √   √   √   √ √   

Ojstrsek et al. (2007) 

RR22, 

RB5, 

VR13 

   √     √   √   √ √   

Bulc and Ojstrsek, (2008) 
RB5, DY211, 

VY46 
√   √ √   √  √  √   √ √  √ 

Nilratnisakorn (2009) RR141 √   √       √ √   √ √   

Ong et al. (2009a, 2011) AO7 √   √     √   √   √ √   

Ong et al. (2009b, 2010) AO7 √   √     √   √  √  √   

Noonpui and Thiravetyan (2011) 
RR2, RR120, 

RR141 
√    √      √ √ √  √ √ √  
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Table 2.4 (Continued)                    

Muthunarayanan et al. (2011) 
RR198, 

RB5 
 √     √   √   √  √  √  

Cumnan and Yimrattanabovorn 

(2012) 
N/V √   √  √  √  √  √   N/V √   

Shehzadi et al. (2014) N/V √   √     √   √   √   √ 

Sivakumar (2014) AO10  √    √   √    N/V  √  √ √ 

Uysal et al. (2014). N/V  √     √  √    √  √   √ 

Yalcuk and Dogdu (2014) AY 2G √   √     √   √   √  √  

Chandanshive et al. (2016) Rubine GFL  √     √  √    √  √  √  

Hussein and Scholz (2017) 
AB113 

BR46 
√   √       √ √  √  √   

This study 

AB113 

RB198 

BR46 

DO46 

 √    √   √ √   √ √  √   

Note: RB171, reactive blue 171; AB113, acid blue 113; AO7, acid orange 7; BB41, basic blue 41; RR22, reactive red 22; RB5, reactive black 

5; VR13, vat red 13; RR2, reactive red 2; RR120, reactive red 120; RR141, reactive red 141; RR198, reactive red 198; AY 2G, acid yellow 2G; 

RB198, reactive blue 198; DO46, direct orange 46; N/V, not available. 
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Chapter 3                                                
Materials and Methods 

3.1 Overview 

The materials used and methods applied in this research are presented in this chapter. Section 

3.1 provides an overview of the chapter. A description of the materials selected and used in 

each experiment, including the dyes, the synthetic wastewater, the plants, and other materials 

is discussed in Section 3.2. Section 3.3 explains the preparation procedure of solutions and 

inflow wastewater used to supply the treatment systems. Section 3.4 discusses the set-up and 

operation of each experiment conducted in this research. Plant growth monitoring and 

measurement, as well as the environmental conditions monitoring is described in Sections 

3.5 and 3.6, respectively. Section 3.7 illustrates the sampling and analysing of water quality 

parameters including the dyes, as well as the plant tissues. Statistical analysis applied for 

data interpretation is explained in Section 3.8. The research limitations are stated in Section 

3.9. 

3.2 Materials 

3.2.1 Dyes 

Four commercially available azo dyes were used in this study: acid blue 113 (AB113), 

reactive blue 198 (RB198), basic red 46 (BR46) and direct orange 46 (DO46), which were 

supplied by Dystar UK Limited (Colne Side Business Park, Huddersfield, United Kingdom), 

except for AB113 which was obtained from Sigma-Aldrich Company UK Limited (The Old 

Brickyard, New Road, Gillingham, United Kingdom). The selected dyes are different in their 

modes of application and, due to the impact of the number of azo groups on treatment 

performance (Pearce et al., 2003; Saratale et al., 2011), these dyes are also different in the 

azo bond numbers: AB113 and RB198 comprise two double bonds between nitrogen atoms 

and belong to the diazo group, and BR46 and DO46 contain one double bond and belong to 

the monoazo group. Dyes characteristics and structures are shown in Table 3.1. These dyes 

were used as example azo dyes to assess the removal of xenobiotic organic  compounds and 

were selected for the following reasons: 
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• They belong to the azo group of dyes, which are widely used in the textile industry 

(Forgacs et al., 2004; Davies et al., 2009; Daud, 2014) and are associated with a wide 

range of environmental challenges (Carmen & Daniela, 2012; Sivakumar, 2014), as 

mentioned previously in detail in Chapter 2, Sections 2.6 and 2.7.  

• They are among the commercial dyes used in textile industries (Chen et al., 2003; 

Kim et al., 2004; Nguyen, 2014; Deniz & Karman, 2011; Sheshdeh et al., 2014; 

Surana et al., 2010; Mehta et al., 2011; Balarak et al., 2016b). 

• There is no previous literature about assessing the removal efficiency of these dyes 

with simulated shallow pond systems.  

Table 3.1 Characteristics and structures of the dyes used 

Dye Acid Blue 113 Reactive Blue 198 

Molecular formula C32H21N5Na2O6S2 C41H30Cl4N14Na4O14S4 

Molecular weight (g/mol) 681.6 1304.8 

λmax (nm) 566 625 

Chemical class Diazo (anionic) Diazo/Oxazine (anionic) 

Dye content (%) Approximately 50 50–80 

CAS number 335–05–1 124448–55–1 

Chemical structure 

 

 

Dye Basic Red 46 Direct Orange 46 

Molecular formula C18H21N6 C12H10N3NaO3S 

Molecular weight (g/mol) 321.4 299.2 

λmax (nm) 530 421 

Chemical class Monoazo (cationic) Monoazo (anionic) 

Dye content (%) 70–80 60–80 

CAS number 1222−69–1 1222–37–6/50814–31–8 

Chemical structure 

 

 

Note: CAS, chemical abstracts survey registry; λmax, wavelength at maximum absorption; 

C, carbon; H, hydrogen; N, nitrogen; Na, sodium; O, oxygen; S, sulphur; Cl, chlorine. 
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3.2.2 Plants 

The aquatic macrophytes, Lemna minor L., were collected from a small pond close to 

Cowpe Reservoir, Rossendale, Lancashire (Greater Manchester, United Kingdom), which 

had no connection with any textile wastewater discharge point. The plants were placed in 

plastic tanks containing the same pond water (Figure B.1, Appendix B) and moved to the 

project location, which was Salford University (Greater Manchester, United Kingdom). The 

plants were washed carefully with dechlorinated tap water before use in the experiments. 

This plant was collected from the pond twice for use in the first and second experiments. 

Thereafter, the plant was kept under laboratory conditions to grow for using in the third and 

fourth experiments. Figure 3.1 shows a picture of L. minor macrophyte. L. minor is a rather 

small free-floating macrophyte, of size 1–3 mm and root depth 1–3 cm (Al-Qutob & 

Nashashibi, 2012), belonging to the Lemnaceae family. This plant is recommended widely 

for use in wastewater treatments (Vymazal et al., 1998; Bejarano, 2005; Sekomo, 2012; 

Movafeghi et al., 2013). L. minor was selected in this research due to its characteristics, 

including: 

• It is among the faster-growing plants in the world, frequently doubling its biomass 

in an exponential growth (Vymazal et al., 1998; Bekcan et al., 2009). 

• It adapts easily to diverse aquatic conditions in stagnant ponds or slow-flowing 

streams (Azeez & Sabbar, 2012; Movafeghi et al., 2013; Selvarani et al., 2015), is 

able to grow over a wide temperature range between 1°C (Vymazal et al., 1998) and 

35°C (Ozengin & Elmaci, 2007; Yaseen & Scholz, 2018), and is sensitive to a wide 

variety of pollutants (Bejarano, 2005; Movafeghi et al., 2013).  

• It reduces mosquito growth and controls algae growth in the system, as the water 

surface is fully covered by the plants (Bejarano, 2005), as well as controlling odour 

release from the treatment system (Steen et al., 2003). 

• It has the ability to accumulate and assimilate pollutants from diverse wastewater 

(Zimmo, 2003; Zimmo et al., 2005; Bekcan et al., 2009; Vanitha et al., 2013; 

Selvarani et al., 2015). In addition, it is used for the removal of dyes and heavy metals 

(Sekomo et al., 2012) from textile wastewater using living (Reema et al., 2011; 

Sivakumar, 2014) and dried (Balarak et al., 2016a, b; Salman et al., 2016) plants.  

• The floating mat of L. minor on the wetland surface offers three zones which are 

normally required in treatment processes: an aerobic zone near to the top layer, an 

anoxic zone in the middle of the treatment system, and an anaerobic zone within the  



Chapter 3: Materials and Methods 

77 

system bed (Ozengin & Elmaci, 2007).  

• The cost of a treatment system planted with L. minor is less compared with other 

wetlands (Kadlec & Wallace, 2009; Chen et al., 2016), and an L. minor-based system 

is constructed without substrate as the plants float on the top of the system surface 

and do not require substrate to support their roots (Chen et al., 2016).  

• It is harvested easily (Bejarano, 2005; Adhikari et al., 2015), and the harvest biomass 

can be used as a good source of fodder, because it has high concentrations of protein 

and low fibre content (Bekcan et al., 2009), and for composting and soil amendments 

(Adhikari et al., 2015). 

 

Figure 3.1 Picture of Common Duckweed (Lemna minor L.) 

3.2.3 Wastewater 

Two types of prepared wastewater compositions were used in this research, which were as 

follows: 

3.2.3.1 Synthetic wastewater 

The TNC complete fertiliser composition selected to prepare synthetic wastewater simulates 

the real effluents at low contaminant concentrations, it is an aquatic plant nutrient supplied 

by TNC Limited (Spotland Bridge Mill, Mellor Street, Rochdale, United Kingdom). The 

corresponding constituents were as follows: nitrogen (1.5%), phosphorus (0.2%), potassium 

(5%), magnesium (0.8%), iron (0.08%), manganese (0.018%), copper (0.002%), zinc 

(0.01%), boron (0.01%) and molybdenum (0.001%). Ethylenediaminetetraacetic acid, which 

is used as a source for copper, iron, manganese and zinc, was also provided by TNC 
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Complete. The fertiliser (1 ml per 10 l dechlorinated tap water weekly) was applied to 

simulate synthetic wastewater sufficiently rich in nutrients and trace elements to support 

plant growth. The characteristics of the prepared synthetic wastewater were lower than the 

typical range (except for colour and pH values) for most textile effluents (Ghaly et al., 2014), 

and consequently simulate wastewater already treated in the preliminary and secondary 

treatment stages to, thereafter, pass through the polishing stage which deals with low 

concentrated effluents (Reed et al., 1995).  

3.2.3.2 Synthetic textile wastewater 

The chemicals selected to prepare synthetic textile wastewater simulate the real textile 

effluents from textile factories, and contained a mixture of organic carbon, nutrients and 

buffer solution. The corresponding constituents and concentration (mg/l) of the composition, 

as reported by Ong et al. (2009a, 2010), were as follows: sodium benzoate (C6H5COONa, 

107.1), sodium acetate (CH3COONa; 204.9), ammonium nitrate (NH4NO3; 176.1), sodium 

chloride (NaCl; 7), magnesium chloride hexahydrate (MgCl2.6H2O; 3.4), calcium chloride 

dehydrate (CaCl2.2H2O; 4) and potassium phosphate dibasic trihydrate (K2HPO4.3H2O; 

36.7). All chemicals were of analytical grade and applied without any further purification. 

The supplier was Scientific Laboratory Supplies Limited (Wilford Industrial Estate, 

Ruddington Lane, Wilford, Nottingham, England, United Kingdom).  

This synthetic textile wastewater was utilised to simulate the real textile effluents, and 

because the contaminations and their corresponding concentrations in wastewater could 

affect the survival of the plants (Stottmeister et al., 2003; Vymazal, 2009; Shehzadi, 2014) 

and the microbes in the treatment system. The constituents reported by Ong et al. (2009a, 

2010) were appropriate for this research, as their synthetic textile wastewater had been 

previously examined in a biological treatment experiment using a planted wetland system 

and most of the characteristics of this wastewater were within the range of characteristics of 

typical textile wastewater. 

3.2.4 Other chemicals  

The other analytical grade solutions used were hydrochloric acid solution (1 M HCl) and 

sodium hydroxide solution (1 M NaOH), which were used for pH adjustment as a strong 

acid and base, respectively. Nitric acid S.G. 1.42 (>68%) was used in heavy metal analysis. 

Acetonitrile (C2H3N) was used for high performance liquid chromatography analysis. All 
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these chemicals were purchased from Scientific Laboratory Supplies Limited (Wilford 

Industrial Estate, Ruddington Lane, Wilford, Nottingham, England, United Kingdom). 

3.2.5 Containers 

The experiments were conducted using impermeable plastic containers (length, 33 cm; 

width, 25.5 cm; depth, 14 cm), to simulate a small part (in terms of width and length) of 

shallow artificial or real pond system sealed by an impermeable plastic-based liner and 

located above the ground. The containers were supplied by Home Bargains (Salford, Greater 

Manchester, United Kingdom). 

3.3 Solutions and inflow wastewater preparation  

The dyes stock solutions were prepared, for each dye, by dissolving 5 g of a dye in 1 litre of 

distilled water using a magnetic stirrer (IKA, Hotplate Stirrer, RCT basic safety control 

IKAMAG, IndoGama.com) for 1 hour to guarantee that all dye powder dissolved, and stored 

in the dark at 4ºC. The stock solution of synthetic textile wastewater (Section 3.2.3.2) was 

prepared by mixing all the chemicals with dechlorinated boiled tap water using a magnetic 

stirrer with a heating plate at 150 rpm for 1 hour to guarantee that all chemicals dissolved. 

Both stock solutions were prepared under non-sterilised conditions at a laboratory 

temperature of around 25°C. 

The synthetic wastewater containing dye was used as an inflow of the pond systems in the 

first experiment, and prepared by mixing the solution of each dye separately with 

dechlorinated tap water and the TNC Complete fertiliser (1 ml: 10 l dechlorinated tap water), 

providing a 5 mg/l concentration for each dye. However, the synthetic textile wastewater 

containing dye was used as an inflow of the treatment systems in the second, third and fourth 

experiments by mixing the dye solutions of each dye separately with the solution of the 

synthetic textile wastewater and dechlorinated tap water, providing a 10 mg/l concentration 

for each dye. Diluted synthetic textile wastewater, with a dilution ratio of 1 part synthetic 

textile wastewater to 24 parts raw water, was prepared for use in the third and fourth 

experiments. Such a high dilution was required, because all plants in the second experiment 

eventually died due to the high concentrations of some chemicals in the synthetic textile 

wastewater.  
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3.4 Set-up and operation of pond experiments 

The four experiment set-ups in this research were designed to cover the study objectives. 

The outdoor experiment operated for more than one year to cover the system performance 

over all seasons of the year. However, the indoor experiments operated for at least nine 

months which was sufficient for monitoring the plant survival during several life cycles, and 

to enable the collected data to become stable, except for the second experiment which was 

operated for three months only due to the death of L. minor in the pond systems. The contact 

time used for all experiments was 7 days, which was similar to those commonly published 

in the literature regarding L. minor (Kilic et al., 2010; Movafeghi et al., 2013; Sivakuma, 

2014) used for the treatment of textile dyes. In addition, Reema et al. (2011) and Sharma et 

al. (2016) stated that the potential of L. minor for uptake of dyes accelerates with an increase 

in contact time for all initial dye concentrations. The set-ups were as follows:  

3.4.1 First experiment: set-up for impact of design variables 

and environmental conditions on pond efficiency 

The experiment set-up was located in Newton Yard, Salford University (Greater 

Manchester, United Kingdom), in the North West of England (53° 28′ 59″ N, 2° 17′ 35″ W), 

and performed using 98 plastic containers simulating shallow ponds. Twenty containers 

were allocated for each dye, and an additional 18 containers without dyes were also 

monitored. The containers were manually operated. The set-up of this experiment consisted 

of three phases. In the first phase between 10 July 2014 and 11 August 2014, plants were 

collected, as mentioned in Section 3.2.2, and then each container was filled with tap water 

to the desired level of 6.9 cm depth, which is equivalent to 5 litres. Thereafter, 200 green 

and washed L. minor plants (about 2.600±0.0292 gram) containing four fronds were added 

to each container, and the system was fed weekly with water and (TNC Complete) fertiliser 

(1 ml per 10 l dechlorinated tap water). In the second phase between 11 August 2014 and 15 

December 2014, the system was kept outside for acclimatisation and monitoring purposes. 

During this period, the plants grew very well, and some algae started to develop in most 

systems naturally, From 9 September 2014, dyes at a concentration of 5 mg/l were added to 

examine plant survival. Figures B.2a and b (Appendix B) show pictures of the first 

experiment set-up during the second phase. On 15 December 2014, the third (main) phase 

was started. The experiment was performed by moving 69 containers to the Maxwell 
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Building (The University of Salford, Greater Manchester, United Kingdom), under 

controlled laboratory conditions (indoor), and the remaining 29 were moved to the roof of 

the Newton Building (The University of Salford, Greater Manchester, United Kingdom), 

under semi-natural uncontrolled (outdoor) conditions. The indoor experiment comprised 14 

ponds for each dye (AB113, RB198, BR46, and DO46) and 13 ponds without any dye. The 

set-up consisted of four treatment groups (design variables). The first group comprised L. 

minor and algae (P1), the second one used only algae (P2), the third group used only L. 

minor (P3) and the fourth group represented the control (unplanted) (P4). The outdoor 

experiment comprised 6 ponds for each dye (AB113, RB198, BR46, and DO46) and 5 ponds 

without any dye. The set-up consisted of two treatment groups. The first group comprised L. 

minor (P3) and the second group represented the control (unplanted) (P4). Four replicates 

for each group planted with L. minor and/or algae (P1, P2, and P3), and two replicates for 

the control group (P4) were used. However, only one replicate was use for control ponds 

which were without any dye in both indoor and outdoor set-ups. 

The group of simulated ponds containing only L. minor as well as the control group without 

any plants were kept free of algae. Considering that L. minor grows very rapidly, the surface 

areas of the ponds were frequently covered preventing sunlight from reaching any traces of 

algae in the L. minor ponds. However, any visual traces of algae were removed manually. 

This was only the case for L. minor ponds at the start of the experiment before L. minor got 

fully established. Furthermore, control ponds were free of any algae from the start. The 

experiment was conducted in a batch mode. The first dose of synthetic wastewater 

containing dyes was added to the pond systems after the transfer date on 23 December 2014. 

All doses had concentrations of 5 mg/l. The corresponding contact time was 7 days. The 

dosages were added weekly by topping up each pond to the same desired water level 

equivalent of 5 litres as required to address water loss due to evapotranspiration for both set-

ups. For the outdoor set-up, sometimes due to the effect of rainfall, the excess water was 

removed carefully until the level was equivalent to 4 litres, and 1 litre was added as a new 

dose in case the water level was higher than the equivalent of 5 litres. Note that removal 

efficiencies were calculated for loads. All water volumes added or removed were considered 

in these calculations. The samples were collected by syringes regularly each week (before 

adding new dosages) to monitor the system performances. The indoor experiment operated 

till 15 September 2015. However, the outdoor experiment was conducted till 2 February 

2016 to cover all seasons of the year. Figure 3.2 is a schematic diagram for the indoor and 
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outdoor experiment set-ups. Table 3.2 shows a summary for the experimental phases. 

Figures 3.3 and 3.4, show photograph pictures of the first experiment set-up during the third 

phase under controlled (indoor) and semi-natural (outdoor) condition, respectively. 

 

Figure 3.2 Schematic diagram of the first experiment set-up. Note: (a), indoor set-up; 

(b), outdoor set-up; AB113, acid blue 113; RB198, reactive blue 198; BR46, basic red 46; 

DO46, direct orange 46; SWW, synthetic wastewater; P1, Lemna minor L. and algae ponds; 

P2, algae ponds; P3, Lemna minor L. ponds; P4, control ponds.  
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Table 3.2 Experimental phases 

Phase 

number 

Range of dates Notes 

1 10/07/2014 to 11/08/2014 Set-up period: Plants were added to the containers and fed 

with fertiliser weekly. 

2 11/08/2014 to 15/12/2014 Monitoring period: The plants acclimatised. Algae started to 

grow as well. Dyes were added to the system and plants 

were monitored. 

3 15/12/2014 to 15/09/2015a 

15/12/2014 to 02/02/2016b 

Main experiment: Systems were operated under laboratory 

and semi-natural conditions (data recorded). 

Note: a, indoor set-up; b, outdoor set-up.  

 

Figure 3.3 Indoor set-up of the first experiment of pond systems during the third phase. 

Note: (1), acid blue 113; (2), reactive blue 198; (3), basic red 46; (4), direct orange 46; (5), 

without dye. 
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Figure 3.4 Outdoor set-up of the first experiment of pond systems during the third 

phase. Note: (1), acid blue 113; (2), reactive blue 198; (3), basic red 46; (4), direct orange 

46; (5), without dye. 

3.4.2 First experiment: set-up for performance comparison 

between indoor and outdoor ponds 

The set-up phases of the comparison experiment are as discussed in Section 2.4.1. This 

experiment was performed using 58 containers simulating shallow pond systems. Twenty-

nine containers from the indoor ponds of the first experiment are used in comparison with 

the 29 containers from the outdoor ponds of the first experiment. The indoor set-up was 

located in the Maxwell Building (The University of Salford, Greater Manchester, United 

Kingdom), and the outdoor set-up was located on the roof of the Newton Building (The 

University of Salford, Greater Manchester, United Kingdom). The set-up for each dye under 

both environmental (operational) conditions was comprised of two treatment groups: the 

first one comprised L. minor (P3; four replicates) and the second one denoted the controls 

without using L. minor (P4; two replicates). Further, ponds without dyes were also included. 

Operation of pond systems, doses added and contact time are as mentioned in Section 2.4.1. 

In this experiment, the period of operation for both indoor and outdoor experiments extended 

till 15 September 2015. Figure 3.5 is a schematic diagram for the comparison of indoor and  

outdoor experiment set-ups. 
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Figure 3.5 Schematic diagram of the comparison experiment set-up. Note: AB113, acid 

blue 113; RB198, reactive blue 198; BR46, basic red 46; DO46, direct orange 46; SWW, 

synthetic wastewater; P3, Lemna minor L. ponds; P4, control ponds. 

3.4.3 Second experiment: set-up for short-term impact of pH 

on pond efficiency 

The second experiment was conducted under controlled laboratory conditions in the 

Maxwell Building (The University of Salford, Greater Manchester, United Kingdom), 

between 1 October 2015 and 19 January 2016 using plastic containers. The plants were 

collected on 1 of October 2015, washed and then kept for acclimatisation under laboratory 

conditions for 12 days. The experiment comprised 78 shallow pond simulations. Eighteen 

containers were used for each dye and a further six systems had no dyes. The set-up for each 

dye (either AB113, RB198, BR46 or DO46) consisted of two groups of treatment; the first 

group contained L. minor (planted ponds P3, 5 and 7) and the second group had no plants 

and functioned as controls (control ponds P4, 6 and 8). Three replicates were assessed for 

each group. The system was fed with four synthetic textile wastewaters (one for each dye) 

containing dye at initial dye concentrations of 10 mg/l. Three different wastewater inflows 

for each dye were assessed: ponds with wastewater without any hydrolyses at normal pH 

(inflows of P3 and P4), ponds with wastewater adjusted to pH 9 (inflows of P5 and P6), and 

ponds with wastewater adjusted to pH 6 (inflows of P7 and P8). The extra six ponds were as 

follows: three planted ponds (P3) receiving synthetic textile wastewater only without dye 

and three planted ponds (P3) receiving only tap water for comparison reasons. All pond 

systems were filled with synthetic textile wastewater containing dye up to a depth of 6.9 cm. 
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This level equates to a corresponding volume of 5 litres on 13 October 2015 as a first dose. 

Subsequently, 200 healthy L. minor plants (about 2.6±0.03 gram) with approximately equal 

frond numbers were introduced to each system. After adding the first dose, the system was 

fed weekly by removing the water solution in each pond (manually using suction pump) until 

the level was equivalent to three litres (4.4 cm depth) and two additional litres were supplied 

to keep the water level equivalent to five litres again. This is because the depth equivalent to 

three litres was enough to keep the root of L. minor without any contact with the base of the 

pond, and to mimic the natural systems when the treated water is discharged to the receiving 

watercourses and new doses are added. The corresponding contact time was seven days. 

Figure 3.6 presents the experiment set-up diagram, and Figure 3.7 presents some 

photographs of the experimental set-up.  

The pH values of 6 and 9 were selected, because they equate to common lower and upper 

pH discharge thresholds (Carmen & Daniela, 2012), and are within the typical range of 

textile effluents (Ghaly et al., 2014). The selected values are also within the tolerable pH 

range (4 to 9) for L. minor growth according to Movafeghi et al. (2013). Furthermore, 

Saratale et al. (2011) mentioned that higher colour removal requires pH values between 6 

and 10 as optimum. Note that the removal efficiency of dyes in strongly acid or alkaline 

environments noticeably drops in biological systems used for treatment purposes. 

 

Figure 3.6 Schematic diagram of the second experiment set-up. Note: AB113, acid blue 

113; RB198, reactive blue 198; BR46, basic red 46; DO46, direct orange 46; STWW, 

synthetic textile wastewater; DTW, dechlorinated tap water; P3, Lemna minor L. ponds 

receiving inflow at normal pH; P4, control ponds receiving inflow at normal pH; P5, Lemna 

minor L ponds receiving inflow at pH of 9; P6, control ponds receiving inflow at pH of 9; 

P7, Lemna minor L ponds receiving inflow at pH of 6; P8, control ponds receiving inflow at 

pH of 6.  
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Figure 3.7 Set-up of the second experiment of pond systems. Note: (1), acid blue 113; 

(2), reactive blue 198; (3), basic red 46; (4), direct orange 46; (5), without dye. 

3.4.4 Third experiment: set-up for long-term impact of pH on 

pond efficiency 

The experiment was operated under laboratory-controlled conditions in the Maxwell 

Building (The University of Salford, Greater Manchester, United Kingdom) in two phases 

(Figure 3.8). The first phase was between 20 January 2016 and 18 October 2016. The set-up 

consisted of 42 containers simulating shallow ponds. Eighteen containers were applied for 

each dye and a further six systems were maintained without the presence of dyes. The set-

up for each dye (RB198 and BR46) consisted of two groups of treatment; the first group 

contained L. minor (planted ponds P3, 5 and 7) and the second group had no plants and 

functioned as controls (control ponds P4, 6 and 8). Three replicates were assessed for each 

group. The system was fed with two diluted synthetic textile wastewaters containing dye at 

initial dye concentrations of 10 mg/l (one for each dye). Three different wastewater inflows 

for each dye were assessed (similar to the second experiment): ponds with wastewater 

without any hydrolyses at normal pH (inflows of P3 and P4), ponds with wastewater adjusted 
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to pH 9 (inflows of P5 and P6), and ponds with wastewater adjusted to pH 6 (inflows of P7 

and P8). The extra six ponds were as follows: three planted ponds (P3) receiving synthetic 

textile wastewater only without dye and three planted ponds (P3) receiving only tap water 

for comparison reasons. All pond systems were filled with diluted synthetic textile 

wastewater containing dye up to a depth of 6.9 cm. This level equates to a corresponding 

volume of 5 litres on 26 January 2016 as a first dose. Subsequently, 200 healthy L. minor 

plants (about 2.6±0.03 gram) with approximately equal frond numbers were introduced to 

each system. After adding the first dose, the system was fed weekly by removing the water 

solution in each pond (manually using suction pump) until the level was equivalent to three 

litres (4.4 cm depth) and two additional litres were supplied to keep the water level 

equivalent to five litres again, as explained previously (Section 3.4.3). The corresponding 

contact time was seven days.  

The second phase was operated between 18 October 2016 and 30 June 2017. The influent 

pH was normal. The system comprised 20 containers: 6 pond systems for each dye and a 

further 8 systems without dye. The set-up for each dye comprised of three groups: the first 

group contained L. minor and algae (P1). The second used only algae (P2). The third was 

without L. minor and/or algae as a control (P4). However, the ponds without dye consisted 

of two treatment groups: one used L. minor and algae, and the other contained only algae. 

The experiment operated in two replicates. This phase was conducted to evaluate the impact 

of the algae Oedogonium, which grew naturally in all planted ponds during the last three 

months of the first phase. The first planted pond (P3, first replicate) in the first phase was 

divided into two ponds and labelled L. minor and algae ponds (P1). Then, the second planted 

pond (P3, second replicate) in the first phase was divided into two ponds after completely 

removing L. minor, and the new system was labelled as algae ponds (P2), where only the 

algae were kept in the system. Regarding the control ponds, this phase was conducted by 

continuing to use two control ponds, which were already operated in the first phase (P4, first 

and second replicate of first phase). Note that the target concentration of each pond was 

established before adding the first dose of the second phase, which compensated for the 

water level until a volume equivalent of 5 litres was reached. The same procedure was 

undertaken for the ponds without dyes. Then, the system was fed weekly as explained earlier 

in phase one. Note that the volume of water removed or added as well as their corresponding 

concentrations were considered in the calculations. Table 3.3 provides an overview of the 

operation. Set-up pictures for the third experiment of both phases are shown in Figure 3.9. 
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Figure 3.8 Schematic diagram of the third experiment set-up. Note: (a), first phase; (b) 

second phase. AB113, acid blue 113; RB198, reactive blue 198; BR46, basic red 46; DO46, 

direct orange 46; DSTWW, diluted synthetic textile wastewater; DTW, dechlorinated tap 

water; P1, Lemna minor L. and algae ponds receiving inflow at normal pH; P2, algae ponds 

receiving inflow at normal pH; P3, Lemna minor L ponds receiving inflow at normal pH; 

P4, control ponds receiving inflow at normal pH; P5, Lemna minor L. ponds receiving inflow 

at pH of 9; P6, control ponds receiving inflow at pH of 9; P7, Lemna minor L. ponds 

receiving inflow at pH of 6; P8, control ponds receiving inflow at pH of 6. 

Table 3.3 Experimental operation periods and details 

Phase number Duration Notes 

1 20/1/2016 to 18/10/2016 Forty-two ponds for the treatment of the dyes RB198 

and BR46 at normal, basic and acidic conditions using 

synthetic textile wastewater after and clean water at a 

ratio of 1:24. 

2 18/10/2016 to 30/6/2017 Twenty ponds for the treatment of the dyes RB198 and 

BR46 at normal conditions using synthetic textile 

wastewater and clean water at a ratio of 1:24. 

Note: AB113, acid blue 113; RB198, reactive blue 198; BR46, basic red 46; DO46, direct 

orange 46. 
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Figure 3.9 Set-up of the third experiment of pond systems. Note: (a), first phase; (b), 

second phase; (1) reactive blue 198; (2), basic red 46; (3), without dye. 



Chapter 3: Materials and Methods 

91 

3.4.5 Fourth experiment: set-up for performance of L. minor 

ponds treating wastewater containing dye mixtures 

The experiment was operated between 14 October 2016 and 27 June 2017 under controlled 

laboratory conditions in the Maxwell Building (The University of Salford, Greater 

Manchester, United Kingdom) using plastic containers. The experiment consisted of 22 

shallow pond simulations. Six ponds were used for each mixture of dyes and an extra four 

containers had no dyes. The set-up for each mixture of dyes involved two treatment sets; one 

contained L. minor (P3; four replicates) and the other group had no plants as controls (P4; 

two replicates). The remaining four ponds were as follows: two planted ponds receiving 

synthetic textile wastewater only without dye and two planted ponds receiving only tap water 

for comparison reasons. 

All pond systems were filled with prepared wastewater up to a depth of 6.9 cm, which was 

equal to 5 litres on 18 October 2016 as a first dose. Subsequently, 200 healthy L. minor 

plants (about 2.6±0.03 gram) with approximately equal frond numbers were introduced to 

each system. After adding the first dose, the system was fed weekly by removing the water 

solution in each pond (manually using suction pump) until the level was equivalent to three 

litres (4.4 cm depth). Two additional litres were supplied to keep the water level equivalent 

to five litres again, as mentioned in Section 3.4.4. The retention time was seven days. The 

pond systems were fed by three mixtures, which were prepared by combining the solutions 

of each dye, according to the required concentrations as mentioned below, together with the 

solution of the diluted artificial textile wastewater and dechlorinated tap water. Each mixture 

had a total concentration of 10 mg/l. The initial (inflow) dye concentrations in each mixture 

were as follows: mixture 1 (2 mg/l of RB198 and 8 mg/l of BR46), mixture 2 (8 mg/l of 

RB198 and 2 mg/l of BR46) and mixture 3 (5 mg/l of RB198 and 5 mg/l of BR46). 

A schematic diagram of the experiment set-up is shown in Figure 3.10. Pictures of the 

experimental set-up are shown in Figure 3.11. 
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Figure 3.10 Schematic diagram of the fourth experiment set-up. Note: mixture 1, (8 mg/l 

of basic red 46 + 2 mg/l reactive blue 198); mixture 2, (2 mg/l of basic red 46 + 8 mg/l 

reactive blue 198); mixture 3, (5 mg/l of basic red 46 + 5 mg/l reactive blue 198); DSTWW, 

diluted synthetic textile wastewater; DTW, dechlorinated tap water; P3, Lemna minor L. 

ponds; P4, control ponds.  

 

Figure 3.11 Set-up of the fourth experiment of pond systems. Note: (1), mixture 1 (8 mg/l 

of basic red 46 + 2 mg/l of reactive blue 198); (2), mixture 2 (2 mg/l of basic red 46 + 8 mg/l 

of reactive blue 198); (3), mixture 3 (5 mg/l of basic red 46 + 5 mg/l of reactive blue 198); 

(4), without dye. 
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3.5 Plant growth monitoring 

In order to assess the impact of dye accumulation on L. minor, the plants were monitored 

and harvested to avoid over-crowding, which inhibits the optimum growth of L. minor. The 

monitored parameters of plants included fresh weight, dry weight, colour, frond numbers 

and the coverage area. The growth rate of L. minor was calculated based on the fresh weight, 

and the frond number using the image processing technique. The fresh biomass weights were 

taken after putting the plants on absorbent paper for five minutes. The dry weights were 

recorded after the plants were dried in an oven at 105ºC for 24 hours (Thierry et al., 2013). 

The frond numbers and coverage areas were monitored and recorded using the Aletheia 

Lemna Edition software (not in the public domain) developed by the Pattern Recognition 

and Image Analysis research lab at the University of Salford (www.primaresearch.org). 

Regarding the Aletheia Lemna Edition Software application, the digital images were taken 

using an OLYMPUS VH 520, a compact digital camera with 14 megapixels on a full liquid 

crystal display screen. Natural light was used and the flash was switched off. To obtain a 

good resolution, the camera was in the automatic option mode (denoted "auto") and the 

distance was 60 cm above the water level. After taking pictures of the buckets containing L. 

minor from the top and of the relevant colours in the Munsell colour chart, the Aletheia 

Lemna Edition was applied using the steps below: 

• Step 1: Opening the combined image of Munsell colour chart and L. minor bucket in 

the Aletheia software, after pasting the relevant picture of the Munsell colour chart 

together with the picture of each bucket (pond) into Microsoft Paint, then specifying 

the bucket width and the frond size in Aletheia setting. 

• Step 2: Specifying the border of the water surface using a polygon tool. 

• Step 3: Modifying the leaf section by setting three parameters: hue (colour tone), 

saturation (greyness), and brightness/value (HSV colour model). Each point (pixel) 

of the image has a specific colour defined by those three values, which were set to 

20 for each one. 

• Step 4: Activating add by colour tool (or remove by colour for editing cases), then 

clicking on the specific colour in the Munsell colour chart; the Aletheia software will 

count the percentage of the coverage area in the pond, matching this colour and 

calculating the total fronds number.  

• Step 5: Repeating the last step (step 4) until all leaves (except died/white leaf) in the  

http://www.primaresearch.org/
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pond are highlighted by orange colour Figure C.1 (Appendix C) shows a picture 

related to each step.  

For more details about the Aletheia Lemna Edition software see Appendix C. The relative 

growth rate (RGR) based on the frond number and the fresh weight were calculated 

according to Equations (3.1) and (3.2), and the relative frond number (RFN) of the plants 

was assessed according to Equation (3.3) as an indicator of possible toxicity (Radic et al., 

2009; Horvat et al., 2007). The colour of the fronds was determined with the help of the 

Munsell colour chart (Munsell, 1977) using the above software. 

RGR (per day) = ln (F. at day n − F. at day 0) (day n − day 0)⁄  (3.1) 

RGR (per day) = ln (FW. at day n − FW. at day 0) (day n − day 0)⁄  (3.2) 

RFN =  (F. at day n − F. at day 0) F. at day 0⁄  (3.3) 

Where, F is the frond number or the fresh weight; day 0 is the initial time; and day n is the 

finial time; RGR, relative growth rate; RFN, relative frond number. 

3.6 Algae identification 

Algae were growing naturally in the pond systems during the second phase (under natural 

weather conditions) of the first experiment, and were detected using a Leica DM750 LED 

Biological Microscope with ICC50W Camera Module-5.0 Mega Pixel (New York Micro-

scope Co., Lauman Lane, Hicksville, New York, USA). Algal species were identified with 

the help of standard textbooks Nakadaand and Nozaki (2015), as Oedogonium, Scenedesmus 

and Cosmarium species (Figure D.1, Appendix D). However, within the third experiment 

(under laboratory conditions), algae started to appear in the ponds planted with L. minor. 

Filamentous algae were the dominating group in all ponds and belonged to the Oedogonium 

species. These were identified by the Culture Collection of Algae and Protozoa (CCAP), 

Research services Limited (The Scottish Association for Marine Science, Scottish Marine 

Institute, Oban, United Kingdom). Pictures of the algae were provided by CCAP, after 

sending the aqueous samples which were taken from ponds comprising RB198, BR46, and 

synthetic wastewater without dye (Figure D.2, Appendix D), and these are shown in Figure 

D.3, Appendix D. 
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3.7 Environmental monitoring 

For the first experiment under controlled laboratory conditions, OSRAM HQL (MBF-U) 

High Pressure Mercury Lamp (400 W; Base E40) grow lights supplied by OSRAM (North 

Industrial Road, Foshan, Guangdong, China) and supported by a H4000 Gear Unit, which 

was provided by Philips (London Road, Croydon, United Kingdom), were used in the 

laboratory during the third phase. For the other experiments under laboratory conditions, 

Budmaster Osram Delux (OD) led lamps (204 W) were used as grow lights. They were 

supplied by Budmaster LED (Unit 4, QHEP, Glan y Wern Road, Colwyn Bay, Gwynedd, 

Wales, United Kingdom).  

Light was controlled by a timer (electronic digital mains Timer Socket Plug-in with LCD 

Display) purchased from amazon (Amazon.co.uk), simulating the daylight conditions in 

Salford, with the help of the website Time and Date (2014). The relative humidity and 

temperature readings of the laboratory environment for all experiments were measured using 

the Thermometer-Hygrometer-Station supplied by wetterladen24.de (JM Handelspunkt, 

Geschwend, Germany). For the outdoors experiment (third phase), the temperature readings 

were measured using the mercurial thermometer at about 10:45 A.M. (United Kingdom 

time). Light measurements were performed by using the lux meter ATP-DT-1300 for the 

range between 200 lux and 50000 lux (TIMSTAR, Road Three, Winsford Industrial Estate, 

Winsford, United Kingdom). Readings were taken directly above the plants for both indoor 

and outdoor experiments. 

3.8 Samples analysis 

3.8.1 Water quality analysis 

In all experiments, a sample was taken from each prepared inflow wastewater, to measure 

all water quality parameters directly after adding it in the pond systems; these water quality 

parameters were also measured for the effluent samples, which were collected weekly after 

a contact time of 7 days. All of the water samples were transported to the laboratory for 

analyses directly. The procedure for water quality sampling and the appliances used for 

water quality parameter measurements were performed according to the American Public 

Health Association standard (APHA) (2005), unless stated otherwise. According to standard 

laboratory methods, all meters and their sensors were regularly calibrated to be ready for 

measurements accordingly. Calibration for all equipment used in water quality measurement  
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was performed when necessary, as stated in the user manuals.  

Water quality sampling (50 ml) was carried out to monitor the water quality and examine 

the performance of the treatment system. The spectrophotometer DR 2800 Hach Lange 

(Hach Lange, Willstätter Strasse, Düsseldorf, Germany, www. hach.com) was used for 

standard water quality analysis for variables including COD, NH4–N, NO3–N, PO4–P, SS, 

absorbance and apparent colour. Apparent colour (unit: Pt Co) was measured at 455 nm 

when dissolved and suspended matter was present. The turbidity was measured with a 

Turbicheck Turbidity Meter (Lovibond Water Testing, Tintometer Group, The Tintometer 

Limited, Lovibond House, United Kingdom, www.lovibond.com). The redox potential and 

pH for all water samples were measured using a VARIO meter (Wissenschaftlich-

Technische Werkstätten (WTW), Weilheim, Germany). Dissolved oxygen was measured 

with a Hach Lange HQ30d dissolved oxygen meter (Hach, Pacific Way, Salford, England, 

United Kingdom). Both electrical conductivity (EC) and total dissolved solids (TDS) for all 

water samples were recorded using the METTLER TOLEDO Education Line Conductivity 

Meter (The Mettler Toledo Limited, Boston Road, Leicester, United Kingdom). 

Furthermore, elements analyses were conducted according to USEPA (1994) for aqueous 

samples using a Varian 720-ES Inductively Coupled Plasma-Optical Emission Spectrometer 

(ICP–OES; Agilent Technologies UK Ltd, Wharfedale Road, Wokingham, Berkshire, UK). 

The analysis was undertaken to determine nutrient and trace element concentrations. The 

samples of 15 ml were filtered using a Whatman filter paper (diameter of 0.45 μm), which 

was purchased from Scientific Laboratory Supplies Limited (Wilford Industrial Estate, 

Nottingham, United Kingdom), then acidified using nitric acid S.G. 1.42 (> 68), to dissolve 

any suspended material in order to extract heavy metals and to reduce the pH to below 2, 

which was required for analysis. Thereafter, the samples preserved in centrifuge tubes at 

4ºC. 

3.8.2 Dye analysis 

The analysis of the single dyes was performed for 12 ml samples, which were filtered 

through a 0.45 µm pore diameter Whatman filter paper, for assessing the system 

performance. The filtered water sample was then analysed with a UV–vis spectrophotometer 

(DR 2800 Hach Lange) having a range between 400 and 800 nm at the maximum absorption 

wavelengths for each dye for the measurement of the dye absorbance. The maximum 

absorption wavelength of each dye was determined for an aqueous solution using a scanning 

http://www.lovibond.com/
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UV–vis spectrophotometer WPABio Wave II (Biochrom, Cambourne Business Park, 

Cambourne, Cambridge, United Kingdom). The corresponding wavelengths were 566, 625, 

530 and 421 nm for AB113, RB198, BR46 and DO46, respectively. The concentrations of 

dyes were determined depending on standard calibration curves, which were computed for 

each dye by plotting the linear correlation line between known concentrations (mg/l) versus 

the absorbance at maximum absorption wavelength. The correlation coefficients were all 

around 0.99. Dye concentrations in the standard curves ranged from 0 to 20 mg/l using stock 

solutions (20 mg/l, three replicates), which were prepared by weighing exactly 20 mg for 

each dye and then dissolving the dye in 1 l of distilled water using magnetic stirrers at 1200 

rpm in volumetric flasks. Further dilutions were undertaken to obtain the desired 

concentrations in steps of 0.25 mg/l between 0 and 20 mg/l for each dye (Noonpui & 

Thiravetyan, 2011), as shown in Figure 3.12.  

Dye mixture assessments, which were applied according to the absorbance values, were 

performed after filtering the water samples (12 ml each) using a 0.45 μm diameter Whatman 

filter paper. The filtered liquid was subsequently analysed with a UV–vis spectrophotometer 

(DR 2800 Hach Lange) at the maximum absorption wavelengths for each mixture of dye as 

discussed by Tony et al. (2009) for the measurement of the absorbance concerning the mixed 

dye as a new dye or new solution. The corresponding maximum absorption wavelengths 

were 528 nm, 524, and 524 nm for the first, second, and third mixture, respectively. 

The ultraviolet visible scans of the aqueous samples were carried out using a Varian Cary 

300 UV–vis spectrophotometer (www.varianinc.com) with a range between 200 and 800 

nm. A quartz cuvette of 10 µl was applied to analyse the samples. 

High performance liquid chromatography (HPLC) as a biotransformation analysis was used 

for confirming organic molecule (dyes and their metabolites) separation by monitoring the 

peak area, to find out if it disappeared or shifted toward lower retention time. The tests were 

applied using Agilent 1260 on a HiChrom excel C18 column (4.3 mm to 250 mm; 1.7 µm 

particles), which was supplied by Hichrom Limited (The Markham Centre, Reading, Berks, 

United Kingdom). Acetonitrile (70%) and water (30%) were used at a flow rate of 1.3 l/min. 

The UV detector was kept at the maximum wavelength for each individual dye (first, second, 

and third experiments) and for each mixture (fourth experiment). Aqueous samples of 20 µl 

were injected manually into the injector port using a microliter syringe, which was purchased 

from Hichrom Limited.  

http://www.varianinc.com/
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A gas chromatography-mass spectrometry (GC-MS) test was conducted after sending the 

aqueous samples (one litre each in glass bottles) to Concept Life Sciences Analytical & 

Development Services Limited (Concept Life Sciences, Hadfield House, Hadfield Street, 

Cornbrook, Manchester, England, United Kingdom) for external analysis. Figure D.4 

(Appendix D) shows some photographs of the samples sent. 

The dye and other pollutant removals were calculated according to Equations (3.4) to (3.6). 

R(%) = ((Load influent − load effluent) Load influent)⁄ × 100 (3.4) 

Load influent (mg/m2 week) = (V1 × C1 + V2 × C2)/(SA × HRT) 

 

(3.5) 

Load effluent (mg/m2 week) = (V3 × C3)/(SA × HRT) (3.6) 

Where, R: Removal efficiency in week n (%); V1: volume of water remained in the ponds 

in the end of week n-1, after evaporation and (removing the excess water due to the rain to 

keep the remaining water level at 4 litres for the outdoor run only, or removing the extra 

water to keep the remaining water level at 3 litres for the second, third and fourth 

experiments) (l); C1: concentration of last grab sample in the end of week n-1 (mg/l); V2: 

volume of the dose added in the beginning of week n (l); C2: concentration of the dose added 

in the beginning of week n (mg/l); V3: volume of water remaining in the pond at the end of 

week n, (before removing any water) (l); C3: concentration of grab sample at the end of 

week n (mg/l); SA, surface area of pond (cm2); HRT, hydraulic retention time (contact time; 

week). Note that the dye mixture removal in the fourth experiment was performed using the 

absorbance (Abs) values Abs1, Abs2, and Abs3 instead of C1, C2, and C3, respectively. 
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Figure 3.12 Standard calibration curve of dyes. Note: (a), acid blue 113; (b), reactive blue 198; (c), basic red 46; (d), direct orange 46. 

 

y = 0.0331x
R² = 0.9981

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16 18 20

A
b
s
o
rb

a
n
c
e

Concentration (mg/l)

(a)

y = 0.0177x
R² = 0.9983

0.0

0.1

0.2

0.3

0.4

0 2 4 6 8 10 12 14 16 18 20

A
b
s
o
rb

a
n
c
e

Concentration (mg/l)

(b)

y = 0.0612x
R² = 0.9991

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 2 4 6 8 10 12 14 16 18 20

A
b
s
o
rb

a
n
c
e

Concentration (mg/l)

(c)

y = 0.0264x
R² = 0.9992

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14 16 18 20
A

b
s
o
rb

a
n
c
e

Concentration (mg/l)

(d)



Chapter 3: Materials and Methods 

100 

3.8.3 Plant tissue analysis 

Element contents within plant tissues were analysed as mentioned by Plank (1992) using a 

Varian 720-ES Inductively Coupled Plasma-Optical Emission Spectrometer. The fresh 

plants and the dried ones, located on the pond sides, were harvested when the plants fully 

covered the pond surface, as well as when the experiment was finished, and then dried in the 

oven at105ºC for one day (Sekomo et al., 2012). The dried plant was ground and sieved 

through a 2-mm diameter sieve. After that, around 0.2 g of each sample was added to a 

microwave tube with 10 ml of nitric acid. The samples plus an extra blank without plants 

were digested in the microwave (CEM Mars Xpress Microwave Digestion Oven) for 90 

minutes until they were cooled-down. The samples were purified applying a Whatman filter 

paper (diameter of 0.45 μm) and diluted by deionised water up to volumes of 25 ml into 

volumetric flasks. The stock digest solutions were stored at 4ºC. Finally, further dilutions 

were conducted by adding 2.5 ml of the stock digest samples to 7.5 ml of deionised water in 

12 ml centrifugal tubes, making in total four dilutions of the stored digest solution that was 

ready for analyses. The capacity of L. minor for phytoremediation of heavy metals was 

calculated according to the bioaccumulation factor (BCF), which was calculated according 

to Equation 3.7, as mentioned by Hegazy et al. (2011) and Sukumaran (2013). 

BCF =
Element concentration in plant tissue (mg/kg)

Element concentration in the inflow water (mg/l)
 (3.7) 

3.9 Data analysis 

Microsoft Excel (www.microsoft.com) was used for all standard analysis of data, unless 

stated otherwise. The IBM SPSS Statistics Version 22 (www.ibm.com) was used to assess 

if data were normally distributed or not, using the Shapiro-Wilk test, due to the data 

variability. Then, it was applied to calculate the non-parametric tests (Kruskal-Wallis and 

Mann-Whitney U tests) for the non-normally distributed variables and the parametric tests 

(one-way and univariate analysis of variance (ANOVA) using the Tukey HSD post hoc 

multiple comparison test, and the t-test) for computing the normally dependent variables. 

The non-parametric tests were applied for the data which were still non-normally distributed 

even after transformations were applied with transformers such as arc sine, square root, log, 

ect. The Person and Spearman tests were used to calculate the correlation coefficients of 

different parametric and non-parametric variables, respectively. 

http://www.ibm.com/
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3.10 Experimental research limitations 

The small-scale experiments of wetland systems used in this research were very small 

compared with the large-scale treatment systems used in the field, and do not take into 

account the impact of numerous animals and other micro-organisms that inhabit very large-

scale constructed wetland systems. However, previous findings based on similar studies 

using pot-scale (Nilratnisakorn et al., 2009) or lab-scale (Bulc & Ojstrsek, 2008) wetlands 

confirmed that the results achieved were appropriate at the field scale and therefore have 

been fully accepted by the scientific public. 

The second, third and fourth experimental wetlands, which were studied under controlled 

conditions, may not correspond with other wetlands operated under natural conditions at the 

field scale due to variable environmental factors. However, the results of the first 

experimental comparison, which operated under both semi-natural and controlled conditions 

in this research, provides insight on the impacts of environmental factors and could serve as 

a guide in designing and up-scaling field scale wetlands operated in different climate 

conditions, especially given that the results of a system operated under a semi-natural 

environment may strongly mimic the operations under typical field (natural) conditions.  

Despite the insufficient space in the lab, the replication of planted or unplanted wetland 

systems containing dyes was achieved. In addition, other parameters, such as the impact of 

other dye concentration was considered in this research, although the space was limited, by 

operating further experiments. Moreover, despite the limitations in financial support, some 

parameters linked with expensive reagents were tested monthly. And in addition, some 

external analysis, such as GC-MS analysis for aromatic amine detection, and algae species 

identification, were taken in this research for some samples. Finally, although algae 

concentrations in treatment systems were not taken into account, the effect of this parameter 

was not the main aim of the research compared with the L. minor. 
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Chapter 4                                                   
Impact of Design Variables and 

Environmental Conditions on System 

Efficiency 

4.1 Overview 

The overall results and discussions of the first experiment, for treating synthetic wastewater 

(SWW) containing dyes, are documented in this chapter. The set-up and operational 

processes of this experiment are explained in Chapter 3 (Sections 3.4.1 and 3.4.2). Section 

4.1 provides an overview of the chapter. Sections 4.2, 4.3 and 4.4 present the overall results 

of pond performance using different design variables for treating synthetic wastewater 

containing 5 mg/l of dyes under indoor and outdoor conditions, as well as the comparison 

between them, respectively. The chapter summary is presented in Section 4.5. 

4.2 Performance of L. minor and/or algae ponds under 

controlled conditions 

4.2.1 Inflow water quality parameters 

The inflow water quality parameters, including the elements detected through the Coupled 

Plasma-Optical Emission (ICP-OES) of the prepared SWW, which include fertiliser and 

textile dye are shown in Table 4.1 and Figure 4.1. These parameters compared with the 

typical characteristics of textile wastewater (Upadhye et al., 2012). The pH and the colour 

values were within the typical range of 6 to 10 and 50 to 2500 Pt Co, respectively. Also, 

zinc, iron, boron and copper values were within the typical range of textile wastewater 

discharge of less than 10 mg/l (Ghaly et al., 2014). The dye inflow concentration was 5 mg/l 

lower than the typical range, but it compared well with concentrations used in the literature 

for the treatment of brilliant blue R (Kilic et al., 2010), basic red 46 (Movafeghi et al., 2013) 

and acid blue 92 (Khataee et al., 2012). In addition, because duckweed systems are used as 

a polishing treatment stage to treat effluents which pass from preliminary or secondary 

treatment stages, they are associated with concentrations lower than the textile effluents. 
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Table 4.1 Inflow water quality parameters for each system between 15 December 2014 

and 15 September 2015 

Parameter Unit Mean 
Standard 

deviation 
Minimum Maximum Number 

Acid blue 113 +Synthetic wastewater 

Dye concentration mg/l 5 0.26 4.5 5.6 38 

pH - 7.3 0.11 7.1 7.5 38 

Redox mV -25.6 6.76 -37 -14 38 

Dissolved oxygen mg/l 9.6 0.48 8.6 10.8 38 

Electrical conductivity  µS/cm 115.9 4.49 108 125 38 

Total dissolved solids mg/l 57.95 2.245 54 62.5 38 

Suspended solids mg/l 3.6 1.06 1 6 38 

Turbidity NTU 1.4 0.4 0.3 2.1 38 

Colour Pt Co 447.9 30.13 416 484 10 

Chemical oxygen demand mg/l 25.2 0.59 24.3 26 8 

Reactive blue 198 + Synthetic wastewater 

Dye concentration mg/l 5.1 0.39 4.5 5.8 38 

pH - 7.4 0.09 7.2 7.5 38 

Redox mV -33.9 5.52 -39 -26 38 

Dissolved oxygen mg/l 9.3 0.09 9 9.4 38 

Electrical conductivity  µS/cm 121.8 5.17 111 133 38 

Total dissolved solids mg/l 60.9 2.585 55.5 66.5 38 

Suspended solids mg/l 5.5 0.82 4 7 38 

Turbidity NTU 1.9 0.33 1.2 2.6 38 

Colour Pt Co 171.2 35.43 123 204 10 

Chemical oxygen demand mg/l 9.3 0.32 9.2 10.1 8 

Basic red 64 + Synthetic wastewater 

Dye concentration mg/l 5 0.32 4.5 5.7 38 

pH - 7.3 0.07 7.2 7.4 38 

Redox mV -27.8 3.86 -35 -22 38 

Dissolved oxygen mg/l 9.3 0.22 8.9 9.7 38 

Electrical conductivity  µS/cm 115.1 5.23 104 126.9 38 

Total dissolved solids mg/l 57.55 2.615 52 63.45 38 

Suspended solids mg/l 2.9 0.58 2 4 38 

Turbidity NTU 2.4 0.3 1.9 2.8 38 

Colour Pt Co 408.3 11.79 393 424 10 

Chemical oxygen demand mg/l 13.3 0.79 12.2 14.8 8 

Direct orange 46 + Synthetic wastewater 

Dye concentration mg/l 5.1 0.43 4.4 5.7 38 

pH - 7.4 0.1 7.2 7.5 38 

Redox mV -31.9 5.32 -38 -25 38 

Dissolved oxygen mg/l 9.4 0.13 9 9.5 38 

Electrical conductivity  µS/cm 116 2.53 111 120 38 

Total dissolved solids mg/l 58 1.265 55.5 60 38 

Suspended solids mg/l 3.3 0.71 2 4 38 

Turbidity NTU 1.5 0.26 1.2 1.9 38 

Colour Pt Co 676.6 35.12 626 722 10 

Chemical oxygen demand mg/l 14.4 1.02 13.8 16.7 8 

 



Chapter 4: Impact of Design Variables and Environmental Conditions on System Efficiency 

104 

Table 4.1 (Continued) 

Synthetic wastewater 

pH - 7.3 0.08 7.16 7.3 9 

Redox mV -26.2 4.78 -32 -20 9 

Dissolved oxygen mg/l 9.1 0.28 8.9 9.7 9 

Electrical conductivity µS/cm 85.8 1.11 83 86.6 9 

Total dissolved solids mg/l 42.9 0.555 41.5 43.3 9 

Suspended solids mg/l 1.8 1.66 0 3 9 

Turbidity NTU 3.5 0.55 2.9 4.1 9 

Colour Pt Co 3 0.67 2 4 9 

Chemical oxygen demand mg/l 4.2 0.27 3.6 4.4 8 

Note: NTU, nephelometric turbidity unit. 
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Figure 4.1 Mean inflow and outflow concentrations of the detected trace elements during the experiment between 15 December 2014 and 

15 September 2015. Note: (a), zinc; (b), iron; (c), boron; (d), copper; (e), potassium; (f), calcium; (g), magnesium; (h), sodium; P1, Lemna minor 

L. and algae ponds; P2, algae ponds; P3, Lemna minor L. ponds; P4, control ponds; AB113, acid blue113; RB198, reactive blue 198; BR46, basic 

red 46; DO46, direct orange 46; SWW, synthetic wastewater without dye.
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4.2.2 Treatment performance 

4.2.2.1 Dye and apparent colour  

Generally, the two parameters dye and apparent colour are used to assess the potential of the 

pond for removing dyes and consequently producing a colourless product. In general, very 

low dye removal efficiency (Table 4.2) was observed for acid blue 113 (AB113), reactive 

blue 198 (RB198) and direct orange (DO46). Statistically, no difference (Table 4.3) was 

found for the mean values of dye removal efficiency among the design variables for ponds 

containing A113, RB198 and DO46. This indicates that the biological treatment method of 

using shallow ponds with L. minor and/or algae, which is associated with high dissolved 

oxygen (DO) values and the presence of anoxic conditions, as discussed later, inhibits the 

removal of dye molecules. However, pond systems treating basic red 46 (BR46) show mean 

removal efficiencies, which are highest for L. minor ponds (69%) followed by L. minor and 

algae ponds (67%), and then algae ponds (53%). The lowest mean removal (31%) is linked 

to the control ponds. These results indicate that the impact of L. minor and algae on BR46 

removal are 38% and 22%, respectively. These data resemble outcomes using submerged 

plants for handling basic blue 41 (Keskinkan & Goksu, 2007). Statistically, no difference in 

mean BR46 removal was found between ponds containing L. minor, and L. minor and algae 

(Table 4.3), which indicates that the presence of a limited amount of algae does not affect 

the removal in L. minor and algae ponds. This is because L. minor covers the surface area, 

preventing light penetration, and consequently inhibits the growth of algae biomass in the 

system (Sekomo et al., 2012). In addition, ponds with L. minor as well as ponds with L. 

minor and algae had significantly higher mean removal efficiencies than those without L. 

minor (algae and control ponds), which confirmed the impact of L. minor in removing BR46. 

The longitudinal profile of the dye removal is shown in Figure 4.2. The maximum and 

minimum removal were as follows: 26% and -4% for L. minor and algae ponds, respectively, 

and 39% and -5% in algae ponds, respectively, 26% and -6% for L. minor ponds in that 

order, and 29% and 11% in control ponds in that order for the treatment of AB113 (Figure 

4.2a). However, these values were 21% and 5%, 29% and 1%, 28% and 3%, and 34% and -

10% for L. minor and algae ponds, algae ponds, L. minor ponds, and control ponds, 

respectively, for the treatment of RB198 (Figure 4.2b). For BR46 (Figure 4.2c), the 

maximum and minimum removals were as follows: 85% and 26% in L. minor and algae 

ponds, 84% and 19% in algae ponds, 88% and 24% in L. minor ponds, and 60% and 3% in 
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control ponds. The DO46 removal ranged between 26% and -6%, 22% and -5 %, 24% and -

9%, and 16% and -7% in L. minor and algae ponds, algae ponds, L. minor ponds, and control 

ponds, respectively (Figure 4.2d). Negative dye removal efficiencies can be explained by 

water surface evaporation and pond edge effects. Multiple comparisons of removal 

efficiencies among dyes showed no difference between AB113 and RB198. However, BR46 

was significantly higher and DO46 was significantly lower than other dyes (Table 4.4), and 

the corresponding dye values were ranked as follows: BR46 > RB198 > AB113 > DO46. 

This can be explained by the simple structure and small molecular weight of BR46. These 

findings match related ones by Noonpui and Thiravetyan (2011). Furthermore, the neutral 

pH in the system was suitable for BR46 uptake, due to the electrostatic attraction between 

the sorbent surface, which is negatively charged, and the dye cation, that has a positive 

charge (Reema et al., 2011). Similar results have been reported by Movafeghi et al. (2013). 

Moreover, the absence of sulpho groups in BR46 contributes to a good level of degradation 

during biological treatment methods (Pearce et al., 2003). The performance of treatment 

systems was ranked as follows: P3 > P1 > P2 > P4. 

The treatment performance in terms of the outflow dye concentrations (Table 4.5) showed 

that the mean values of the outflow AB113 concentrations were not significantly different 

(Table 4.3) among the design variables. The ranges were between 6.3 mg/l for the control 

ponds and 7.6 mg/l for ponds containing L. minor. The outflow AB113 concentrations 

increased gradually over time during all experimental periods, which reflects the low 

removal efficiency and the accumulation of this dye in the systems due to the weekly doses, 

except for the control ponds, where they decreased in August and then were sharply 

enhanced at the end of the experiment (Figure 4.3a). However, for the other dyes, the outflow 

dye concentrations were higher within the control ponds than the remaining ponds (Figure 

4.3b, c and d). No significant difference (Table 4.3) was found between combined L. minor 

and algae ponds and ponds planted by L. minor for all dyes, which indicates that the presence 

of algae does not affect the dye outflow concentrations. The outflow concentrations from 

algae ponds and control ponds were significantly higher than other design variables in ponds 

containing BR46, which indicates that the presence of L. minor reduces BR46 concentration. 

The lowest standard deviations were linked to BR46, because the outflow concentrations 

were stable (Figure 4.3c), except for those of the control ponds, which fluctuated highly.  

High performance liquid chromatography (HPLC) results showed a peak at a retention time 

of 1.711 min for the inflow AB113 (Appendix E, Figure E.1a). However, the outflow 
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samples showed a peak at 1.584, 1.595, 1.606, and 1.963 min for P1, P2, P3, and P4, 

respectively (Appendix E, Figure E.2). Although peaks changed, the very low dye removal 

efficiencies (Table 4.2) and the highly coloured outflow samples for all (planted and 

unplanted) ponds containing AB113 indicated that the dye removal was by microbial 

activities only. The inflow RB198 sample displayed a peak at 1.505 min (Appendix E, Figure 

E.1b). Although, the peak for the inflow RB198 sample after treatment shifted to 1.61, 1.607, 

1.602, and 1.6 min for P1, P2, P3, and P4, respectively (Appendix E, Figure E.3), the low 

removal values (Table 4.2) were not achieved by the transformation mechanism as the 

outflow samples were highly coloured. The inflow BR46 showed peaks at retention times of 

1.488, 1.693, 2.569 and 2.405 min (Appendix E, Figure E.1c). However, the outflow samples 

showed a peak at 2.053, 1.61, 2.089, and 2.114 min for P1, P2, P3, and P4, respectively 

(Appendix E, Figure E.4). The disappearance of most of the inflow peaks and appearance of 

one new peak for each treatment system linked with the high percentage of BR46 removal 

(Table 4.2) confirms the BR46 elimination by adsorption and transformation by plant and 

microbes for ponds containing L. minor, and by bio-sorption and may be the 

biotransformation process for algae ponds, and control ponds (Khandare et al., 2011; Kabra 

et al., 2012; Tahir et al., 2016). The inflow DO46 showed a peak at 1.497 min (Appendix E, 

Figure E.1d). However, the outflow samples (Appendix E, Figure E.5) showed peaks at 

1.607, 1.606, 1.607, and 1.606 min for P1, P2, P3, and P4, respectively. In some cases when 

the removal is very low (AB113, RB198 and DO46), peak changes may be due to the 

interaction between the dye and the synthetic wastewater. 

Colour mean outflow values were higher in control and algae ponds (Table 4.5), which 

reflects the low dye removal efficiency in these ponds. However, the lowest mean values 

were in L. minor and, L. minor and algae ponds for all types of dye. The colour mean outflow 

values in ponds containing dechlorinated tap water and fertiliser (synthetic wastewater) were 

ranked as follows: P4 > P1 > P2 > P3. Nevertheless, no differences among design variables 

for AB113, RB198 and DO46 were noted. In contrast, ponds with L. minor only and control 

ponds were significantly different than other ponds for BR46 (Table 4.3). Correlation 

analysis results indicate that the colour was significantly (p < 0.01) positively correlated with 

the dye (r = 0.703, p = 0.000) and chemical oxygen demand (r = 0.638, p = 0.000) 

concentrations. Inflow and outflow sample pictures are shown in Appendix F, Figure F.1. 
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Table 4.2 Dye and chemical oxygen demand removals for each system between 15 December 2014 and 15 September 2015 

Parameter 
Load in (mg m-2 

week-1) 

Standard 

deviation 
Maximum Minimum 

Load out (mg 

m-2 week-1) 

Standard 

deviation 
Maximum Minimum Removal (%) 

Acid blue 113 + Synthetic wastewater       

Dye      

P1 399.1 182.7 629.3 58.5 366.2 179.2 591.8 43.9 8 

P2 372.1 202.6 650.7 55.0 340.9 199.0 595.2 45.6 8 

P3 421.7 194.4 687.8 58.8 388.3 189.4 612.4 43.3 8 

P4 353.0 150.7 565.8 68.4 318.8 135.2 505.4 62.2 10 

Chemical oxygen demand 

P1 7209.2 914.0 8504.3 6159.2 7734.7 1663.2 10667.9 6201.5 -7 

P2 6744.5 2148.4 10413.0 4407.7 6424.1 1526.8 8844.6 4984.1 5 

P3 7110.3 811.2 8338.0 5907.7 7428.3 1274.0 9557.6 5792.5 -4 

P4 6229.5 1964.6 9612.4 3965.3 6233.2 1328.4 8212.1 4448.1 0 

Reactive blue 198 + Synthetic wastewater        

Dye       

P1 478.9 103.8 628.4 277.7 421.6 90.5 557.1 253.7 12 

P2 393.9 132.7 630.4 128.5 338.1 110.2 506.2 108.8 14 

P3 466.0 79.8 579.9 308.4 411.0 69.4 513.5 278.1 12 

P4 475.0 136.1 735.8 231.9 417.3 109.2 579.8 230.4 12 

Chemical oxygen demand 

P1 4365.6 736.4 4871.8 2899.8 3580.3 548.5 4170.6 2756.3 18 

P2 3326.8 717.4 4015.8 2148.3 2974.4 455.7 3518.3 2168.7 11 

P3 4188.2 1050.5 5300.1 2595.6 3461.4 644.9 4349.5 2355.6 17 

P4 2914.1 838.5 3833.6 1548.9 2419.5 545.0 3278.4 1588.0 17 

Basic red 46 + Synthetic wastewater 

Dye 

P1 58.0 12.4 87.8 24.4 19.3 4.5 31.3 8.3 67 

P2 78.4 19.5 142.4 53.6 37.1 19.0 84.0 11.1 53 
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Table 4.2 (Continued) 

P3 56.0 12.0 80.1 17.8 17.2 4.6 28.4 7.6 69 

P4 146.7 39.8 241.9 80.9 101.8 41.5 196.4 39.5 31 

Chemical oxygen demand 

P1 3905.0 428.8 4651.1 3545.3 3151.5 571.4 3935.4 2187.8 19 

P2 3120.5 551.2 3625.6 2102.8 2702.0 480.8 3074.3 1775.0 13 

P3 3787.6 715.5 4824.7 2684.5 2941.9 678.8 4068.8 2127.3 22 

P4 7240.0 1634.6 9598.3 4730.8 6564.8 1579.8 8640.5 4100.2 9 

Direct orang 46 + Synthetic wastewater  

Dye 

P1 353.1 110.2 485.3 107.6 320.6 98.2 437.3 96.2 9 

P2 425.1 133.7 601.9 123.9 389.4 121.4 568.5 122.3 8 

P3 361.2 115.4 506.6 108.2 328.3 104.2 447.3 96.3 9 

P4 517.4 243.3 847.7 139.3 488.9 230.9 828.4 128.6 6 

Chemical oxygen demand 

P1 4902.3 2036.0 8692.1 2952.0 4388.6 1834.6 7935.8 2794.4 10 

P2 3640.9 396.6 4146.1 2941.8 3050.9 632.9 3789.3 1988.8 16 

P3 4412.1 657.1 5612.8 3778.8 3637.9 274.0 4161.0 3359.7 18 

P4 3927.4 442.1 4482.4 3245.4 3107.1 530.8 3693.9 2272.2 21 

Synthetic wastewater           

Chemical oxygen demand         

P1 3005.6 288.2 3550.0 2745.4 2408.6 244.4 2844.9 2087.9 20 

P2 3399.6 864.7 4906.0 2259.6 2898.1 650.7 4076.0 2095.1 15 

P3 3514.7 1228.8 5934.3 2548.5 2877.1 960.0 4748.7 2038.0 18 

P4 6512.2 1673.7 9130.1 4820.0 5783.7 1545.5 8635.8 4242.4 11 

Note: P1, Lemna minor L. and algae ponds; P2, algae ponds; P3, Lemna minor L. ponds; P4, control ponds. Note that a negative removal 

indicates that the system worked as source rather than sink; Number of readings = 38 for dye removal and 5 for COD removal. 
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Table 4.3 Overview of the statistical analysis for outflow water quality parameters and corresponding removal efficiencies for the period 

from 15 December 2014 to 15 September 2015 

Parameter 
Shapiro-Wilk 

test (p value1) 

Statistical 

test 

p values2 for different system combinations 

P1 & P2 & P3 & P4 P1 & P2 P1 & P3 P1 & P4 P2 & P3 P2 & P4 P3 & P4 

Dye (mg/l) 

AB 113  <0.001 K-W 0.237 N/A N/A N/A N/A N/A N/A 

RB 198  0.012 K-W 0.01 0.006 0.301 0.327 0.034 0.006 0.244 

BR 46  <0.001 K-W <0.001 <0.001 0.051 <0.001 <0.001 <0.001 <0.001 

DO 46  <0.001 K-W <0.001 0.006 0.315 0.002 <0.001 0.03 0.003 

Dye removal (%) 

AB 113  0.013 K-W 0.78 N/A N/A N/A N/A N/A N/A 

RB198  <0.001 K-W 0.25 N/A N/A N/A N/A N/A N/A 

BR46  <0.001 K-W <0.001 0.003 0.376 <0.001 <0.001 <0.001 <0.001 

DO46  <0.001 K-W 0.196 N/A N/A N/A N/A N/A N/A 

Colour (Pt Co) 

 Acid blue 113 0.1 ANOVA 0.146 N/A N/A N/A N/A N/A N/A 

RB198  0.191 ANOVA 0.3 N/A N/A N/A N/A N/A N/A 

BR46  <0.001 K-W <0.001 0.94 0.049 0.001 0.021 0.002 <0.001 

DO46  0.797 ANOVA 0.947 N/A N/A N/A N/A N/A N/A 

SWW  <0.001 K-W <0.001 0.406 0.406 0.002 0.762 <0.001 <0.001 

Chemical oxygen demand (mg/l) 

AB 113  0.455 ANOVA 0.344 N/A N/A N/A N/A N/A N/A 

RB198  0.202 ANOVA 0.122 N/A N/A N/A N/A N/A N/A 

BR46  <0.001 K-W 0.37 N/A N/A N/A N/A N/A N/A 

DO46  <0.001 K-W 0.812 N/A N/A N/A N/A N/A N/A 

SWW <0.001 K-W <0.001 0.199 0.545 0.001 0.496 0.001 0.001 

Chemical oxygen demand removal (%) 

AB 113  0.138 ANOVA 0.907 N/A N/A N/A N/A N/A N/A 

RB198  0.902 ANOVA 0.763 N/A N/A N/A N/A N/A N/A 

BR46  <0.001 K-W 0.013 0.117 0.602 0.016 0.047 0.076 0.016 
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DO46  0.621 ANOVA 0.439 N/A N/A N/A N/A N/A N/A 

SWW  0.093 ANOVA 0.039 0.235 0.905 0.04 0.572 0.758 0.141 

Suspended solids (mg/l) 

AB 113  <0.001 K-W <0.001 <0.001 0.972 <0.001 <0.001 0.912 <0.001 

RB198  <0.001 K-W <0.001 0.012 0.78 0.001 0.039 0.172 0.002 

BR46  <0.001 K-W <0.001 0.552 0.06 <0.001 0.242 <0.001 <0.001 

DO46  <0.001 K-W 0.531 N/A N/A N/A N/A N/A N/A 

SWW <0.001 K-W <0.001 0.289 0.006 <0.001 0.086 <0.001 <0.001 

Turbidity (NTU) 

AB113  0.01 K-W <0.001 <0.001 0.704 <0.001 0.001 0.244 <0.001 

RB198  <0.001 K-W <0.001 0.269 0.708 0.001 0.146 0.006 <0.001 

BR46  <0.001 K-W <0.001 0.529 0.179 <0.001 0.062 <0.001 <0.001 

DO46  0.203 ANOVA 0.214 N/A N/A N/A N/A N/A N/A 

SWW 0.016 K-W <0.001 0.01 0.001 <0.001 0.401 <0.001 <0.001 

Dissolved oxygen (mg/l) 

AB113  0.008 K-W 0.665 N/A N/A N/A N/A N/A N/A 

RB198  <0.001 K-W 0.752 N/A N/A N/A N/A N/A N/A 

BR46  0.004 K-W 0.992 N/A N/A N/A N/A N/A N/A 

DO46  0.161 ANOVA 0.765 N/A N/A N/A N/A N/A N/A 

SWW <0.001 K-W 0.011 0.818 0.265 0.006 0.234 0.005 0.044 

pH (-) 

AB113  <0.001 K-W 0.169 N/A N/A N/A N/A N/A N/A 

RB198  <0.001 K-W <0.001 0.001 0.134 <0.001 0.028 0.793 0.006 

BR46  0.003 K-W <0.001 <0.001 0.007 <0.001 <0.001 0.166 <0.001 

DO46  0.005 K-W 0.038 0.027 0.583 0.393 0.008 0.129 0.221 

SWW 0.001 K-W <0.001 0.51 <0.001 <0.001 <0.001 <0.001 <0.001 

Redox potential (mV) 

AB113  0.038 K-W 0.006 0.033 0.936 0.006 0.044 0.208 0.006 

RB198  0.013 K-W <0.001 <0.001 0.077 <0.001 0.003 0.682 <0.001 
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Table 4.3 (Continued) 

BR46  0.032 K-W <0.001 <0.001 0.032 <0.001 <0.001 0.308 <0.001 

DO46  0.02 K-W 0.004 0.01 0.303 0.217 0.001 0.082 0.046 

SWW <0.001 K-W <0.001 0.079 <0.001 <0.001 <0.001 <0.001 <0.001 

Electrical conductivity (µS/cm) 

 AB113  0.001 K-W <0.001 <0.001 0.206 0.232 <0.001 0.004 0.301 

RB198  <0.001 K-W <0.001 <0.001 0.407 0.016 <0.001 0.206 0.008 

BR46  <0.001 K-W <0.001 <0.001 0.111 <0.001 <0.001 0.221 <0.001 

DO46  <0.001 K-W <0.001 <0.001 0.678 0.16 <0.001 0.025 0.098 

SWW 0.002 K-W 0.001 0.001 0.566 0.015 0.001 0.142 0.028 

Note: 1Test of normality (if p > 0.05, data are normally distributed; if p < 0.05, data are not normally distributed); 2p value, probability of the 

statistical test (if p > 0.05, the variables are not statistically significantly different; if p < 0.05; the variables are statistically significantly different); 

NTU, nephelometric turbidity unit; P1, Lemna minor L. and algae ponds; P2, algae ponds; P3, Lemna minor L. ponds P4, control ponds; AB113, 

acid blue 113; RB198, reactive blue 198; BR46, basic red 46; DO46, direct orange 46; SWW, synthetic wastewater; K-W, Kruskal-Wallis test; 

ANOVA, one-way analysis of variance test; N/A, not applicable, because the difference among the variables is not significant. 

Table 4.4 Overview of the statistical analysis for dye removal efficiency for the period from 15 December 2014 to 15 September 2015 using 

a univariate analysis of variance between the type of dye, and the type of treatment system 

Treatment comparison based on dyes p value between the dyes Treatment comparison based on 

planting regimes 

p value between the planting 

regimes 

AB113 & RB198 0.521 P1&P2 0.269 

AB113 & BR46 <0.001 P1&P3 0.962 

AB113 & DO46 0.032 P1&P4 <0.001 

RB198 & BR46 <0.001 P2&P3 0.100 

RB198 & DO46 <0.001 P2&P4 <0.001 

BR46 & DO46 <0.001 P3&P4 <0.001 

Note: p value, probability of the statistical test (if p > 0.05, the variables are not statistically significantly different; if p < 0.05, the variables 

are statistically significantly different); AB113, Acid blue 113; RB198, reactive blue 198; BR46, basic red 46; DO46, direct orange 46; 

P1, Lemna minor L. and algae ponds; P2, algae ponds; P3, Lemna minor L. ponds; P4, control ponds. 
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Figure 4.2 Mean values of dye removal profile for the period from 15 December 2014 

to 15 September 2015. Note: (a), acid blue 113; (b), reactive blue 198; (c), basic red 46; (d), 

direct orange 46; P1, Lemna minor L. and algae ponds; P2, algae ponds; P3, Lemna minor 

L. ponds; P4, control ponds.  
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Table 4.5 Outflow water quality parameters for each system between 15 December 

2014 and 15 September 2015 

Parameter Unit Mean 
Standard 

deviation 
Minimum Maximum Number 

Acid blue 113 + Synthetic wastewater 

Lemna minor L. and algae ponds  

Dye concentration mg/l 7.1 3.56 0.6 11.5 39 

pH - 7.7 0.17 7.3 8 39 

Redox mV -44.6 5.77 -53.5 -30.8 39 

Dissolved oxygen mg/l 8.9 0.33 8.3 9.6 39 

Electrical conductivity µS/cm 314.2 93.32 89.5 496.5 39 

Total dissolved solids mg/l 157.1 46.66 44.75 248.25 39 

Suspended solids mg/l 27.3 10.5 11.8 53.8 39 

Turbidity NTU 9.1 4.73 4.1 22.7 39 

Colour Pt Co 1190.2 750.21 106 2488.3 10 

Chemical oxygen demand mg/l 122.5 54.61 26.4 221 10 

Algae ponds 

Dye concentration mg/l 6.6 4.01 0.7 12.1 39 

pH - 7.7 0.24 7.3 8.2 39 

Redox mV -48.8 9.29 -67.5 -28.5 39 

Dissolved oxygen mg/l 8.8 0.37 8.1 9.9 39 

Electrical conductivity µS/cm 477.6 209.65 76.6 934.5 39 

Total dissolved solids mg/l 238.8 104.825 38.3 467.25 39 

Suspended solids mg/l 19.1 5.94 11.5 38.8 39 

Turbidity NTU 5.9 3.18 2.3 21 39 

Colour Pt Co 1310 687.02 141.3 2409.8 10 

Chemical oxygen demand mg/l 98 42.37 25.1 181 10 

Lemna minor L. ponds 

Dye concentration mg/l 7.6 3.79 0.4 12.1 39 

pH - 7.7 0.19 7.4 8.2 39 

Redox mV -44.4 7.33 -57 -25 39 

Dissolved oxygen mg/l 8.9 0.34 8.1 9.8 39 

Electrical conductivity µS/cm 320.2 109.97 76.7 490.5 39 

Total dissolved solids mg/l 160.1 54.985 38.35 245.25 39 

Suspended solids mg/l 27.7 13.33 7.3 69.5 39 

Turbidity NTU 9.3 5.7 3.5 26.6 39 

Colour Pt Co 1133.9 844.49 169.5 2806.8 10 

Chemical oxygen demand mg/l 118 49.23 28.2 198 10 

Control ponds 

Dye concentration mg/l 6.3 2.95 0.8 10.5 39 

pH - 7.8 0.32 7.2 8.5 39 

Redox mV -51.2 14.23 -76.5 -14.5 39 

Dissolved oxygen mg/l 8.8 0.36 8.1 9.7 39 

Electrical conductivity  µS/cm 356.5 187.39 59.6 841.5 39 

Total dissolved solids mg/l 178.25 93.695 29.8 420.75 39 

Suspended solids mg/l 17.5 9.26 1 37 39 

Turbidity NTU 5 2.38 0.9 11.6 39 

Colour Pt Co 2013.9 1180.58 71.5 3800.5 10 
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Table 4.5 (Continued)       

Chemical oxygen demand mg/l 83.6 55.27 17.6 177.1 10 

Reactive blue 198 + Synthetic wastewater  

Lemna minor L. and algae ponds 

Dye concentration mg/l 8.7 2.12 4.7 11.6 39 

pH - 7.5 0.17 7.1 7.9 39 

Redox mV -35.1 6.73 -47 -20.5 39 

Dissolved oxygen mg/l 8.8 0.33 8.1 9.5 39 

Electrical conductivity µS/cm 309.2 105.49 95.2 536 39 

Total dissolved solids mg/l 154.6 52.745 47.6 268 39 

Suspended solids mg/l 12.7 7.28 4.3 34 39 

Turbidity NTU 6.1 3.67 2.7 17.3 39 

Colour Pt Co 196.3 55.17 82.8 270.5 10 

Chemical oxygen demand mg/l 62.3 19.26 22.6 87.4 10 

Algae ponds 

Dye concentration mg/l 7.1 2.67 1.9 11 39 

pH - 7.7 0.27 7.2 8.2 39 

Redox mV -45.6 12.32 -66 -20 39 

Dissolved oxygen mg/l 8.8 0.36 7.9 9.9 39 

Electrical conductivity µS/cm 568.7 270.67 109 1393.8 39 

Total dissolved solids mg/l 284.35 135.335 54.5 696.9 39 

Suspended solids mg/l 9.4 5.07 3.8 27.3 39 

Turbidity NTU 5.2 2.5 2.8 12.9 39 

Colour Pt Co 243.9 39.65 193.5 308.8 10 

Chemical oxygen demand mg/l 52.1 18.68 20 76.9 10 

Lemna minor L. ponds 

Dye concentration mg/l 8.4 1.58 5.2 10.7 39 

pH - 7.6 0.2 7.1 8.1 39 

Redox mV -38 7.66 -51.5 -16.8 39 

Dissolved oxygen mg/l 8.8 0.34 8 9.5 39 

Electrical conductivity  µS/cm 295.2 99.37 117.1 546.3 39 

Total dissolved solids mg/l 147.6 49.685 58.55 273.15 39 

Suspended solids mg/l 13.6 9.83 3.8 46.5 39 

Turbidity NTU 7.3 5.32 2.1 26 39 

Colour Pt Co 206 80.56 79 326.5 10 

Chemical oxygen demand mg/l 59.4 19.88 30.1 93.8 10 

Control ponds 

Dye concentration mg/l 9.1 3.17 3.8 13.6 39 

pH - 7.7 0.25 7.2 8.2 39 

Redox mV -46.8 10.84 -61.5 -20.5 39 

Dissolved oxygen mg/l 8.9 0.37 8.1 9.9 39 

Electrical conductivity µS/cm 492.7 308.78 74 1439.5 39 

Total dissolved solids mg/l 246.35 154.39 37 719.75 39 

Suspended solids mg/l 7.8 4.67 1 22.5 39 

Turbidity NTU 4 2.3 0.9 10.7 39 

Colour Pt Co 236 62.45 110.5 320 10 

Chemical oxygen demand mg/l 40.6 22.55 10.1 76.4 10 

Basic red 46 + Synthetic wastewater  
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Lemna minor L. and algae ponds 

Dye concentration mg/l 0.4 0.08 0.2 0.6 39 

pH - 7.5 0.23 7.1 8.2 39 

Redox mV -35.8 10.36 -57 -15 39 

Dissolved oxygen mg/l 8.9 0.35 8.2 9.8 39 

Electrical conductivity µS/cm 188.2 58.87 83.6 373.3 39 

Total dissolved solids mg/l 94.1 29.43 41.8 186.6 39 

Suspended solids mg/l 8.4 4.79 3.3 25.8 39 

Turbidity NTU 4.7 2.63 2.7 13.6 39 

Colour Pt Co 79.4 27.78 35 132 10 

Chemical oxygen demand mg/l 51.7 13.39 30.5 79 10 

Algae ponds 

Dye concentration mg/l 0.7 0.36 0.2 1.7 39 

pH - 7.8 0.35 7.2 8.5 39 

Redox mV -52.6 17.25 -81 -16 39 

Dissolved oxygen mg/l 8.9 0.31 8.1 9.6 39 

Electrical conductivity µS/cm 351.2 132.73 109.8 720.3 39 

Total dissolved solids mg/l 175.6 66.36 54.9 360.1 39 

Suspended solids mg/l 7.4 3.17 2.8 15.8 39 

Turbidity NTU 4.6 1.71 2.5 9.1 39 

Colour Pt Co 77 18.09 44 110.8 10 

Chemical oxygen demand mg/l 38.4 15.56 17.7 60.7 10 

Lemna minor L. ponds 

Dye concentration mg/l 0.3 0.08 0.1 0.6 39 

pH - 7.3 0.31 6.6 8.1 39 

Redox mV -27.4 16.82 -66.8 12.5 39 

Dissolved oxygen mg/l 8.9 0.32 8.2 9.7 39 

Electrical conductivity µS/cm 167.6 53.01 92.8 326.2 39 

Total dissolved solids mg/l 83.8 26.51 46.4 163.1 39 

Suspended solids mg/l 6.8 3.68 2.3 20.3 39 

Turbidity NTU 4 1.7 2.2 10.7 39 

Colour Pt Co 53.9 18.16 29.3 86.5 10 

Chemical oxygen demand mg/l 46.6 18.38 11 86.2 10 

Control ponds 

Dye concentration mg/l 2 0.82 0.7 4.1 39 

pH - 7.9 0.42 7.2 8.7 39 

Redox mV -57.3 21.06 -91 -20 39 

Dissolved oxygen mg/l 8.9 0.46 7.9 9.8 39 

Electrical conductivity µS/cm 313 139.42 80 654 39 

Total dissolved solids mg/l 156.5 69.71 40 327 39 

Suspended solids mg/l 70.1 72.97 1.5 267.5 39 

Turbidity NTU 15.3 13.68 1.4 53 39 

Colour Pt Co 191.3 53.95 57 242.5 10 

Chemical oxygen demand mg/l 80.7 59.49 12.3 179 10 

Direct orange 46 + Synthetic wastewater  

Lemna minor L. and algae ponds 

Dye concentration mg/l 6.2 2.14 1.6 8.6 39 
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Table 4.5 (Continued)       

pH - 7.8 0.23 7.3 8.3 39 

Redox mV -49.2 10.41 -68.8 -25.3 39 

Dissolved oxygen mg/l 8.9 0.31 8 9.3 39 

Electrical conductivity µS/cm 285.2 119.41 103.1 613.8 39 

Total dissolved solids mg/l 142.6 59.71 51.55 306.9 39 

Suspended solids mg/l 9.2 4.28 5 26.5 39 

Turbidity NTU 5.5 2.6 2.6 15.4 39 

Colour Pt Co 639.4 273.53 231.5 1081.5 10 

Chemical oxygen demand mg/l 65.1 38.69 21 168 10 

Algae ponds 

Dye concentration mg/l 7.6 2.68 1.6 11.6 39 

pH - 7.8 0.34 7.2 8.4 39 

Redox mV -59 17.84 -88 -24.5 39 

Dissolved oxygen mg/l 8.9 0.26 8.4 9.5 39 

Electrical conductivity µS/cm 434.6 183.55 76.8 783.5 39 

Total dissolved solids mg/l 217.3 91.78 38.4 391.75 39 

Suspended solids mg/l 7.7 3.79 2.8 19 39 

Turbidity NTU 5.4 2.22 2 11.2 39 

Colour Pt Co 648.2 268.58 202 1104.5 10 

Chemical oxygen demand mg/l 58.9 14.5 30.1 78.5 10 

Lemna minor L. ponds 

Dye concentration mg/l 6.4 2.24 1.5 8.8 39 

pH - 7.7 0.24 7.2 8.1 39 

Redox mV -46.6 11.15 -69.3 -18 39 

Dissolved oxygen mg/l 8.9 0.29 8.2 9.5 39 

Electrical conductivity µS/cm 275.7 119.62 94 567.8 39 

Total dissolved solids mg/l 137.85 59.81 47 283.9 39 

Suspended solids mg/l 8.3 3.63 2.3 17.3 39 

Turbidity NTU 5.1 1.76 2.7 11.9 39 

Colour Pt Co 593.2 285.81 96.5 1047.5 10 

Chemical oxygen demand mg/l 56.8 21.93 12.2 86.5 10 

Control ponds 

Dye concentration mg/l 9.7 4.9 2 16.3 39 

pH - 7.9 0.34 7 8.4 39 

Redox mV -51.6 15.02 -81 -11 39 

Dissolved oxygen mg/l 8.9 0.35 8.3 9.8 39 

Electrical conductivity µS/cm 347.4 181.36 77 703.5 39 

Total dissolved solids mg/l 173.7 90.68 38.5 351.8 39 

Suspended solids mg/l 8.2 4.01 2 19.5 39 

Turbidity NTU 6.2 2.46 1.4 10.8 39 

Colour Pt Co 674 332.77 81.5 1240 10 

Chemical oxygen demand mg/l 47.8 22.01 15 73.8 10 

Synthetic wastewater  

Lemna minor L. and algae ponds 

pH - 7.8 0.25 7.2 8.3 39 

Redox mV -52 10.98 -68.3 -21.3 39 

Dissolved oxygen mg/l 8.9 0.29 8.2 9.5 39 
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Table 4.5 (Continued)       

Electrical conductivity µS/cm 353.9 123.15 99.3 580.8 39 

Total dissolved solids mg/l 176.95 61.58 49.65 290.4 39 

Suspended solids mg/l 6.2 2.9 2.8 16.5 39 

Turbidity NTU 3.6 1.34 1.6 7.8 39 

Colour Pt Co 50.1 15.88 26.5 80.8 10 

Chemical oxygen demand mg/l 53.2 11.17 31.6 71 10 

Algae ponds 

pH - 7.8 0.32 7.2 8.4 39 

Redox mV -46.9 15.01 -79 -17.8 39 

Dissolved oxygen mg/l 8.9 0.29 8.2 9.5 39 

Electrical conductivity µS/cm 499.6 221.49 95.8 863.8 39 

Total dissolved solids mg/l 249.8 110.75 47.9 431.9 39 

Suspended solids mg/l 7.1 3.67 2.3 17 39 

Turbidity NTU 4.3 1.47 2.3 9.6 39 

Colour Pt Co 44.9 11.66 25.3 65 10 

Chemical oxygen demand mg/l 45.4 17.94 23.8 84.9 10 

Lemna minor L. ponds 

pH - 7.8 0.27 7.2 8.4 39 

Redox mV -51 13.53 -80.3 -16.7 39 

Dissolved oxygen mg/l 8.9 0.29 8.2 9.5 39 

Electrical conductivity  µS/cm 345.5 159.03 106 698.3 39 

Total dissolved solids mg/l 172.75 79.52 53 349.2 39 

Suspended solids mg/l 8.3 3.97 3.5 20 39 

Turbidity NTU 4.7 1.97 2.6 12.6 39 

Colour Pt Co 44.3 10.19 30 66.3 10 

Chemical oxygen demand mg/l 52.2 23.59 20.3 111 10 

Control pond 

pH - 8.4 0.36 7.6 9 36 

Redox mV -85.2 18.88 -116 -44 36 

Dissolved oxygen mg/l 9.2 0.48 8 10.1 37 

Electrical conductivity µS/cm 442.4 196.12 120 789 38 

Total dissolved solids mg/l 221.2 98.06 60 394.5 38 

Suspended solids mg/l 139.4 117.67 4 390 34 

Turbidity NTU 34.6 22.58 4.4 92 38 

Colour Pt Co 92 33.66 54 155 10 

Chemical oxygen demand mg/l 128.6 40.26 47 179.5 10 

Note: NTU, nephelometric turbidity unit.  
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Figure 4.3 Inflow and mean outflow dye concentrations during the experiment between 

15 December 2014 and 15 September 2015. Note: (a), acid blue 113; (b), reactive blue 

198; (c), basic red 46; (d), direct orange 46; P1, Lemna minor L. and algae ponds; P2, algae 

ponds; P3, Lemna minor L. ponds; P4, control ponds. 

4.2.2.2 Chemical oxygen demand and dissolved oxygen  

The average chemical oxygen demand (COD) removal efficiency (Table 4.2) was low for 

all ponds, which was clearly noticed from the inflow concentrations corresponding to the 

high outflow concentrations (Table 4.1 and Table 4.5). Low COD removal in all ponds 

ranged between 22% and -4%, indicating a low level of organic matter degradation occurring 

in the ponds due to the poor microbial activities. Statistically, no significant difference was 

found in COD removal among the design variables for ponds containing AB113, RB198 and 

DO46 (Table 4.3). This is attributed to the low organic matter degradation in these ponds 

compared with other ponds containing BR46, and only synthetic wastewater. Concerning 

ponds containing BR46, mean values of COD removal were higher in L. minor and algae, 

and L. minor ponds than algae and control ponds: P3 > P1 > P2 > P4. This reflects the high 

percentage of BR46 degradation in ponds containing L. minor (P1 and P3) compared with 

other design variables (P2 and P4). Statistical analysis showed that the mean COD removal 
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in the control ponds was significantly lower than the removals for L. minor and algae, and 

L. minor ponds. Also, L. minor ponds were significantly dissimilar to algae ponds. 

Correlation analysis results indicate that the COD removal was significantly (r = 0.275, p = 

0.014) positively correlated with dye removal.  

Based on COD outflow concentrations, the values increased gradually, and were higher than 

the inflow (Figure 4.4), which indicates low microbial activity for degradation of the organic 

matter associated with high levels of DO. The COD mean outflow values (Table 4.5) 

fluctuated and were ranked for AB113 and RB198 as follows: P1> P3 > P2 > P4. The ranking 

was P4 > P1 > P3 > P2 for BR46, tap water and fertiliser. Finally, the ranking was P1 > P2 

> P3 > P4 for DO46. Nevertheless, no differences were found among design variables in 

systems containing AB113, RB198, DO46 and BR46. The European and international 

standards (Carmen & Daniela, 2012) set a threshold value for COD of 125 mg/l with respect 

to the discharge of effluent directly into water bodies. The results have shown that the COD 

values in L. minor and algae containing AB113, L. minor with AB113, algae with AB113 

and control ponds containing AB113, L. minor and algae ponds comprising DO46, control 

ponds containing BR46, and control ponds with tap water and fertiliser were 6, 6, 2, 3, 1, 4 

and 6 times non-compliant, respectively. 

Based on dissolved oxygen, the values of outflow DO, which ranged between 7.9 and 10.1 

mg/l, were lower than the inflow values, which varied between 8.6 and 10.8 mg/l. In 

addition, the mean outflow values (Table 4.5) in terms of DO were relatively similar; no 

differences among the design variables for AB113, RB198, BR46 and DO46 were 

calculated. In contrast, significant differences were noted for the mean values of control 

ponds containing tap water and fertiliser (Table 4.3), where the DO was higher compared 

with ponds containing L. minor and/or algae. These findings do not match those published 

by Sekomo et al. (2012), which are related, however, to the treatment of heavy metals. In 

their study, higher values of DO were noted for algae ponds than duckweed ponds, because 

the photosynthetic process in algae ponds happens within the water body, whereas in 

duckweed ponds, the activities of oxygen production occur at the top layer, where 

consequently some of the oxygen is lost to the atmosphere and small amounts move to the 

water via the roots (Sekomo et al., 2012). This difference in results is expected, because the 

amount of algae in this research is limited and oxygen diffusion by the atmosphere affects 

the DO level, rather than the impact of the system type. Ong et al. (2011) reported that the 

biodegradation of organic contaminants in wetlands was boosted remarkably by the presence 
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of a high amount of DO, which can facilitate the growth of aerobic micro-organisms for 

eliminating organic substances. But high DO inhibited the dye removal mechanism because 

of the electrons released by microbial cells during the oxidation process utilising oxygen 

instead of azo dyes during degradation processes (Pearce et al., 2003). 

 

Figure 4.4 Monthly inflow and outflow concentrations of chemical oxygen demand 

during the experiment between 15 December 2014 and 15 September 2015 for each 

system. Note: (a), acid blue 113; (b), reactive blue 198; (c), basic red 46; (d), direct orange 

46; (e), synthetic wastewater without dye; COD, chemical oxygen demand; P1, Lemna minor 

L. and algae ponds; P2, algae ponds; P3, Lemna minor L. ponds; P4, control ponds.  
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4.2.2.3 pH and redox potential  

The mean values of pH obtained from the outflow (Table 4.5) were slightly higher than the 

inflow values (Table 4.1). Nonetheless, the pH values for all pond outflows were within the 

European and international standard thresholds (6.5 to 8.5) according to Carmen and Daniela 

(2012), except the outflow values in the control ponds containing tap water and fertiliser, 

which were 11 times non-compliant. The highest mean values for the pH outflow were 

observed in all control ponds, using synthetic wastewater, followed by control ponds 

comprising dyes. In comparison, the lowest mean values were found in L. minor ponds 

containing BR46. The outflow pH values increased slightly compared to the inflow of all 

ponds. In addition, pH outflow values for ponds containing L. minor (P1 and P3) were 

slightly lower compared to other ponds without L. minor (P2 and P4). This may be because 

the plants try to gain an equilibrium between chemicals in the cells by proton and ion 

exchanges from the synthetic wastewater containing dyes (Noonpui & Thiravetyan, 2011). 

The pH value had an important impact on the capacity of dye uptake and plant growth. The 

optimum pH to obtain a high removal efficiency depends on the type of dye itself; e.g., 7.0 

for methylene blue, 8.0 for basic blue nine (Reema et al., 2011), 6.0–7.5 for BR46 

(Movafeghi et al., 2013) and 6.5 for acid blue 92 (Khataee et al., 2012). Saratale et al. (2011) 

indicated that the optimum pH for high colour removal should be within the range 6–10. The 

removal efficiency considerably declines at strong acid or alkaline conditions for biological 

treatment systems. In comparison, the allowable range of pH for growth of L. minor is 4.5–

8.3 (Reema et al., 2011). Therefore, in this study, the neutral pH outflows seem to be suitable 

for dye BR46 removal, as mentioned in the previous section.  

Based on redox potential monitoring (Table 4.5) as an indicator for the aerobic and anaerobic 

conditions in the aquatic life (Ong et al., 2009a), no differences were observed for the mean 

values of the redox potential between algae and control ponds for all dyes. This reflects the 

very low contribution of algae, in terms of treatment, compared with the control systems. 

Furthermore, the mean redox potential values in L. minor, and L. minor and algae ponds 

were also not different, except for BR46 (Table 4.3). This is possibly because of the treated 

effluents from ponds containing AB113, RB198 and DO46 being coloured, which interferes 

with the photosynthesis of algae (Carmen & Daniela, 2012). However, the effluents from 

ponds comprising BR46 were colourless due to their high removal efficiencies. Regarding 

ponds containing synthetic wastewater without dye, only algae ponds, and L. minor and 

algae ponds were not different. The maximum and minimum values of redox potential 
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indicated anoxic conditions, except for the control pond containing synthetic wastewater 

without dye, where the maximum value was -116 mV, indicating anaerobic conditions 

(Table 4.5). 

4.2.2.4 Suspended solids and turbidity  

The highest value of mean outflow suspended solids (SS) concentration was noted for 

control ponds containing tap water and fertiliser followed by the control pond containing 

BR46. In contrast, the lowest value was observed in L. minor and algae ponds fed by tap 

water and fertiliser followed by L. minor ponds containing BR46 (Table 4.5). This indicates 

that in addition to SS removal by the sedimentation process, the adhesion process to plant 

and detritus surfaces also contributed to SS elimination in the systems (USEPA, 1999). The 

European and international standards for SS are 35 mg/l in case of discharge directly into 

receiving freshwater bodies (Carmen & Daniela, 2012). The results indicate that the L. minor 

and algae ponds, L. minor ponds, algae ponds and control ponds containing AB113, L. minor 

ponds comprising RB198, and control ponds fed by BR46, tap water and fertiliser were 10, 

9, 1, 1, 3, 22 and 29 times non-compliant, respectively. Statistically, the mean outflow values 

of SS in the control ponds comprising BR46, tap water and fertiliser were significantly 

higher than other treatments (Table 4.3). However, for AB113 and RB198, outflow values 

of SS were significantly higher for ponds containing L. minor, and L. minor and algae than 

algae only and control ponds (Table 4.3), indicating the impact of L. minor. Also, for AB113 

and RB198, no differences were found between the L. minor, and L. minor and algae ponds, 

and between algae and control ponds because algae were limited in the systems and had a 

very small effect on SS in ponds. In terms of DO46, no difference was found among the 

design variables. 

Turbidity is a simple indicator for the clarity of water. The inflow and outflow turbidity 

values for each system are presented in Table 4.1 and Table 4.5, respectively. The highest 

and lowest turbidity values mirrored those for SS. A correlation analysis indicated that SS 

was significantly (r = 0.773, p < 0.001) positively correlated with turbidity and significantly 

(r = -0.132, p < 0.001) negatively correlated with DO. Therefore, high values of DO in the 

systems may reflect the low micro-organism activities for organic matter degradation, which 

consequently reduced the SS particles (Sani et al., 2013) and the COD removal (Scholz, 

2010). A correlation analysis indicated that COD removal was significantly (p < 0.05) 

negatively correlated with DO (r = -0.249, p = 0.026). 
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4.2.2.5 Electrical conductivity and total dissolved solids 

The electrical conductivity (EC) is an important indicator to assess indirectly the salinity of 

a system. An increase in the electrical conductivity values can inhibit the growth of L. minor 

as stated by Wendeou et al. (2013). The optimum growth rate of L. minor is associated with 

EC values ranging between 600 and 1400 µS/cm. However, all minimum outflow values 

were lower than this range (Table 4.5). All mean outflow EC values increased more than the 

inflow ones, due to salinity accumulation in all systems after weekly doses. The highest EC 

mean values were observed for both control and algae ponds, whereas the lowest values were 

found in L. minor, and L. minor and algae ponds for all types of wastewater. This may 

indicate that the presence of plants in the ponds is responsible for the reduction of the EC. 

In addition, the conductivity mean values for planted ponds containing only water and 

fertiliser were higher than those for ponds comprising dyes. These findings match 

observations by Nilratnnisakorn et al. (2009) suggesting that large numbers of dye molecules 

might be caught in barriers within the vascular plant system. However, salts originate from 

synthetic wastewater, as the plants are able to remove small molecules of these salts from 

solutions by passing them through their semi-permeable membrane (Noonpui & 

Thiravetyan, 2011). Statistically (Table 4.3), the mean outflow values of EC in algae ponds 

were significantly higher than those values of the other treatments (L. minor, L. minor and 

algae, and control ponds) for AB113 and DO46. However, for RB198, BR46, and synthetic 

wastewater without dye, the mean outflow values of EC in algae ponds and control ponds 

were significantly higher than those values of the other treatments (L. minor, and L. minor 

and algae). In addition, no difference was found between L. minor, and L. minor and algae 

ponds, and also no dissimilarity was noted between algae and control ponds for RB198, 

BR46, and only synthetic wastewater, due to the limited impact of algae. 

Total dissolved solids (TDS), which comprise inorganic salt and a small amount of organic 

matter that are dissolved in water, are a function of EC (Amankwaah et al., 2014) and the 

relationship between them depends on the type of wastewater. In this research TDS values 

were equal to half of the EC values. The TDS values for all treatment system outflow waters 

were compliant with the European standard of 2000 mg/l for discharge directly to receiving 

freshwater bodies (Carmen & Daniela, 2012). 
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4.2.2.6 Trace elements  

The main source of elements in the outflow samples was the fertiliser in the prepared 

synthetic wastewater and to a lesser extent some elements in tap water. In addition, zinc ions 

were present in the dye BR46. Although some of the elements are important for plants as 

micro-nutrients, these elements could be toxic at high concentrations. The plants play an 

important role in element phytoremediation due to active and/or passive transport of 

elements in wetlands (Bonanno & Vymazal, 2017). Figure 4.1 shows the mean inflow and 

outflow elements. Mean outflow zinc and copper values (Figures 4.1a and d, respectively) 

were higher than the corresponding inflow concentrations for all ponds, except L. minor 

ponds, and L. minor and algae ponds treating BR46, which were slightly lower. Ponds 

containing L. minor, and L. minor and algae, which were treating BR46, showed 

significantly lower zinc (Kruskal Wallis test, P < 0.05) and copper (one way ANNOVA, P 

< 0.05) outflows than those in algae and control ponds reflecting the uptake of these metals 

by plants. All zinc outflows in planted ponds were lower than the values that cause growth 

reductions in L. minor, between 0.5 and 15 mg/l (Khellaf & Zerdaoui, 2009). The standard 

threshold of zinc for irrigation is 2 mg/l (Metcalf & Eddy, 2003). All outflow values were 

compliant. Regarding iron, the mean outflow values (Figure 4.1b) were lower than the 

corresponding inflow concentrations for all ponds except those treating AB113. No 

significant differences were found for outflow iron values among the design variables (one-

way ANNOVA, P > 0.05) for all treatment systems, except for those treating BR46 and only 

synthetic wastewater. For systems comprising BR46, the mean outflow iron values were 

significantly higher (one-way ANNOVA, P < 0.05) in L. minor, algae and control ponds 

compared with corresponding values in L. minor and algae ponds. For systems without dye, 

the mean outflow iron values were significantly higher (one-way ANNOVA, P < 0.05) in 

control ponds compared with corresponding values in L. minor and algae ponds. The 

standard limit of iron for irrigation is 5 mg/l (Metcalf & Eddy, 2003). All outflow values 

were compliant. Concerning boron and potassium (Figures 4.1c and e, respectively), the 

outflow values for P1 and P3, which were lower than the inflows, were significantly (P < 

0.05) lower than the outflow values for P2 and P4, which were higher than the corresponding 

inflow values, for all systems with and without dyes. These results confirmed the potential 

of L. minor in uptake of boron and potassium. Higher mean calcium, magnesium, and 

sodium (Figure 4.1f, g and h, respectively) outflow concentrations than inflow ones were 

found for all treatment systems due to the weekly dosages and low reductions. In addition, 

http://searchprivacy.co/trf?&edv=M-7xi5vlhG0VSV6k4NPLmw%3D%3D&o=BvcNimKBJxUr0d_MOTY1GLB1WQRFDglXvtWAs9ZuuPvosWaxj_6GepixxmXn_yVIcKQMTHQM4aZpRH0jz9ESnDYSufgg4s9TeDCzdARRAr1fvBWDJDVfz1sgJ_GwmCM-azBYGEA3gLS_9erFNKcdi8ysvbyNjSm9_EWvf8MiVn3lKl1hRQ3AhGj4WvC92zqaavHWnD_4EQqmsXsxB39tkdKSgIJ8A481ichcuddOOSzRRumPTNVi22RCKEmLd6wDztaZ9U4CS4-8kfoIHMoJ1XeryWeepdchg2_2CD3TVNZQQgEk5JFoQ5kFrmpLVYKws3ImMIJAn7PPw9I50hOt1oPr_QhdTgm4K_rV-_KxH6L3d9jxrt9rfWQv1HpC0zK4BizKa3DXHWf-F5iu8NpIY9bBYSKHZFsW0gHG-IJh4ng2YHgYos1tYqeq_6SGvZ_KRbZCg1EIfKz8oGV3fTD3MXDRUQa7HLecO7GLanztNjXLpY-fWrWx6qq1qJ9lM6q_1m8wsYp6HZHFeH41L6uiuRQ4yvMrrNkQe3O86SQgyfDOLmFQGc4nKNRWwhrefonpjIJDRqkX8pVXssedFO6MTTrnjTwQYUvTyNRus8b2cDrLKTeqDB0XY9KCT1xJmKi7cgjyf3_6V22v6pmajgg3fn164vVcXTNDR28_KtaxsnY%3D&a=2kXC3xBLpTsPKmMmCwDpdwtWZP9BIcjuT9uWU2APf7hCgNaaTMH5wZKraAbLTRlVSuTT2U7K4oimszTBGJvqXz2F2lQ72McKmc7AD2JPcNnBfhRDS3bR8U_DLoqQ6YqU&n=4H6GcdICinOxWMHTILo-yeEzb93sNCD2Ff4fF9hg1FhcY-7g9xm2dkQ9RMY-r3ruRdabMocQ4kfsgIrvf9ZFE0U1bNmRHBorX2B_glDWNBkUAnSsrPJTPdiBJhxx9i68Y6o1Rmyw6s_KD2bRHIGUwEiOZOAk-UQDdU7FPheMbMgdUt5u33MmKg%3D%3D&kp=0&kt=101&fk=199&ks=128&cme=Tcj542tKMRXuaqlJ9cwHV7IfBtjSYF-mmtWKHeXif7_EcuDME7rnVe4zsQWU5qefbTevx0AnhVOBJ9Er2ONpm6lqhZAHXl2F0cVkrmyQh6GucGKxradYlwCCspTu7mTWTTM-lrgDmkc%3D%7C%7Cy2SqoJcE0s9nfXn920_qJUYi-3fGaVB-G7jNnaAv868%3D%7CFZPz2KhfLpeanA1UG8C5FxgqTTVr3Ztp%7CNDHRnZ9Gz3KXlI-i9OnZqQ%3D%3D%7C5tBnMYQ7uo9ktp_5YrU2lIB4Qq_KeLSstPOHWxt6B2gMhSHLWenzJM4fd1svpg8j%7C4ffNQjkpdcq_z3i2JecY0eP9MlMvUxdd%7C&p=iPuTKmNxE6pFojVtkxW1lZYVWi4whJrQT17q1LXYjMehDowEVHrLmmXqGHRgSuaPW2P7KxGhucsYboz0yoQa8fGUBZ93s0tlji7DZBnTgzug_S2XoPKW6l4iHdO1LmtH4x-xSHPOs49feSKFasVnmxEz7IbIx5_4yvIPYNLzbMjgbRWEVDMmyBkOt8FmE9Bt2Mb4jeKscOAW2D83hOvOLQ%3D%3D&bd=0%23864%231536%231%23n
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the outflow values were lower for P1 and P3 compared with the outflow values for P2 and  

P4, which may be due to the uptake by L. minor. 

Regarding elements content in plant tissue, Figure 4.5 provides an overview of the 

concentrations of all detected elements in plant tissues for all ponds with and without dyes. 

These results reflect the plant’s capacity for element accumulation, which was lower for 

copper and aluminium (Figure 4.5d and e, respectively) compared with other elements. The 

levels of zinc and iron in plants (Figure 4.5a and b, respectively) were more than the 

allowable boundaries of 50 mg/kg and 20 mg/kg, respectively, as mentioned by Nazir et al. 

(2015).  

Bioconcentration factors (Figure 4.6) are indicators of the potential of the plants for 

accumulating metals. A bioconcentration factor of higher than 1000 indicates that plants can 

positively accumulate heavy metals as mentioned by Sukumaran (2013). The results in 

Figure 4.6a, b, and d indicate that plants were positive for phytoremediation of zinc, iron, 

and boron, respectively. Whereas, the plants were not good accumulators for copper (Figure 

4.6c).  
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Figure 4.5 Mean concentrations of the detected elements in plant tissue during the 

experiment between 15 December 2014 and 15 September 2015. Note: (a), zinc; (b), iron; 

(c), boron; (d), copper; (e), aluminium; (f), manganese; (g), sodium; (h), calcium; (i), 

magnesium; (j), potassium; P1, Lemna minor L. and algae ponds; P3, Lemna minor L. ponds; 

AB113, acid blue 113; RB198, reactive blue 198; BR46, basic red 46; DO46, direct orange 

46; SWW, synthetic wastewater without dye.  
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Figure 4.6 Bioconcentration factor during the experiment between 15 December 2014 

and 15 September 2015. Note: (a), zinc; (b), iron; (c), copper; (d), boron; P1, Lemna minor 

L. and algae ponds; P3, Lemna minor L. ponds; AB113, acid blue 113; RB198, reactive blue 

198; BR46, basic red 46; DO46, direct orange 46; SWW, synthetic wastewater without dyes.  
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4.2.3 Plant monitoring 

Findings show differences in the colour of L. minor leaves between ponds with and without 

dye (Table 4.6). For ponds containing synthetic wastewater (without dyes), the frond colour 

analysis showed that a high percentage of the area is covered by 7GY (mostly green colour), 

and a small percentage of the area is covered by 2.5GY (mostly yellow colour), according 

to Munsell (1977), compared with ponds containing synthetic wastewater with dyes. 

However, it is important to note that the fronds of colour 2.5GY cover around 1% in ponds 

without dyes compared with 2.8% minimum and 6.5% maximum in ponds with dyes. These 

small differences may not negatively affect the photosynthetic pigments as highlighted by 

Khataee et al. (2012). Acid blue 92 at low concentrations of around 10 mg/l does not 

significantly affect the chlorophyll content. Figure 4.7 provides an overview of the mean 

total coverage area including dead and living fronds for all ponds during the experimental 

period. The results indicate that the total coverage area is higher in ponds containing only 

synthetic wastewater (without dyes) followed by ponds containing AB113, and then RB198. 

However, low coverage areas were found in ponds containing DO46 and BR46. Statistically, 

no difference was found between ponds containing L. minor and algae, and ponds 

comprising only L. minor in systems with and without dyes.  

The overall mean values of relative growth rate (RGR) (based on the frond number) and 

relative frond number are shown in Figure 4.8a and b, respectively. These growth parameters 

have been used as indicators for the toxic effects of dyes on L. minor growth. Results clearly 

indicate that dyes negatively impact on relative frond number and relative growth rates, 

which had the same trend and were ranked as follows: synthetic wastewater without dye > 

AB113 > RB198 > DO46 > BR46. This outcome suggests that BR46, which is successfully 

treated, had a negative effect on the plant growth rate. The same impact was observed for 

brilliant blue R special, which is a strong inhibitor regarding L. minor growth (Khataee et 

al., 2012). For relative growth rate and relative frond number calculations, no dissimilarities 

were found between ponds containing L. minor and algae, and ponds with L. minor only 

according to a t-test undertaken for all wastewaters (Table 4.7). The correlation analysis 

resulted in a significantly (p < 0.01) positive correlation between coverage area and relative 

frond number (r = 0.715, p < 0.001). The plants harvested during the experiment from ponds, 

which were completely covered by L. minor. The fresh and dry weights of plants harvested 

during the experimental operation period are recorded in Table 4.8. 
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Table 4.6 Overview of frond colour determinations according to the coverage area (%) 

using Munsell (1977) and the Eleatheia Lemna edition for each system between 15 

December 2014 and 15 September 2015 

2.5 GYa 5GY 7GY 

8∕2b 8∕4 8∕6 8∕8 8∕10     8∕2 8∕4 8∕6 8∕8  

7∕2 7∕4 7∕6 7∕8 7∕10 7∕4 7∕6 7∕8  7∕2 7∕4 7∕6 7∕8 7∕10 

6∕2 6∕4 6∕6 6∕8 6∕10 6∕4 6∕6 6∕8 6∕10 6∕2 6∕4 6∕6 6∕8 6∕10 

5∕2 5∕4 5∕6 5∕8  5∕4 5∕6 5∕8 5∕10 5∕2 5∕4 5∕6 5∕8  

     4∕4 4∕6 4∕8  4∕2 4∕4 4∕6   

     3∕4    3∕2 3∕4    

Acid blue 113 + SWW (Lemna minor L. and algae ponds; P1) 

0.4 0.3 0.4 0.3 0.0     0.2 0.0 0.0 0.9  

2.4 0.0 0.0 0.2 0.0 0.1 0.5 0.0  8.6 24.9 7.2 0.0 1.3 

0.2 0.0 0.1 0.0 0.0 2.2 1.3 0.4 0.0 4.3 14.4 9.0 0.6 0.0 

0.1 0.0 0.0 0.0  0.0 1.6 0.4 0.0 0.0 1.1 0.5 0.0  

     0.0 0.2 0.1  0.0 0.0 0.0   

     0.0    0.0 0.0    

Acid blue 113 + SWW (Lemna minor L. ponds; P3) 

0.2 0.2 0.0 0.0 0.0     0.0 0.3 0.0 0.1  

2.4 0.0 0.3 0.0 0.0 0.6 0.2 0.0  6.5 24.4 5.5 0.6 0.0 

0.0 0.4 0.0 0.0 0.0 2.1 1.2 0.0 0.0 5.5 16.6 8.4 0.5 0.0 

0.0 0.0 0.0 0.0  0.1 1.9 0.0 0.0 0.0 2.0 2.3 0.0  

     0.0 0.2 0.0  0.0 0.3 0.0   

     0.0    0.0 0.0    

Reactive blue 198 + SWW (Lemna minor L. and algae ponds; P1) 

0.2 2.9 0.0 0.5 0.0     0.0 0.0 0.0 0.7  

              

0.7 0.3 0.0 0.0 0.0 0.4 0.0 1.4  0.4 30.3 11.8 4.4 0.9 

0.0 0.0 0.0 0.0 0.0 1.6 0.4 0.0 0.0 0.0 13.0 8.8 2.3 0.0 

0.0 0.0 0.0 0.0  0.3 0.0 0.0 0.0 0.0 0.9 2.1 0.0  

     0.0 0.0 0.0  0.0 0.0 0.0   

     0.0    0.0 0.0    

Reactive blue 198 + SWW (Lemna minor L. ponds; P3) 

0.4 2.3 0.0 0.1 0.0     0.0 0.0 0.0 0.8  

0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0  0.7 37.2 9.5 4.9 1.2 

0.0 0.1 0.0 0.0 0.0 2.5 1.2 0.4 0.0 0.3 12.6 6.2 1.8 0.0 

0.0 0.0 0.0 0.0  1.2 0.0 0.0 0.0 0.0 0.1 1.3 0.3  

     0.0 0.0 0.0  0.0 0.0 0.0   

     0.0    0.0 0.0    

Basic red 46 + SWW (Lemna minor L. and algae ponds; P1) 

0.6 1.6 0.0 0.0 0.0     0.3 0.7 0.2 0.9  

0.2 0.0 0.0 0.0 0.0 0.9 0.1 1.2  3.1 22.7 6.5 5.9 2.6 

0.4 0.0 0.0 0.0 0.0 1.4 2.0 0.6 0.0 0.6 11.2 3.9 1.4 0.4 

0.0 0.0 0.0 0.0  0.0 0.7 0.0 0.0 0.0 0.0 0.4 0.7  

     0.0 0.0 0.0  0.0 0.0 0.0   

     0.0    0.0 0.0    

Basic red 46 + SWW (Lemna minor L. ponds; P3) 

0.1 0.5 0.0 0.0 0.0     0.0 1.5 0.0 1.2  
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Table 4.6 (Continued) 

0.4 0.2 0.2 0.0 0.3 2.1 0.7 1.1  0.4 15.9 9.5 7.2 1.7 

0.2 0.6 0.0 0.0 0.0 2.3 4.1 0.3 0.4 0.0 12.0 7.4 1.1 0.0 

0.0 0.2 0.0 2.0  0.9 0.6 0.0 0.0 0.0 0.9 1.3 0.0  

     0.0 0.0 0.0  0.0 0.0 0.0   

     0.0    0.0 0.0    

Direct orange 46 + SWW (Lemna minor L. and algae ponds; P1) 

0.3 2.7 0.0 0.0 0.8     0.0 0.2 0.0 0.6  

0.0 2.5 0.2 0.0 0.0 1.6 2.4 0.8  0.2 19.9 10.0 5.3 3.0 

0.3 0.0 0.0 0.5 0.0 2.0 3.6 0.1 0.2 0.0 10.8 4.6 2.5 0.4 

0.0 0.0 0.0 0.0  0.7 0.0 0.0 0.0 0.1 0.2 0.0 0.2  

     0.0 0.0 0.0  0.0 0.0 0.0   

     0.0    0.0 0.0    

Direct orange 46 + SWW (Lemna minor L. ponds; P3) 

0.2 2.2 0.6 0.4 1.5     0.3 0.4 0.0 0.7  

0.0 1.0 0.0 0.0 0.2 2.7 0.8 3.1  0.0 19.8 6.9 5.6 3.5 

0.3 0.0 0.0 0.0 0.0 2.7 4.6 0.3 0.0 0.1 6.8 5.7 1.7 0.8 

0.0 0.0 0.0 0.0  0.6 0.3 0.0 0.0 0.1 0.5 0.8 0.0  

     0.0 0.3 0.0  0.0 0.0 0.0   

     0.0    0.0 0.0    

SWW (Lemna minor L. and algae ponds; P1) 

0.3 0.0 0.2 0.0 0.0     0.1 1.9 0.0 0.5  

0.0 0.1 0.0 0.0 0.0 1.2 0.9 0.1  1.2 25.7 17.3 8.8 1.6 

0.0 0.4 0.0 0.0 0.0 0.0 1.9 0.2 0.0 2.2 12.0 8.3 2.1 0.0 

0.0 0.0 0.0 0.0  0.3 0.0 0.0 0.0 0.0 1.0 0.0 1.2  

     0.0 0.0 0.0  0.0 0.0 0.0   

     0.0    0.0 0.0    

SWW (Lemna minor L. ponds; P3) 

0.0 0.6 0.0 0.0 0.1     0.0 1.3 0.0 0.4  

0.0 0.3 0.0 0.0 0.0 1.5 1.6 0.0  1.0 22.0 11.8 8.1 2.7 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 3.1 11.9 7.4 5.4 0.0 

0.0 0.0 0.0 0.0  1.6 0.2 0.0 0.0 2.4 3.8 1.2 0.0  

     0.0 0.0 0.0  0.0 0.0 0.0   

     0.0    0.0 0.0    

Note: a Hue; and b Value (lightness and darkness of a colour)/Chroma (degree of strength 

or saturation); Note that the number of replicates is 4 and the pond surface area is 841.5 

cm2; SWW, synthetic wastewater. 

 

 

 

 

 



Chapter 4: Impact of Design Variables and Environmental Conditions on System Efficiency 

134 

 

 

Figure 4.7 Overview of total, living and dead coverage areas (%) for Lemna minor L. 

fronds using the Eleatheia Lemna edition in each system between 15 December 2014 

and 15 September 2015. Note: P1, Lemna minor L. and algae ponds; P3, Lemna minor L. 

ponds only; AB113, acid blue 113; RB198, reactive blue 198; BR46, basic red 46; DO46, 

direct orange 46; SWW, synthetic wastewater. 

Table 4.7 Overview of the statistical analysis for the growth parameters between Lemna  

minor L. and algae, and Lemna minor L. ponds using the parametric t-test 

Parameter Shapiro-Wilk test (p value1) p value 2 between P1 & P3 ponds 

Coverage area (%) 

Acid blue 113 0.401 0.926 

Reactive blue 198 0.392 0.938 

Basic red 46 0.258 0.275 

Direct orange 46 0.728 0.908 

Synthetic wastewater 0.865 0.890 

Relative frond number (-) 

Acid blue 113 0.064 0.909 

Reactive blue 198 0.254 0.932 

Basic red 46 0.281 0.972 

Direct orange 46 0.604 0.690 

Synthetic wastewater 0.377 0.922 

Relative growth rate per day (-) 

Acid blue 113 0.848 0.834 

Reactive blue 198 0.889 0.948 

Basic red 46 0.066 0.948 

Direct orange 46 0.597 0.750 

Synthetic wastewater 0.312 0.944 

Note: 1Test of normality (if p > 0.05, data normally is distributed; if p < 0.05, data are not 

normally distributed); and 2Probability of the statistical test (if p > 0.05, the variables are not 

statistically significantly different; if p < 0.05; the variables are statistically significantly 

different). 
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Figure 4.8 Overview of growth parameters using the Eleatheia Lemna edition for each 

system between 15 December 2014 and 15 September 2015. Note: (a), relative growth 

rate based on the frond number; (b) relative frond number; P1, Lemna minor L. and algae 

ponds; P3, Lemna minor L. ponds; AB113, acid blue 113; RB198, reactive blue 198; BR46, 

basic red 46; DO46, direct orange 46; SWW, synthetic wastewater. 

Table 4.8 Mean of monthly values of the fresh and dry weights of the plants harvested 

for each system between 15 December 2014 and 15 September 2015 

Date 

Acid 

 blue 113 

Reactive 

 blue 198 

Basic 

 red 46 

Direct  

orange 46 

Synthetic 

wastewater 

FW DW FW DW FW DW FW DW FW DW 

Lemna minor L. and algae ponds 

10/02/15 14.52 0.73 13.55 0.70 13.12 0.68 13.55 0.72 12.28 0.62 

12/03/15 15.01 0.75 14.01 0.70 13.46 0.68 8.92 0.44 12.22 0.70 

16/04/15 14.44 0.73 8.21 0.42 5.30 0.25 6.99 0.35 12.05 0.56 

13/05/15 9.92 0.50 8.11 0.41 0.00 0.00 2.44 0.13 13.01 0.67 

11/06/15 9.77 0.49 12.11 0.61 4.52 0.26 8.55 0.43 13.44 0.71 

15/07/15 9.81 0.49 13.34 0.66 4.12 0.20 5.77 0.29 12.21 0.62 

21/08/15 13.01 0.68 13.01 0.56 10.95 0.56 12.06 0.63 11.88 0.57 

15/09/15 36.55 1.87 33.00 1.67 27.55 1.40 30.18 1.56 35.66 1.77 

Lemna minor L. ponds 

10/02/15 12.20 0.61 11.89 0.60 14.01 0.72 10.56 0.54 13.05 0.70 

12/03/15 13.26 0.67 14.15 0.70 14.21 0.71 12.22 0.62 12.87 0.61 

16/04/15 16.01 0.80 8.35 0.37 11.21 0.57 5.89 0.30 11.40 0.51 

13/05/15 12.21 0.61 7.01 0.35 5.68 0.30 6.09 0.30 12.68 0.63 

11/06/15 12.11 0.61 13.51 0.68 8.92 0.51 7.64 0.40 13.10 0.69 

15/07/15 9.45 0.47 12.67 0.64 4.47 0.23 5.68 0.28 14.88 0.88 

21/08/15 12.77 0.64 14.11 0.67 10.11 0.50 11.66 0.61 11.99 0.61 

15/09/15 34.91 1.75 36.12 1.85 29.05 1.43 31.66 1.61 37.05 1.88 

Note: FW; fresh weight (gram), DW; dry weight (gram). 
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4.2.4 Environmental conditions 

According to Bekcan et al. (2009), the long-term optimum temperature for L. minor growth 

is 26°C. However, the ranges below 17°C and higher than 35°C reduced the growth of L. 

minor as indicated by Ozengin and Elmaci (2007). The minimum and maximum 

temperatures records of the laboratory, during the experiment period between 15 December 

2014 and 15 September 2015, are 22°C and 30°C, respectively (mean of 27.3 ± 2°C). The 

temperature records were within the recommended ranges (Ozengin & Elmaci, 2007). 

Movafeghi et al. (2013) found that dye removal improved with an increase in temperature. 

They suggested that dye bio-sorption is an endothermic process linked to L. minor. Light 

intensity values ranged between 2023 lux and 2450 lux, which were close to the optimum 

value of 2400 lux as documented by Kilic et al. (2010). A summary of the environmental 

boundary conditions in the laboratory is shown in Table 4.9. 

Table 4.9 Overview of environmental boundary conditions in the laboratory between 

15 December 2014 and 15 September 2015 

Parameter Unit Mean 
Standard 

deviation 
Minimum Maximum N 

Temperature °C 27.3 2.59 22.4 29.9 127 

Temperature (minimum within 24 h)  °C 21.9 2.38 18.0 24.1 126 

Temperature (maximum within 24 h) °C 29.4 2.11 25.0 32.3 126 

Relative humidity % 53.7 4.08 36.0 60.0 127 

Relative humidity (minimum within 24 h)  % 47.6 3.56 34.0 52.0 127 

Relative humidity (maximum within 24 h)  % 66.7 5.35 45.0 74.0 127 

Illuminance (one-off records)  lux 2215.4 145.52 2023.0 2450.0 33 

Note: N, number of records; h, hours. 

4.3 Performance assessment of L. minor ponds under 

semi-natural conditions 

4.3.1 Inflow water quality parameters 

Table 4.10 and Figure 4.9 summarise the main inflow water quality parameters of the 

prepared SWW with and without dyes. The values of pH and apparent colour were within 

the typical range (Upadhye et al., 2012). In addition, zinc, iron, copper and boron values 

were within the typical range of textile wastewater discharge (Ghaly et al. 2014). The 

concentration of the dye was 5 mg/l, which was lower than the typical range of textile factor 

discharges due to the reasons mentioned previously in Section 4.2.1. 
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Table 4.10 Inflow water quality parameters for each system between 15 December 2014 

and 2 February 2016 

Parameter Unit Mean 
Standard 

deviation 
Minimum Maximum Number 

Acid blue 113 + Synthetic wastewater 

Dye concentration mg/l 5 0.4 4.5 5.6 58 

pH - 7.3 0.12 7.1 7.5 58 

Redox mV -24.4 8.4 -37 -12 58 

Dissolved oxygen mg/l 9.6 0.28 9.2 10.5 58 

Electrical conductivity µS/cm 113.9 6.06 106 133 58 

Total dissolved solids mg/l 56.95 3.03 53 66.5 58 

Suspended solids mg/l 3.7 1.33 2 6 58 

Turbidity NTU 1.6 0.64 0.7 3 58 

Colour Pt Co 445.6 25.14 416 482 14 

Chemical oxygen demand mg/l 24.7 0.96 23 26 13 

Reactive blue 198 + Synthetic wastewater 

Dye concentration mg/l 5.1 0.39 4.4 5.6 58 

pH - 7.3 0.1 7.2 7.5 58 

Redox mV -31.6 5.24 -38 -23 58 

Dissolved oxygen mg/l 9.6 0.2 9.3 10.5 58 

Electrical conductivity µS/cm 123.7 6.63 112 135 58 

Total dissolved solids mg/l 61.85 3.315 56 67.5 58 

Suspended solids mg/l 4.9 0.82 3 7 58 

Turbidity NTU 2 0.36 1.3 2.7 58 

Colour Pt Co 167.4 38.14 123 201 14 

Chemical oxygen demand mg/l 9.4 0.61 8.5 10.1 13 

Basic red 64 + Synthetic wastewater 

Dye concentration mg/l 5.1 0.3 4.4 5.5 58 

pH - 7.3 0.05 7.3 7.4 58 

Redox mV -31.7 2.52 -37 -28 58 

Dissolved oxygen mg/l 9.6 0.24 9.2 10.3 58 

Electrical conductivity µS/cm 114.1 4.99 103 121 58 

Total dissolved solids mg/l 57.05 2.495 51.5 60.5 58 

Suspended solids mg/l 3.9 0.95 2 5 58 

Turbidity NTU 3.1 0.83 1.9 6 58 

Colour Pt Co 410.1 12.25 389 424 14 

Chemical oxygen demand mg/l 13.3 0.88 12 14.5 13 

Direct orange 46 + Synthetic wastewater 

Dye concentration mg/l 5 0.35 4.4 5.6 58 

pH - 7.4 0.06 7.3 7.4 58 

Redox mV -32.2 3.04 -37 -29 58 

Dissolved oxygen mg/l 9.5 0.06 9.5 9.6 58 

Electrical conductivity µS/cm 118.9 10.32 105.4 133 58 

Total dissolved solids mg/l 59.45 5.16 52.7 66.5 58 
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Table 4.10 (Continued)       

Suspended solids mg/l 3.2 0.98 2 5 58 

Turbidity NTU 2 0.65 0.9 3.5 58 

Colour Pt Co 674.4 38.13 620 721 14 

Chemical oxygen demand mg/l 14.5 0.97 12.5 16 13 

Synthetic wastewater (without dye addition) 

pH - 7.3 0.07 7.2 7.3 13 

Redox mV -27.2 5.27 -33 -19 13 

Dissolved oxygen mg/l 9.4 0.35 8.9 9.9 13 

Electrical conductivity µS/cm 85.7 0.88 84 87 13 

Total dissolved solids mg/l 42.85 0.44 42 43.5 13 

Suspended solids mg/l 2 1.47 0 4 13 

Turbidity NTU 3.2 0.76 2 4.1 13 

Colour Pt Co 3 0.78 2 4 13 

Chemical oxygen demand mg/l 4.1 0.3 3.6 4.4 12 

Note: NTU, nephelometric turbidity unit.
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Figure 4.9 Mean inflow and outflow concentrations of the detected trace elements during the experiment between 15 December 2014 and 

2 February 2016. Note: (a), zinc; (b), iron; (c), boron; (d), copper; (e), potassium; (f), calcium; (g), magnesium; (h), sodium; P3, Lemna minor L. 

ponds; P4, control ponds; AB113, acid blue 113; RB198, reactive blue 198; BR46, basic red 46; DO46, direct orange 46; SWW, synthetic 

wastewater without dye. 
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4.3.2 Treatment performance 

4.3.2.1 Dye and apparent colour  

The mean removal values were higher within L. minor ponds than control ponds for all dyes 

(Table 4.11). The mean removals of AB113, which are equal to 32% for L. minor ponds, and 

28% for control ponds, were impacted by the dilution effect considering that rainfall added 

more water to the ponds than evapotranspiration removed from the ponds, and microbial 

activity. However, significant differences were found between L. minor ponds, and control 

ponds regarding mean BR46 and RB198 removals (Table 4.12). The removal efficiencies 

for BR46 and RB198 in L. minor ponds were around 51% and 19%, respectively, which 

were due to the impact of microbes and plants in addition to the adsorption by container 

walls. The removal efficiencies by plants only due to adsorption and/or transformation 

processes were only around 13% and 8%, because the control ponds removed these dyes by 

around to 38% and 11% for BR46 and RB198, respectively. These results resemble 

outcomes for treatment of basic blue 41 using submerged plants (Keskinkan & Lugal Goksu, 

2007). Regarding the treatment performance of ponds containing DO46, although a 

significant difference in mean removal between design variables was found (Table 4.12), the 

mean removal values were only 4% and -4% (i.e. system became a source rather than a sink) 

for L. minor and control ponds (Table 4.11), which indicates that these pond systems are 

unable to break down DO46 molecules.  

The longitudinal profile of the dye removal is shown in Figure 4.10. Most of the removal 

efficiencies in planted ponds were higher than the control ponds for all dyes. In addition, the 

same longitudinal trend was noted for all dyes throughout the year (Figures 4.10a, b and c), 

except for some fluctuating within the DO46 profile (Figure 4.10d). The dye removal 

fluctuated with the variation of rainfall. A considerable increase was noted at the end of the 

experiment due to the high amount of rainfall in winter. The maximum and minimum 

removals were 82% and 7% for L. minor ponds, and 63% and -1% for control ponds for the 

treatment of AB11, as well as 43% and 7%, and 34% and -13% for L. minor and control 

ponds, respectively, for the treatment of RB198 (Figure 4.10b). Negative removal 

efficiencies can be explained by phenomena such as water surface evaporation and pond 

edge effects. The DO46 removal ranged between 18% and -25%, and between 15% and -

41% for L. minor, and control ponds, respectively (Figure 4.10d). High removal efficiencies 

were recorded for BR46 (Figure 4.10c). The minimum and maximum removals were 18% 

and 86% for L. minor ponds, and 14% and 85% for control ponds, respectively. This 
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indicates that BR46 is treated easily by shallow pond systems under natural conditions in 

Salford. This is due to the simple structure and small molecular weight of BR46 (Noonpui 

& Thiravetyan, 2011). Moreover, the absence of sulpho groups in BR46 is linked to good 

degradation during biological treatment (Pearce et al., 2003). Furthermore, the pH values, 

which ranged from 7 to 10, as indicated later, were suitable for BR46 uptake. Movafeghi et 

al. (2013) reported that pH values between 5.3 and 9.3 do not noticeably affect the treatment 

of BR46. They considered that a neutral pH is optimal for decolourisation of this dye. 

Multiple comparisons of removal efficiencies among dyes showed a significant difference 

among all dyes. The corresponding dye values were ranked as follows: BR46 > AB113 > 

RB198 > DO46. The p values were < 0.001 between the dye removal efficiencies using a 

univariate analysis of variance between the types of dyes for the following dye combinations: 

AB113 and RB198; AB113 and BR46; AB113 and DO46; RB198 and BR46; RB198 and 

DO46; and BR46 and DO46. 

The treatment performance based on the dye concentrations showed that the outflow 

concentrations were lower than the inflow concentrations for all dyes except for DO46 

during the period between 15 April 2015 and 15 October 2015. Lower outflow values were 

noticed for L. minor and control ponds during periods of relatively high rainfall (Figure 

4.11). In addition, the mean outflow dye concentrations for all dyes were higher in the control 

ponds than in the L. minor ponds (Table 4.13). Except for AB113, the mean outflow dye 

concentrations were significantly higher within the control ponds than the L. minor ponds 

(Table 4.12). Low standard deviations are associated with outflow AB113, RB198 and BR46 

concentrations. In contrast, the highest water quality standard deviations were linked to 

DO46 (Table 4.13).  

The HPLC results of inflow samples showed a peak at a retention time of 1.711 min for 

AB113, 1.505 min for RB198, 1.488, 1.693, 2.569 and 2.405 min for BR46, and 1.497 min 

for DO46 (Appendix E, Figures E.1a, b, c and d, respectively). However, the outflow 

samples showed a peak at 1.519 min and 1.91 min for L. minor ponds and control ponds 

containing AB113, respectively (Appendix E, Figure E.6), 1.626, 1.689 min for L. minor 

ponds, and 1.599 min for control ponds containing RB198, respectively (Appendix E, Figure 

E.7), 2.089 min and 1.607 min for planted and control ponds containing BR46 (Appendix E, 

Figure E.8), and 1.643 min and 1.653 min for L. minor ponds and control ponds containing 

DO46, in that order (Appendix E, Figure E.9). These changes in peaks were due to the dye 

removal by both planted and unplanted ponds (Table 4.11) by the adsorption process as the 
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colourless outflow samples weren’t achieved for all ponds containing AB113, RB198 and 

DO46, and due to the interactions with the wastewater. However, the disappearance of most 

of the inflow peaks and appearance of one new peak for each BR46 treatment system, linked 

with the higher removal of this dye (Table 4.11) compared with other dyes, confirmed the 

BR46 elimination. The mechanism of BR46 removal by adsorption and transformation 

processes by plants and microbes in L. minor ponds, and by adsorption and may be 

biotransformation for control ponds is likely (Khandare et al., 2011; Kabra et al., 2012). 

Colour mean outflow values (Table 4.13) were higher for control ponds regarding all types 

of wastewater except for ponds containing AB113. Overall, the outflow colour values were 

lower than the inflow colour values for all ponds containing dyes. Inflow and outflow sample 

pictures are shown in Appendix F, Figure F.1.
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Table 4.11 Dye and chemical oxygen demand removals for each system between 15 December 2014 and 2 February 2016 

Parameter 
Load in (mg m-2 

week-1) 

Standard 

deviation 
Minimum Maximum 

Load out (mg 

m-2 week-1) 

Standard 

deviation 
Minimum Maximum 

Removal 

(%) 

Number of 

reading 

Acid blue 113 + Synthetic wastewater        

Dye           

P3 112.2 23.98 71.8 174.8 76.6 26.79 15.3 146.3 32 58 

P4 119.9 27.47 77.2 180.0 86.8 33.74 35.1 159.8 28 58 

Chemical oxygen demand         

P3 3107.6 1754.53 809.3 6519.3 2813.5 1699.33 433.2 5876.0 9 9 

P4 3158.6 1589.15 1195.5 6566.8 2904.5 1544.67 951.3 6095.9 8 9 

Reactive blue 198 + Synthetic wastewater        

Dye           

P3 139.7 27.82 87.9 221.6 112.8 26.73 58.7 181.9 19 58 

P4 163.0 39.07 99.3 251.1 145.3 39.71 80.2 258.6 11 58 

Chemical oxygen demand         

P3 2382.7 1055.50 594.1 4339.9 2083.0 1078.62 242.8 3835.9 13 9 

P4 2515.1 1301.21 608.3 4344.6 2290.1 1303.53 255.5 3946.8 9 9 

Basic red 46 + Synthetic wastewater        

Dye           

P3 95.2 23.31 61.4 163.0 46.7 23.85 9.5 98.0 51 58 

P4 108.7 30.76 65.2 194.6 66.9 34.28 12.5 162.2 38 58 

Chemical oxygen demand         

P3 2509.5 1086.64 593.7 4282.8 1724.4 897.16 215.7 3310.9 31 9 

P4 3177.6 1511.97 598.9 5276.3 2384.3 1375.12 254.9 4542.2 25 9 

Direct orang 46 + Synthetic wastewater        

Dye           

P3 185.9 66.22 106.9 377.4 178.0 65.18 95.3 411.3 4 58 

P4 227.3 79.24 124.8 433.8 236.9 86.57 132.2 461.7 -4 58 

Chemical oxygen demand         
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Table 4.11 (Continued) 

P3 3462.9 2361.97 617.7 7831.3 3260.2 2314.63 276.6 6514.9 6 9 

P4 3114.3 1880.33 556.4 5805.1 3090.9 2129.66 283.8 6896.3 1 9 

Synthetic wastewater          

Chemical oxygen demand         

P3 3005.3 1524.43 765.3 5279.9 2064.5 1312.14 337.3 4102.7 31 9 

P4 4180.2 1160.06 2476.5 6278.1 3652.9 1102.97 2072.5 5934.4 13 8 

Note: P3, Lemna minor L. ponds; P4, control ponds. Note that a negative removal indicates that the system worked as source rather than sink. 

Table 4.12 Overview of the statistical analysis for outflow water quality parameters and corresponding removal efficiencies for the 

period from 15 December 2014 to 2 February 2016 

Type of the dye 

 

Shapiro-Wilk test 

(p value1) 

Statistical test 

 

p-values2 

between P3 & 

P4 

Type of the dye 

 

Shapiro-Wilk test 

(p value1) 

 

Statistical test 

 

p-values2 

between P3 & 

P4 

Dye (mg/l) Dye removal (%) 

AB113 0.034 M-W 0.195 AB113 0.03 M-W 0.201 

RB198 0.002 M-W <0.001 RB198 0.247 t-test <0.001 

BR46 <0.001 M-W 0.004 BR46 0.013 M-W <0.001 

DO46 <0.001 M-W 0.003 DO46 <0.001 M-W <0.001 

Chemical oxygen demand (mg/l) Chemical oxygen demand removal (%) 

AB113 0.095 t-test 0.826 AB113 <0.001 M-W 0.627 

RB198 0.275 t-test 0.777 RB198 <0.001 M-W 0.233 

BR46 0.094 t-test 0.531 BR46 0.121 t-test 0.596 

DO46 0.094 t-test 0.942 DO46 0.009 M-W 0.691 

SWW 0.354 t-test 0.167 SWW <0.001 M-W 0.043 

Colour (Pt Co)   Dissolved oxygen (mg/l) 

AB113 0.046 M-W 0.95 AB113 0.002 M-W 0.625 

RB198 0.008 M-W 0.327 RB198 <0.001 M-W 0.838 
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Table 4.12 (Continued) 

BR46 0.003 M-W 0.261 BR46 <0.001 M-W 0.993 

DO46 0.318 t-test 0.103 DO46 <0.001 M-W 0.91 

SWW 0.019 M-W <0.001 SWW <0.001 M-W 0.598 

Suspended solids (mg/l) pH (-) 

AB113 <0.001 M-W 0.897 AB113 <0.001 M-W 0.633 

RB198 <0.001 M-W 0.309 RB198 <0.001 M-W 0.262 

BR46 <0.001 M-W 0.005 BR46 <0.001 M-W 0.855 

DO46 <0.001 M-W 0.332 DO46 <0.001 M-W 0.989 

SWW <0.001 M-W <0.001 SWW 0.075 t-test 0.001 

Turbidity (NTU) Redox potential (mV) 

AB113 <0.001 M-W 0.473 AB113 0.02 M-W 0.879 

RB198 <0.001 M-W 0.196 RB198 <0.001 M-W 0.282 

BR46 <0.001 M-W 0.069 BR46 0.059 t-test 0.693 

DO46 <0.001 M-W 0.886 DO46 0.008 M-W 0.884 

SWW <0.001 M-W <0.001 SWW 0.001 M-W <0.001 

Electrical conductivity (µS/cm)     

AB113 0.141 t-test <0.001     

RB198 0.008 M-W <0.001     

BR46 <0.001 M-W 0.143     

DO46 0.001 M-W 0.001     

SWW 0.048 M-W 0.081       

Note: 1Test of normality (if p > 0.05, data are normally distributed; if p < 0.05, data are not normally distributed); 2p value, probability of the 

statistical test (if p > 0.05, the variables are not statistically significantly different; if p < 0.05; the variables are statistically significantly different); 

NTU, nephelometric turbidity unit; P3, Lemna minor L. ponds; P4, control ponds; AB113, acid blue 113; RB198, reactive blue 198; BR46, 

basic red 46; DO46, direct orange 46; SWW, synthetic wastewater; M-W, Mann-Whitney U test; K-W, Kruskal-Wallis test. 
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Figure 4.10 Mean values of dye removal profile between 15 December 2014 and 2 

February 2016. Note: (a) acid blue 113; (b) reactive blue 198; (c) basic red 46; (d) direct 

orange 46; P3, Lemna minor L. ponds; P4, control ponds.  
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Figure 4.11 Mean inflow and outflow dye concentrations between 15 December 2014 

and 2 February 2016. Note; (a), acid blue 113; (b), reactive blue 198; (c), basic red 46; 

(d), direct orange 46; P3, Lemna minor L. ponds; P4, control ponds. 

Table 4.13 Outflow water quality parameters for each system between 15 December 

2014 and 2 February 2016 

Parameter Unit Mean 
Standard 

deviation 
Minimum Maximum Number 

Acid blue 113 + Synthetic wastewater 

Lemna minor L.  ponds 

Dye concentration mg/l 1.1 0.46 0.1 2.2 59 

pH - 7.9 0.52 7.2 9.1 58 

Redox mV -50.1 12.3 -71.3 -18.3 58 

Dissolved oxygen mg/l 10.5 1.26 8.2 14.3 58 

Electrical conductivity µS/cm 72.4 20.04 35.5 120 58 

Total dissolved solids mg/l 36.2 10.02 17.75 60 58 

Suspended solids mg/l 24.1 23.6 3.3 94.5 58 

Turbidity NTU 7.2 5.66 2.2 27.4 58 

Colour Pt Co 194 91.97 75.8 355.3 18 

Chemical oxygen demand mg/l 38.4 24.37 4.2 76 14 

Control ponds 

Dye concentration mg/l 1.3 0.55 0.3 2.5 59 

pH - 7.8 0.49 7.1 9.7 58 

Redox mV -50.8 10.98 -79.6 -16 58 

Dissolved oxygen mg/l 10.5 1.09 8.2 13.4 58 
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Table 4.13 (Continued)       

Electrical conductivity µS/cm 88.2 22.76 49.8 134.3 58 

Total dissolved solids mg/l 44.1 11.38 24.9 67.15 58 

Suspended solids mg/l 21.2 17.96 2 82 58 

Turbidity NTU 5.8 3.64 1.5 20.6 58 

Colour Pt Co 189.1 98.96 41 381.5 18 

Chemical oxygen demand mg/l 36 24.01 3.7 77.1 14 

Reactive blue 198 + Synthetic wastewater 

Lemna minor L.  ponds 

Dye concentration mg/l 1.6 0.56 0.7 3.1 59 

pH - 7.7 0.43 7 9.3 58 

Redox mV -47.5 9.76 -71.5 -18 58 

Dissolved oxygen mg/l 10.5 1.38 8.2 15.7 58 

Electrical conductivity µS/cm 71.8 20.81 34.5 139.4 58 

Total dissolved solids mg/l 35.9 10.405 17.25 69.7 58 

Suspended solids mg/l 13.2 9.9 1.8 42 58 

Turbidity NTU 5 2.45 2 11.4 58 

Colour Pt Co 61.9 38.72 10.3 135 18 

Chemical oxygen demand mg/l 26.6 18.49 2.5 68.1 14 

Control ponds 

Dye concentration mg/l 2.1 0.79 0.8 4 59 

pH - 7.7 0.57 7.1 9.7 58 

Redox mV -46.6 11.19 -74.5 -20 58 

Dissolved oxygen mg/l 10.5 1.32 8 14.4 58 

Electrical conductivity µS/cm 95 21.71 64.5 155.5 58 

Total dissolved solids mg/l 47.5 10.855 32.25 77.75 58 

Suspended solids mg/l 11.1 8.6 2 36 58 

Turbidity NTU 4.7 3.03 1 13.5 58 

Colour Pt Co 91.7 67.5 6.5 221.5 18 

Chemical oxygen demand mg/l 29.8 21.03 2.6 72.2 14 

Basic red 46 + Synthetic wastewater 

Lemna minor L. ponds 

Dye concentration mg/l 0.7 0.41 0.1 1.7 59 

pH - 7.7 0.57 7 10 58 

Redox mV -46.8 12.92 -77.3 -16.3 58 

Dissolved oxygen mg/l 10.5 1.38 8.2 15.9 58 

Electrical conductivity µS/cm 77.5 23.54 32.4 131.6 58 

Total dissolved solids mg/l 38.75 11.77 16.2 65.8 58 

Suspended solids mg/l 31.7 31.36 2.3 100.3 58 

Turbidity NTU 8.9 7.54 1.8 35.6 58 

Colour Pt Co 51.7 35.65 14.3 126.5 18 

Chemical oxygen demand mg/l 30 17.75 2.1 61.1 14 

Control ponds 

Dye concentration mg/l 1 0.59 0.2 2.5 59 

pH - 7.7 0.46 7 9.9 58 

Redox mV -45.9 11.76 -76.2 -15.5 58 

Dissolved oxygen mg/l 10.4 1.15 8.1 13.4 58 
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Table 4.13 (Continued)       

Electrical conductivity µS/cm 84.7 30.02 34.1 154.8 58 

Total dissolved solids mg/l 42.35 15.01 17.05 77.4 58 

Suspended solids mg/l 24.6 32.1 1 111 58 

Turbidity NTU 7.4 7.33 1 31.3 58 

Colour Pt Co 63.6 35.94 19 148 18 

Chemical oxygen demand mg/l 35.8 27.82 2.5 88.5 14 

Direct orange 46 + Synthetic wastewater 

Lemna minor L.  ponds 

Dye concentration mg/l 2.6 1.43 1 7.2 59 

pH - 7.8 0.57 7.1 9.9 58 

Redox mV -48.6 12.76 -79 -25.3 58 

Dissolved oxygen mg/l 10.5 1.3 8.2 15.4 58 

Electrical conductivity µS/cm 72.6 19.8 36 131.9 58 

Total dissolved solids mg/l 36.3 9.9 18 65.95 58 

Suspended solids mg/l 12.8 13.28 2 54.3 58 

Turbidity NTU 4.7 2.95 1.7 18.3 58 

Colour Pt Co 177.8 60.61 85.8 303.3 18 

Chemical oxygen demand mg/l 32.5 25.1 2.7 79 14 

Control ponds 

Dye concentration mg/l 3.5 1.72 1.3 8 59 

pH - 7.8 0.56 7.1 10.1 58 

Redox mV -48.7 12.36 -82 -25.5 58 

Dissolved oxygen mg/l 10.5 1.23 8.1 14.7 58 

Electrical conductivity µS/cm 88 24.94 45.9 144 58 

Total dissolved solids mg/l 44 12.47 22.95 72 58 

Suspended solids mg/l 11.5 8.33 1 34 58 

Turbidity NTU 4.1 1.85 1.3 10.3 58 

Colour Pt Co 230.6 100.3 72.5 398.5 18 

Chemical oxygen demand mg/l 33.4 26.81 2.8 88.8 14 

Synthetic wastewater 

Lemna minor L.  ponds 

pH - 7.7 0.39 6.9 8.6 58 

Redox mV -46.2 11.22 -64.3 -9.5 58 

Dissolved oxygen mg/l 10.5 1.28 7.8 14.6 58 

Electrical conductivity µS/cm 77.1 19.83 34.8 115.8 58 

Total dissolved solids mg/l 38.55 9.915 17.4 57.9 58 

Suspended solids mg/l 8 5.56 2.3 37.8 58 

Turbidity NTU 4.6 1.93 1.2 10.4 57 

Colour Pt Co 36 20.99 8.5 69.8 18 

Chemical oxygen demand mg/l 28.4 20.59 3.3 71 14 

Control pond 

pH - 8 0.49 7.1 8.9 53 

Redox mV -53.7 12.28 -72 -21 55 

Dissolved oxygen mg/l 10.4 1.34 7.8 14.5 58 

Electrical conductivity µS/cm 84.3 18.92 44 123 58 

Total dissolved solids mg/l 42.15 9.46 22 61.5 58 

Suspended solids mg/l 44.1 22.8 2 82 58 
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Table 4.13 (Continued)       

Turbidity NTU 8.9 3.49 1 16.1 57 

Colour Pt Co 63.3 11.91 41 85 18 

Chemical oxygen demand mg/l 39.6 18.58 10 86.1 13 

Note: NTU, nephelometric turbidity unit. 

4.3.2.2 Chemical oxygen demand and dissolved oxygen  

The COD removal efficiency (Table 4.11) was low for all ponds, which was evident from 

the inflow COD concentrations corresponding to the high outflow values, as discussed 

below. In addition, mean COD removals were higher in L. minor ponds than control ones 

for all systems containing dyes, but the difference was not significant. However, for ponds 

comprising only synthetic wastewater without dye, outcomes showed that the mean values 

of COD removal were significantly higher in L. minor ponds than in the corresponding 

control ponds (Table 4.12). These results indicate that the presence of the dyes impacts on 

the plant performance by reducing their ability to remove COD. Low removal in all ponds 

ranged between 1 and 31%, indicating a low level of organic matter degradation occurring 

in the ponds due to poor microbial activities. Correlation analysis results indicate that the 

COD removal was significantly (p < 0.01) positively correlated with dye removal. 

Treatment performance according to COD concentrations showed that the mean outflow 

values were higher in control ponds than L. minor ponds for all types of wastewater except 

for ponds fed by AB113 (Table 4.13). The presence of plants did not significantly affect the 

COD values. The European and most international (Carmen & Daneila, 2012) standards set 

threshold values for COD of 125 mg/l. These values are valid for the discharge of effluent 

directly into waterbodies. Figure 4.12 shows the COD outflow concentration profiles. In 

general, the outflow COD concentrations fluctuated over time, and were higher than the 

inflow ones during the period from 20 March 2015 to 10 November 2015 for all types of 

wastewater. This indicates low microbial activity for degradation of the organic matter 

associated with high levels of DO, as discussed later. However, during high rainfall periods, 

particularly in winter at the beginning and the end of the experiment, the outflow 

concentrations were lower or similar to the inflow values for all dyes (Figures 4.12a to 

4.12d), and higher than the inflow values for ponds fed by synthetic wastewater without dyes 

(Figure 4.12e) in both planted and control ponds.  

Regarding the dissolved oxygen, the outflow values ranged between 7.8 mg/l and 13.9 mg/l. 

However, the inflow values varied between 8.9 and 10.5 mg/l. In addition, the mean outflow  
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concentrations (Table 4.13) in terms of DO for AB113, RB198 and DO46 were similar for 

L. minor ponds, and control ponds. However, the mean outflow values of DO in L. minor 

ponds were slightly higher than those in the unplanted ponds for systems containing BR46, 

and only synthetic wastewater. These high DO values boosted the biodegradation of organic 

contaminants in the wetland ponds by facilitating the growth of micro-organisms (Ong et 

al., 2009a) and on the other hand inhibited the dye removal (Pearce et al., 2003), as 

mentioned previously in Section 4.2.2.2. 

 

Figure 4.12 Monthly inflow and outflow concentrations of chemical oxygen demand for 

different treatments between 15 December 2014 and 2 February 2016. Note: (a), acid 

blue 113; (b), reactive blue 198; (c), basic red 46; (d), direct orange 46; (e), synthetic 

wastewater without dye; COD, chemical oxygen demand; P3, Lemna minor L. ponds; P4, 

control ponds.  
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4.3.2.3 pH and redox potential  

The mean outflow pH values (Table 4.13) were slightly higher than the inflow values (Table 

4.10) for all ponds. According to the European and international standards (Carmen & 

Daniela, 2012), samples were 9 and 3, 4 and 6, 4 and 1, 6 and 7, and 2 and 8 times non-

compliant for ponds containing AB113, RB198, BR46, DO46, and synthetic wastewater 

only (without dye) for planted ponds and control ponds, respectively. The pH value 

influenced the capacity of dye uptake and plant growth, as discussed in Section 4.2.2.3.  

In terms of redox potential, the mean outflow values (Table 4.13) were higher in L. minor 

ponds than control ponds for systems containing AB113, DO46, and synthetic wastewater 

without dye. In contrast, the mean outflows in terms of redox potential for wastewaters 

containing RB198 and BR46 were higher for control ponds than L. minor ponds. Planted 

ponds containing only synthetic wastewater had significantly higher redox potentials than 

the control ponds (Table 4.12). As shown in Table 4.13, the minimum and maximum redox 

potential values indicated anoxic conditions. An aerobic environment is linked to redox 

potentials higher than 100 mV, while anaerobic conditions are associated with a redox 

potential of less than -100 mV (Ong et al., 2009a). 

4.3.2.4 Suspended solids and turbidity  

The mean outflow values for SS (Table 4.13) in the control ponds comprising synthetic 

wastewater without dye were significantly (Table 4.12) higher than those for L. minor ponds 

which could be reflecting the impact of the plants trapping the SS. In contrast, the mean 

outflow concentrations of SS for ponds containing BR46 were significantly higher in L. 

minor ponds than control ponds, which is possibly due to higher organic matter degradation 

in L. minor ponds, in addition to the effect of plant decay as it is higher in in L. minor ponds 

containing BR46. The European and many international standards for SS are 35 mg/l in case 

of effluents discharged directly to receiving freshwater bodies. The results indicate that the 

L. minor ponds and control ponds containing AB113, L. minor ponds and control ponds 

containing RB198, L. minor ponds and control ponds containing BR46, L. minor ponds and 

control ponds containing only synthetic wastewater, and L. minor comprising DO46 were 

13 and 13, 2 and 1, 20 and 17, 1 and 36, and 5 times non-compliant, respectively. 

Based on the mean turbidity outflow values (Table 4.13), L. minor pond outflows were 

characterised by higher values than those for control ponds for all dyes. However, the mean 

outflow turbidity values for L. minor ponds were lower than those for the control ponds for 
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systems fed only by synthetic wastewater. This may be attributed to the impact of dyes on 

the plants’ state leading to a high detritus generation in the systems containing dyes 

compared with those without dyes, enhancing the SS content and consequently the turbidity 

values. The highest and lowest turbidity values mirrored those for SS. A correlation analysis 

showed that SS was significantly (r = 0.917, p = 0.000) positively correlated with turbidity 

and significantly (r = -0.471, p = 0.000) negatively correlated with DO. Therefore, high 

values of DO in the systems may suggest low microbial activities for organic matter 

degradation, which consequently reduces SS (Sani et al., 2013) and COD removal (Scholz, 

2010). A correlation analysis highlighted that the COD removal was significantly (p < 0.01) 

negatively correlated with DO (r = -0.456, p = 0.000). 

4.3.2.5 Electrical conductivity and total dissolved solids  

All mean outflow EC values were less than the inflow ones (Table 4.13), and the highest EC 

mean values were observed for control ponds, whereas the lowest values were found in L. 

minor ponds for all types of wastewater. This indicates that the presence of plants in the 

ponds is responsible for EC reduction, as explained previously in Section 4.2.2.5. The mean 

outflow EC values for the control ponds were significantly higher than those for L. minor 

ponds with AB113, RB198 and DO46 (Table 4.12). 

The outflow TDS values for all treatment systems (Table 4.13) were compliant with the 

European and international standards of 2000 mg/l for discharge directly to receiving 

freshwater bodies and with the threshold of 500 mg/l (class I -natural non-polluted state of 

water body) (Carmen & Daniela, 2012). All inflow and outflow TDS values were a function 

(equal to half) of the EC values. 

4.3.2.6 Trace elements  

All mean outflow values of the detected elements were lower than the corresponding 

inflows, except for boron and sodium outflows, which were higher than the inflow 

concentrations (Figure 4.9). The differences between the outflow values of L. minor ponds 

and control ponds for all elements were not significant (p > 0.05) for all types of wastewater 

with and without dyes, except sodium outflows in ponds treated only synthetic wastewater 

which were significantly higher (p = 0.03, Mann-Whitney U test) in planted ponds than those 

in control ponds. The low differences between the design variables in terms of outflow 

elements may indicate that the element reduction was due to the impact of rain. However, L.  
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minor also reduced the content of some elements in the system including calcium, 

magnesium, potassium and sodium by uptake (Figure 4.9) but it seems, after that, the plant 

acts as a source of these elements due to its decay. Overall, the mean outflow of zinc and 

iron concentrations (Figures 4.9a and b) were lower than the threshold set of 2 mg/l and 5 

mg/l for irrigation, respectively (Metcalf & Eddy, 2003). In addition, all outflow values were 

within the acceptable limits for L. minor (Khellaf & Zerdaoui, 2009). Copper content was 

also below the threshold limit of 0.2 mg/l for irrigation (Metcalf & Eddy, 2003). In addition, 

all outflow values were within the tolerance limit of 0.4 mg/l for L. minor (Khellaf & 

Zerdaou, 2009). Khellaf et al. (2008) concluded that copper is a very toxic metal impacting 

on duckweed at a concentration of 0.5 mg/l. The copper levels in the systems had no adverse 

effects on the plant growth in this study. 

Figure 4.13 shows an overview of the concentrations of elements accumulated in plant 

tissues for all ponds with and without dyes. The results indicate the plant capacity for 

sodium, calcium, magnesium and potassium (Figures 4.13g, h, i and j, respectively) 

accumulation was high. Lower levels of accumulation were indicated for boron, aluminium 

and manganese (Figures 4.13c, e and f, respectively). The levels of zinc and iron in plants 

(Figures 4.13a and b, respectively) were more than the allowable boundaries, as mentioned 

by Nazir et al. (2015). In terms of the bioconcentration factor of metals, results in Figures 

4.14a b, c and d indicate that plants were positive for phytoremediation of zinc, iron, copper 

and boron, respectively. Whereas, the plants were not good accumulators for iron within 

systems treating AB113 and RB198. 
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Figure 4.13 Mean concentrations of the detected elements in plant tissue during the 

experiment between 15 December 2014 and 2 February 2016. Note: (a), zinc; (b), iron; 

(c), boron; (d), copper; (e), aluminium; (f), manganese; (g), sodium; (h), calcium; (i), 

magnesium; (j), potassium; AB113, acid blue 113; RB198, reactive blue 198; BR46, basic 

red 46; DO46, direct orange 46; SWW, synthetic wastewater without dye. 
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Figure 4.14 Bioconcentration factor during the experiment between 15 December 2014 

and 2 February 2016. Note: (a), zinc; (b), iron; (c), copper; (d), boron; AB113, acid blue 

113; RB198, reactive blue 198; BR46, basic red 46; DO46, direct orange 46; SWW, 

synthetic wastewater without dyes. 
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4.3.3 Plant monitoring 

The mean values of RGR, which are based on the fresh weight for plants harvested from 

each pond are shown in Figure 4.15. This growth parameter has been used as an indirect 

indicator for the toxic effects of dyes on L. minor growth. Results clearly show that dyes 

negatively influence the RGR, and the values were ranked as follows: synthetic wastewater 

without dye > AB113 > RB198 > DO46 > BR46. This outcome confirms that BR46 has a 

more negative effect on the plant growth rate compared with other dyes, as discussed earlier 

in Section 4.2.3. However, statistical analysis shows that there is no significant difference in 

RGR values among the ponds containing AB113, RB198, and only synthetic wastewater 

(Table 4.14). This indicates that the effect of AB113 and RB198 as growth inhibitors was 

very low. In addition, no significant differences in RGR between ponds comprising BR46 

and DO46 were recorded. Moreover, the RGR for BR46 and DO46 were significantly lower 

than for ponds containing only synthetic wastewater (Table 4.14). The plants harvested in 

May and July originated only from ponds which were completely covered by L. minor. The 

last harvest took place in February at the end of the experiment (Table 4.15). Zhao et al. 

(2016) highlighted that temperature and light intensity changes impact on the growth rate of 

duckweed, which increases during summer and reduces during winter. 

 

Figure 4.15 Mean relative growth rate for Lemna minor L. between 10 July 2014 and 2 

February 2016. Note, standard deviations are presented by error bars based on four 

replicates; AB113, acid blue 113; RB198, reactive blue 198; BR46, basic red 46; DO46, 

direct orange 46; and SWW, synthetic wastewater.  
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Table 4.14 Overview of the statistical analysis for the relative growth rate of Lemna 

minor L. ponds between the wastewater types using the parametric one-way ANOVA 

Variable 

combination 

p value Variable combination p value 

AB113 & RB198 0.155 RB198 & DO46 0.102 

AB113 & BR46 <0.001 RB198 & SWW 0.173 

AB113 & DO46 <0.001 BR46 & DO46 0.947 

AB113 & SWW 1.000 BR46 & SWW <0.001 

RB198 & BR46 0.027 DO46 & SWW 0.001 

Note: p value, probability of the statistical test (if p > 0.05, the variables are not statistically 

significantly different; if p < 0.05, the variables are statistically significantly different); 

AB113, acid blue 113; RB198, reactive blue 198; BR46, basic red 46; DO46, direct orange 

46; SWW, synthetic wastewater. Test of normality using Shapiro-Wilk: 0.061. Significant 

value among the wastewater types is < 0.001. 

Table 4.15 Mean values of the fresh and dry weights of the plants harvested for each 

system between 10 July 2014 and 2 February 2016 

Type of wastewater Weight (gram) 

 

Date 

12/05/15 06/07/15 02/02/16 

Acid blue 113 Fresh 18.06 18.05 31.43 

Dry 0.910 0.903 1.570 

Reactive blue 198 Fresh N/A 22.33 31.30 

Dry N/A 1.121 1.558 

Basic red 46 Fresh N/A N/A 37.33 

Dry N/A N/A 1.900 

Direct orange 46 Fresh N/A N/A 40.03 

Dry N/A N/A 2.002 

Synthetic wastewater Fresh N/A 14.78 53.50 

Dry N/A 0.740 2.687 

N/A; not applicable. 

4.3.4 Environmental conditions 

Figure 4.16 shows the environmental conditions in Salford during the experiment period 

between 15 December 2014 and 2 February 2016. The minimum and maximum temperatures 

are 4°C and 33°C, respectively. Out of 274 temperature recordings (Figure 4.16), 27 were 

less than the minimum recommended range (Ozengin & Elmaci, 2007). The mean light 

intensity value was 12745 lux, and minimum and maximum values ranged between 1079 

lux and 46975 lux.  
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Figure 4.16 Environmental conditions in Salford during the experiment period 

between 15 December 2014 and 2 February 2016 

4.4 Comparison of treatment efficiency between indoor 

and outdoor ponds 

4.4.1 Inflow water quality parameters 

The mean values for inflow and outflow water characteristics regarding the indoor (under 

controlled laboratory conditions) and outdoor (under semi-natural uncontrolled conditions) 

experiments between 15 December 2014 and 15 September 2015 are shown in Figures 4.17 

and 4.18. Although, the inflow wastewater was prepared and mixed in the location of each 

experiment separately, no significant (t-test, p > 0.05) differences were noted between the 

mean inflow water quality parameters for the outdoor experiment compared with those for 

the indoor one. 
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Figure 4.17 Overview of the mean inflow and outflow water characteristics for the indoor and outdoor experiments between 15 December 

2014 and 15 September 2015. Note: (a), dye concentration; (b), colour; (c), chemical oxygen demand; (d), dissolved oxygen; (e), pH; (f), redox 

potential; (g), suspended solids; (h), turbidity; (i), electric conductivity; (j), total dissolved solids; P3, Lemna minor L. ponds; P4, control ponds; 

AB113, acid blue 113; RB198, reactive blue 198; BR46, basic red 46; DO46, direct orange 46; SWW, synthetic wastewater. 
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Figure 4.18 Mean inflow and outflow concentrations of the detected trace elements within the indoor and outdoor experiments. Note: (a), 

zinc; (b), copper; (c), iron; (d), boron; (e), potassium; (f), sodium; (g), calcium; (h), magnesium; P3, Lemna minor L. ponds; P4, control ponds; 

AB113, acid blue 113; RB198, reactive blue 198; BR46, basic red 46; DO46, direct orange 46; SWW, synthetic wastewater. 

0

20

40

60

80

AB113 RB198 BR46 DO46 SWW AB113 RB198 BR46 DO46 SWW

Indoor Outdoor

S
o
d
iu

m
 (

m
g
/l
)

(f)

0

2

4

6

8

10

12

14

16

AB113 RB198 BR46 DO46 SWW AB113 RB198 BR46 DO46 SWW

Indoor Outdoor
M

a
g
n
e
s
iu

m
 (

m
g
/l
)

(h)

0

10

20

30

40

AB113 RB198 BR46 DO46 SWW AB113 RB198 BR46 DO46 SWW

Indoor Outdoor

C
a
lc

iu
m

 (
m

g
/l
)

(g)

0

20

40

60

80

AB113 RB198 BR46 DO46 SWW AB113 RB198 BR46 DO46 SWW

Indoor Outdoor

P
o
ta

s
s
iu

m
 (

m
g
/l
)

(e)



Chapter 4: Impact of Design Variables and Environmental Conditions on System Efficiency 

165 

4.4.2 Treatment performance 

4.4.2.1 Dye and apparent colour  

The dye removal efficiency within the period between 15 December 2014 and 15 September 

2015 is shown in Figure 4.19 for both experiments. Table 4.16 summarises the statistical 

analysis of outflow water quality parameters and the removal efficiencies. AB113 removal 

for the outdoor experiment was significantly (Table 4.16) elevated compared to the indoor 

one for both L. minor and control ponds. In addition, the mean removal efficiency for the L. 

minor and control ponds was similar (both at around 30%) within the outdoor experiment, 

and very low (8 and 10%, respectively) for the indoor experiment. This indicates that L. 

minor was unable to break-down AB113 molecules under controlled or semi-natural 

conditions, and the outdoor removal was due to the dilution effect of rain water and microbes 

activities. In contrast, Balarak et al. (2016b) reported high removal efficiencies for AB113 

using dried L. minor. This might be due to the pH of the solution being adjusted to 3, which 

enhanced the adsorption ability of the plants. However, in this experiment the pH values 

were without adjustment. In addition, the pH level used by Balarak et al. (2016b) was less 

than the tolerated values for growth of living L. minor which range between 4 and 9 

(Movafeghi et al., 2013). Although RB198 removal was small under both conditions, the 

mean removal efficiency for L. minor ponds was significantly elevated for the outdoor (19%) 

experiment compared to the indoor (12%) one. However, for the control ponds, no 

significant differences were noted (Table 4.16). The mean removal efficiency of BR46 in L. 

minor ponds was significantly (Table 4.16) reduced for outdoor experiment (43%) compared 

to indoor one (69%). In addition, the control ponds were able to remove around 33 and 31% 

(not significant) under semi-natural and controlled conditions, respectively. BR46 was 

treated better than other dyes in both experiments. The outflow samples were colourless, 

which is key evidence for the dye having been removed. In addition, during the study period, 

the maximum value of BR46 removal in L. minor ponds was 88% and 86% for the indoor 

and outdoor experiments, respectively. The impact of L. minor in terms of removal 

efficiency was around 38 and 10% under controlled and semi-natural conditions, 

respectively, (Figure 4.19). This indicates that the high temperature under control conditions 

increases the removal efficiency of BR46. This result is matched by findings reported by 

Khataee et al. (2012) suggesting that the biological removal efficiency of dyes improves with 

increased temperature as an endothermic process. The mean removal efficiency of DO46 
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was significantly (Table 4.16) higher within the indoor experiment than the outdoor one for 

L. minor and control ponds. However, this dye exhibited low removal efficiency among the 

other dyes. Overall, statistical analysis showed that the dye BR46 was removed significantly 

(p < 0.05, Kruskal-Wallis test) more than the other dyes for L. minor and control ponds 

within the indoor system. However, for the outdoor experiment, L. minor ponds showed 

significantly (p < 0.05, Kruskal-Wallis test) higher BR46 removal efficiencies compared to 

the other dyes. In general, the dye BR46 was treated better than the other dyes for both 

conditions. This may be due to the fact that BR46 is characterised by a simple chemical 

structure, small molecular weight, and absence of sulpho groups in its structure. In addition, 

the neutral pH was suitable for BR46 uptake. All these factors enhance the dye removal 

efficiency as discussed previously in Sections 4.2.2.1 and 4.3.2.1. However, it is worth 

noting that the dyes DO46, AB113 and RB198 contained one, two and four sulpho groups 

in their structures, respectively, which may inhibit the degradation efficiency. 

Based on dye concentrations, the average outflow dye values concerning the L. minor and 

control pond systems were significantly (Table 4.16) higher for the indoor experiment (see 

Figure 4.17a) than the outdoor one for all dyes, except for L. minor ponds comprising BR46. 

The mean outflow BR46 concentrations for L. minor ponds were significantly lower within 

indoor experiment than outdoor one, being 0.3 mg/l and 0.9 mg/l for the indoor and outdoor 

experiments, respectively. Comparing to the inflow dye concentration of 5 mg/l, this was 

evidence of the high degradation of the dye BR46 under controlled conditions compared to 

other studied dyes. Overall, the outflow BR46 concentrations in planted ponds were 

significantly (Table 4.16) reduced compared to the corresponding outflow concentrations 

for the other dyes under both environmental conditions. 

All colour mean outflow values (as illustrated in Figure 4.17b) were significantly higher 

within the indoor experiment for L. minor ponds and also for the control ponds compared to 

the corresponding outdoor one. However, for the planted ponds comprising BR46 and the 

planted ponds fed with only synthetic wastewater, no significant differences were noted 

(Table 4.16) between the two environmental conditions, which were 54 and 67 Pt Co for 

ponds comprising BR46, and 44 and 46 Pt Co for ponds without dye for indoor and outdoor 

experiments, respectively. These findings regarding lower outflow values for the dye and 

colour under semi-natural conditions than the controlled conditions can be explained by the 

effect of rainfall under semi-natural conditions, which dilutes and subsequently reduces the 

content of these parameters in the ponds. In addition, the process of removing excess water 
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contributes to the reduction of the load of these parameters. Whereas under control 

conditions, there is no excess water requiring removal. Figure 4.16 indicates environmental 

boundary conditions such as rainfall and temperature in Salford during the period between 

15 December 2014 and 2 February 2016, which includes the comparison study period. 

 

Figure 4.19 Mean values of dye removal efficiency within the period between 15 

December 2014 and 15 September 2015 for indoor and outdoor experiments. Note: 

AB113, Acid blue 113; RB198, reactive blue 198; BR46, basic red 46; DO46, direct orange 

46; P3, Lemna minor L. ponds; P4, control ponds. 

 

4.4.2.2 Chemical oxygen demand and dissolved oxygen  

Based on COD removal efficiencies (Figure 4.20), better removal was noted in L. minor and 

control ponds containing AB113, BR46, and only synthetic wastewater within the outdoor 

experiment compared to the indoor one. However, lower removal efficiencies were noted 

within the outdoor experiment for L. minor and control ponds containing RB198 and DO46. 

Significant differences (Table 4.16) were found for planted ponds comprising AB113, and 

planted and unplanted ponds containing DO46. Nonetheless, all COD removal values, which 

ranged between -4 % and 22 %, and -2 % and 27 % for the indoor and outdoor experiments, 

respectively, indicated low microbial activities concerning COD mineralisation in these 

ponds (Figure 4.20). This is evident indirectly by the high DO outflow concentrations. The 

mean outflow COD concentrations (Figure 4.17c) were higher within the indoor experiment 

than the corresponding values for the outdoor one. This was due to the rainfall dilution factor 

for outdoor experiment as discussed above. However, significantly (Table 4.16) higher 
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differences were noted in planted ponds containing AB113, RB198 and the control pond 

comprising only synthetic wastewater. In addition, all average outflow values were higher 

compared to the inflow ones, which indicates that the COD concentrations increased with 

time after each dose for both environmental conditions. This is due to the low COD removal 

efficiency, and also because some of the plants die-off during their life cycle and increase 

the organic load in the ponds, which consequently increases the COD concentrations as 

discussed by Dalu and Ndamba (2003). The findings have indicated that the COD outflow 

concentrations were 5, 3, 3 and 5 times non-compliant with the standard value for direct 

discharge (Carmen & Daniela, 2012), for the L. minor and control ponds containing AB113, 

control ponds containing BR46, and control pond comprising synthetic wastewater without 

dye for the indoor experiment. However, for outdoor experiment, all COD values were 

below the set threshold. 

Regarding the DO concentrations, the mean outflow values were higher than the mean 

inflow values for outdoor experiment, and slightly lower than the inflow for the indoor one. 

The mean values of the outflow DO in L. minor and control ponds were significantly (Table 

4.16) higher within the outdoor experiment than those corresponding to the indoor one for 

all dyes, as well as the ponds without dye (Figure 4.17d). The minimum and maximum 

values ranged between 7.9 and 10.1 mg/l, and between 8.5 and 13.9 mg/l for the indoor and 

outdoor experiments, respectively. This is because the DO is highly affected by temperature 

variations; colder conditions increase the DO level and vice versa. Note that the temperature 

records for the outdoor experiment show wide variations compared with the controlled 

laboratory temperatures, as mentioned previously. The presence of plants also leads to an 

increase in the DO level in the system due to respiration activities. However, in this study, 

it seems that temperature and oxygen diffusion by the atmosphere impacted on the DO 

values rather than the plants. 
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Table 4.16 Overview of the statistical analysis between the indoor and outdoor experiments for outflow water quality parameters and 

corresponding removal efficiencies  

Parameter Treatment system 
Shapiro-Wilk test 

(p value1) P values2 Parameter Treatment system 
Shapiro-Wilk test 

(p value1) P values2 

Dye (mg/l) Dye removal (%) 

AB113  P3 <0.001 <0.001 AB113  P3 <0.001 <0.001 

 P4 <0.001 <0.001  P4 <0.001 <0.001 

RB198  P3 <0.001 <0.001 RB198  P3 0.338 <0.001 

 P4 <0.001 <0.001  P4 <0.001 0.338 

BR46  P3 <0.001 <0.001 BR46  P3 <0.001 <0.001 

 P4 <0.001 <0.001  P4 0.230 0.23 

DO46  P3 <0.001 <0.001 DO46  P3 0.010 0.013 

 P4 <0.001 <0.001  P4 <0.001 <0.001 

Chemical oxygen demand (mg/l) 

 

Chemical oxygen demand removal (%) 

Chemical oxygen demand removal (%) AB113  P3 <0.001 0.001 AB113  P3 <0.001 0.008 

 P4 0.033 0.095  P4 0.007 0.345 

RB198  P3 <0.001 0.003 RB198  P3 0.155 0.111 

 P4 <0.001 0.264  P4 0.053 0.345 

BR46  P3 <0.001 0.197 BR46  P3 0.205 0.500 

 P4 0.030 0.14  P4 0.001 0.155 

DO46  P3 <0.001 0.083 DO46  P3 0.334 0.048 

 P4 <0.001 0.289  P4 0.949 0.016 

SWW P3 <0.001 0.083 SWW P3 <0.001 0.155 

 P4 0.048 <0.001  P4 0.074 0.345 

Colour (Pt Co) Dissolved oxygen (mg/l) 

AB113 P3 <0.001 <0.001 AB113  P3 <0.001 <0.001 

 P4 0.001 <0.001  P4 <0.001 <0.001 

RB198  P3 0.023 0.001 RB198  P3 <0.001 <0.001 
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Table 4.16 (Continued)        

 P4 <0.001 0.001  P4 <0.001 <0.001 

BR46  P3 0.001 0.335 BR46  P3 <0.001 <0.001 

 P4 0.012 <0.001  P4 <0.001 <0.001 

DO46  P3 0.010 0.001 DO46  P3 <0.001 <0.001 

 P3 0.031 <0.001  P3 <0.001 <0.001 

SWW P4 0.001 0.003 SWW P4 <0.001 <0.001 

 P3 0.007 0.419  P3 <0.001 <0.001 

Suspended solids (mg/l) pH (-) 

AB113  P3 <0.001 0.221 AB113  P3 <0.001 <0.001 

 P4 <0.001 0.411  P4 <0.001 0.066 

RB198  P3 <0.001 0.393 RB198  P3 <0.001 0.002 

 P4 <0.001 0.062  P4 <0.001 0.286 

BR46  P3 <0.001 <0.001 BR46  P3 <0.001 <0.001 

 P4 <0.001 0.019  P4 <0.001 0.059 

DO46  P3 <0.001 0.082 DO46  P3 <0.001 0.049 

 P4 <0.001 0.102  P4 <0.001 0.432 

SWW P3 <0.001 0.374 SWW P3 0.022 0.221 

 P4 <0.001 <0.001  P4 0.031 0.008 

Turbidity (NTU) Redox potential (mV) 

AB113  P3 <0.001 0.110 AB113  P3 0.021 <0.001 

 P4 <0.001 0.436  P P4 0.001 0.241 

RB198  P3 <0.001 0.143 RB198  P3 <0.001 <0.001 

 P4 <0.001 0.139  P4 0.002 0.403 

BR46  P3 <0.001 <0.001 BR46  P3 0.004 <0.001 

 P4 <0.001 0.029  P4 <0.001 0.063 

DO46  P3 <0.001 0.328 DO46  P3 0.045 0.003 

 P4 0.022 <0.001  P4 <0.001 0.418 

SWW P3 <0.001 0.342 SWW P3 <0.001 0.238 
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Note: 1Test of normality (if p > 0.05, data are normally distributed; if p < 0.05, data are not normally distributed); 2p value, probability of the 

statistical test (if p > 0.05, the variables are not statistically significantly different; if p < 0.05, the variables are statistically significantly different); 

NTU, nephelometric turbidity unit; P3, Lemna minor.L. ponds; P4, control ponds; AB113, acid blue 113; RB198, reactive blue 198; BR46, basic 

red 46; DO46, direct orange 46; SWW, synthetic wastewater; M-W, Mann-Whitney U test which is used when the data are not normally distributed; 

t-test, independent sample t-test which is used when the data are normally distributed. 

Table 4.16 (Continued)        

 P4 <0.001 <0.001  P4 0.006 <0.001 

Electrical conductivity (µS/cm) 

 
    

AB113  P3 0.004 0.152     

 P4 0.004 0.001     

RB198  P3 <0.001 <0.001     

 P4 0.005 0.005     

BR46  P3 <0.001 <0.001     

 P4 <0.001 0.025     

DO46  P3 0.003 0.050     

 P4 0.002 0.001     

SWW P3 0.009 0.014     

 P3 0.022 0.062     
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Figure 4.20 Mean values of chemical oxygen demand removal efficiency within the 

period between 15 December 2014 and 15 September 2015 for indoor and outdoor 

experiments. Note: AB113, acid blue 113; RB198, reactive blue 198; BR46, basic red 46; 

DO46, direct orange 46; SWW, synthetic wastewater; P3, Lemna minor L. ponds; P4, control 

ponds. 

4.4.2.3 pH and redox potential  

The mean pH outflow values ranged between 7.3 and 8.4 for indoor experiment, and between 

7.7 and 8.2 for the outdoor one (Figure 4.17e). The mean outflow pH values for the L. minor 

and control ponds were higher within the outdoor experiment than the corresponding values 

within the indoor one for all dyes except the control ponds treating BR46. This was due to 

the impact of lower temperature records within the outdoor experiment compared with the 

indoor one. Significant differences (Table 4.16) between the indoor and outdoor experiments 

were found within the planted ponds only. However, the values were lower under semi-

natural conditions than the resembling values under controlled conditions for L. minor and 

control ponds comprising only synthetic wastewater, and control ponds treating BR46. 

Significant (Table 4.16) differences were only recorded for control ponds comprising 

synthetic wastewater without dye. According to international standards (Carmen & Daniela, 

2012) for the discharge of effluents directly to receiving freshwater bodies, the acceptable 

pH limits are between 6.5 and 8.5. The pH outflow samples were 9 and 3, 4 and 6, 4 and 1, 

and 6 and 7, and 1 and 8 times non-compliant for systems containing AB113, RB198, BR46, 

DO46 and synthetic wastewater without dye for planted ponds and control ponds for outdoor 

experiment in that order. However, for indoor one, only control ponds containing BR46, and 

synthetic wastewater without dye were 2 and 11 times non-compliant.  
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Regarding the average values of the outflow redox potential, all values were lower than the 

inflow for the indoor and outdoor set-ups as shown in Figure 4.17f. Higher mean outflow 

redox potential values were found for L. minor and control ponds regarding systems 

comprising AB113, RB198 and DO46, and planted ponds containing BR46 concerning the 

indoor experiment compared to the corresponding outdoor one, with significant (Table 4.16) 

differences found for planted ponds only. However, the values were lower within the indoor 

experiment than the outdoor one for ponds with L. minor, control ponds comprising synthetic 

wastewater without dye, and control ponds treating BR46. Significant (Table 4.16) 

differences were only noted for control ponds comprising synthetic wastewater without dye. 

4.4.2.4 Suspended solids and turbidity  

The mean SS outflows (Figure 4.17g) for the indoor experiment were lower than the 

corresponding values for the outdoor one regarding all ponds which could be due to the 

effect of natural conditions such as dust and rain for the outside experiment, except for 

control ponds comprising BR46, and control ponds containing only synthetic wastewater, 

which were significantly higher within the indoor experiment than the corresponding values 

for the outdoor one (Table 4.16). The minimum and maximum values for control ponds 

containing BR46, and ponds without dye were 3 mg/l and 390 mg/l, and 2 mg/l and 268 

mg/l, respectively. This wide range between the minimum and maximum values may reflect 

the higher SS of these control ponds within the indoor experiment. The main factors 

influencing SS removal in free-floating plant-based treatment systems are biodegradation of 

organic matter, algal growth and sedimentation of particles (Dalu & Ndamba, 2003). In this 

study, sedimentation and organic matter degradation affected the outflow SS concentrations. 

The international standards for SS are 35 mg/l in case of discharges directly into 

watercourses. The samples, for outdoor experiment, were 13 and 11, 2 and 1, 20 and 17, 5, 

and 30 times non-compliant for planted and unplanted ponds containing AB113, RB198 and 

BR46, planted ponds comprising DO46, and the control ponds comprising only synthetic 

wastewater, respectively. However, for indoor experiment, the values were 9, 1, 3, 22 and 

29 times non-compliant for planted ponds comprising AB113, unplanted ponds comprising 

AB113, planted ponds treating RB198, control ponds containing BR46, and control ponds 

containing only synthetic wastewater, respectively. 

Based on the mean turbidity outflow values (Figure 4.17h), no remarkable differences were 

noted between the indoor and outdoor values except for the control ponds comprising BR46, 
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DO46, and synthetic wastewater without dye, which were significantly higher under 

controlled than natural conditions. Whereas, planted ponds comprising BR46 were shown to 

be significantly lower in terms of their mean turbidity outflows under controlled than semi-

natural conditions (Table 4.16). 

4.4.2.5 Electrical conductivity and total dissolved solids  

Mean outflow values for the electrical conductivity (salinity indicator) were significantly 

higher (Table 4.16) for the laboratory compared to the semi-natural conditions (Figure 

4.17i), because of the dilution factor by rain and removing the excess water to achieve the 

required level under real conditions, which led to a reduction of the EC in the system. The 

mean outflow values were higher than the mean inflow ones for indoor experiment and 

slightly lower than the mean inflow values for the outdoor one. This indicates low percentage 

reductions in EC values under controlled conditions. Moreover, all mean outflow values in 

control ponds were elevated compared to the planted ponds, which denotes that the plants 

were able to reduce EC. The minimum and maximum mean outflow values ranged between 

168 µS/cm in L. minor ponds comprising BR46 and 488 µS/cm in control ponds containing 

RB198 under laboratory conditions, and between 78 µS/cm in L. minor ponds comprising 

BR46 and 102 µS/cm for control ponds containing RB198 under semi-natural conditions. 

The mean TDS (ion concentration) values were half the EC values in this study, and all the 

inflow and outflow TDS values showed the same trend as the inflow and outflow EC values 

in terms of the indoor and outdoor experiments (Figure 4.17j). All TDS outflow values for 

the indoor and outdoor experiments complied with the European and international standards 

of 2000 mg/l for discharge directly to receiving freshwater and with the threshold of 500 

mg/l (class I -natural non-polluted state of water body) (Carmen & Daniela, 2012). 

4.4.2.6 Trace elements  

Figure 4.18 shows an overview of the mean inflow and outflow concentrations of the 

elements, which were detected during the ICP-OES analyses for the indoor and outdoor 

experiments. The mean zinc outflow concentrations (Figure 4.18a) for L. minor and control 

ponds were significantly (p < 0.05, Mann-Whitney U test) higher within the indoor 

experiment than the outdoor one for ponds with and without dye. In addition, for the outdoor 

experiment, the mean outflow zinc concentrations were less than the inflow ones due to the 

rain factor. However, the indoor experiment showed that the mean outflow values were 
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higher than the inflow ones except for the L. minor ponds treating BR46, which were slightly 

lower than the inflow. This might be due to the high degradation of this dye. For both 

experiments, the planted ponds showed mean outflow values slightly lower than the outflows 

of the corresponding control ponds reflecting the ability of L. minor in the uptake of zinc. 

Overall, for the two experiments, the mean outflow zinc concentrations were lower than the 

threshold of 2 mg/l set for irrigation (Metcalf & Eddy, 2003). In addition, all outflow values 

were within the acceptable limits for L. minor. Zinc was tolerated by L. minor at 15 mg/l 

without any noticeable toxicity, but a reduction in the plant production rate of between 0.5 

and 15 mg/l was reported by Khellaf and Zerdaoui (2009). Obvious damage to duckweed at 

a zinc concentration of 18 mg/l was reported by Khellaf et al. (2008). Therefore, in this 

study, zinc concentrations in the system did not impact negatively on the plant growth. 

Regarding the mean outflow concentrations of copper, all values were significantly (p < 

0.05, Mann-Whitney U test) higher within the indoor experiment than the outdoor one 

(Figure 4.18b). The mean copper outflow concentrations, for the outdoor experiment, were 

lower than the inflow ones, and the differences between the values for L. minor and control 

ponds was very low. However, within the indoor experiment, the mean outflow values were 

higher than the inflow ones except for the L. minor ponds treating BR46. The planted ponds 

showed mean outflow values lower than the outflow concentrations of the corresponding 

control ponds indicating that the plants accumulate copper in their tissue, under laboratory 

conditions. The copper content was below the threshold limit of 0.2 mg/l for irrigation 

(Metcalf & Eddy, 2003). In addition, all outflow values were less than the tolerance limit of 

0.4 mg/l for L. minor (Khellaf & Zerdaou, 2009) and less than the limits that cause toxic 

impact on duckweed at a concentration of 0.5 mg/l (Khellaf et al., 2008). Iron mean outflow 

concentrations (Figure 4.18c) for indoor experiment were significantly (p < 0.05, Mann-

Whitney U test) higher than those for the outdoor one, due to the dilution of iron 

concentrations by the rainfall under semi-natural conditions compared with evaporation only 

under controlled conditions which led to iron concentration. For both indoor and outdoor 

set-ups, the mean outflow values were lower than the inflow ones except for the ponds 

containing AB113, which may affect the iron content in the system. In addition, all planted 

ponds showed iron levels less than the control ponds which indicated that the plants are 

responsible for the reduction. Overall, the mean outflow iron concentrations were lower than 

the threshold of 5 mg/l set for irrigation (Metcalf & Eddy, 2003). The mean outflow 

concentrations of boron and potassium for the outdoor experiment were significantly (p < 

0.05, Mann-Whitney U test) lower than the ones for the indoor experiment (Figures 4.18d 
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and e, respectively). Furthermore, the average outflow values for the outdoor set-up were 

lower than the inflow ones with very low differences between the planted and unplanted 

ponds. However, under controlled conditions, the mean outflow concentrations were higher 

than the inflow ones within the control ponds and lower than the inflow ones for the L. minor 

ponds. Sodium mean outflow concentrations (Figure 4.18f) were significantly (p < 0.05, 

Mann-Whitney U test) reduced within the outdoor experiment compared to the indoor one, 

and all outflow values were higher compared with the inflow concentrations. The indoor set-

up shows that the mean outflow elements values were elevated within the control ponds 

compared to the L. minor ponds. However, the outdoor set-up shows that the mean outflow 

values were lower within the control ponds compared to the L. minor ponds. This may be 

because of the decay of the plants, which consequently increases the sodium content. The 

mean outflow concentrations for the calcium and magnesium concerning the outdoor 

experiment were significantly (p < 0.05, Mann-Whitney U test) lower than the indoor one 

(Figures 4.18g and h, respectively). Under controlled conditions, the mean outflow values 

of these minerals were higher than the inflow ones and the concentrations of planted ponds 

were lower than the control ones, indicating that the plants slightly reduce the concentrations 

to support growth. The findings matched those by Patel and Kanungo (2010) indicating that 

L. minor reduces the calcium and magnesium concentrations by 15% and 20%, respectively. 

However, under semi-natural conditions, the mean outflow values were lower than the 

inflow and the concentrations of planted ponds were higher than the control, indicating that 

the dead L. minor increased the content of calcium and magnesium. 

The comparison between the indoor and outdoor set-ups in terms of metals concentrations 

in plant tissue, and the bio-concentration factor (BCF) is not applicable. This is because the 

plants within the indoor experiment were harvested on 15 December 2015, compared with 

those for the outdoor one which were harvested on 2 February 2016 (when the outdoor 

experiment was completely finished), and therefore any elements accumulated after 15 

December 2015 in outdoor plants affect the comparison accuracy. 

4.4.3 Plant monitoring 

The relative growth rate of L. minor based on the fresh weight was calculated after the 

experiment was finished and all plants in the ponds were harvested on 15 September 2015 

for the indoor experiment, and on 2 February 2016 for the outdoor one, when the outdoor 

experiment was completely finished, and this may affect the comparison accuracy. For the 



Chapter 4: Impact of Design Variables and Environmental Conditions on System Efficiency 

177 

outdoor experiment, in winter, L. minor is dormant, and individual plants settle down to the 

bottom of the pond system. The plant harvest included all dead, dormant and live plant parts 

found in the systems. Note that no additional plants were added to the system after set-up. 

However, for the indoor experiment, the plants were harvested regularly when the surface 

water was completely covered by L. minor. The growth under controlled conditions was 

clearly higher than in the outdoor experiment due to the impact of environmental conditions 

in the laboratory, which were suitable for optimum growth, except for plants treating BR46. 

In addition, Figures 4.21a and b clearly show that the lowest growth rate values were noted 

in ponds containing BR46 for both experiments. This clearly indicates that the BR46 

inhibited the growth of L. minor. Furthermore, the plants in synthetic wastewater without 

dye ponds showed growth rates that were higher compared to other ponds. This indicates 

that the presence of the dye in the system has a negative impact on the plant growth. 

 

Figure 4.21 Mean relative growth rate for Lemna minor L. during the experimental 

operation period. Note: (a), under controlled conditions; (b), under semi-natural conditions; 

AB113, acid blue 113; RB198, reactive blue 198; BR46, basic red 46; DO46, direct orange 

46; SWW, synthetic wastewater. 

4.4.4 Environmental conditions 

The mean temperature readings were 27°C and 13°C under controlled and semi-natural 

conditions, respectively. Light recordings were 2215 lux under controlled conditions and 

16507 lux under semi-natural conditions. Mean values of environmental conditions for 

Salford (outdoor conditions) and the laboratory (indoor conditions) during the study period 

are presented in Table 4.17. 
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Table 4.17 Mean values of parameters characterising environmental conditions for 

both indoor and outdoor experiments between 15 December 2014 and 15 September 

2015 

Condition Parameter Unit Mean Standard 

deviation 

Minimum Maximum Number  

Laboratory Temperature °C 27.3 2.59 22.4 29.9 127 

Illuminance lux 2215.4 145.52 2023 2450 33 

Relative humidity % 53.7 4.08 36.0 60.0 127 

Semi-natural Temperature °C 12.6 7.3 -3.0 29.0 180 

Illuminance lux 16506.6 16143.7 2010 49675 35 

 

4.5 Chapter summary 

• Planted ponds performed better than control ponds.  

• The treatment systems planted with L. minor were able (as a polishing stage) to 

remove the dye BR46 at low concentrations (5 mg/l) from synthetic wastewater 

significantly (p < 0.05) better than the dyes AB113, RB198, and DO46 for both 

studied environmental conditions, laboratory controlled conditions (69%) and semi-

natural uncontrolled conditions (51%). 

• The potential of L. minor ponds for the treatment of BR46 under controlled 

conditions significantly (p < 0.05) outperformed the corresponding ponds under 

semi-natural conditions by 23%.   

• The outflow values of pH, TDS, COD and SS for the planted ponds containing BR46 

under laboratory conditions were within the standard limits for direct discharge. 

however, all outflow values of TDS and COD for all treatment systems under semi-

natural conditions were within the allowable ranges for discharge to the 

watercourses.  

• The outflow values of zinc, iron and copper were below the thresholds set for 

irrigation purposes, and within the tolerated limits for plants under both controlled 

and semi-natural conditions.  

• The presence of the dyes inhibited the optimum growth of L. minor, especially the 

treated dye BR46 under both controlled and semi-natural conditions. However, the 

relative growth rate of L. minor under controlled conditions was significantly (p < 

0.05) higher than those under semi-natural conditions. 
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Chapter 5                                                  
Impact of pH Adjustment on System 

Performance 

5.1  Overview 

The overall results and discussions of the second and third experiments for treating synthetic 

textile wastewater (STWW) containing dyes before and after dilution, respectively, are 

documented in this chapter. The set-up and operational processes of these experiments are 

explained in Chapter 3 (Sections 3.4.3 and 3.4.4). Section 5.1 provides an overview of the 

chapter. Sections 5.2 and 5.3 present the overall outcomes related to the short-term and long-

term impact of pH factor on system performance in terms of dye removal at concentration 

of 10 mg/l, and for improvement of other water quality parameters. The chapter summary is 

presented in Section 5.4. 

5.2 Short-term impact of pH on pond performance 

treating STWW containing dyes  

5.2.1 Inflow water quality parameters 

The mean values of the inflow characteristics of the synthetic textile wastewater with and 

without dyes are presented in Table 5.1 and Figure 5.1. The mean inflow values of pH, 

chemical oxygen demand (COD), colour were within the typical characteristics of textile 

wastewater ranges (Ghaly et al., 2014). However, ammonium-nitrogen (NH4–N) and nitrate-

nitrogen (NO3–N) values were higher. The initial dye concentration was 10 mg/l, which was 

at the lower end of the dye effluents (10 to 250 mg/l) mentioned by Ghaly et al. (2014). 

Regarding suspended solids (SS) and total dissolved solids (TDS), the mean values were 

lower than the typical range. In addition, zinc and iron values were within the typical range 

of textile wastewater discharge of less than 10 mg/l (Ghaly et al. 2014). 
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Table 5.1 Inflow water quality parameters for each system between 1 October 2015 

and 19 January 2016 

Parameter Unit Mean 
Standard 

deviation 
Minimum Maximum Number 

Acid blue113 + synthetic textile wastewater 

Dye concentration mg/l 10.0 0.04 9.9 10.1 14 

pH - 7.5 0.11 7.3 7.6 14 

Redox mV -39.3 4.37 -43.0 -30.0 14 

Dissolved oxygen mg/l 8.6 0.66 7.4 9.1 14 

Electrical conductivity µS/cm 757.9 4.27 751.0 766.1 14 

Total dissolved solids mg/l 379.0 2.13 375.5 383.1 14 

Suspended solids mg/l 12.5 1.12 11.0 14.0 14 

Turbidity NTU 5.8 0.48 5.3 6.4 14 

Colour Pt Co 964.6 14.00 948.0 1005.0 14 

Chemical oxygen demand mg/l 404.0 5.35 397.0 410.0 4 

Ammonium-nitrogen mg/l 31.6 1.40 30.0 33.4 4 

Nitrate-nitrogen mg/l 31.1 0.83 30.0 32.0 4 

Ortho-phosphate-phosphorus mg/l 8.2 0.12 8.0 8.3 4 

Reactive blue 198+ synthetic textile wastewater 

Dye concentration mg/l 10.0 0.08 9.9 10.2 14 

pH - 7.5 0.15 7.2 7.8 14 

Redox mV -42.8 4.77 -50.0 -31.0 14 

Dissolved oxygen mg/l 8.7 0.41 7.8 9.1 14 

Electrical conductivity µS/cm 762.9 6.32 744.0 771.0 14 

Total dissolved solids mg/l 381.4 3.16 372.0 385.5 14 

Suspended solids mg/l 13.1 0.99 11.0 15.0 14 

Turbidity NTU 5.8 0.51 5.0 7.0 14 

Colour Pt Co 259.0 6.07 245.0 270.0 14 

Chemical oxygen demand mg/l 376.0 3.31 372.0 380.1 4 

Ammonium-nitrogen mg/l 33.6 1.82 31.0 35.0 4 

Nitrate-nitrogen mg/l 31.1 1.61 29.9 33.4 4 

Ortho-phosphate-phosphorus mg/l 7.9 0.22 7.6 8.1 4 

Basic red 46+ synthetic textile wastewater 

Dye concentration mg/l 10.0 0.05 10.0 10.1 14 

pH - 7.4 0.11 7.2 7.6 14 

Redox mV -38.8 3.91 -50.0 -35.0 14 

Dissolved oxygen mg/l 8.5 0.49 7.8 9.5 14 

Electrical conductivity µS/cm 756.1 6.76 741.0 767.0 14 

Total dissolved solids mg/l 378.1 3.38 370.5 383.5 14 

Suspended solids mg/l 10.3 1.03 8.0 12.0 14 

Turbidity NTU 6.8 0.50 5.8 7.9 14 

Colour Pt Co 775.3 2.60 773.0 781.0 14 

Chemical oxygen demand mg/l 382.0 2.27 379.5 385.0 4 

Ammonium-nitrogen mg/l 33.6 2.73 30.0 36.6 4 
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Table 5.1 (Continued)       

Nitrate-nitrogen mg/l 31.3 1.72 29.1 33.3 4 

Ortho-phosphate-phosphorus mg/l 7.9 0.09 7.8 8.0 4 

Direct orange 46+ synthetic textile wastewater 

Dye concentration mg/l 10.0 0.12 9.8 10.3 14 

pH - 7.6 0.16 7.3 7.9 14 

Redox mV -43.9 2.84 -50.0 -40.0 14 

Dissolved oxygen mg/l 8.7 0.34 8.2 9.6 14 

Electrical conductivity µS/cm 751.5 5.75 744.0 768.0 14 

Total dissolved solids mg/l 375.8 2.87 372.0 384.0 14 

Suspended solids mg/l 11.1 1.03 9.0 13.0 14 

Turbidity NTU 6.0 0.68 4.9 7.5 14 

Colour Pt Co 1275.0 4.39 1268.0 1280.0 14 

Chemical oxygen demand mg/l 386.1 1.55 384.2 388.0 4 

Ammonium-nitrogen mg/l 33.7 1.13 32.8 35.3 4 

Nitrate-nitrogen mg/l 31.4 1.19 29.8 32.6 4 

Ortho-phosphate-phosphorus mg/l 8.1 0.09 8.0 8.2 4 

Synthetic textile wastewater 

pH - 7.5 0.11 7.2 7.7 14 

Redox mV -38.9 3.34 -46.0 -33.0 14 

Dissolved oxygen mg/l 8.5 0.23 8.2 9.3 14 

Electrical conductivity µS/cm 714.8 3.48 711.0 722.8 14 

Total dissolved solids mg/l 357.4 1.74 355.5 361.4 14 

Suspended solids mg/l 7.0 0.93 5.0 8.0 14 

Turbidity NTU 3.5 0.13 3.2 3.8 14 

Colour Pt Co 30.8 1.74 27.0 33.0 14 

Chemical oxygen demand mg/l 366.0 0.82 365.0 367.0 4 

Ammonium-nitrogen mg/l 33.7 0.12 33.5 33.8 4 

Nitrate-nitrogen mg/l 31.1 0.17 30.9 31.3 4 

Ortho-phosphate-phosphorus mg/l 7.5 0.06 7.4 7.6 4 

Dechlorinated tap water 

pH - 7.1 0.16 6.9 7.4 30 

Redox mV -26.3 9.19 -40.0 -12.0 30 

Dissolved oxygen mg/l 8.8 0.49 8.4 9.8 30 

Electrical conductivity µS/cm 66.4 1.53 64.4 68.8 30 

Total dissolved solids mg/l 32.1 0.8 32.2 34.4 30 

Suspended solids mg/l 1.2 0.69 0.0 2.0 30 

Turbidity NTU 1.2 0.38 0.6 1.7 30 

Colour Pt Co 0.0 0.00 0.0 0.0 30 

Chemical oxygen demand mg/l 2.4 0.93 0.9 3.4 9 

Ammonium-nitrogen mg/l 0.04 0.003 0.04 0.05 9 

Nitrate-nitrogen mg/l 0.38 0.139 0.31 0.40 9 

Ortho-phosphate-phosphorus mg/l 1.03 0.221 0.80 1.44 9 

Note: NTU; nephelometric turbidity unit.  
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Figure 5.1 Mean inflow and outflow concentrations of the detected trace elements 

during the experiment between 1 October 2015 and 19 January 2016. Note: (a), zinc; 

(b), iron; (c), magnesium; (d), potassium; (e), calcium; (f), sodium; P3, Lemna minor L. 

ponds receiving inflow at normal pH; P4, control ponds receiving inflow at normal pH; P5, 

Lemna minor L. ponds receiving inflow at pH of 9; P6, control ponds receiving inflow at pH 

of 9; P7, Lemna minor L. ponds receiving inflow at pH of 6; P8, control ponds receiving 

inflow at pH of 6; STWW, synthetic textile wastewater; DTW, dechlorinated tap water.  
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5.2.2 Treatment performance 

5.2.2.1 Dye and apparent colour  

The efficiency of dye removal (Figure 5.2) was low for the planted ponds (P3) comprising 

acid blue 113 (AB113), reactive blue 198 (RB198) and direct orange 46 (DO46) compared 

to basic red 46 (BR46), which showed mean removals of around 85%. This was mainly due 

to the absence of sulpho groups and the simple structure of the dye BR46, as mentioned 

previously (Chapter 4, Sections 4.2.2.1, 4.3.2.1, and 4.4.2.1). The mean removal efficiency 

of L. minor ponds treating RB198 and BR46 (Figure 5.2) was significantly (Table 5.2) higher 

than the corresponding control ones which reflects the significantly lower outflow 

concentrations in L. minor ponds compared with control ones for these two dyes (Table 5.3). 

These results indicate that plants can remove RB198. However, both plant and microbial 

activities affected the dye BR46 molecule and increased dye elimination, although the 

impact of the plants was higher. The effect of L. minor in terms of treatment resembled 

outcomes reported by Keskinkan and Lugal Goksu (2007), who used submerged plants for 

treating basic blue 41. The dye AB113 was removed due to the impact of microbes and dye 

attachment on the walls. This was because no significant differences were found between L. 

minor and control ponds in terms of dye reductions. However, regarding DO46, it seems that 

biological treatment with shallow ponds planted with L. minor, which is associated with 

elevated DO concentrations, inhibits dye molecule removal. The longitudinal profile of the 

dye removal is shown in Figure 5.3.  

Regarding the impact of pH, the results showed that the mean removal efficiency of the L. 

minor ponds comprising the dyes AB113, RB198 and DO46 was higher at acidic conditions 

followed by the removal at normal pH and then at alkaline conditions. However, the mean 

removal of L. minor ponds treating the dye BR46 was similar for all different pH treatments 

(Figure 5.2). Salleh et al. (2011) indicated that at acidic conditions, the positive charge in 

the solution increased and the adsorbent surface appeared positively charged. Therefore, for 

cationic dyes (BR46), the dye concentration will increase leading to a reduction of the 

adsorbent and, consequently, the removal efficiency. However, in the case of anionic dyes 

(AB113, RB198 and DO46), the concentration will decrease leading to an increase of the 

adsorbent and, subsequently, the removal efficiency, and vice versa in the case of alkaline 

conditions. No significant differences (Table 5.4) were found in the mean dye removal 

among the pH cases for both control and L. minor ponds. The results showed that the impact 

of pH in this study was very low in terms of AB113, RB198 and DO46, and negligible for 
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BR46. This may be because the pH values of 6 and 9 were not suitable to considerably 

impact on the removal efficiency within the system and a stronger acid or base is required. 

In addition, the period of the experiment, of around three months, and the death of the plants 

resulted in insufficient valuable data being available to discuss. 

Based on the ultraviolet visible (UV-visible) scans data (Figure 5.4), the peaks of the inflow 

samples in the visible region were between 400 nm and 800 nm, at 556, 625, 530 and 421 

nm, and are linked to the chromophore groups for AB113, RB198, BR46 and DO46 in this 

order. However, for the outflow samples, the intensity of the dye adsorption peak at 566 nm 

reduced for both L. minor and control ponds, which confirmed the (low) reduction of AB113, 

because the colourless outflows were not achieved, with appearance of a new peak at 610 

nm (Figures 5.4a, b and c). This result indicates that the dye AB113 removal was due to the 

bio-sorption by microbes (Somasiri et al., 2006) and/or the dye accumulating on the sides of 

the pond as dry dye. The outflow samples of planted ponds treating RB198 showed 

appreciable decreases of the absorbance at 625 nm compared with the control ones. This 

reduction is not due to the dye molecule degradation or transformation, because the main 

peak at 625 nm does not completely disappear and the outflow samples were not colourless. 

Therefore, dye accumulation and/or adsorption by plants was the expected mechanism for 

the removal (Figures 5.4d, e and f). Regarding the dye BR46, the intensity of the absorption 

peak of the visible region at 530 nm completely disappeared for planted ponds with the 

appearance of a colourless product indicating significant decolourisation of this dye (Figures 

5.4g, h and i). This complete reduction was due to transformation and adsorption by plants 

and microbes. However, the mechanism of BR46 removal in the control ponds was due to 

microbial bio-sorption, because the colour band at 530 nm did not completely disappear, and 

may be biotransformation. The bands at 421 nm for the dye DO46 (Figures 5.4j, k and l) 

showed small absorbance reductions for both L. minor and control ponds, which may 

indicate that the removal was due to dye attachment on the sides of the ponds. The figures 

for each dye do not show appreciable differences in terms of pH variation. 

The HPLC chromatogram showed a peak at a retention time of 1.711 min for the AB113 

inflow (Appendix E, Figure E.1a). However, the outflow samples showed a peak at 1.687 

min for L. minor ponds and at 1.66 min for control ponds at normal pH, a peak at 1.895 and 

2.083 min for L. minor ponds and one at 1.677 min for control ponds at alkaline conditions, 

and at 1.619 and 1.655 min for L. minor ponds and at 1.745 min for control ones at acidic 

conditions. Peaks shifting or changing for both L. minor and control ponds, in addition to 
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the low dye removal for all ponds containing AB113, linked with the not colourless outflow 

samples indicating that the expected removal of this dye was due to adsorption processes 

(Appendix E, Figure E.10). The inflow RB198 sample displayed a distinct peak at 1.505 min 

(Appendix E, Figure E.1b). The peak for the inflow RB198 sample shifted for L. minor ponds 

after treatment, which reflects the low removal of this dye (Figure 5.2). However, small 

changes were found for peaks related to the control ponds, which implies that RB198 was 

not treated in the control ponds (Appendix E, Figure E.11). The peaks appeared at 1.613 and 

1.566 min for planted and unplanted ponds, respectively, at normal pH. The recordings of 

peaks were at 1.623 min for planted and 1.593 min for unplanted ponds at alkaline 

conditions, and at 1.616 and 1.557 min for planted and unplanted ponds, respectively, at 

acidic conditions. The BR46 inflow showed peaks at retention times of 1.488, 1.693, 2.569 

and 2.405 min (Appendix E, Figure E.1c). At normal pH, for L. minor ponds, new peaks 

were noted in HPLC chromatogram analysis for metabolites at 1.61, 1.82, 1.99 and 2.39 min. 

In addition, all inflow peaks disappeared, which confirms the formation of new products. 

However, the control ponds showed new peaks at 1.62, 1.81, 1.925 and 2.193 min. For the 

case of pH 9, the chromatogram indicated new peaks at 1.61, 1.822, 1.93 and 2.41 min for 

L. minor ponds, and at 1.62 and 2.257 min for control ponds. For pH 6, the parent dye BR46 

displayed a prominent peak at 1.588 min and other peaks at 1.72, 1.83 and 2.27 min for L. 

minor ponds, and at 1.62 and 2.082 min for the control ones (Appendix E, Figure E.12). As 

indicated by Khandare et al. (2011) and Kabra et al. (2012), there are peak variations between 

the inflow and outflow samples, and new peaks are noted as new products are formed by dye 

phytotransformation. Therefore, due to the presence of new products and the disappearance 

of the inflow peaks of BR46 linked with high removal of this dye (Figure 5.2) and the 

colourless outflow samples, the removal mechanisms were expected to be bio-sorption, 

complete phytotransformation (Khandare et al., 2011; Kabra et al., 2012) and may be 

biotransformation (Tahir et al., 2016) in planted ponds, and microbial adsorption and may 

be biotransformation in control ponds (Tahir et al., 2016). Finally, the dye DO46 showed a 

peak at 1.497 min (Appendix E, Figure E.1d). However, the outflow samples (Appendix E, 

Figure E.13) showed peaks at 1.711 and 1.68 min for the cases of normal pH, at 1.508 and 

1.597 min for pH of 9, and at 1.717 and 1.882 min for pH of 6, linked to planted and 

unplanted ponds, respectively. These changes may have been due to the interaction between 

the dye and the synthetic wastewater because the outflow colour was not changed.  

Based on colour monitoring, the mean outflow values were lower than the inflow values for 
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all ponds except the L. minor and control ponds containing the dye DO46, and the planted 

ponds treating the dye RB198. The mean outflow (Table 5.3) colour values for all planted 

ponds were significantly lower (Table 5.2) than the corresponding unplanted ones for the 

dye BR46 only. These results can be explained by the factors that affect colour (apparent 

colour) measurements which include the dye concentration and the suspended particles in 

the system. Therefore, the planted ponds for the dyes AB113, RB198 and DO46 showed 

higher colour due to the presence of dead plants in the system in addition to the high dye 

concentration due to the low removal. However, BR46 was treated better and the colour 

measurements were due to the impact of the dead plants. Inflow and outflow sample pictures 

are shown in Appendix F, Figure F.2. 

 

Figure 5.2 Mean dye removal efficiency during the experiment between 1 October 2015 

and 19 January 2016. Note: P3, Lemna minor L. ponds receiving inflow at normal pH; P4, 

control ponds receiving inflow at normal pH; P5, Lemna minor L. ponds receiving inflow at 

pH of 9; P6, control ponds receiving inflow at pH of 9; P7, Lemna minor L. ponds receiving 

inflow at pH of 6; P8, control ponds receiving inflow at pH of 6.
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Table 5.2 Overview of the statistical analysis between Lemna minor L. and control ponds for outflow water quality parameters 

and corresponding removal efficiencies for the period between 1 October 2015 and 19 January 2016 

Parameter 
Shapiro-Wilk test 

(p value1) 
p value1 

Shapiro-Wilk test 

(p value1) 
p value1 

Shapiro-Wilk test 

(p value1) 
p value1 

 Normal pH pH of 9 pH of 6 

Dye (mg/l) 

AB113 0.001 0.613 0.013 0.408 0.003 0.291 

RB198 0.001 0.000 0.022 0.000 0.002 0.000 

BR46 0.000 0.000 0.000 0.000 0.001 0.000 

DO46 0.001 0.312 0.472 0.29 0.791 0.497 

Dye removal (%) 

AB113 0.226 0.686 0.449 0.281 0.829 0.409 

RB198 0.000 0.017 0.004 0.000 0.000 0.000 

BR46 0.000 0.000 0.000 0.000 0.000 0.000 

DO46 0.001 0.963 0.246 0.982 0.654 0.816 

Colour (Pt Co) 

AB113 0.096 0.081 0.056 0.808 0.026 0.748 

RB198 0.163 0.000 0.463 0.068 0.074 0.229 

BR46 0.001 0.000 0.000 0.000 0.000 0.000 

DO46 0.287 0.012 0.354 0.003 0.159 0.008 

Chemical oxygen demand (mg/l) 

AB113 0.266 0.485 0.554 0.773 0.658 0.633 

RB198 0.502 0.795 0.328 0.752 0.843 0.666 

BR46 0.511 0.911 0.812 0.653 0.716 0.585 

DO46 0.875 0.665 0.875 0.089 0.164 0.364 

Chemical oxygen demand removal (%) 

AB113 0.383 0.842 0.787 0.548 0.65 0.797 

RB198 0.521 0.983 0.408 0.743 0.37 0.893 

BR46 0.139 0.753 0.61 0.741 0.556 0.872 

DO46 0.63 0.477 0.751 0.008 0.817 0.807 

Ammonium-nitrogen (mg/l) 

AB113 0.316 0.698 0.378 0.749 0.09 0.8 
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Table 5.2 (Continued)       

RB198 0.626 0.322 0.684 0.417 0.948 0.446 

BR46 0.696 0.536 0.416 0.867 0.751 0.584 

DO46 0.17 0.72 0.563 0.632 0.121 0.737 

Ammonium-nitrogen removal (%) 

AB113 0.865 0.533 0.898 0.628 0.657 0.77 

RB198 0.147 0.677 0.504 0.787 0.001 0.386 

BR46 0.693 0.655 0.170 0.650 0.067 0.745 

DO46 0.138 0.690 0.121 0.796 0.530 0.993 

Nitrate-nitrogen (mg/l) 

AB113 0.474 0.816 0.695 0.056 0.447 0.062 

RB198 0.471 0.601 0.181 0.525 0.647 0.229 

BR46 0.721 0.346 0.693 0.302 0.584 0.013 

DO46 0.426 0.467 0.666 0.475 0.214 0.843 

Nitrate-nitrogen removal (%) 

AB113 0.075 0.841 0.003 0.773 0.009 1.000 

RB198 0.318 0.944 0.72 0.929 0.056 0.967 

BR46 0.055 0.919 0.468 0.847 0.049 0.564 

DO46 0.191 0.913 0.142 0.621 0.084 0.869 

Ortho-phosphate-phosphorus (mg/l) 

AB113 0.146 0.958 0.152 0.663 0.84 0.623 

RB198 0.038 0.139 0.8 0.005 0.511 0.098 

BR46 0.862 0.056 0.479 0.072 0.47 0.05 

DO46 0.752 0.072 0.277 0.124 0.781 0.094 

Ortho-phosphate-phosphorus removal (%) 

AB113 0.958 0.07 0.192 0.137 0.889 0.026 

RB198 0.636 0.038 0.371 0.008 0.85 0.012 

BR46 0.628 0.023 0.287 0.019 0.967 0.009 

DO46 0.081 0.059 0.822 0.078 0.135 0.221 

Suspended solids (mg/l) 

AB113 0.167 0.077 0.069 0.156 0.059 0.093 

RB198 0.000 0.47 0.008 0.854 0.390 0.125 

BR46 0.008 0.089 0.108 0.805 0.04 0.89 
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Table 5.2 (Continued)       

DO46 0.297 0.69 0.008 0.853 0.078 0.055 

Turbidity (NTU) 

AB113 0.254 0.469 0.000 0.646 0.073 0.304 

RB198 0.000 0.408 0.029 0.679 0.002 0.597 

BR46 0.000 0.215 0.000 0.334 0.066 0.907 

DO46 0.463 0.466 0.571 0.705 0.000 0.646 

Dissolved oxygen (mg/l) 

AB113 0.524 0.612 0.523 0.767 0.173 0.298 

RB198 0.397 0.691 0.863 0.419 0.359 0.347 

BR46 0.391 0.438 0.654 0.996 0.063 0.524 

DO46 0.143 0.511 0.100 0.963 0.125 0.386 

pH (-) 

AB113 0.468 0.214 0.003 0.29 0.051 0.204 

RB198 0.142 0.118 0.000 0.215 0.001 0.147 

BR46 0.184 0.859 0.000 0.89 0.016 0.160 

DO46 0.218 0.173 0.000 0.27 0.110 0.210 

Redox potential (mV) 

AB113 0.000 0.358 0.098 0.025 0.068 0.208 

RB198 0.180 0.133 0.000 0.300 0.002 0.182 

BR46 0.293 0.991 0.000 0.782 0.024 0.182 

DO46 0.018 0.231 0.000 0.223 0.129 0.028 

Electrical conductivity (µS/cm) 

AB113 0.001 0.000 0.058 0.001 0.001 0.000 

RB198 0.008 0.000 0.006 0.002 0.004 0.000 

BR46 0.033 0.001 0.208 0.000 0.000 0.000 

DO46 0.206 0.000 0.002 0.003 0.000 0.005 

Note: 1Test of normality (if p > 0.05, data are normally distributed; if p < 0.05, data are not normally distributed); 2p value, probability of 

the statistical test (if p > 0.05, the variables are not statistically significantly different; if p < 0.05, the variables are statistically significantly 

different); NTU, nephelometric turbidity unit; Mann-Whitney U test used when the data are not normally distributed and independent 

sample t-test used when the data are normally distributed; AB113, acid blue 113; RB198, reactive blue 198; BR46, basic red 46; DO46, 

direct orange 46. 
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Table 5.3 Outflow water quality parameters for each system between 1 October 

2015 and 19 January 2016 

Parameter Unit Mean 
Standard 

deviation 
Minimum Maximum Number 

Acid blue113 + STWW at normal pH for Lemna minor L. ponds 

Dye concentration mg/l 6.1 1.67 4.2 10.1 14 

pH - 7.5 0.20 7.8 7.2 14 

Redox mV -62.6 31.57 -121.0 -31.0 14 

Dissolved oxygen mg/l 7.6 0.38 7.1 8.2 14 

Electrical conductivity µS/cm 715.3 27.92 668.0 766.0 14 

Total dissolved solids mg/l 357.6 13.96 334.0 383.0 14 

Suspended solids mg/l 19.1 4.39 12.0 25.5 14 

Turbidity NTU 6.5 2.36 2.9 12.0 14 

Colour Pt Co 817.0 51.65 736.5 894.0 14 

Chemical oxygen demand mg/l 112.9 29.01 83.7 161.0 4 

Ammonium -nitrogen mg/l 12.4 3.97 7.9 18.8 4 

Nitrate-nitrogen mg/l 12.2 2.37 9.6 15.0 4 

Ortho-phosphate-phosphorus mg/l 13.6 2.32 9.9 16.0 4 

Acid blue113 + STWW at normal pH for control ponds 

Dye concentration mg/l 6.4 1.53 4.8 10.0 14 

pH - 7.7 0.25 8.0 7.1 14 

Redox mV -66.9 28.07 -114.0 -32.0 14 

Dissolved oxygen mg/l 7.7 0.36 7.1 8.5 14 

Electrical conductivity µS/cm 763.9 5.62 752.5 774.0 14 

Total dissolved solids mg/l 382.0 2.81 376.3 387.0 14 

Suspended solids mg/l 15.8 4.81 8.0 24.0 14 

Turbidity NTU 5.9 1.46 3.5 8.7 14 

Colour Pt Co 846.2 26.49 793.5 886.5 14 

Chemical oxygen demand mg/l 98.5 16.77 75.1 122.0 4 

Ammonium -nitrogen mg/l 13.9 4.51 9.1 21.0 4 

Nitrate-nitrogen mg/l 13.0 5.53 7.1 21.1 4 

Ortho-phosphate-phosphorus mg/l 13.7 2.09 10.5 15.6 4 

Acid blue113 + STWW at pH 9 for Lemna minor L. ponds 

Dye concentration mg/l 6.9 1.13 5.4 9.2 14 

pH - 7.9 0.46 8.8 7.5 14 

Redox mV -56.6 9.82 -82.0 -47.0 14 

Dissolved oxygen mg/l 7.7 0.32 7.2 8.3 14 

Electrical conductivity µS/cm 730.1 36.18 666.0 786.5 14 

Total dissolved solids mg/l 365.1 18.09 333.0 393.3 14 

Suspended solids mg/l 16.8 5.07 9.5 26.0 14 

Turbidity NTU 6.7 4.57 2.3 20.4 14 

Colour Pt Co 857.9 24.30 811.0 888.5 14 

Chemical oxygen demand mg/l 98.6 19.11 72.3 126.0 4 

Ammonium -nitrogen mg/l 10.7 3.33 6.1 15.5 4 

Nitrate-nitrogen mg/l 12.9 2.88 9.2 15.9 4 

Ortho-phosphate-phosphorus mg/l 12.5 2.69 8.1 15.5 4 

Acid blue113 + STWW at pH 9 for control ponds 

Dye concentration mg/l 7.6 1.75 5.6 11.3 14 

       



Chapter 5: Impact of pH Adjustment on System Performance 

191 

Table 5.3 (Continued)       

pH - 8.0 0.47 8.7 7.1 14 

Redox mV -66.3 10.95 -87.0 -47.0 14 

Dissolved oxygen mg/l 7.8 0.33 7.3 8.5 14 

Electrical conductivity µS/cm 777.7 26.87 721.0 810.5 14 

Total dissolved solids mg/l 388.9 13.44 360.5 405.3 14 

Suspended solids mg/l 14.1 4.24 9.0 23.0 14 

Turbidity NTU 6.0 1.15 3.8 7.9 14 

Colour Pt Co 853.6 56.89 738.5 956.5 14 

Chemical oxygen demand mg/l 103.2 18.61 81.9 133.0 4 

Ammonium -nitrogen mg/l 11.8 4.49 6.7 19.0 4 

Nitrate-nitrogen mg/l 21.1 5.23 14.5 28.8 4 

Ortho-phosphate-phosphorus mg/l 13.4 2.20 9.9 15.5 4 

Acid blue113 + STWW at pH 6 for Lemna minor L. ponds 

Dye concentration mg/l 6.0 1.20 4.7 9.3 14 

pH - 7.2 0.42 7.8 6.5 14 

Redox mV -30.4 22.68 -61.0 12.0 14 

Dissolved oxygen mg/l 7.5 0.29 7.1 8.1 14 

Electrical conductivity µS/cm 751.9 24.25 698.0 779.0 14 

Total dissolved solids mg/l 376.0 12.12 349.0 389.5 14 

Suspended solids mg/l 20.7 5.67 9.0 35.0 14 

Turbidity NTU 8.1 3.70 3.5 15.0 14 

Colour Pt Co 918.7 38.82 866.0 978.0 14 

Chemical oxygen demand mg/l 120.2 16.79 97.8 145.0 4 

Ammonium -nitrogen mg/l 12.5 5.77 6.6 22.0 4 

Nitrate-nitrogen mg/l 11.4 2.62 8.0 15.1 4 

Ortho-phosphate-phosphorus mg/l 15.4 3.27 10.2 19.0 4 

Acid blue113 + STWW at pH 6 for control ponds 

Dye concentration mg/l 6.5 1.31 4.7 9.1 14 

pH - 7.4 0.30 7.8 6.9 14 

Redox mV -40.6 17.31 -66.0 -10.0 14 

Dissolved oxygen mg/l 7.6 0.34 7.2 8.3 14 

Electrical conductivity µS/cm 783.2 6.42 771.5 798.5 14 

Total dissolved solids mg/l 391.6 3.21 385.8 399.3 14 

Suspended solids mg/l 16.5 6.44 6.5 25.0 14 

Turbidity NTU 7.0 0.68 5.7 8.6 14 

Colour Pt Co 914.2 37.20 861.0 980.0 14 

Chemical oxygen demand mg/l 112.4 21.15 85.4 144.0 4 

Ammonium -nitrogen mg/l 13.9 6.45 7.2 24.5 4 

Nitrate-nitrogen mg/l 19.9 5.87 13.1 28.8 4 

Ortho-phosphate-phosphorus mg/l 16.6 2.74 12.8 20.2 4 

Reactive blue 198 + STWW at normal pH for Lemna minor L. ponds 

Dye concentration mg/l 8.0 2.13 4.6 11.4 14 

pH - 7.5 0.26 7.9 6.9 14 

Redox mV -48.6 14.51 -67.0 -14.0 14 

Dissolved oxygen mg/l 7.6 0.30 7.0 8.2 14 

Electrical conductivity µS/cm 726.7 14.30 705.0 759.0 14 

Total dissolved solids mg/l 363.4 7.15 352.5 379.5 14 
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Table 5.3 (Continued)       

Suspended solids mg/l 15.8 5.08 10.0 25.0 14 

Turbidity NTU 6.6 3.10 4.6 17.2 14 

Colour Pt Co 246.5 23.59 194.5 287.5 14 

Chemical oxygen demand mg/l 80.8 27.05 47.9 123.0 4 

Ammonium -nitrogen mg/l 9.3 3.82 5.1 15.5 4 

Nitrate-nitrogen mg/l 18.0 3.81 14.1 24.3 4 

Ortho-phosphate-phosphorus mg/l 7.6 1.58 6.2 10.1 4 

Reactive blue 198 + STWW at normal pH for control ponds 

Dye concentration mg/l 12.1 0.41 11.3 12.8 14 

pH - 7.7 0.20 8.0 7.3 14 

Redox mV -56.2 10.28 -74.0 -36.0 14 

Dissolved oxygen mg/l 7.6 0.32 7.2 8.2 14 

Electrical conductivity µS/cm 769.0 7.34 757.5 784.0 14 

Total dissolved solids mg/l 384.5 3.67 378.8 392.0 14 

Suspended solids mg/l 13.4 1.07 11.5 15.0 14 

Turbidity NTU 6.0 0.55 5.1 6.8 14 

Colour Pt Co 217.3 10.71 203.5 242.5 14 

Chemical oxygen demand mg/l 74.5 29.36 32.0 115.0 4 

Ammonium -nitrogen mg/l 12.4 3.15 8.0 16.9 4 

Nitrate-nitrogen mg/l 16.2 3.98 12.0 22.2 4 

Ortho-phosphate-phosphorus mg/l 9.7 0.42 9.1 10.1 4 

Reactive blue 198 + STWW at pH 9 for Lemna minor L. ponds 

Dye concentration mg/l 8.7 1.90 5.6 11.7 14 

pH - 7.9 0.47 8.7 7.4 14 

Redox mV -67.8 26.59 -115.0 -39.0 14 

Dissolved oxygen mg/l 7.7 0.28 7.2 8.3 14 

Electrical conductivity µS/cm 741.7 34.55 664.0 794.0 14 

Total dissolved solids mg/l 370.8 17.27 332.0 397.0 14 

Suspended solids mg/l 14.4 2.51 9.5 20.0 14 

Turbidity NTU 5.8 0.83 4.9 7.5 14 

Colour Pt Co 263.0 16.91 236.5 290.0 14 

Chemical oxygen demand mg/l 77.6 30.74 35.4 122.0 4 

Ammonium -nitrogen mg/l 8.6 3.53 4.9 14.4 4 

Nitrate-nitrogen mg/l 15.2 5.39 10.5 24.0 4 

Ortho-phosphate-phosphorus mg/l 6.4 1.16 5.0 7.8 4 

Reactive blue 198 + STWW at pH 9 for control ponds 

Dye concentration mg/l 12.1 0.88 10.8 14.7 14 

pH - 8.0 0.47 8.8 7.5 14 

Redox mV -73.0 25.29 -117.0 -45.0 14 

Dissolved oxygen mg/l 7.8 0.29 7.3 8.3 14 

Electrical conductivity µS/cm 781.3 30.94 748.0 880.5 14 

Total dissolved solids mg/l 390.6 15.47 374.0 440.3 14 

Suspended solids mg/l 13.2 4.00 4.0 17.0 14 

Turbidity NTU 5.7 2.02 2.7 10.7 14 

Colour Pt Co 248.4 21.78 215.0 285.0 14 

Chemical oxygen demand mg/l 86.1 31.75 35.2 121.0 4 

Ammonium -nitrogen mg/l 11.3 3.85 6.4 17.1 4 
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Nitrate-nitrogen mg/l 18.1 5.29 13.8 27.0 4 

Ortho-phosphate-phosphorus mg/l 10.1 0.87 9.2 11.5 4 

Reactive blue 198 + STWW at pH 6 for Lemna minor L. ponds 

Dye concentration mg/l 6.4 2.06 3.6 10.5 14 

pH - 6.8 0.91 7.8 5.2 14 

Redox mV -17.8 39.21 -61.0 36.0 14 

Dissolved oxygen mg/l 7.5 0.26 7.2 8.2 14 

Electrical conductivity µS/cm 744.6 18.55 711.5 768.0 14 

Total dissolved solids mg/l 372.3 9.27 355.8 384.0 14 

Suspended solids mg/l 14.8 2.08 11.0 18.0 14 

Turbidity NTU 6.1 0.64 5.3 7.5 14 

Colour Pt Co 215.9 18.16 169.0 250.5 14 

Chemical oxygen demand mg/l 83.6 24.31 50.5 118.0 4 

Ammonium -nitrogen mg/l 10.8 3.78 6.0 16.6 4 

Nitrate-nitrogen mg/l 21.1 4.10 16.4 27.7 4 

Ortho-phosphate-phosphorus mg/l 8.6 1.30 6.9 10.5 4 

Reactive blue 198+ STWW at pH 6 for control ponds 

Dye concentration mg/l 12.0 0.85 9.8 13.0 14 

pH - 7.3 0.47 7.8 6.1 14 

Redox mV -37.5 27.93 -74.0 34.0 14 

Dissolved oxygen mg/l 7.6 0.30 7.1 8.1 14 

Electrical conductivity µS/cm 780.3 5.14 771.5 788.0 14 

Total dissolved solids mg/l 390.1 2.57 385.8 394.0 14 

Suspended solids mg/l 13.3 2.70 7.0 18.0 14 

Turbidity NTU 6.0 1.14 4.8 7.1 14 

Colour Pt Co 208.5 11.78 187.0 235.5 14 

Chemical oxygen demand mg/l 75.1 21.76 41.3 102.0 4 

Ammonium -nitrogen mg/l 13.5 4.16 7.7 19.3 4 

Nitrate-nitrogen mg/l 26.6 5.69 18.4 34.0 4 

Ortho-phosphate-phosphorus mg/l 10.3 0.76 9.1 11.0 4 

Basic red 46 + STWW at normal pH for Lemna minor L. ponds 

Dye concentration mg/l 1.1 1.39 0.3 5.0 14 

pH - 7.6 0.30 8.3 7.2 14 

Redox mV -55.2 16.20 -90.0 -30.0 14 

Dissolved oxygen mg/l 7.6 0.31 7.2 8.2 14 

Electrical conductivity µS/cm 702.2 48.84 622.0 764.0 14 

Total dissolved solids mg/l 351.1 24.42 311.0 382.0 14 

Suspended solids mg/l 17.8 7.14 8.0 30.5 14 

Turbidity NTU 7.1 1.31 4.8 9.8 14 

Colour Pt Co 198.0 48.48 155.5 313.0 14 

Chemical oxygen demand mg/l 89.4 22.44 58.8 121.0 4 

Ammonium -nitrogen mg/l 11.8 4.55 6.3 18.8 4 

Nitrate-nitrogen mg/l 15.2 4.65 10.0 22.0 4 

Ortho-phosphate-phosphorus mg/l 8.6 1.07 7.5 10.3 4 

Basic red 46 + STWW at normal pH for control ponds 

Dye concentration mg/l 7.2 0.80 6.3 9.1 14 

pH - 7.7 0.21 8.0 7.3 14 
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Redox mV -56.2 12.91 -78.0 -34.0 14 

Dissolved oxygen mg/l 7.7 0.34 7.1 8.2 14 

Electrical conductivity µS/cm 763.0 32.82 692.5 799.0 14 

Total dissolved solids mg/l 381.5 16.41 346.3 399.5 14 

Suspended solids mg/l 14.4 10.70 4.0 33.0 14 

Turbidity NTU 6.9 2.46 3.9 15.3 14 

Colour Pt Co 456.9 52.27 326.0 527.5 14 

Chemical oxygen demand mg/l 87.2 23.04 53.0 118.0 4 

Ammonium -nitrogen mg/l 14.5 5.47 8.0 23.0 4 

Nitrate-nitrogen mg/l 19.5 5.42 14.2 27.4 4 

Ortho-phosphate-phosphorus mg/l 10.9 1.34 9.4 13.0 4 

Basic red 46 + STWW at pH 9 for Lemna minor L. ponds 

Dye concentration mg/l 0.9 1.16 0.2 4.5 14 

pH - 7.9 0.41 8.7 7.5 14 

Redox mV -71.0 22.61 -109.0 -43.0 14 

Dissolved oxygen mg/l 7.7 0.34 7.2 8.4 14 

Electrical conductivity µS/cm 731.7 25.07 682.0 759.5 14 

Total dissolved solids mg/l 365.8 12.54 341.0 379.8 14 

Suspended solids mg/l 12.1 3.31 7.0 17.5 14 

Turbidity NTU 6.7 1.53 5.2 11.0 14 

Colour Pt Co 205.0 9.69 188.0 221.5 14 

Chemical oxygen demand mg/l 83.8 27.75 45.3 122.0 4 

Ammonium -nitrogen mg/l 10.5 3.71 6.1 16.3 4 

Nitrate-nitrogen mg/l 12.7 3.63 9.0 17.8 4 

Ortho-phosphate-phosphorus mg/l 9.8 1.23 8.6 11.8 4 

Basic red 46 + STWW at pH 9 for control ponds 

Dye concentration mg/l 7.0 0.84 5.8 8.9 14 

pH - 8.0 0.42 8.8 7.5 14 

Redox mV -71.3 21.99 -107.0 -44.0 14 

Dissolved oxygen mg/l 7.7 0.33 7.1 8.3 14 

Electrical conductivity µS/cm 781.2 28.65 712.0 809.0 14 

Total dissolved solids mg/l 390.6 14.33 356.0 404.5 14 

Suspended solids mg/l 11.8 3.26 7.5 18.0 14 

Turbidity NTU 6.5 0.58 5.9 7.2 14 

Colour Pt Co 562.9 48.65 481.5 639.0 14 

Chemical oxygen demand mg/l 93.1 19.90 60.9 115.0 4 

Ammonium -nitrogen mg/l 11.0 3.18 6.5 15.5 4 

Nitrate-nitrogen mg/l 16.3 4.09 12.2 22.1 4 

Ortho-phosphate-phosphorus mg/l 12.3 1.57 10.1 14.0 4 

Basic red 46 + STWW at pH 6 for Lemna minor L. ponds 

Dye concentration mg/l 0.9 1.26 0.2 5.0 14 

pH - 7.3 0.26 7.8 6.9 14 

Redox mV -34.4 15.04 -63.0 -13.0 14 

Dissolved oxygen mg/l 7.5 0.27 7.2 8.0 14 

Electrical conductivity µS/cm 724.1 40.90 668.0 778.0 14 

Total dissolved solids mg/l 362.1 20.45 334.0 389.0 14 

Suspended solids mg/l 15.2 6.35 7.0 31.0 14 

       



Chapter 5: Impact of pH Adjustment on System Performance 

195 

Table 5.3 (Continued)       

Turbidity NTU 6.6 0.98 5.0 7.6 14 

Colour Pt Co 212.9 14.36 192.5 240.5 14 

Chemical oxygen demand mg/l 99.3 16.02 79.0 122.0 4 

Ammonium -nitrogen mg/l 11.1 4.15 6.0 17.5 4 

Nitrate-nitrogen mg/l 11.4 5.60 5.4 20.2 4 

Ortho-phosphate-phosphorus mg/l 9.8 1.42 8.7 12.2 4 

Basic red 46 + STWW at pH 6 for control ponds 

Dye concentration mg/l 7.3 1.36 5.3 9.9 14 

pH - 7.4 0.30 7.9 7.1 14 

Redox mV -42.7 16.55 -66.0 -25.0 14 

Dissolved oxygen mg/l 7.6 0.36 7.1 8.2 14 

Electrical conductivity µS/cm 780.0 5.60 770.1 792.0 14 

Total dissolved solids mg/l 390.0 2.80 385.0 396.0 14 

Suspended solids mg/l 14.8 6.49 7.0 25.5 14 

Turbidity NTU 6.5 3.04 2.7 12.6 14 

Colour Pt Co 538.8 58.73 471.0 648.0 14 

Chemical oxygen demand mg/l 90.2 22.25 58.3 121.0 4 

Ammonium -nitrogen mg/l 13.1 4.36 7.7 19.8 4 

Nitrate-nitrogen mg/l 25.0 3.69 22.0 31.2 4 

Ortho-phosphate-phosphorus mg/l 12.8 1.49 11.1 14.5 4 

Direct orange 46 + STWW at normal pH for Lemna minor L. ponds 

Dye concentration mg/l 10.8 1.48 8.6 13.3 14 

pH - 7.5 0.31 8.2 7.1 14 

Redox mV -52.0 17.36 -85.0 -34.0 14 

Dissolved oxygen mg/l 7.8 0.24 7.5 8.2 14 

Electrical conductivity µS/cm 733.7 13.42 714.5 758.0 14 

Total dissolved solids mg/l 380.3 51.13 357.3 563.3 14 

Suspended solids mg/l 12.4 3.21 8.0 19.0 14 

Turbidity NTU 5.8 0.82 4.0 6.8 14 

Colour Pt Co 1477.4 119.52 1265.0 1621.5 14 

Chemical oxygen demand mg/l 76.8 20.56 50.7 108.0 4 

Ammonium -nitrogen mg/l 10.0 4.05 5.5 16.6 4 

Nitrate-nitrogen mg/l 18.9 1.87 16.8 21.0 4 

Ortho-phosphate-phosphorus mg/l 15.5 2.77 11.0 18.6 4 

Direct orange 46 + STWW at normal pH for control ponds 

Dye concentration mg/l 11.6 2.33 9.4 18.3 14 

pH - 7.7 0.21 8.0 7.3 14 

Redox mV -56.4 11.97 -74.0 -38.0 14 

Dissolved oxygen mg/l 7.9 0.42 7.1 8.8 14 

Electrical conductivity µS/cm 764.2 8.91 746.0 780.0 14 

Total dissolved solids mg/l 382.1 4.45 373.0 390.0 14 

Suspended solids mg/l 11.9 2.10 7.0 15.5 14 

Turbidity NTU 5.6 1.01 3.7 7.5 14 

Colour Pt Co 1351.6 119.40 1168.0 1681.5 14 

Chemical oxygen demand mg/l 85.7 26.88 44.6 120.0 4 

Ammonium -nitrogen mg/l 11.4 4.55 6.8 18.8 4 

Nitrate-nitrogen mg/l 17.7 1.77 15.6 20.0 4 
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Table 5.3 (Continued)       

Ortho-phosphate-phosphorus mg/l 20.8 3.18 15.5 24.0 4 

Direct orange 46 + STWW at pH 9 for Lemna minor L. ponds 

Dye concentration mg/l 15.4 1.55 13.0 18.5 14 

pH - 8.0 0.60 9.3 7.5 14 

Redox mV -74.1 33.46 -148.0 -45.0 14 

Dissolved oxygen mg/l 8.1 0.41 7.6 9.2 14 

Electrical conductivity µS/cm 737.8 22.35 711.0 779.0 14 

Total dissolved solids mg/l 368.9 11.17 355.5 389.5 14 

Suspended solids mg/l 12.1 3.46 7.5 20.0 14 

Turbidity NTU 5.3 0.68 4.5 6.5 14 

Colour Pt Co 1632.9 111.90 1337.5 1765.5 14 

Chemical oxygen demand mg/l 106.4 13.88 84.4 122.0 4 

Ammonium -nitrogen mg/l 9.5 3.83 4.9 15.5 4 

Nitrate-nitrogen mg/l 23.1 2.78 19.6 26.6 4 

Ortho-phosphate-phosphorus mg/l 18.4 2.84 13.7 21.0 4 

Direct orange 46 + STWW at pH 9 for control ponds 

Dye concentration mg/l 15.9 2.11 11.6 18.9 14 

pH - 8.1 0.63 9.2 7.2 14 

Redox mV -79.3 34.14 -144.0 -47.0 14 

Dissolved oxygen mg/l 8.1 0.50 7.5 9.4 14 

Electrical conductivity µS/cm 766.1 8.02 743.0 778.0 14 

Total dissolved solids mg/l 383.0 4.01 371.5 389.0 14 

Suspended solids mg/l 11.8 3.29 8.0 21.0 14 

Turbidity NTU 5.2 0.97 3.3 7.2 14 

Colour Pt Co 1496.3 99.39 1344.0 1717.0 14 

Chemical oxygen demand mg/l 126.9 10.70 116.0 143.0 4 

Ammonium -nitrogen mg/l 11.0 3.61 6.2 16.4 4 

Nitrate-nitrogen mg/l 25.1 3.48 22.5 31.0 4 

Ortho-phosphate-phosphorus mg/l 21.9 1.75 19.0 23.5 4 

Direct orange 46 + STWW at pH 6 for Lemna minor L. ponds 

Dye concentration mg/l 11.1 1.44 8.1 13.8 14 

pH - 7.1 0.42 7.8 6.5 14 

Redox mV -25.2 22.37 -62.0 7.0 14 

Dissolved oxygen mg/l 7.7 0.27 7.1 8.1 14 

Electrical conductivity µS/cm 749.3 27.92 672.0 784.0 14 

Total dissolved solids mg/l 374.6 13.96 336.0 392.0 14 

Suspended solids mg/l 13.1 1.15 11.5 15.0 14 

Turbidity NTU 6.0 0.44 5.1 6.5 14 

Colour Pt Co 1405.4 73.12 1216.5 1489.5 14 

Chemical oxygen demand mg/l 106.9 7.43 100.0 118.2 4 

Ammonium -nitrogen mg/l 10.9 5.56 5.0 20.0 4 

Nitrate-nitrogen mg/l 18.7 2.73 15.5 22.2 4 

Ortho-phosphate-phosphorus mg/l 16.3 2.93 11.5 19.1 4 

Direct orange 46 + STWW at pH 6 for control ponds 

Dye concentration mg/l 11.5 1.29 9.5 13.8 14 

pH - 7.5 0.30 7.9 7.1 14 

Redox mV -43.3 16.79 -66.0 -24.0 14 
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Table 5.3 (Continued)       

Dissolved oxygen mg/l 7.8 0.34 7.1 8.3 14 

Electrical conductivity µS/cm 773.0 7.99 759.9 789.8 14 

Total dissolved solids mg/l 386.5 3.99 380.0 394.9 14 

Suspended solids mg/l 12.1 1.06 10.5 14.0 14 

Turbidity NTU 5.5 1.31 2.4 7.0 14 

Colour Pt Co 1332.5 55.57 1244.0 1457.5 14 

Chemical oxygen demand mg/l 98.5 12.80 76.9 110.0 4 

Ammonium -nitrogen mg/l 12.4 5.37 6.6 21.2 4 

Nitrate-nitrogen mg/l 18.2 2.92 14.2 21.0 4 

Ortho-phosphate-phosphorus mg/l 20.7 2.40 16.9 23.3 4 

STWW at normal pH for Lemna minor L. ponds 

pH - 7.7 0.26 8.0 7.3 14 

Redox mV -55.2 14.85 -79.0 -38.0 14 

Dissolved oxygen mg/l 8.2 0.49 7.4 9.5 14 

Electrical conductivity µS/cm 726.5 8.15 716.5 741.0 14 

Total dissolved solids mg/l 363.2 4.08 358.3 370.5 14 

Suspended solids mg/l 8.7 2.31 6.0 13.0 14 

Turbidity NTU 3.4 0.86 2.1 5.1 14 

Colour Pt Co 42.8 8.48 30.5 58.0 14 

Chemical oxygen demand mg/l 104.2 14.76 83.5 122.3 4 

Ammonium -nitrogen mg/l 7.6 2.93 5.0 12.2 4 

Nitrate-nitrogen mg/l 21.3 3.22 16.5 25.0 4 

Ortho-phosphate-phosphorus mg/l 9.1 3.17 5.6 13.8 4 

DTW at normal pH for Lemna minor L. ponds 

pH - 7.3 0.14 7.5 7.1 14 

Redox mV -34.6 7.99 -46.0 -23.0 14 

Dissolved oxygen mg/l 8.1 0.36 7.6 8.8 14 

Electrical conductivity µS/cm 71.6 5.68 61.5 78.5 14 

Total dissolved solids mg/l 35.8 2.84 30.8 39.3 14 

Suspended solids mg/l 4.8 0.86 3.0 6.0 14 

Turbidity NTU 2.4 0.96 1.0 4.1 14 

Colour Pt Co 21.1 7.37 8.0 30.5 14 

Chemical oxygen demand mg/l 20.1 12.24 7.0 36.0 4 

Ammonium-nitrogen mg/l 1.2 0.63 0.6 2.1 4 

Nitrate-nitrogen mg/l 1.0 0.27 0.6 1.3 4 

Ortho-phosphate-phosphorus mg/l 1.2 0.28 0.9 1.6 4 

Note: NTU, nephelometric turbidity unit; STWW, synthetic textile wastewater; DTW, 

dechlorinated tap water.  
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Figure 5.3 Mean values of dye removal profile between 1 October 2015 and 19 January 

2016. Note: (a), acid blue 113; (b), reactive blue 198; (c), basic red 46; (d), direct orange 46; 

P3, Lemna minor L. ponds receiving inflow at normal pH; P4, control ponds receiving inflow 

at normal pH; P5, Lemna minor L. ponds receiving inflow at pH of 9; P6, control ponds 

receiving inflow at pH of 9; P7, Lemna minor L. ponds receiving inflow at pH of 6; P8, 

control ponds receiving inflow at pH of 6. 
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Table 5.4 Overview of the statistical analysis in terms of the impact of pH factor for outflow water quality parameters and corresponding 

removal efficiencies for the period between 1 October 2015 and 19 January 2016 

Parameter Shapiro-Wilk 

test (p value1) 
p value1 Shapiro-Wilk 

test (p value1) 
p value1 

  Normal pH & 

pH 9 & pH 6 

Normal pH 

& pH 9 

Normal pH 

& pH 6 

pH 9 & 

pH 6 
 Normal pH & 

pH 9 & pH 6 

Normal pH 

& pH 9 

Normal pH 

& pH 6 

pH 9 & 

pH 6 

 Lemna minor L. ponds Control ponds 

Dye (mg/l) 

AB113 0.018 0.102 N/A N/A N/A 0.001 0.041 0.013 0.713 0.073 

RB198 0.092 0.022 0.720 0.117 0.020 0.006 0.307 N/A N/A N/A 

BR46 0.000 0.883 N/A N/A N/A 0.003 0.827 N/A N/A N/A 

DO46 0.284 0.000 0.000 0.802 0.000 0.004 0.002 0.003 0.696 0.002 

Dye removal (%) 

AB113 0.368 0.713 N/A N/A N/A 0.170 0.47 N/A N/A N/A 

RB198 0.004 0.125 N/A N/A N/A 0.000 0.289 N/A N/A N/A 

BR46 0.000 0.949 N/A N/A N/A 0.027 0.268 N/A N/A N/A 

DO46 0.028 0.366 N/A N/A N/A 0.001 0.229 N/A N/A N/A 

Colour (Pt Co) 

AB113 0.171 0.000 0.033 0.000 0.001 0.396 0.000 0.894 0.001 0.002 

RB198 0.554 0.000 0.099 0.001 0.000 0.003 0.000 0.001 0.081 0.000 

BR46 0.000 0.000 0.024 0.007 0.140 0.290 0.000 0.000 0.001 0.491 

DO46 0.742 0.000 0.001 0.000 0.192 0.036 0.000 0.001 0.818 0.000 

Chemical oxygen demand (mg/l) 

AB113 0.823 0.508 N/A N/A N/A 0.831 0.673 N/A N/A N/A 

RB198 0.297 0.965 N/A N/A N/A 0.321 0.852 N/A N/A N/A 

BR46 0.541 0.705 N/A N/A N/A 0.247 0.947 N/A N/A N/A 

DO46 0.221 0.057 N/A N/A N/A 0.716 0.057 N/A N/A N/A 

Chemical oxygen demand removal (%) 

AB113 0.145 0.842 N/A N/A N/A 0.858 0.792 N/A N/A N/A 

RB198 0.537 0.980 N/A N/A N/A 0.261 0.947 N/A N/A N/A 

BR46 0.495 0.991 N/A N/A N/A 0.048 0.925 N/A N/A N/A 

DO46 0.298 0.175 N/A N/A N/A 0.376 0.078 N/A N/A N/A 
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Table 5.4 (Continued) 

Ammonium-nitrogen (mg/l) 

AB113 0.203 0.857 N/A N/A N/A 0.125 0.858 N/A N/A N/A 

RB198 0.179 0.768 N/A N/A N/A 0.775 0.777 N/A N/A N/A 

BR46 0.159 0.932 N/A N/A N/A 0.441 0.64 N/A N/A N/A 

DO46 0.036 0.591 N/A N/A N/A 0.071 0.928 N/A N/A N/A 

Ammonium-nitrogen removal (%) 

AB113 0.931 0.722 N/A N/A N/A 0.785 0.759 N/A N/A N/A 

RB198 0.159 0.555 N/A N/A N/A 0.131 0.653 N/A N/A N/A 

BR46 0.521 0.708 N/A N/A N/A 0.187 0.762 N/A N/A N/A 

DO46 0.123 0.770 N/A N/A N/A 0.468 0.796 N/A N/A N/A 

Nitrate-nitrogen (mg/l) 

AB113 0.17 0.783 N/A N/A N/A 0.751 0.214 N/A N/A N/A 

RB198 0.761 0.321 N/A N/A N/A 0.31 0.072 N/A N/A N/A 

BR46 0.614 0.407 N/A N/A N/A 0.526 0.108 N/A N/A N/A 

DO46 0.606 0.099 N/A N/A N/A 0.395 0.018 0.026 0.974 0.037 

Nitrate-nitrogen removal (%) 

AB113 0.051 0.976 N/A N/A N/A 0.842 0.87 N/A N/A N/A 

RB198 0.235 0.663 N/A N/A N/A 0.246 0.887 N/A N/A N/A 

BR46 0.971 0.351 N/A N/A N/A 0.384 0.201 N/A N/A N/A 

DO46 0.091 0.177 N/A N/A N/A 0.503 0.181 N/A N/A N/A 

Ortho-phosphate-phosphorus (mg/l) 

AB113 0.851 0.464 N/A N/A N/A 0.702 0.226 N/A N/A N/A 

RB198 0.838 0.194 N/A N/A N/A 0.277 0.641 N/A N/A N/A 

BR46 0.233 0.411 N/A N/A N/A 0.311 0.322 N/A N/A N/A 

DO46 0.311 0.458 N/A N/A N/A 0.064 0.814 N/A N/A N/A 

Ortho-phosphate-phosphorus removal (%) 

AB113 0.365 0.587 N/A N/A N/A 0.454 0.151 N/A N/A N/A 

RB198 0.378 0.085 N/A N/A N/A 0.183 0.821 N/A N/A N/A 

BR46 0.007 0.098 N/A N/A N/A 0.447 0.584 N/A N/A N/A 

DO46 0.393 0.313 N/A N/A N/A 0.017 0.118 N/A N/A N/A 

Suspended solids (mg/l) 

AB113 0.014 0.276 N/A N/A N/A 0.043 0.56 N/A N/A N/A 
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Table 5.4 (Continued) 

RB198 0.001 0.913 N/A N/A N/A 0.000 0.479 N/A N/A N/A 

BR46 0.001 0.102 N/A N/A N/A 0.000 0.504 N/A N/A N/A 

DO46 0.028 0.209 N/A N/A N/A 0.001 0.087 N/A N/A N/A 

Turbidity (NTU) 

AB113 0.001 0.388 N/A N/A N/A 0.499 0.029 0.991 0.046 0.061 

RB198 0.000 0.284 N/A N/A N/A 0.000 0.531 N/A N/A N/A 

BR46 0.011 0.34 N/A N/A N/A 0.000 0.926 N/A N/A N/A 

DO46 0.047 0.038 0.06 0.854 0.013 0.253 0.641 N/A N/A N/A 

Dissolved oxygen (mg/l) 

AB113 0.058 0.927 0.92 0.98 0.978 0.839 0.823 0.808 0.929 0.964 

RB198 0.237 0.665 0.983 0.668 0.774 0.867 0.611 0.995 0.698 0.637 

BR46 0.534 0.803 0.997 0.855 0.816 0.416 0.775 0.999 0.784 0.802 

DO46 0.108 0.927 0.921 0.988 0.97 0.153 0.983 0.996 0.995 0.982 

pH (-) 

AB113 0.015 0.004 0.031 0.034 0.005 0.03 0.004 0.073 0.054 0.002 

RB198 0.000 0.011 0.093 0.048 0.008 0.003 0.008 0.129 0.029 0.006 

BR46 0.025 0.000 0.113 0.005 0.000 0.004 0.017 0.154 0.039 0.014 

DO46 0.007 0.000 0.007 0.026 0.000 0.000 0.016 0.147 0.035 0.014 

Redox potential (mV) 

AB113 0.026 0.010 0.231 0.026 0.006 0.109 0.002 0.997 0.005 0.006 

RB198 0.000 0.010 0.129 0.041 0.007 0.003 0.017 0.118 0.077 0.010 

BR46 0.080 0.000 0.117 0.013 0.000 0.018 0.010 0.089 0.034 0.009 

DO46 0.008 0.000 0.019 0.011 0.000 0.000 0.011 0.089 0.034 0.011 

Electrical conductivity (µS/cm) 

AB113 0.103 0.012 0.423 0.009 0.163 0.141 0.013 0.091 0.012 0.0672 

RB198 0.484 0.141 0.265 0.154 0.949 0.000 0.011 0.27 0.001 0.301 

BR46 0.053 0.186 0.363 0.909 0.879 0.000 0.111 0.066 0.323 0.129 

DO46 0.294 0.189 0.883 0.183 0.39 0.749 0.0260 0.827 0.027 0.100 

Note: 1Test of normality (if p > 0.05, data are normally distributed; if p < 0.05, data are not normally distributed); 2p value, probability of the 

statistical test (if p > 0.05, the variables are not statistically significantly different; if p < 0.05, the variables are statistically significantly different); 

NTU, nephelometric turbidity unit; Kruskal-Wallis test used when the data are not normally distributed and one-way ANOVA used when the data 

are normally distributed; AB113, acid blue 113; RB198, reactive blue 198; BR46, basic red 46; DO46, direct orange 46.  
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Figure 5.4 Ultraviolet visible analysis for the outflow samples at the end of the experimental rig, which was operated between 1 October 

2015 and 19 January 2016. Note: (a), (b) and (c) ponds treating the dye acid blue 113; (d), (e) and (f) ponds treating the dye reactive blue 198; 

(g), (h) and (i), ponds treating the dye basic red 46; and (j), (k) and (l), ponds treating the dye direct orange 46; IF, inflow; P3, Lemna minor L. 

ponds receiving inflow at normal pH; P4, control ponds receiving inflow at normal pH; P5, Lemna minor L. ponds receiving inflow at pH of 9; P6, 

control ponds receiving inflow at pH of 9; P7, Lemna minor L. ponds receiving inflow at pH of 6; P8, control ponds receiving inflow at pH of 6. 
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5.2.2.2 Chemical oxygen demand and dissolved oxygen  

Most of the mean outflow COD concentrations were slightly higher in L. minor ponds than 

the corresponding control ones as shown in Table 5.3, although no significant differences 

were found (Table 5.2). This was due to the impact of plant decay which increased the 

organic load in the system (Dalu & Ndamba, 2003).  

The average of COD removal efficiencies for all ponds were in the range between 50% and 

68% as shown in Figure 5.5, these results are clearly noticed from the high inflow COD 

concentrations compared with the lower outflow values (Tables 5.1 and 5.3). In this 

experiment, anoxic conditions were the dominant outflow conditions, although aerobic and 

anaerobic conditions also occur in the top layer and the bed of the duckweed ponds, 

respectively (Ozengin & Elmaci, 2007). It seems that these conditions linked with high levels 

of dissolved oxygen are able to degrade the organic matter in the system due to the impact 

of the heterotrophic bacteria rather than the uptake mechanism by the plants, which may be 

negligible as indicated by Ong et al. (2009). They mentioned that the main mechanism of 

COD removal in wetland systems is the biodegradation by heterotrophic micro-organisms 

under both aerobic and anaerobic conditions, although the aeration boosted the removal 

efficiency. In addition, the impact of the plants is normally neglected compared with the 

biodegradation by microbes. The results of COD removal in this experiment don’t match 

with the very low removal observed in the first experiment, Chapter 4 (Section 4.2.2.2) using 

the same macrophytes. This may be due to the operation of this experiment by removing the 

water to a level equivalent to 3 l, which reduced the accumulated load of COD. Statistically, 

the pH factor didn’t significantly affect (Table 5.4) the COD outflow concentrations and 

COD removal in all the ponds. 

Correlation analysis results indicate that the COD removal was significantly (r = 0.175, p = 

0.096) positively correlated with dye removal. The European and international standards set 

a limit for COD of 125 mg/l in the case of discharge of effluent directly into water courses. 

The results have shown that the COD outflow concentrations for L. minor ponds at normal 

pH, L. minor and control ponds at acidic conditions, L. minor and control ponds at basic 

conditions containing the dye AB113, and control ponds at basic conditions treating the dye 

DO46 were 1,1,1,1,1, and 2 times non-compliant, respectively.
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Figure 5.5 Mean chemical oxygen demand removal efficiency during the experiment between 1 October 2015 and 19 January 2016. Note: 

P3, Lemna minor L. ponds receiving inflow at normal pH; P4, control ponds receiving inflow at normal pH; P5, Lemna minor L. ponds receiving 

inflow at pH of 9; P6, control ponds receiving inflow at pH of 9; P7, Lemna minor L. ponds receiving inflow at pH of 6; P8, control ponds receiving 

inflow at pH of 6; STWW, synthetic textile wastewater; DTW, dechlorinated tap water. 
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Based on DO, the outflow values ranged between 7.0 and 9.4 mg/l for the ponds containing 

dyes (Table 5.3), which were lower or equal to the inflow values, which varied between 7.4 

and 9.6 mg/l. Statistically, no significant differences were observed between the designs 

variables (Table 5.2) for all dyes. These results indicate that the oxygen diffusion by the 

atmosphere affects the DO level in the system rather than the impact of the plants. Regarding 

the pH level in the system, the mean DO outflow values ranged as follows: at basic 

conditions > at normal pH > acidic conditions. Note that there is no direct relationship 

between pH and DO but at basic conditions carbon dioxide level decreases leading to an 

increase in the DO content, and vice versa for acidic conditions 

5.2.2.3 pH and redox potential  

The mean inflow pH values at initial conditions were between 7.4 and 7.6 for all dyes, 

however after adjustment the mean inflow pH values were 9± 0.08 and 6± 0.04 for the basic 

and acidic conditions, respectively. The mean pH values obtained from the outflow (Table 

5.3) were equal to or higher than the inflow pH values at normal conditions (Table 5.1). 

However, the mean outflow values dropped to be between 7.9 and 8.1 at basic conditions, 

and increased to be between 6.8 and 7.5 at acidic conditions. These results indicate that the 

chemicals in the system made the pH approximately neutral during the contact time. 

Furthermore, the mean outflow values for all dyes were slightly lower (not significant 

differences, Table 5.2) in L. minor ponds than in the corresponding control ponds (Table 

5.3). This small difference indicates that the plants also have ability to modify the pH values 

to balance the chemical contents in the cells by proton and ion exchanges from the coloured 

synthetic wastewater (Noonpui & Thiravetyan, 2011). The mean pH outflow values for all 

dyes ranged as follows: at basic conditions > at normal conditions > at acidic conditions for 

both, L. minor and control ponds. European and international standard thresholds for pH are 

6.5–8.5, and the results indicate that the planted and unplanted ponds at pH 9 containing 

AB113, planted ponds at pH 6 containing AB113, planted and unplanted ponds at pH 9 

treating RB198, planted and unplanted ponds treating RB198 at pH 6, planted and unplanted 

ponds fed by BR46 at pH 9, and planted and unplanted ponds at pH 9 containing DO46 were 

3, 4, 1, 3, 4, 6, 1, 3, 3, 4 and 4 times non-compliant. 

Redox potential is used as an indicator for the aerobic and anaerobic conditions in the aquatic 

system (Ong et al., 2009a). The maximum and minimum outflow values of redox potential 

indicate the presence of anaerobic and/or anoxic conditions for ponds at normal pH and basic 
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conditions, and aerobic and/or anoxic conditions at acidic conditions (Table 5.3). 

5.2.2.4 Suspended solids and turbidity  

The mean outflow SS concentrations (Table 5.3) for each dye were higher than the mean 

corresponding inflow values, which may be due to the organic matter biodegradation (Dalu 

& Ndamba, 2003). Regarding the design variables, the mean outflow SS values in L. minor 

ponds were slightly higher (Table 5.2) than the corresponding values of control ponds. This 

is because in addition to the impact of organic matter degradation, the die-off of L. minor 

and decomposition affected the concentration of SS in the planted ponds. Regarding the 

impact of pH level on the SS outflow values, no significant dissimilarity was found between 

the values of each dye (Table 5.4). According to the European and international standards, 

the results showed that all outflow SS concentrations were equal to or less than the standard 

limits of 35 mg/l (Carmen & Daniela, 2012). 

Based on the turbidity (Table 5.3), the mean outflow values were higher than the 

corresponding mean inflow values, except for RB198 and DO46 at basic conditions, which 

were slightly lower than the inflow. All mean outflow turbidity values were slightly higher 

(no significant dissimilarity, Table 5.2) in L. minor ponds compared with the corresponding 

values in control ponds. A correlation analysis indicated that SS was significantly (p < 0.01) 

positively correlated (r = 0.27, p = 0.000) with turbidity and significantly negatively (r = 

−0.212, p = 0.000) correlated with DO. Therefore, higher COD removal and high outflow 

SS concentrations are results of low DO content in the system, this is because the DO is 

consumed by microbial activities for organic matter degradation (Ong et al., 2011). A 

correlation analysis indicated that COD removal was significantly (p < 0.01) negatively 

correlated with DO (r = −0.339, p = 0.001) and significantly (p < 0.01) positively correlated 

with SS (r = 0.333, p = 0.001).  

5.2.2.5 Electrical conductivity and total dissolved solids  

The mean outflow EC values were lower than the corresponding inflow ones in L. minor 

ponds for each dye. However, control ponds showed mean outflow values higher than the 

inflow ones (Tables 5.1 and 5.3). In addition, the mean outflow EC values in L. minor ponds 

were significantly (Table 5.2) lower than the corresponding control ones. These results 

indicate that the plants reduced the EC content in the system. This is because large numbers 

of dye molecules might be caught in barriers within the vascular plant system (Nilratnisakorn 
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et al., 2009). The optimum growth rate of L. minor is linked with EC values ranging between 

600 and 1400 µS/cm (Wendeou et al., 2013), all the outflow values of EC in this experiment 

did not affect the optimum growth rate of L. minor.  

The mean outflow TDS values were half the EC values, and all the inflow and outflow TDS 

values showed the same trend as the inflow and outflow EC values (Table 5.3). This is 

because the EC is a function of TDS (Amankwaah et al., 2014). According to the European 

and international standards, the results showed that all outflow TDS concentrations were less 

than the standard limits of 3000 mg/l and 500 mg/l (Carmen & Daniela, 2012). 

5.2.2.6 Nutrients 

Based on nitrogen removal, the eutrophication that was caused by adding nitrogen to the 

surface water and the negative impacts on some aquatic organisms, which was caused by the 

presence of NH4–N in receiving watercourses, even in low concentrations, makes the 

removal of nitrogen a very important parameter for wastewater treatment systems. The main 

processes for nitrogen reduction in pond systems are nitrification and denitrification (which 

are affected by temperature, pH level, and sedimentation) as well as nutrient uptake by 

plants.  

Regarding ammonium-nitrogen (NH4–N), the removal efficiencies (Figure 5.6) ranged 

between 40% and 58% for all treatment systems which was clearly observed from the low 

outflow concentrations compared with the inflow ones (Tables 5.1 and 5.3). The removal 

values were slightly higher in L. minor ponds (no significant differences, Table 5.2) than the 

corresponding values for control ones, which reflects the small decrease (no significant 

differences, Table 5.2) in the mean outflow NH4–N concentrations in L. minor ponds 

compared with the corresponding control ones for each dye (Tale 5.3). These results indicate 

that the uptake of nitrogen by the plants was very low or absent. This is because the plants 

were not harvested during the experiment period due to their death and decomposition which 

indicates that the mechanism of nitrogen reduction by plant harvesting also did not occur. 

However, nitrogen accumulation in sediment is possible by decaying duckweed after 

sedimentation. Ong et al. (2009a) mentioned that the impact of the plant in biological 

treatment for ammonium-nitrogen removal varies, as some researchers found higher removal 

in planted than unplanted reactors, whereas others didn’t find any differences. Note that the 

impact of the plants doesn’t exceed 10% of the total removal in the treatment system as 

clarified by Kadlec et al. (2000). The results observed were similar to Vanitha et al.’s (2013) 
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findings that duckweed is not very effective in removing ammonia-nitrogen. In this 

experiment, the role of NH4–N removal was the biological oxidation of the ammonia to 

nitrate with nitrite as an intermediate by nitrifying bacteria. During nitrification processes, 

this micro-organism requires oxygen which is supplied by diffusion from the atmosphere 

and from the plants, which transfer the oxygen by their roots. Note that the temperature 

conditions and the pH values were within the range for nitrification occurrence (Kadlec et 

al., 2000; Ozengin & Elamic, 2007). The removal efficiency of the ponds containing only 

synthetic wastewater without dyes was higher than the removal in all ponds containing dyes. 

This is due to the impact of the dye, and the aromatic amine intermediate if it is generated 

which inhibits the activities of nitrifying microbes in the system leading to a low NH4–N 

removal efficiency, as discussed by Ong et al. (2009a). The regulations (UK Government, 

1994) set no threshold for ammonia–nitrogen that would relate to the treatment system 

considered in this article. A realistic guideline threshold value for ammonium-nitrogen, 

proposed by Al-Isawi et al. (2017), is 20 mg/l. The values for control ponds at normal pH, 

L. minor ponds at acidic pH, control ponds at acidic conditions containing the dye AB113, 

control ponds at normal pH treating BR46, and L. minor and control ponds at acidic pH 

comprising DO46 were 1, 1, 1, 1, 1, and 1 times non-compliant. 

Although the outflow nitrate-nitrogen (NO3–N) concentrations were less than the inflow 

ones (Table 5.3), the results showed low NO3–N removal efficiencies for all ponds that 

ranged (Figure 5.7) between 31% and 46%. This could be due to the very low anaerobic 

conditions or the limited denitrification process, which is attributed to the fact that most 

carbon sources, required for denitrification to occur, have been utilised by the nitrification 

process (Mohammed, 2017). Statistically, no significant differences (Table 5.2) were found 

between the removal efficiency of L. minor and control ponds which indicated that the 

removal mechanism was the denitrification processes only and L. minor was not effective 

for NO3–N removal. This result is in agreement with Vanitha et al.’s (2013) outcomes that 

the potential of ponds with and without duckweed was similar in removing NO3–N. 

Although they reported around 60% of NO3–N removal which was higher than the results 

found in this experiment which may attributed to the very high loading rate of the nutrients, 

the toxic effect of the ammonia level, and the limited amount of plants used in this study. 

No threshold regulations set for nitrate-nitrogen have relevance for the treatment system 

examined in this study (UK Government, 1994). Nonetheless, a realistic guideline threshold 

value for nitrate-nitrogen is proposed by Al-Isawi et al. (2017) to be 50 mg/l, and all values 
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were less than this range. Regarding the impact of the pH factor, no significant differences 

(Table 5.4) were found among the removal efficiencies of NH4–N and NO3–N corresponding 

to each pH case. This is because the pH variation affected plant growth which consequently 

impacted on the potential of nitrogen uptake or accumulation. Therefore, the death of the 

plants in all systems made the impact of pH negligible.  

Mean values of ortho-phosphate-phosphorus (PO4–P) removal efficiency were low in all 

ponds containing dyes, ranging between 7% and 28%. However, higher removal was found 

in ponds treating only synthetic wastewater without dyes(Figure 5.8). The L. minor ponds 

showed PO4–P removal higher than the control ones for all dyes. This reflected the outflow 

concentrations of PO4–P which were lower in planted ponds compared with the 

corresponding unplanted ones for all dyes (Table 5.3). The mechanisms of phosphorus 

removal in planted ponds are the uptake and assimilation into L. minor protein, adsorption 

on the leaves of the plant, chemical precipitation and microbial uptake. However, the uptake 

by microbes and biological activities only are responsible for phosphorus reduction in 

controlled ponds (Vanitha et al., 2013). Regarding the impact of pH inflow values on the 

PO4–P outflow concentrations and removal efficiencies, no significant (Table 5.4) difference 

was found among the pH cases for both planted and unplanted ponds. The UK Government 

(1994) doesn’t set regulation for ortho-phosphate-phosphorus that relate to the treatment 

system in this study. However, a realistic guideline threshold value, as mentioned by Al-

Isawi et al. (2017), is 1 mg/l and all outflow values were non-compliant. 
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Figure 5.6 Mean ammonium-nitrogen removal efficiency during the experiment between 1 October 2015 and 19 January 2016. Note: P3, 

Lemna minor L. ponds receiving inflow at normal pH; P4, control ponds receiving inflow at normal pH; P5, Lemna minor L. ponds receiving 

inflow at pH of 9; P6, control ponds receiving inflow at pH of 9; P7, Lemna minor L. ponds receiving inflow at pH of 6; P8, control ponds receiving 

inflow at pH of 6; STWW, synthetic textile wastewater; DTW, dechlorinated tap water. 
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Figure 5.7 Mean nitrate-nitrogen removal efficiency during the experiment between 1 October 2015 and 19 January 2016. Note: P3, Lemna 

minor L. ponds receiving inflow at normal pH; P4, control ponds receiving inflow at normal pH; P5, Lemna minor L. ponds receiving inflow at 

pH of 9; P6, control ponds receiving inflow at pH of 9; P7, Lemna minor L. ponds receiving inflow at pH of 6; P8, control ponds receiving inflow 

at pH of 6; STWW, synthetic textile wastewater; DTW, dechlorinated tap water.  
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Figure 5.8 Mean ortho-phosphate-phosphorus removal efficiency during the experiment between 1 October 2015 and 19 January 2016. 

Note: P3, Lemna minor L. ponds receiving inflow at normal pH; P4, control ponds receiving inflow at normal pH; P5, Lemna minor L. ponds 

receiving inflow at pH of 9; P6, control ponds receiving inflow at pH of 9; P7, Lemna minor L. ponds receiving inflow at pH of 6; P8, control 

ponds receiving inflow at pH of 6; STWW, synthetic textile wastewater; DTW, dechlorinated tap water. 
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5.2.2.7 Trace elements  

The mean inflow and outflow concentrations of the elements detected through the ICP-OES 

analyses are presented in Figure 5.1. The main source of the elements was the synthetic 

textile wastewater, in addition to the presence of zinc ion in the dye BR46. Mean outflow 

zinc and iron values (Figures 5.1a and b) were lower than the mean inflow concentrations 

for both L. minor and control ponds. In addition, no significant differences were found 

between L. minor and control ponds (p > 0.05, Mann-Whitney U test), although most of the 

zinc outflow values were lower in ponds containing plants, confirming the uptake of zinc by 

plants. Regarding the impact of the pH factor, no significant differences (p > 0.05) were 

found. Mean zinc outflows were within the acceptable range for L. minor survival (Khellaf 

& Zerdaoui, 2009). In addition, the mean outflow zinc and iron concentrations were lower 

than the threshold set of 2 mg/l and 5 mg/l for irrigation, respectively (Metcalf & Eddy, 

2003). Higher mean outflow values of magnesium, potassium, calcium and sodium (Figures 

5.1c, d, e and f, respectively) than the inflow ones were found for all ponds containing dyes.  

Figure 5.9 provides an overview of the concentration of elements accumulated in plant 

tissues for all ponds with and without dyes. Lower zinc accumulated in plant tissues in ponds 

containing only dechlorinated tap water. The levels of zinc and iron in plants (Figures 5.9a 

and b) were higher than the permissible limits of 50 mg/kg and 20 mg/kg, respectively, as 

mentioned by Nazir et al. (2015). Manganese, aluminium and boron were accumulated and 

detected in the plants (Figures 5.9d, e and f, respectively), although these metals were not 

detected in the inflow and outflow aqueous samples. 

The BCF of higher than 1000 indicated that the plant as a positive accumulator for heavy 

metals as mentioned by Sukumaran (2013). The results in Figures 5.10a and b, indicated that 

the plant was positive for phytoremediation of zinc and iron, respectively, for all samples 

except the plants treating BR46 in the case of zinc metal which were considered as moderate 

accumulators. 
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Figure 5.9 Mean concentrations of the detected elements in plant tissue harvested at 

the end of the experiment that operated between 1 October 2015 and 19 January 2016. 

Note: (a), zinc; (b), iron; (c), magnesium; (d), manganese; (e), aluminium; (f), boron; (g), 

sodium; (h), potassium; (i), calcium; P3, Lemna minor L. ponds receiving inflow at normal 

pH; P5, Lemna minor L. ponds receiving inflow at pH of 9; P7, Lemna minor L. ponds 

receiving inflow at pH of 6; AB113, acid blue 113; RB198, reactive blue 198; BR46, basic 

red 46; DO46, direct orange 46; STWW, synthetic textile wastewater; DTW, dechlorinated 

tap water.  
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Figure 5.10 Bioconcentration factor during the experiment between 1 October 2015 

and 19 January 2016. Note: (a), zinc; (b), iron; P3, Lemna minor L. ponds receiving inflow 

at normal pH; P5, Lemna minor L. ponds receiving inflow at pH of 9; P7, Lemna minor L. 

ponds receiving inflow at pH of 6; AB113, acid blue 113; RB198, reactive blue 198; BR46, 

basic red 46; DO46, direct orange 46; STWW, synthetic textile wastewater; DTW, 

dechlorinated tap water. 
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but they did not cover the entire surface area. Thereafter, the green colour faded (reduced). 

In week 4, the colour of the fronds of L. minor turned to yellow and subsequently to brown 

for all ponds with and without dyes except for ponds containing only dechlorinated tap water. 

This indicated that the high concentrations of chemicals in the synthetic textile wastewater 

negatively impacted on plant growth. At the end of the experiment, some of the fronds 
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was advisable to re-examine the wastewater constituent for different dilution ratios. The 
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the plants to survive. 
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5.2.4 Environmental conditions 

The mean temperature of 28°C, and maximum and minimum values of 29°C and 27°C, 

respectively, didn’t affect the growth of the plants in the system (Ozengin & Elmaci, 2007). 

Regarding light intensity, Yin et al. (2015) found that the plant production increases with 

increasing the light intensity between 1480 lux and 8140 lux. The mean value of 6996 lux 

was within this range. Table 5.5 provides an overview of environmental boundary conditions 

in the laboratory during the experimental period. 

Table 5.5 Overview of environmental boundary conditions in the laboratory between 

1 October 2015 and 19 January 2016 

Parameter Unit Mean 
Standard 

deviation 
Minimum Maximum N 

Temperature °C 28.0 0.58 26.7 28.8  

Temperature (minimum within 24 h)  °C 24.8 1.22 22.8 28.5 74 

Temperature (maximum within 24 h) °C 28.6 0.24 28.0 29.1 74 

Relative humidity % 50.5 2.46 46.0 60.0 74 

Relative humidity (minimum within 24 h)  % 47.8 3.34 42.0 58.0 74 

Relative humidity (maximum within 24 h)  % 57.3 3.76 46.0 66.0 74 

Illuminance (one-off records)  lux 6995.7 345.8 6430.0 7721.0 58 

Note: N, number of records; h, hours. 

5.3 Long-term impact of pH on pond performance 

treating diluted STWW containing dyes 

5.3.1 Inflow water quality parameters 

Table 5.6, and Figures 5.11 and 5.12 summarise the values of the inflow water quality 

parameters including trace elements content regarding the diluted synthetic textile 

wastewater with and without dyes for both the first and second phase of the experiment. The 

mean inflow values of pH, colour, NO3–N and NH4–N, zinc and iron were within the typical 

characteristics of textile wastewater (Ghaly et al., 2014). The initial dye concentration was 

10 mg/l and was regarded to be within the lower range of dye effluents (10–250 mg/l). 

Regarding COD, SS and TDS, the mean inflow values were lower than the typical ones 

(Ghaly et al., 2014). The wastewater used in this experiment was suitable for operating pond 

systems as a polishing stage, which deals with wastewater in relatively low concentrations.  
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Table 5.6 Inflow water quality parameters for the first phase (20 January 2016 to 18 

October 2016) and second phase (18 October 2016 to 30 June 2017) of the experiment 

Parameter Unit Mean 
Standard 

deviation 
Minimum Maximum Number 

First phase  

Reactive blue 198 + diluted synthetic textile wastewater  

Dye concentration mg/l 10 0.11 9.8 10.2 37 

pH - 7.4 0.08 7.1 7.5 37 

Redox mv -39.2 3.32 -45 -30 37 

Dissolved oxygen mg/l 9.3 0.45 8.6 10 37 

Electrical conductivity µS/cm 130.4 1.36 126.4 132.6 37 

Total dissolved solids mg/l 65.2 0.68 63.2 66.3 37 

Suspended solids mg/l 3.1 0.77 2 4 37 

Turbidity NTU 2.3 0.54 1.1 3.1 37 

Colour Pt Co 225.4 3.95 222 233 37 

Chemical oxygen demand mg/l 29.2 0.24 28.8 29.5 10 

Ammonium-nitrogen mg/l 0.17 0.02 0.16 0.17 10 

Nitrate-nitrogen mg/l 0.43 0.011 0.41 0.44 10 

Ortho-phosphate-phosphorus mg/l 1.55 0.027 1.53 1.6 10 

Basic red 46 + diluted synthetic textile wastewater  

Dye concentration mg/l 10 0.09 9.8 10.2 37 

pH - 7.3 0.07 7.1 7.4 37 

Redox mv -37.3 2.77 -41 -30 37 

Dissolved oxygen mg/l 9.1 0.43 8.5 9.9 37 

Electrical conductivity µS/cm 126 1.15 124 128.1 37 

Total dissolved solids mg/l 63 0.57 62 64.1 37 

Suspended solids mg/l 2.1 0.51 1 3 37 

Turbidity NTU 2.2 0.5 1.1 3.3 37 

Colour Pt Co 741.4 3.07 737 746 37 

Chemical oxygen demand mg/l 34.3 0.27 34 34.7 10 

Ammonium -nitrogen mg/l 0.26 0.005 0.26 0.27 10 

Nitrate-nitrogen mg/l 0.6 0.012 0.58 0.61 10 

Ortho-phosphate-phosphorus mg/l 1.6 0.006 1.58 1.6 10 

Diluted synthetic textile wastewater 

pH - 7.2 0.13 7 7.4 37 

Redox mv -26.6 6.88 -37 -18 37 

Dissolved oxygen mg/l 9.3 0.6 8.5 10 37 

Electrical conductivity µS/cm 90 1.61 88.5 96 37 

Total dissolved solids mg/l 45 0.8 44.3 48 37 

Suspended solids mg/l 1.5 0.5 1 2 37 

Turbidity NTU 1.5 0.73 1 2.1 37 

Colour Pt Co 7.8 1.64 6 12 37 

Chemical oxygen demand mg/l 20.5 0.34 19.8 20.8 10 

Ammonium -nitrogen mg/l 0.16 0.005 0.16 0.168 10 

Nitrate-nitrogen mg/l 0.41 0.005 0.4 0.415 10 

Ortho-phosphate-phosphorus mg/l 1.51 0.011 1.5 1.53 10 

Second phase  

Reactive blue 198 + diluted synthetic textile wastewater  

Dye concentration mg/l 10.1 0.10 10.0 10.3 36 

pH - 7.4 0.07 7.2 7.5 36 

Redox mv -39.3 3.12 -46.0 -29.0 36 
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Table 5.6 (Continued)       

Dissolved oxygen mg/l 9.4 0.45 8.7 10.2 36 

Electrical conductivity µS/cm 130.6 1.45 127.0 136.0 36 

Total dissolved solids mg/l 65.3 0.73 63.5 68.0 36 

Suspended solids mg/l 3.0 0.76 1.0 4.0 36 

Turbidity NTU 2.5 0.51 1.4 3.3 36 

Colour Pt Co 226.3 4.49 221.0 235.0 36 

Chemical oxygen demand mg/l 29.2 0.24 28.8 29.5 15 

Ammonium -nitrogen mg/l 0.17 0.003 0.16 0.17 15 

Nitrate-nitrogen mg/l 0.43 0.011 0.41 0.44 15 

Ortho-phosphate-phosphorus mg/l 1.55 0.027 1.53 1.60 15 

Basic red 46 + diluted synthetic textile wastewater  

Dye concentration mg/l 10.0 0.10 9.8 10.2 36 

pH - 7.3 0.08 7.1 7.5 36 

Redox mv -37.5 2.87 -42.0 -28.0 36 

Dissolved oxygen mg/l 9.2 0.45 8.4 9.8 36 

Electrical conductivity µS/cm 126.0 1.41 124.0 130.0 36 

Total dissolved solids mg/l 63.0 0.70 62.0 65.0 36 

Suspended solids mg/l 2.1 0.54 1.0 3.0 36 

Turbidity NTU 2.2 0.52 1.1 3.2 36 

Colour Pt Co 741.7 3.22 735.0 746.0 36 

Chemical oxygen demand mg/l 34.3 0.27 34.0 34.7 10 

Ammonium -nitrogen mg/l 0.26 0.005 0.26 0.27 10 

Nitrate-nitrogen mg/l 0.60 0.012 0.58 0.61 10 

Ortho-phosphate-phosphorus mg/l 1.60 0.006 1.58 1.60 10 

Diluted synthetic textile wastewater 

pH - 7.2 0.13 7.0 7.4 36 

Redox mv -23.0 15.51 -37.0 35.0 36 

Dissolved oxygen mg/l 9.3 0.59 8.5 10.0 36 

Electrical conductivity µS/cm 89.9 1.61 88.5 96.0 36 

Total dissolved solids mg/l 45.0 0.80 44.3 48.0 36 

Suspended solids mg/l 1.6 0.50 1.0 2.0 36 

Turbidity NTU 1.5 0.73 1.0 2.1 36 

Colour Pt Co 7.8 1.62 6.0 12.0 36 

Chemical oxygen demand mg/l 20.5 0.34 19.8 20.8 10 

Ammonium -nitrogen mg/l 0.16 0.005 0.16 0.17 10 

Nitrate-nitrogen mg/l 0.41 0.005 0.40 0.42 10 

Ortho-phosphate-phosphorus mg/l 1.51 0.011 1.50 1.53 10 

Dechlorinated tap water for both phases 

pH - 7.1 0.16 6.9 7.4 30 

Redox mv -26.3 9.19 -40 -12 30 

Dissolved oxygen mg/l 8.8 0.49 8.4 9.8 30 

Electrical conductivity µS/cm 66.4 1.53 64.4 68.8 30 

Total dissolved solids mg/l 33.2 0.8 32.2 34.4 30 

Suspended solids mg/l 1.2 0.69 0.0 2 30 

Turbidity NTU 1.2 0.38 0.6 1.7 30 

Colour Pt Co 0.0 0.00 0.0 0.0 30 

Chemical oxygen demand mg/l 2.4 0.93 0.9 3.4 9 

Ammonium -nitrogen mg/l 0.04 0.003 0.04 0.05 9 

Nitrate-nitrogen mg/l 0.38 0.139 0.31 0.40 9 

Ortho-phosphate-phosphorus mg/l 1.03 0.221 0.8 1.44 9 

Note: NTU, nephelometric turbidity unit. 
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Figure 5.11 Mean inflow and outflow concentrations of the detected elements during 

the first experimental phase between 20 January 2016 and 18 October 2016. Note: (a), 

zinc; (b), iron; (c), magnesium; (d), potassium; (e), calcium; (f), sodium; P3, Lemna minor 

L. ponds receiving inflow at normal pH; P4, control ponds receiving inflow at normal pH; 

P5, Lemna minor L. ponds receiving inflow at pH of 9; P6, control ponds receiving inflow 

at pH of 9; P7, Lemna minor L. ponds receiving inflow at pH of 6; P8, control ponds 

receiving inflow at pH of 6; DSTWW, diluted synthetic textile wastewater; DTW, 

dechlorinated tap water.  
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Figure 5.12 Mean inflow and outflow concentrations of the detected trace elements 

during the second experimental phase between 18 October 2016 and 30 June 2017. 

Note: (a), zinc; (b), iron; (c), magnesium; (d), potassium; (e), calcium; (f), sodium; P1, 

Lemna minor L. and algae ponds; P2, algae ponds; P4, control ponds; DSTWW, diluted 

synthetic textile wastewater; DTW, dechlorinated tap water.  

0.00

0.20

0.40

Inflow P1 P2 P4 Inflow P1 P2 P4 Inflow P1 P2 Inflow P1 P2

Reactive blue 198 Basic red 46 DSTWW DTW

Z
in
c
 (
m
g
/l
)

(a)

0

1

2

3

Inflow P1 P2 P4 Inflow P1 P2 P4 Inflow P1 P2 Inflow P1 P2

Reactive blue 198 Basic red 46 DSTWW DTW

M
a
g
n
e
s
iu

m
 (

m
g
/l
) (c)

0.00

0.05

0.10

0.15

Inflow P1 P2 P4 Inflow P1 P2 P4 Inflow P1 P2 Inflow P1 P2

Reactive blue 198 Basic red 46 DSTWW DTW

Ir
o
n
 (

m
g
/l
)

(b)

0

1

2

3

4

5

Inflow P1 P2 P4 Inflow P1 P2 P4 Inflow P1 P2 Inflow P1 P2

Reactive blue 198 Basic red 46 DSTWW DTW

P
o
ta

s
iu

m
 (
m

g
/l
) (d)

0

10

20

Inflow P1 P2 P4 Inflow P1 P2 P4 Inflow P1 P2 Inflow P1 P2

Reactive blue 198 Basic red 46 DSTWW DTW

C
a
lc
iu
m
 (
m
g
/l
)

(e)

0

10

20

30

Inflow P1 P2 P4 Inflow P1 P2 P4 Inflow P1 P2 Inflow P1 P2

Reactive blue 198 Basic red 46 DSTWW DTW

S
o
d
iu

m
 (

m
g
/l
)

(f)



Chapter 5: Impact of pH Adjustment on System Performance 

223 

5.3.2 Treatment performance (phase 1) 

5.3.2.1 Dye and apparent colour  

Figure 5.13 illustrates the mean removal efficiency of the dyes for each system related to the 

first experimental phase that ran between 20 January 2016 and 18 October 2016. Based on 

the dye RB198 removal (Figure 5.13), findings showed that although the mean removal of 

RB198 was very low for all ponds, significant differences were found (Table 5.7) between 

L. minor and control ponds in the case of high (P5 and P6) and low (P7 and P8) pH, attributed 

to the impact of the plants in the system. This low removal can be explained by the presence 

of two sulpho groups, high molecular weight and the complex structure of RB198 (Chapter 

3, Table 3.1) making this dye challenging to degrade. The mean removal at acidic conditions 

was significantly (Table 5.8) higher than that at normal conditions, indicating that the 

adsorption capacity of RB198 increased at low pH as interpreted by Salleh et al. (2011). At 

acidic conditions, the positive charge in the solution interface increases and the adsorbent 

surface appears positively charged, which results in an increase in anionic dye (e.g., RB198) 

adsorption and a decrease in cationic dye (e.g., BR46) adsorption. Findings indicate that the 

mean RB198 removal for the experimental period lasting three months (Section 5.2.2.1, 

Figure 5.2) was higher than for the operation of nine months during this experiment (Figure 

5.13), which highlights that time has a significant impact on RB198 removal. This is because 

the adsorbent property of the plant has limited capacity for RB198 molecule adsorption, 

which can be noted by the longitudinal profile of RB198 removal efficiency, which was 

higher during the first few weeks of the operation period for the three months experimental 

period (Figure 5.3b) and the nine months experimental period (Figure 5.14). In contrast, a 

high mean removal efficiency was noticed for the dye BR46 (Figure 5.13). The treatment 

performance for L. minor ponds was significantly (Table 5.7) higher than the corresponding 

one for control ponds, although the control ponds had removals of more than 24%. This 

result was seen as evidence that the plant has a significant contribution to BR46 removal. 

This high removal is attributed to the BR46 characteristics of low molecular weight, simple 

structure, and the absence of sulpho groups, which all improve dye elimination (Pearce et 

al., 2003). These results matched those presented in Chapter 4 (Section 4.2.2.1) for the 

treatment of BR46 at inflow concentrations of 5 mg/l. The impact of inflow at acidic and 

alkaline pH values on the treatment of BR46 showed no significant dissimilarity (Table 5.8) 

compared with the normal pH for both the L. minor and control systems. Although the 

reduction of cationic dye increased at alkaline conditions and vice versa (Salleh et al., 2011), 
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it seems that the selected pH values of 6 and 9 in this study had no considerable impact on 

the treatment of this dye. Similar outcomes by Movafeghi et al. (2013) were confirmed. It is 

important to mention that in June 2016, algae started to appear in the ponds planted with L. 

minor. These algae belonged to Oedogonium, which was identified by the Culture Collection 

of Algae and Protozoa (SAMS UK). Oedogonium are green and sexual species (Appendix 

D, Figure D 3), which live in calm and fresh water either free-floating or attached to 

macrophytes. Therefore, it was necessary to find the impact of this kind of algae on the 

system performance as will be explained later on in the second phase. 

The treatment performance in terms of the outflow dye concentrations (Table 5.9) showed 

that the average outflow concentrations of RB198 were higher than those of the 

corresponding inflow values, reflecting very low dye removal except for the L. minor ponds 

at acidic conditions, which were similar. In addition, the mean outflow RB198 

concentrations at acidic conditions were significantly lower (Table 5.8) than those at normal 

conditions for L. minor ponds due to enhanced RB198 removal at low pH, as discussed 

previously, and consequently reduced outflow concentrations (Salleh et al., 2011). However, 

lower mean outflow concentrations compared to the inflow for all ponds comprising BR46 

was noticed. L. minor ponds displayed mean outflow concentrations that were significantly 

(Table 5.7) reduced compared to those of the control ponds without any impact on pH. These 

results confirm the removal efficiencies discussed above. A correlation analysis showed that 

the dye concentration significantly (Spearman’s r = -0.910, p = 0.000) correlated negatively 

with the removal efficiency of dyes. 

The spectral changes between the treated and untreated samples indicate modifications to 

the dye molecule structure after treatment. The spectrum results (Figure 5.15) in the visible 

region (400–800 nm) show peaks of the inflow samples at 625 and 530 nm of RB198 and 

BR46, respectively, which are linked to the chromophore groups of the dye molecules. 

However, for the outflow samples, the intensity of the dye adsorption peak at 625 nm 

(Figures 5.15a, b, and c) does not change for both L. minor and control ponds confirming 

the un-decolourisation of RB198 and the increase in outflow concentrations. The dye BR46 

(Figures 5.15d, e and f) showed appreciable disappearances of the peak at 530 nm for all 

planted ponds, confirming the complete decolourisation and decreases in the outflow 

concentrations. However, control ponds showed a reduction in the peak at 530 nm indicating 

a decrease in the outflow concentration due to microbial bio-sorption processes and may be 

another microbial activity. 



Chapter 5: Impact of pH Adjustment on System Performance 

225 

The HPLC chromatogram showed a peak at a retention time of 1.505 min for RB198 influent 

(Appendix E, Figure E.1b). However, the peak for the outflow samples (Appendix E, Figure 

E.14) shifted to 1.53 and 1.566 min at normal pH, 1.552 and 1.593 min at alkaline, and 1.541 

and 1.557 min at acidic conditions for L. minor and control ponds, respectively. These 

changes are due to the interaction between the synthetic wastewater and the dye, because the 

main peak of RB198 at 625 nm does not change (Figures 5.15a, b and c) and the removal of 

this dye, as shown in Figure 5.13, was not achieved (outflow samples were coloured). The 

inflow BR46 showed peaks at retention times of 1.488, 1.693, 2.569 and 2.405 min 

(Appendix E, Figure E.1c). Based on the outflow samples (Appendix E, Figure E.15), L. 

minor ponds indicated the appearance of a new peak in the HPLC chromatogram results of 

the metabolites at 1.938, 1.919 and 1.908 min for normal, high and low pH values, 

respectively. In addition, all inflow peaks disappeared, which confirms the formation of new 

products. However, the outflow samples of control ponds showed the appearance of a new 

peak at 1.736, 1.732 and 1.768 min for normal, high and low pH values, respectively. The 

variation between the inflow and outflow samples with presence of new peaks (in the 

outflow samples), as a result of new products, were evidence to confirm that the dye removal 

mechanism was due to phytotransformation by plants (Khandare et al., 2011; Kabra et al., 

2012) and biotransformation by microbes (Tahir et al., 2016). Therefore, according to HPLC 

data linked with dye BR46 removal and UV spectra results, it seems that the dye BR46 is 

removed in L. minor ponds due to phytotransformation (Kabra et al., 2012), adsorption 

and/or accumulation processes, and may be by biotransformation processes as well 

(Kagalkar, 2011). However, the mechanism of BR46 removal in the control ponds was 

mainly due to microbial bio-sorption (Pearce et al., 2003) and may be biotransformation 

(Tahir et al., 2016) processes. 

Based on colour monitoring (Table 5.9) the mean RB198 outflow levels were higher or only 

slightly lower, compared to the corresponding inflow ones due to low dye removal. Also, 

the outflow colour values were higher within L. minor ponds than the control ones for all 

ponds. This can be explained by the impact of plant death and the increase of algae growth 

in the planted wetlands. However, the mean colour outflow values for the dye BR46 mirrored 

the outflow dye concentrations, as the correlation analysis showed that the colour values had 

a significantly positive (Spearman’s r = 0.151, p = 0.001) correlation with the dye 

concentrations. Panswad et al. (2001) mentioned that a carbon source in the synthetic 

wastewater boosted the colour reduction and consequently the dye removal, however, in this 
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experiment, the carbon source from the synthetic textile wastewater may have affected BR46 

only. Inflow and outflow sample pictures are shown in Appendix F, Figure F.3. 

 

Figure 5.13 Mean dye removal efficiency during the experiment between 20 January 

2016 and 18 October 2016. Note: P3, Lemna minor L. ponds receiving inflow at normal 

pH; P4, control ponds receiving inflow at normal pH; P5, Lemna minor L. ponds receiving 

inflow at pH of 9; P6, control ponds obtaining inflow at pH of 9; P7, Lemna minor L. ponds 

receiving inflow at pH of 6; P8, control ponds receiving inflow at pH of 6. 

 

Figure 5.14 Mean values of dye removal profile between 20 January 2016 and 18 

October 2016. Note: (a), reactive blue 198; (b), basic red 46; P3, Lemna minor L. ponds 

receiving inflow at normal pH; P4, control ponds receiving inflow at normal pH; P5, Lemna 

minor L. receiving inflow at pH of 9; P6, control ponds receiving inflow at pH of 9; P7, 

Lemna minor L. ponds receiving inflow at pH of 6; P8, control ponds receiving inflow at pH 

of 6. 
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Table 5.7 Overview of the statistical analysis between Lemna minor L. and control ponds for outflow water quality parameters and 

corresponding removal efficiencies for the period from 20 January 2016 to 18 October 2016 

Parameter Shapiro-Wilk test 

(p value1) 
p value1 Shapiro-Wilk test 

(p value1) 
p value1 Shapiro-Wilk test 

(p value1) 
p value1 

 Normal pH pH of 9 pH of 6 

Dye mg/l 

RB198 0.004 0.000 0.000 0.000  0.000 0.000 

BR46 0.000 0.000 0.000 0.000 0.000 0.000 

Dye removal (%) 

RB198 0.001  0.055  0.000 0.033 0.000 0.011 

BR46 0.000 0.000 0.000 0.000 0.000 0.000 

Colour (Pt Co) 

RB198 0.000 0.006 0.003 0.147 0.000 0.081 

BR46 0.000 0.000 0.000 0.000 0.000 0.000 

Chemical oxygen demand (mg/l) 

RB198 0.201 0.176 0.096 0.564 0.303 0.149 

BR46 0.000 0.001 0.003 0.031 0.191 0.000 

Chemical oxygen demand removal (%) 

RB198 0.144 0.742 0.919 0.211 0.124 0.763 

BR46 0.526 0.175 0.427 0.596 0.774 0.187 

Ammonium-nitrogen (mg/l)       

RB198 0.000 0.489 0.000 0.666 0.000 0.290 

BR46 0.000 0.666 0.000 1.000 0.000 0.931 

Ammonium-nitrogen removal (%)       

RB198 0.172 0.014 0.470 0.003 0.599 0.007 

BR46 0.073 0.04 0.427 0.01 0.573 0.049 

Nitrate-nitrogen (mg/l)       

RB198 0.000 0.931 0.000 0.546 0.000 0.489 

BR46 0.002 0.489 0.942 0.233 0.000 0.546 

Nitrate-nitrogen removal (%)       

RB198 0.121 0.003 0.241 0.002 0.313 0.000 

BR46 0.648 0.031 0.495 0.255 0.848 0.609 
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Note: 1Test of normality (if p > 0.05, data are normally distributed; if p < 0.05, data are not normally distributed); 2p value, probability of the 

statistical test (if p > 0.05, the variables are not statistically significantly different; if p < 0.05; the variables are statistically significantly 

different); NTU, nephelometric turbidity unit; Mann-Whitney U test used when the data are not normally distributed and independent sample 

t-test used when the data are normally distributed; RB198, reactive blue 198; BR46, basic red 46.  

Table 5.7 (Continued)       

Ortho-phosphate-phosphorus (mg/l)       

RB198 0.654 0.033 0.063 0.027 0.372 0.001 

BR46 0.318 0.077 0.876 0.004 0.65 0.002 

Ortho-phosphate-phosphorus 

removal (%) 

      

RB198 0.534 0.021 0.555 0.307 0.034 0.356 

BR46 0.019 0.000 0.578 0.003 0.003 0.000 

Suspended solids (mg/l)       

RB198 0.000 0.001 0.000 0.001 0.000 0.000 

BR46 0.0080 0.000 0.000 0.000 0.000 0.000 

Turbidity (NTU) 

RB198 0.000 0.001 0.000 0.035 0.000 0.006 

BR46 0.000 0.000 0.000 0.000 0.000 0.000 

Dissolved oxygen (mg/l) 

RB198 0.002 0.681 0.028 0.367 0.130 0.996 

BR46 0.003 0.892 0.032 0.940 0.031 0.320 

pH (-)        

RB198 0.001 0.058 0.000 0.204 0.000 0.039 

BR46 0.02 0.787 0.165 0.595 0.000 0.001 

Redox potential (mV) 

RB198 0.001 0.075 0.000 0.375 0.000 0.020 

BR46 0.001 0.681 0.039 0.449 0.000 0.000 

Electrical conductivity (µS/cm) 

RB198 0.029 0.000 0.000 0.000 0.000 0.000 

BR46 0.000 0.000 0.000 0.000 0.000 0.000 
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Table 5.8 Overview of the statistical analysis in terms of the impact of pH factor for outflow water quality parameters and 

corresponding removal efficiencies for the period from 20 January 2016 to 18 October 2016 

Parameter 
Shapiro-

Wilk test 

(p value1) 

p value1 

Shapiro-

Wilk test 

(p value1) 

p value1 

Type of the dye  
Normal pH 

& pH 9 & 

pH 6 

Normal pH 

& pH 9 

Normal pH 

& pH 6 

pH 9 & pH 

6 
 

Normal pH 

& pH 9 & 

pH 6 

Normal pH 

& pH 9 

Normal pH 

& pH 6 

pH 9 & pH 

6 

 Lemna. minor L. ponds  Control ponds 

Dye (mg/l) 

RB198 0.000 0.003 0.581 0.004 0.004 0.000 0.017 0.282 0.083 0.005 

BR46 0.000 0.653 NA NA NA 0.000 0.571 NA NA NA 

Dye removal (%) 

RB198 0.000 0.023 0.111 0.009 0.159 0.011 0.044 0.104 0.013 0.473 

BR46 0.000 0.478 NA NA NA 0.025 0.434 NA NA NA 

Colour (Pt Co) 

RB198 0.000 0.806 NA NA NA 0.005 0.705 NA NA NA 

BR46 0.000 0.356 NA NA NA 0.003 0.997 NA NA NA 

Chemical oxygen demand (mg/l) 

 
RB198 0.753 0.94 NA NA NA 0.555 0.37 NA NA NA 

BR46 0.15 0.547 NA NA NA 0.404 0.826 NA NA NA 

Chemical oxygen demand removal (%) 

RB198 0.714 0.972 NA NA NA 0.946 0.108 NA NA NA 

BR46 0.144 0.218 NA NA NA 0.346 0.584 NA NA NA 

Ammonium-nitrogen (mg/l) 

RB198 0.011 0.937 NA NA NA 0.000 0.979 NA NA NA 

BR46 0.000 0.062 NA NA NA 0.000 0.741 NA NA NA 

Ammonium-nitrogen removal (%) 

RB198 0.505 0.419 NA NA NA 0.431 0.822 NA NA NA 

BR46 0.205 0.227 NA NA NA 0.773 0.867 NA NA NA 

Nitrate-nitrogen (mg/l) 

RB198 0.03 0.988 NA NA NA 0.000 0.436 NA NA NA 
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Table 5.8 (Continued)           

BR46 0.024 0.968 NA NA NA 0.000 0.904 NA NA NA 

Nitrate-nitrogen removal (%) 

RB198 0.021 0.37 NA NA NA 0.768 0.628 NA NA NA 

BR46 0.505 0.88 NA NA NA 0.520 0.04 0.253 0.033 0.543 

Ortho-phosphate-phosphorus (mg/l) 

RB198 0.444 0.498 NA NA NA 0.012 0.922 NA NA NA 

BR46 0.388 0.534 NA NA NA 0.125 0.478 NA NA NA 

Ortho-phosphate-phosphorus removal (%) 

RB198 0.353 0.08 NA NA NA 0.013 0.983 NA NA NA 

BR46 0.692 0.792 NA NA NA 0.000 0.007 0.014 0.989 0.019 

Suspended solids (mg/l) 

RB198 0.000 0.066 NA NA NA 0.000 0.223 NA NA NA 

BR46 0.000 0.765 NA NA NA 0.000 0.644 NA NA NA 

Turbidity (NTU) 

RB198 0.000 0.8 NA NA NA 0.000 0.775 NA NA NA 

BR46 0.000 0.683 NA NA NA 0.000 0.294 NA NA NA 

Dissolved oxygen (mg/l) 

RB198 0.008 0.722 NA NA NA 0.001 0.888 NA NA NA 

BR46 0.003 0.64 NA NA NA 0.002 0.917 NA NA NA 

pH (-)           

RB198 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.011 0.000 0.000 

BR46 0.000 0.000 0.204 0.000 0.000 0.000 0.000 0.023 0.001 0.000 

Redox potential (mV) 

RB198 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.043 0.002 0.000 

BR46 0.003 0.000 0.034 0.000 0.000 0.000 0.000 0.091 0.001 0.000 

Electrical conductivity (µS/cm) 

RB198 0.000 0.000 0.001 0.000 0.155 0.000 0.011 0.104 0.004 0.101 

BR46 0.892 0.002 0.081 0.002 0.358 0.000 0.000 0.028 0.1 0.000 

Note: 1Test of normality (if p > 0.05, data are normally distributed; if p < 0.05, data are not normally distributed); 2p value, probability of the 

statistic test (if p > 0.05, the variables are not statistically significantly different; if p < 0.05; the variables are statistically significantly different); 

NTU, nephelometric turbidity unit; Kruskal-Wallis test used when the data not normally distributed and one-way ANOVA used when the data 

normally distributed; AB113, acid blue 113; RB198, reactive blue 198; BR46, basic red 46; DO46, direct orange 46; NA, not applicable. 
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Figure 5.15 Ultraviolet visible analysis for the outflow samples at the end of the experimental rig, which was operated between 20 January 

2016 and 18 October 2016. Note: (a), (b) and (c) ponds treating the dye reactive blue 198; (d), (e) and (f) ponds treating the dye basic red 46; IF, 

inflow; P3, Lemna minor L. ponds receiving inflow at normal pH; P4, control ponds receiving inflow at normal pH; P5, Lemna minor L. ponds 

receiving inflow at pH of 9; P6, control ponds receiving inflow at pH of 9; P7, Lemna minor L. ponds receiving inflow at pH of 6; P8, control 

ponds receiving inflow at pH of 6. 
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Table 5.9 Outflow water quality parameters for each system between 20 January 

2016 and 18 October 2016 

Parameter Unit Mean 
Standard 

deviation 
Minimum Maximum Number 

Reactive blue 198 + DSTWW at normal pH for Lemna minor L. ponds 

Dye concentration mg/l 11.1 1.73 6.7 14.4 37 

pH - 7.6 0.25 7.0 8.0 37 

Redox mv -54.2 14.12 -76.0 -19.5 37 

Dissolved oxygen mg/l 8.2 0.27 7.8 9.0 37 

Electrical conductivity µS/cm 108.9 10.89 85.5 129.0 37 

Total dissolved solids mg/l 54.4 5.44 42.8 64.5 37 

Suspended solids mg/l 8.5 5.30 1.7 29.0 37 

Turbidity NTU 5.0 1.80 1.4 8.7 37 

Colour Pt Co 240.5 50.36 17.0 321.7 37 

Chemical oxygen demand mg/l 21.2 7.22 7.4 30.3 10 

Ammonia-nitrogen mg/l 0.1 0.06 0.0 0.2 10 

Nitrate-nitrogen mg/l 0.2 0.10 0.1 0.3 10 

Ortho-phosphate-phosphorus mg/l 2.1 0.52 1.2 2.8 10 

Reactive blue 198 + DSTWW at normal pH for control ponds 

Dye concentration mg/l 12.6 1.22 10.1 15.2 37 

pH - 7.7 0.21 7.2 8.0 37 

Redox mv -59.5 11.06 -74.5 -34.0 37 

Dissolved oxygen mg/l 8.2 0.29 7.8 8.9 37 

Electrical conductivity µS/cm 135.6 14.64 91.4 166.3 37 

Total dissolved solids mg/l 67.8 7.32 45.7 83.1 37 

Suspended solids mg/l 5.2 3.36 0.7 15.7 37 

Turbidity NTU 3.6 0.95 1.1 6.1 37 

Colour Pt Co 222.2 34.47 104.5 292.7 37 

Chemical oxygen demand mg/l 16.2 7.09 6.9 28.3 10 

Ammonia-nitrogen mg/l 0.3 0.40 0.0 1.4 10 

Nitrate-nitrogen mg/l 0.3 0.27 0.1 1.0 10 

Ortho-phosphate-phosphorus mg/l 2.8 0.63 2.0 3.8 10 

Reactive blue 198 + DSTWW at pH 9 for Lemna minor L. ponds 

Dye concentration mg/l 11.1 0.96 9.2 13.8 37 

pH - 7.8 0.20 7.5 8.2 37 

Redox mv -63.4 10.99 -79.5 -43.5 37 

Dissolved oxygen mg/l 8.3 0.31 7.7 9.1 37 

Electrical conductivity µS/cm 120.2 23.43 74.5 227.1 37 

Total dissolved solids mg/l 60.1 11.72 37.3 113.6 37 

Suspended solids mg/l 10.6 7.91 1.0 36.3 37 

Turbidity NTU 5.4 2.70 1.1 11.9 37 

Colour Pt Co 241.9 43.25 132.5 411.0 37 

Chemical oxygen demand mg/l 22.4 9.24 11.4 41.6 10 

Ammonia-nitrogen mg/l 0.1 0.08 0.0 0.2 10 

Nitrate-nitrogen mg/l 0.2 0.12 0.0 0.4 10 

Ortho-phosphate-phosphorus mg/l 1.9 0.49 1.3 3.0 10 

Reactive blue 198 + DSTWW at pH 9 for control ponds 

Dye concentration mg/l 12.0 0.89 9.7 14.2 37 

pH - 7.9 0.18 7.5 8.1 37 

Redox mv -64.5 11.41 -78.7 -38.5 37 

Dissolved oxygen mg/l 8.2 0.29 7.8 9.0 37 
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Table 5.9 (Continued)       

Electrical conductivity µS/cm 139.4 14.90 101.5 171.4 37 

Total dissolved solids mg/l 69.7 7.45 50.8 85.7 37 

Suspended solids mg/l 5.0 3.73 0.3 20.3 37 

Turbidity NTU 4.0 1.40 2.2 9.0 37 

Colour Pt Co 232.1 42.41 159.0 348.7 37 

Chemical oxygen demand mg/l 20.1 6.16 11.0 33.5 10 

Ammonia-nitrogen mg/l 0.3 0.32 0.0 1.1 10 

Nitrate-nitrogen mg/l 0.2 0.28 0.0 1.0 10 

Ortho-phosphate-phosphorus mg/l 2.7 0.79 1.8 4.0 10 

Reactive blue 198 + DSTWW at pH 6 for Lemna minor L. ponds 

Dye concentration mg/l 10.0 2.13 3.6 13.0 37 

pH - 7.1 0.73 5.3 7.8 37 

Redox mv -22.8 41.88 -61.3 76.0 37 

Dissolved oxygen mg/l 8.3 0.30 7.7 9.1 37 

Electrical conductivity µS/cm 124.2 12.03 97.9 150.3 37 

Total dissolved solids mg/l 62.1 6.01 48.9 75.1 37 

Suspended solids mg/l 12.1 7.55 0.7 37.0 37 

Turbidity NTU 5.7 2.87 1.8 13.8 37 

Colour Pt Co 235.6 40.95 116.7 299.7 37 

Chemical oxygen demand mg/l 21.1 7.51 7.7 31.0 10 

Ammonia-nitrogen mg/l 0.1 0.08 0.0 0.2 10 

Nitrate-nitrogen mg/l 0.2 0.10 0.1 0.3 10 

Ortho-phosphate-phosphorus mg/l 2.3 0.60 1.3 3.2 10 

Reactive blue 198+ DSTWW at pH 6 for control ponds 

Dye concentration mg/l 11.5 0.98 9.1 13.1 37 

pH - 7.4 0.37 6.5 7.8 37 

Redox mv -44.2 22.11 -71.0 8.5 37 

Dissolved oxygen mg/l 8.2 0.28 7.8 8.9 37 

Electrical conductivity µS/cm 141.4 29.64 1.1 189.5 37 

Total dissolved solids mg/l 70.7 14.82 0.6 94.8 37 

Suspended solids mg/l 6.7 4.91 1.5 26.0 37 

Turbidity NTU 4.0 1.60 0.4 9.5 37 

Colour Pt Co 226.7 28.78 122.0 270.3 37 

Chemical oxygen demand mg/l 15.9 6.06 7.7 26.4 10 

Ammonia-nitrogen mg/l 0.2 0.29 0.1 1.1 10 

Nitrate-nitrogen mg/l 0.2 0.25 0.0 0.9 10 

Ortho-phosphate-phosphorus mg/l 2.9 0.70 2.0 3.8 10 

Basic red 46 + DSTWW at normal pH for Lemna minor L. ponds 

Dye concentration mg/l 0.7 1.11 0.1 5.9 37 

pH - 7.7 0.30 7.2 8.2 37 

Redox mv -61.4 18.61 -87.7 -32.0 37 

Dissolved oxygen mg/l 8.3 0.28 7.8 9.1 37 

Electrical conductivity µS/cm 110.7 18.16 72.7 154.0 37 

Total dissolved solids mg/l 55.4 9.08 36.4 77.0 37 

Suspended solids mg/l 8.3 6.12 1.3 25.7 37 

Turbidity NTU 4.8 2.24 0.5 11.1 37 

Colour Pt Co 162.4 91.83 16.0 470.7 37 

Chemical oxygen demand mg/l 37.4 18.09 18.5 61.6 10 

Ammonia-nitrogen mg/l 0.2 0.07 0.1 0.3 10 

Nitrate-nitrogen mg/l 0.2 0.14 0.0 0.4 10 
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Table 5.9 (Continued)       

Ortho-phosphate-phosphorus mg/l 2.0 1.07 0.6 4.2 10 

Basic red 46 +DSTWW at normal pH for control ponds 

Dye concentration mg/l 6.6 1.54 4.9 10.8 37 

pH - 7.7 0.19 7.3 8.0 37 

Redox mv -60.4 11.27 -77.7 -36.0 37 

Dissolved oxygen mg/l 8.3 0.29 7.8 9.0 37 

Electrical conductivity µS/cm 147.3 97.15 117.0 722.1 37 

Total dissolved solids mg/l 73.6 48.57 58.5 361.0 37 

Suspended solids mg/l 2.6 2.34 0.0 12.0 37 

Turbidity NTU 3.2 0.70 0.7 4.8 37 

Colour Pt Co 551.4 77.42 364.0 709.3 37 

Chemical oxygen demand mg/l 13.1 4.09 8.8 20.4 10 

Ammonium -nitrogen mg/l 0.3 0.35 0.0 1.2 10 

Nitrate-nitrogen mg/l 0.3 0.21 0.2 0.9 10 

Ortho-phosphate-phosphorus mg/l 3.5 0.60 2.8 4.4 10 

Basic red 46 + DSTWW at pH 9 for Lemna minor L. ponds 

Dye concentration mg/l 0.7 0.94 0.1 5.3 37 

pH - 7.8 0.24 7.5 8.5 37 

Redox mv -64.7 15.04 -100.0 -44.0 37 

Dissolved oxygen mg/l 8.3 0.30 7.8 9.1 37 

Electrical conductivity µS/cm 119.2 11.13 95.4 146.7 37 

Total dissolved solids mg/l 59.6 5.57 47.7 73.4 37 

Suspended solids mg/l 7.1 3.51 0.7 15.0 37 

Turbidity NTU 5.0 2.00 2.6 9.9 37 

Colour Pt Co 176.6 83.61 67.0 409.3 37 

Chemical oxygen demand mg/l 32.8 21.00 7.7 69.1 10 

Ammonium -nitrogen mg/l 0.1 0.05 0.1 0.2 10 

Nitrate-nitrogen mg/l 0.2 0.13 0.0 0.4 10 

Ortho-phosphate-phosphorus mg/l 1.8 0.68 0.6 3.1 10 

Basic red 46 + DSTWW at pH 9 for control ponds 

Dye concentration mg/l 6.2 1.33 4.1 9.7 37 

pH - 7.8 0.19 7.3 8.3 37 

Redox mv -65.1 9.71 -79.0 -45.0 37 

Dissolved oxygen mg/l 8.3 0.32 7.2 8.9 37 

Electrical conductivity µS/cm 136.0 19.87 80.1 176.5 37 

Total dissolved solids mg/l 68.0 9.94 40.1 88.3 37 

Suspended solids mg/l 3.2 2.14 0.0 19.0 37 

Turbidity NTU 3.1 0.53 1.0 4.1 37 

Colour Pt Co 541.4 77.23 365.0 696.3 37 

Chemical oxygen demand mg/l 12.0 5.83 2.8 22.6 10 

Ammonium -nitrogen mg/l 0.3 0.37 0.1 1.3 10 

Nitrate-nitrogen mg/l 0.3 0.09 0.2 0.5 10 

Ortho-phosphate-phosphorus mg/l 3.2 0.75 1.9 4.6 10 

Basic red 46 + DSTWW at pH 6 for Lemna minor L. ponds 

Dye concentration mg/l 0.7 1.04 0.1 5.8 37 

pH - 7.2 0.43 6.4 7.8 37 

Redox mv -30.0 23.37 -64.0 14.0 37 

Dissolved oxygen mg/l 8.3 0.28 7.8 9.0 37 

Electrical conductivity µS/cm 124.6 19.22 88.0 157.3 37 

Total dissolved solids mg/l 62.3 9.61 44.0 78.6 37 
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Table 5.9 (Continued)       

Suspended solids mg/l 8.5 5.28 1.0 23.0 37 

Turbidity NTU 4.8 2.04 1.2 11.4 37 

Colour Pt Co 182.3 82.25 91.0 427.0 37 

Chemical oxygen demand mg/l 42.5 11.67 17.0 61.5 10 

Ammonium -nitrogen mg/l 0.3 0.19 0.1 0.8 10 

Nitrate-nitrogen mg/l 0.2 0.10 0.0 0.4 10 

Ortho-phosphate-phosphorus mg/l 2.2 0.74 0.9 3.1 10 

Basic red 46 +DSTWW at pH 6 for control ponds 

Dye concentration mg/l 6.4 1.54 4.7 9.7 37 

pH - 7.5 0.29 7.1 7.9 37 

Redox mv -48.6 15.68 -67.0 -25.0 37 

Dissolved oxygen mg/l 8.3 0.28 7.8 8.9 37 

Electrical conductivity µS/cm 147.6 22.01 129.5 199.0 37 

Total dissolved solids mg/l 73.8 11.01 64.7 99.5 37 

Suspended solids mg/l 3.6 3.19 0.0 11.0 37 

Turbidity NTU 3.4 0.78 0.8 4.7 37 

Colour Pt Co 549.5 82.10 405.0 713.3 37 

Chemical oxygen demand mg/l 13.7 6.16 3.2 23.3 10 

Ammonium -nitrogen mg/l 0.4 0.45 0.1 1.6 10 

Nitrate-nitrogen mg/l 0.4 0.32 0.1 1.2 10 

Ortho-phosphate-phosphorus mg/l 3.6 0.72 2.4 4.5 10 

DSTWW at normal pH for Lemna minor L. ponds 

pH - 7.7 0.31 7.2 8.5 37 

Redox mv -57.4 16.22 -101.5 -36.0 37 

Dissolved oxygen mg/l 8.4 0.25 8.0 9.0 37 

Electrical conductivity µS/cm 107.9 7.45 91.0 117.5 37 

Total dissolved solids mg/l 54.0 3.73 45.5 58.8 37 

Suspended solids mg/l 8.3 0.29 7.9 9.1 37 

Turbidity NTU 5.0 1.52 2.6 8.7 37 

Colour Pt Co 38.8 9.85 13.0 49.5 37 

Chemical oxygen demand mg/l 30.3 9.23 21.6 50.1 10 

Ammonium -nitrogen mg/l 0.1 0.07 0.0 0.2 10 

Nitrate-nitrogen mg/l 0.2 0.19 0.0 0.7 10 

Ortho-phosphate-phosphorus mg/l 1.2 0.48 0.6 2.3 10 

DTW at normal pH for Lemna minor L. ponds 

pH - 7.4 0.17 7.0 7.7 37 

Redox mv -38.6 9.57 -59.0 -20.5 37 

Dissolved oxygen mg/l 7.2 4.63 1.5 17.0 37 

Electrical conductivity µS/cm 80.4 7.85 64.5 97.5 37 

Total dissolved solids mg/l 40.2 3.93 32.3 48.8 37 

Suspended solids mg/l 5.1 3.06 0.5 11.0 37 

Turbidity NTU 3.1 0.39 2.4 3.9 37 

Colour Pt Co 24.4 7.84 5.5 34.5 37 

Chemical oxygen demand mg/l 21.8 12.28 8.8 44.5 9 

Ammonium-nitrogen mg/l 0.1 0.03 0.0 0.1 9 

Nitrate-nitrogen mg/l 0.3 0.27 0.0 0.8 9 

Ortho-phosphate-phosphorus mg/l 0.8 0.43 0.3 1.7 9 

Note: NTU, nephelometric turbidity unit; DSTWW, diluted synthetic textile wastewater; 

DTW, dechlorinated tap water. 
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5.3.2.2 Chemical oxygen demand and dissolved oxygen  

Mean outflow COD concentrations (Table 5.9) were not as high as the corresponding inflow 

concentrations (Table 5.6) for all ponds containing RB198, indicating high microbial 

activities for COD degradation as shown in Figure 5.16. In addition, no significant 

differences (Table 5.7) were found between L. minor and control ponds in terms of COD 

outflow concentrations and removal efficiency. These results indicate that COD removal 

was due to microbial activities and the impact of the plants was negligible. Similar findings 

were presented, previously (Ong et al., 2009a). The mean COD outflow concentrations 

(Table 5.9) related to ponds treating BR46 were higher than the mean inflow (Table 5.6) 

concentrations for L. minor ponds, and lower than the average inflow for control ponds. In 

addition, the outflow concentrations linked to the L. minor wetlands were significantly 

(Table 5.7) higher than those for ponds without plants. This may be ascribed to the high 

percentage of BR46 decolourisation and degradation in planted ponds, which consequently 

increased the organic load. The death of some plants during their life cycle also increased 

the COD concentrations in L. minor compared to the control systems (Dalu & Ndamba, 

2003). However, COD removal (Figure 5.16) for both ponds with and without plants 

comprising BR46 showed no significant dissimilarity (Table 5.7), suggesting that there was 

no contribution by plants in terms of organic matter uptake, and COD degradation was due 

to micro-organism activities (Ong et al., 2009a). No significant (Table 5.8) differences were 

found among the outflow concentrations and the removal values concerning COD in terms 

of pH adjustment. Results indicate that the impact of different pH values used in this study 

was mostly negligible. The results of COD removal in this experiment do not match with the 

very low removal observed in the first experiment (Chapter 4, Section 4.2.2.2). This may be 

due to the mode of operation, and the carbon source in the synthetic textile wastewater. 

According to common international standards (Carmen & Daniela, 2012), the limits for COD 

are around 125 mg/l for direct discharge to watercourses. The results show that all outflow 

COD values for each system were less than the standard threshold. 

Concerning DO, the average outflow concentrations were lower compared to the inflow ones 

as shown in Tables 5.9 and 5.6 for all ponds with and without dyes. No significant 

differences were observed between the ponds with and without plants regardless of the pH 

conditions (Table 5.7) for all dyes. These results indicate that oxygen diffusion by the 

atmosphere impacts on the DO level in the system rather than oxygen release by plants.  
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Figure 5.16 Mean chemical oxygen demand removal efficiency during the experiment between 20 January 2016 and 18 October 2016. 

Note: P3, Lemna minor L. ponds receiving inflow at normal pH; P4, control ponds receiving inflow at normal pH; P5, Lemna minor L. ponds 

receiving inflow at pH of 9; P6, control ponds receiving inflow at pH of 9; P7, Lemna minor L. ponds receiving inflow at pH of 6; P8, control 

ponds receiving inflow at pH of 6; DSTWW, diluted synthetic textile wastewater; DTW, dechlorinated tap water. 
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5.3.2.3 pH and redox potential  

The mean inflow pH (Table 5.6) was 7.4 for the dye RB198 and 7.5 for the dye BR46. 

However, after pH adjustment, the inflow values were 9.0± 0.08 for alkaline and 6.0± 0.04 

for acidic conditions concerning RB198, and 9.0± 0.05 for alkaline and 6± 0.05 for acidic 

conditions with respect to BR46. As a result, the mean pH outflow values (Table 5.9) 

followed this ranking order: alkaline > normal > acidic for both L. minor and control ponds 

due to the impact of pH adjustment, although the outflow values at alkaline conditions 

dropped and at acidic conditions increased. These results indicate the system buffer capacity, 

which leads to approximately neutral pH values after seven days of contact time. The mean 

pH values obtained from the outflow for the L. minor ponds were equal to or slightly lower 

than the control ones for both dyes. This indicates that the plants are able to modify the pH 

by proton and ion exchanges. Similar findings were published, previously (Noonpui & 

Thiravetyan, 2011). Common international standard thresholds for pH are between 6.5 and 

8.5 (Carmen & Daniela, 2012). The results indicate that the planted ponds at acidic 

conditions containing RB198 and BR46 were 11 and 2 times non-compliant, respectively. 

The outflow (Table 5.9) redox potential values ranged between 76 mV and -100 mV, 

indicating the presence of anoxic conditions in all ponds. 

5.3.2.4 Suspended solids and turbidity  

The average outflow concentrations of SS, (Table 5.9) were higher than the average inflow 

ones (Table 5.6) for all ponds with and without dye. This was due to organic matter 

degradation. In addition, the outflow values in L. minor ponds comprising RB198 and BR46 

were significantly (Table 5.7) higher than the corresponding values for the control ones. This 

could be due to the die-off of some plants, dry plant on the walls of the ponds and the growth 

of algae in planted ponds. Algae are one of the main factors effecting SS removal efficiency, 

and consequently increasing the SS concentration in the pond system (Dalu & Ndamba, 

2003). Regarding the impact of pH level on the SS outflow values, no significant 

dissimilarity was found between the values of each dye (Table 5.8). According to common 

international standards, the results showed that all outflow SS concentrations were equal to 

or less than the threshold of 35 mg/l. The outflow values for L. minor ponds comprising 

RB198 at high pH and low pH were 1 and 1 times non-compliant, respectively. In this study, 

high SS concentrations were linked with lower DO outflows compared to the inflow values, 

confirming organic matter degradation by consuming DO via micro-organisms. 
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In terms of turbidity, the mean outflow values (Table 5.9) mirrored those for SS. A related 

correlation analysis shows that SS was significantly (p < 0.01) positively correlated (r = 

0.609, p = 0.000) with turbidity. 

5.3.2.5 Electrical conductivity and total dissolved solids  

The average outflow EC numbers were lower than the corresponding inflow ones for all L. 

minor ponds containing dyes (Tables 5.6 and 5.9). However, higher mean EC outflows 

compared well with the inflow values for all control ponds. In addition, the average outflow 

EC values for the planted ponds were significantly lower (Table 5.7) than the corresponding 

unplanted ones, indicating that the plant was efficient in reducing the EC level in the ponds. 

This is because large dye molecules are caught in barriers within the vascular system of 

plants, as explained by Noonpui and Thiravetyan (2011). 

The average inflow and outflow TDS concentrations indicated a similar trend compared to 

the inflow and outflow EC numbers (Tables 5.6 and 5.9). This is because the EC is a function 

of TDS (Amankwaah et al., 2014) and in this experiment, is equal to twice the TDS values. 

According to common international standards, the results showed that all outflow TDS 

concentrations were less than the threshold of 3000 mg/l and 500 mg/l (Carmen & Daniela, 

2012). 

5.3.2.6 Nutrients 

All L. minor ponds showed mean outflow NH4–N values (Table 5.9) lower than the inflow 

concentrations (Table 5.6). However, control ponds showed higher values than the 

corresponding mean inflows. These results are confirmed by NH4–N removal efficiencies, 

which were significantly (Table 5.7) higher in L. minor ponds than the corresponding control 

ones for all systems (Figure 5.17). Results indicate that the uptake of nitrogen by plants was 

one of the main reasons for nitrogen reduction in this study, although Kadlec et al. (2000) 

clarified that the impact of plants does not exceed 10% of the total removal in treatment 

systems. However, Ong et al. (2009a) mentioned that some researchers found higher 

removals of NH4–N in planted than unplanted reactors, and others did not find any 

differences at all. Similar outcomes were reported by Selvarani et al. (2015), highlighting 

that L. minor takes-up nitrogen from municipal wastewater within pond systems. The plants 

removed more NH4–N in this experiment (Figure 5.17) compared with the negligible 

removal, by plants, in the second experiment (Section 5.2.2.6; Figure 5.6), which could be 
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attributed to the low loading rate of NH4–N in diluted synthetic wastewater within this 

experiment, which increased the uptake level as indicated by Zimmo (2003). The algae 

grown in this operation and the high plant survival rate contributed to good nitrogen removal 

as well. High NH4–N removal was also due to biological oxidation of the ammonia to nitrate, 

with nitrite as an intermediate, by nitrifying bacteria. This process requires oxygen supplied 

by the atmosphere, diffusion and/or plant transfer via their roots. Note that the temperature 

conditions and the pH values were within the range of possible nitrification (Kadlec et al., 

2000; Ozengin & Elamic, 2007). 

Regarding the impact of pH, removal at low pH conditions was lower than at other conditions 

although no significant differences (Table 5.8) were found. Normally, in the presence of L. 

minor or algae in pond systems at high pH (8-9) values, nitrogen removal increases, because 

of boosted sedimentation and ammonia volatilisation processes. This is because the limited 

density of L. minor at higher pH values leads to an increase in nitrogen accumulation within 

the sediment comprising decaying L. minor, and reduced covered surface area consequently 

allowing for enhanced volatilisation processes to take place. In addition, a greater dispersal 

of algal biomass taking-up nitrogen is due to high light penetration and favourable growth 

conditions for algae (Zimmo, 2003). The NH4–N removal efficiency of ponds containing 

only synthetic textile wastewater without dyes was higher than those for all ponds containing 

dyes. This is due to the impact of dyes and aromatic amine intermediates. The latter inhibits 

the nitrification activities by microbes in the system leading to a low NH4–N removal 

efficiency, as discussed by Ong et al. (2009a). No thresholds have been set for NH4–N that 

have relevance for the treatment system in this study (UK Government 1994). However, the 

standard limit relating to secondary wastewater treatment is 20 mg/l (Al-Isawi et al., 2017). 

All outflow values were lower than this limit. 

Concerning NO3–N, all mean outflow concentrations (Table 5.9) were lower compared to 

the inflow ones (Table 5.6). In terms of removal efficiency, ponds containing dye exhibited 

low NO3–N removal, which ranged between 16 and 47%. In addition, all NO3–N removal 

values (Figure 5.18) were significantly higher (Table 5.7) in L. minor ponds than in control 

ones, except for ponds treating BR46 at low and high pH values. These findings suggest that 

the plants acquire nitrate as a second source after ammonia has been taken-up (Selvarani et 

al., 2015). This results in a significant potential for NO3–N reduction by plants in addition 

to the denitrification mechanism. However, ponds treating BR46 at acidic conditions provide 

unexpected results of higher removal in control ponds than planted ponds, which indicates 
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that denitrification was the main mechanism for NO3–N removal and the plant contribution 

was marginal. This may be attributed to plant detritus, which plays an important role in 

nutrient recycling within the system (Zhang et al., 2014). The UK Government (1994) has 

set no threshold for NO3–N. Nonetheless, the traditional limit for secondary wastewater is 

50 mg/l, as discussed by Al-Isawi et al. (2017). All outflow values were less than this limit. 

It is important to mention that anaerobic micro-niches within the pond system also have a 

small contribution to the increase in the denitrification rate. In addition, around 4% of the 

initial nitrogen was reduced by nitrification and denitrification due to the micro sites of the 

biofilm-attached L. minor (Zimmo, 2003). 

Ortho-phosphate-phosphorus (PO4–P) mean outflow concentrations (Table 5.9) were 

elevated compared to the inflow recordings (Table 5.6) with respect to all dyes, indicating 

low PO4–P reduction. Mean outflow values for L. minor ponds were significantly lower 

(Table 5.7) than the respective values for the control ones concerning all dyes. This reflects 

the PO4–P removal efficiencies (Figure 5.19), which were significantly (Table 5.7) higher 

for L. minor ponds compared to the control ones, excluding the ponds comprising RB198 at 

low and high pH, which were not significant. These findings indicate that plants contributed 

to the removal of PO4–P, and that the mechanism of phosphorus removal in planted ponds 

was attributed to the uptake and assimilation of phosphorus into L. minor protein, adsorption 

on the fronds of the plant, chemical precipitation and uptake by micro-organisms. However, 

only the uptake by microbes and biological activities are responsible for PO4–P reduction in 

control ponds. Similar trends were stated by Vanitha et al. (2013). The realistic guideline 

threshold for PO4–P is 1 mg/l (Al-Isawi et al., 2017), most outflow values were then non-

compliant. Regarding the impact of pH inflow values, PO4–P removal by control ponds 

treating BR46 at high pH was significantly (Table 5.8,) higher than those at normal and low 

pH.
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Figure 5.17 Mean ammonium-nitrogen removal efficiency during the experiment between 20 January 2016 and 18 October 2016. Note: 

P3, Lemna minor L. ponds receiving inflow at normal pH; P4, control ponds receiving inflow at normal pH; P5, Lemna minor L. ponds receiving 

inflow at pH of 9; P6, control ponds receiving inflow at pH of 9; P7, Lemna minor L. ponds receiving inflow at pH of 6; P8, control ponds receiving 

inflow at pH of 6; DSTWW, diluted synthetic textile wastewater; DTW, dechlorinated tap water.  
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Figure 5.18 Mean nitrate-nitrogen removal efficiency during the experiment between 20 January 2016 and 18 October 2016. Note: P3, 

Lemna minor L. ponds receiving inflow at normal pH; P4, control ponds receiving inflow at normal pH; P5, Lemna minor L. ponds receiving 

inflow at pH of 9; P6, control ponds receiving inflow at pH of 9; P7, Lemna minor L. ponds receiving inflow at pH of 6; P8, control ponds receiving 

inflow at pH of 6; DSTWW, diluted synthetic textile wastewater; DTW, dechlorinated tap water. 
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Figure 5.19 Mean ortho-phosphate-phosphorus removal efficiency during the experiment between 20 January 2016 and 18 October 2016. 

Note: P3, Lemna minor L. ponds receiving inflow at normal pH; P4, control ponds receiving inflow at normal pH; P5, Lemna minor L. ponds 

receiving inflow at pH of 9; P6, control ponds receiving inflow at pH of 9; P7, Lemna minor L. ponds receiving inflow at pH of 6; P8, control 

ponds receiving inflow at pH of 6; DSTWW, diluted synthetic textile wastewater; DTW, dechlorinated tap water. 
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5.3.2.7 Trace elements  

The mean inflow and outflow concentrations of the elements detected through the ICP-OES 

analyses are presented in Figure 5.11. Mean outflow zinc values (Figure 5.11a) were lower 

than the mean inflow concentrations for both L. minor and control ponds containing dye, as 

well as those fed by only synthetic textile wastewater. In addition, all the outflow zinc values 

were higher for ponds containing plants compared with the corresponding outflow values 

for control ponds in terms of the dye RB198, although no significant differences were found 

(P > 0.05, t-test). However, for BR46, which is the main source of zinc in the wastewater, 

the outflow values for L. minor ponds were significantly (p < 0.05, t-test) lower than those 

in control ones, which may reflect the BR46 degradation and consequently zinc ion reduction 

by L. minor ponds. Regarding the impact of the pH factor, no significant differences (P > 

0.05, Kruskal-Wallis test) were found for either dye. Mean zinc outflows were within the 

acceptable range for L. minor survival (Khellaf & Zerdaoui, 2009). In addition, the mean 

outflow zinc concentrations were lower than the threshold set of 2 mg/l for irrigation 

(Metcalf & Eddy, 2003). Mean outflow iron values (Figure 5.11b) were lower than the mean 

inflow concentrations for both L. minor and control ponds containing dye as well as those 

fed by only synthetic textile wastewater, except for the outflow values of control ponds at 

pH of 9 (P6) treating RB198, and control ponds at normal pH (P4) and L. minor pond at pH 

of 6 (P7) comprising BR46. In addition, although the outflow iron values were lower in L. 

minor ponds compared with those in control ponds for both dyes, which indicates some iron 

uptake by L. minor except the case of normal pH (P3 and P4) for treating RB198 and pH of 

6 (P7 and P8) treating BR46, no significant differences were found (P > 0.05). These 

exceptions may be attributed to plant die-off and subsequent decomposition in some ponds 

being higher than others due to the effect of pH values with the dyes and the synthetic 

wastewater. The standard limit of iron for irrigation is 5 mg/l (Metcalf & Eddy, 2003), and 

all outflow values were compliant. Lower mean outflow values of potassium (Figure 5.11d) 

than the inflow ones were found for all ponds containing dye as well as those comprising 

only synthetic textile wastewater. Other elements detected in the wastewater including 

magnesium, calcium and sodium are presented in Figures 5.11c, e and f, respectively 

Figure 5.20 provides an overview of the concentration of elements accumulated in plant 

tissues for all ponds with and without dyes. The higher concentrations of zinc in BR46 were 

linked with the high outflow zinc values in ponds treating BR46 (Figure 5.20a), which were 
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attributed to the higher inflow zinc in these ponds compared with the systems not comprising 

BR46. The level of zinc and iron in plants (Figures 5.20a and b) were higher than the 

permissible limits of 50 mg/kg and 20 mg/kg, respectively, as mentioned by Nazir et al. 

(2015). Manganese was detected in the plants (Figure 5.20d), although it was not detected 

in the inflow and outflow aqueous samples. 

The BCF, Figures 5.21a and b, indicated that the plant was positive for phytoremediation of 

zinc and iron, respectively, for all samples.  
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Figure 5.20 Mean concentrations of the detected elements in plant tissue during the 

experimental between 20 January 2016 and 18 October 2016. Note: (a), zinc; (b), iron; 

(c), magnesium; (d), manganese; (e), sodium; (f), potassium; (g), calcium; P3, Lemna minor 

L. ponds receiving inflow at normal pH; P4, control ponds receiving inflow at normal pH; 

P5, Lemna minor L. ponds receiving inflow at pH of 9; P6, control ponds receiving inflow 

at pH of 9; P7, Lemna minor L. ponds receiving inflow at pH of 6; P8, control ponds 

receiving inflow at pH of 6; DSTWW, diluted synthetic textile wastewater; DTW, 

dechlorinated tap water.  
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Figure 5.21 Bioconcentration factor during the experiment between 20 January 2016 

and 18 October 2016. Note: (a), zinc; (b), iron; P3, Lemna minor L. ponds receiving inflow 

at normal pH; P5, Lemna minor L. ponds receiving inflow at pH of 9; P7, Lemna minor L. 

ponds receiving inflow at pH of 6; DSTWW, diluted synthetic textile wastewater; DTW, 

dechlorinated tap water. 

5.3.3 Treatment performance (phase 2) 

5.3.3.1 Dye and apparent colour  

Figure 5.22 shows the mean removal efficiency of the dyes for each system related to the 

second phase that ran between 18 October 2016 and 30 June 2017. Tables 5.10 and 5.11 

present the overall outflow water quality parameters for each system, and statistical analysis 

between the treatment systems for the period from 18 October 2016 to 30 June 2017. The 

pond systems exhibited no removal efficiencies for the dye RB198 and the differences 

between the design parameters were low (Figure 5.22). In addition, the mean outflow 

concentrations (Table 5.10) were higher compared to those of the inflow (Table 5.6) and 

showed no significant differences (Table 5.11) among the design variables. These results 

indicate that the presence or absence of algae in the system do not affect the pond 

performance in terms of RB198 treatment. The highest and lowest removals were 6 and -

26% for L. minor and algae ponds, respectively, and 13 and -30% for algae ponds in that 

order, and 11% and -23% for control ponds, respectively. The negative removal numbers 

suggested that the system works as a source rather than a sink, which could be due to surface 

evaporation phenomena or dried dye sticking on the wall of the pond sides after weekly 

doses. The removal of dye BR46 was significantly higher than that of RB198 due to the 
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absence of sulpho groups, low molecular weight and the simple structure of BR46 (Chapter 

3, Table 3.1), making this dye easily absorbed and degraded. The mean removal of BR46 

(Figure 5.22) was highest for L. minor and algae ponds (89%) followed by only algae ponds 

(58%), and the lowest removal (33%) is linked to unplanted ponds. These results reflected 

the mean outflow BR46 (Table 5.10) concentrations, which were as follows: L. minor and 

algae ponds (P1; 0.5 mg/l) < algae ponds (P2; 2.4 mg/l) < control ponds (P4; 5 mg/l). All 

dissimilarities between the design parameters in terms of the outflow concentrations and the 

removal values were statistically significant (Table 5.11). These findings suggest that the 

influence of L. minor and algae on BR46 elimination are 31 and 25% in this order. These 

findings of BR46 removal efficiency match with those in Chapter 4, Section 4.2.2.1 (Table 

4.2), although the potential of L. minor was slightly lower in this experiment, which may be 

due to the impact of increasing the concentration to 10 mg/l in this experiment compared 

with only 5 mg/l in the previous one. 

Figure 5.23 highlights the UV-Vis analysis for the inflow and outflow samples for each dye 

linked with the second phase of the experiment. The main peak for the RB198 colour at 625 

nm showed a clear increase in outflow samples related to L. minor and algae, algae and 

control ponds (Figure 5.23a). This indicates that the outflow concentrations increased and 

confirms the results of Table 5.10 related to the outflow RB198 concentrations. However, 

the dye BR46 (Figure 5.23b) showed a complete disappearance of the colour peak at 530 nm 

for ponds planted with L. minor and algae, confirming complete decolourisation. In addition, 

algae ponds showed considerable elimination of the peak at 530 nm confirming the high 

reduction of outflow concentrations, although the outflow samples were not fully colourless. 

However, control ponds showed some reduction in the peak at 530 nm indicating a decrease 

in the outflow concentration by microbes. 

The HPLC chromatogram analysis showed that the RB198 inflow peak at a retention time 

of 1.505 min (Appendix E, Figure E.1b) shifted to 1.633, 1.793 and 1.523 min in ponds 

planted with L. minor and algae, algae only and controls, respectively (Appendix E, Figure 

E.16). These bands in planted ponds could considerably shift in contrast to the control ponds 

due to interactions between plants, algae and the wastewater. However, for the dye BR46, 

the inflow peak (Appendix E, Figure E.1c) at 1.488 min shifted to 1.485 min with the 

appearance of a new peak at 2.779 min for L. minor and algae ponds, and the inflow peak at 

1.488 shifted to 1.52 min with the appearance of a new peak at 2.276 min for algae ponds 

(Appendix E, Figures E.17a and b, respectively). In addition, all other inflow peaks 
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disappeared, confirming dye adsorption and degradation due to phytotransformation 

(Khandare et al., 2011; Kabra et al., 2012) and biotransformation by microbes (Tahir et al., 

2016) processes. However, the control ponds showed appearances of new peaks at 2.796 

min and the band at 2.405 shifted to 2.2, and the elimination of other inflow peaks was 

observed which may reflect dye bio-sorption and biotransformation (Pearce et al., 2003; 

Tahir et al., 2016) (Appendix E, Figure E.17c). As mentioned by Somasiri et al. (2006), the 

cleavage of azo bonds due to dye degradation produced toxic intermediates called aromatic 

amines, and due to the short life of these intermediates, it was difficult to identify these 

products by HPLC analysis. Therefore, gas chromatography mass spectrometry (GCMS) 

analysis was used for aromatic amine identification, which helped to confirm the mechanism 

of dye removal. 

The GCMS results (provided by Concept Life Sciences Analytical and Development 

Services Limited) for the outflow of L. minor and algae ponds treating RB198 showed that 

there were no aromatic amines. This was because the breakage of azo bonds as a first step 

for the treatment did not occur and, consequently, no intermediates (aromatic amine) were 

produced. This result could be generalised for the algae and control ponds due to the same 

removal processes being expected for all ponds treating RB198. Concerning the dye BR46 

treated by L. minor and algae ponds, no aromatic amines were detected in the residual dye 

bath. This finding indicates that the cleavage product is completely mineralised by 

phytotransformation and biotransformation (Khandare et al., 2011; Kabra et al., 2012; Tahir 

et al., 2016). However, the outflow samples of algae ponds containing BR46 showed the 

presence of three aromatics; benzenemethanamine, N-methyl (CAS number 103-67-3), 

benzenamine, 4methoxy-N-methyl (CAS number 5961-59-1), and 1-Triazene, 1-

(4methylphenyl)-3(phenylmethyl) (CAS number 17683-09-9). The concentrations were 

lower than 10 mg/l, which is the detection limit of the equipment. This suggests that although 

algae Oedogonium were able to remove a considerable amount of colour, they were 

incapable of completely mineralising the dye within the systems to water and carbon dioxide. 

Therefore, in this experiment, biotransformation to colourless intermediates (aromatic 

amines) and bio-sorption processes are likely to be responsible for colour removal by algae. 

Holkar et al. (2016) mentioned that the main mechanisms for dye removal by algae are bio-

sorption (the dye moves from the water phase to the solid phase) and biotransformation 

(algae break-down of the azo dye to colourless intermediates or carbon dioxide and water). 

According to the Regulation (EC) No. 1907/2006, the first aromatic (CAS number 103-67-
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3) can cause severe skin burns, eye damage, allergic skin reaction, asthma symptoms and 

breathing difficulties, if inhaled. Therefore, environmental agencies often prevent this 

product from entering drains. However, the second amine (CAS number 5961-59-1) has 

been confirmed as a non-hazardous substance according to the Regulation (EC) No. 

1272/2008. In addition, it does not contain components considered to be either persistent, 

bioaccumulative and toxic (PBT), or very persistent and very bio-accumulative (vPvB) at 

levels of 0.1% or higher. Therefore, no special environmental exposure precautions are 

required. Furthermore, no component of these two aromatics present at levels greater than 

or equal to 0.1% has been identified as a probable, possible or confirmed human carcinogen. 

Whereas, there are no data available for the third aromatic (CAS number 17683-09-9). 

Although as an environmental precaution, it has been recommended not to allow this 

aromatic material to enter drains or watercourses.  

Regarding the sample collected from the control ponds containing BR46, the analysis 

detected two peaks of concentrations below 10 mg/l. One peak was identified as N-(4-

methylphenyl)-benzenemethanamine (CAS number 5405-15-2) and the other one was 

unidentifiable, but the closest match had an aromatic amine structure. This confirms that the 

pond system without L. minor was unable to mineralise the dye BR46. However, aromatic 

amine production confirmed the bio-sorption and biotransformation process by microbes 

within the control ponds (Tahir et al., 2016). N-(4-methylphenyl)-benzenemethanamine is 

considered as a non-hazardous substance. However, as an environmental precaution the 

discharge of this compound must be avoided. Sponza and Isik (2005) conducted different 

toxicity tests after each stage of direct red 28 treatment. They concluded that the outflow 

samples of the first stage in dye removal (decolourisation step) are toxic to plants and 

animals. However, continued degradation completed mineralisation, decreased the toxicity 

of the parent compound and eliminated the toxic impact on micro-organisms. Therefore, in 

this study, the toxic impacts of the outflow samples in L. minor ponds, which completely 

mineralised the dye, were expected to be eliminated. Whereas within the algae and control 

ponds, toxic effects are associated with the effluents depending on the toxicity of the 

aromatics. 

Based on apparent colour monitoring, all mean outflow colour values (Table 5.10) were 

lower than the corresponding inflow (Table 5.6) values. L. minor and algae, and only algae 

ponds treating RB198 showed outflow colour values higher than the control ponds. 

However, L. minor and algae, and only algae ponds comprising BR46 showed lower outflow 
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colour values than the control ponds. This is because the colour parameter (un-true colour) 

is affected by the colour of the dye and the suspended particles in the system. Therefore, the 

planted ponds treating RB198 showed higher colour values due to the presence of dead 

plants in the system in addition to the high dye concentration due to the low removal rate. 

However, BR46 was treated better and the colour measurements were affected by the impact 

of dead plants and other suspended particles only. Inflow and outflow sample pictures are 

shown in Appendix F, Figure F.4. 

 

Figure 5.22 Mean dye removal efficiency during the experiment between 18 October 

2016 and 30 June 2017. Note: P1, Lemna minor L. and algae ponds; P2, algae ponds; P4, 

control ponds. 

Table 5.10 Outflow water quality parameters for each system between 18 October 2016 

and 30 June 2017 

Parameter Unit Mean 
Standard 

deviation 
Minimum Maximum Number 

Reactive blue 198 + DSTWW for Lemna minor L. and algae ponds 

Dye concentration mg/l 14.4 1.86 11.7 18.4 35 

pH - 7.6 0.32 7.3 9.0 35 

Redox mv -63.9 17.67 -142.5 -46.5 35 

Dissolved oxygen mg/l 8.5 0.20 8.2 9.0 35 

Electrical conductivity µS/cm 127.2 9.91 111.5 145.9 35 

Total dissolved solids mg/l 54.4 5.44 42.8 64.5 37 

Suspended solids mg/l 6.7 6.46 0.5 26.5 35 

Turbidity NTU 4.4 2.48 2.7 14.3 35 

Colour Pt Co 204.1 67.43 134.5 559.5 35 

Chemical oxygen demand mg/l 19.2 3.52 13.3 26.1 8 

Ammonium-nitrogen mg/l 0.06 0.044 0.01 0.15 8 

       

-20

0

20

40

60

80

100

0

200

400

600

800

1000

P1 P2 P4 P1 P2 P4

Reactive blue 198 Basic red 46

D
y
e
 r

e
m

o
v
a
l 
(%

)

L
o
a
d
 (

m
g
/m

² 
w

e
e
k
)

Load in

Load out

Removal



Chapter 5: Impact of pH Adjustment on System Performance 

253 

Table 5.10 (Continued)       

Nitrate-nitrogen mg/l 0.23 0.227 0.01 0.80 8 

Ortho-phosphate-phosphorus mg/l 1.72 0.344 1.12 2.08 8 

Reactive blue 198 + DSTWW for algae ponds 

Dye concentration mg/l 14.1 1.64 11.3 17.1 35 

pH - 7.6 0.16 7.3 8.0 35 

Redox mv -64.4 9.29 -84.0 -47.5 35 

Dissolved oxygen mg/l 8.5 0.17 8.2 9.0 35 

Electrical conductivity µS/cm 125.9 12.29 109.1 150.9 35 

Total dissolved solids mg/l 67.8 7.32 45.7 83.1 37 

Suspended solids mg/l 3.9 2.49 0.0 10.0 35 

Turbidity NTU 3.5 0.56 2.7 5.3 35 

Colour Pt Co 176.6 24.57 135.0 226.5 35 

Chemical oxygen demand mg/l 17.1 6.36 8.8 32.7 8 

Ammonium-nitrogen mg/l 0.09 0.051 0.04 0.19 8 

Nitrate-nitrogen mg/l 0.23 0.294 0.01 1.00 8 

Ortho-phosphate-phosphorus mg/l 1.96 0.298 1.37 2.34 8 

Reactive blue 198 + DSTWW for control ponds 

Dye concentration mg/l 13.9 1.64 11.0 16.8 35 

pH - 7.5 0.09 7.3 7.7 35 

Redox mv -58.7 4.87 -69.0 -46.5 35 

Dissolved oxygen mg/l 8.5 0.17 8.2 8.9 35 

Electrical conductivity µS/cm 128.0 12.22 108.3 150.5 35 

Total dissolved solids mg/l 60.1 11.72 37.3 113.6 37 

Suspended solids mg/l 3.8 2.20 0.5 9.0 35 

Turbidity NTU 3.5 0.57 2.5 5.3 35 

Colour Pt Co 175.5 23.80 127.0 224.5 35 

Chemical oxygen demand mg/l 16.9 4.49 9.8 22.0 8 

Ammonium-nitrogen mg/l 0.13 0.107 0.04 0.40 8 

Nitrate-nitrogen mg/l 0.24 0.179 0.11 0.55 8 

Ortho-phosphate-phosphorus mg/l 2.25 0.597 1.25 3.47 8 

Basic red 46+ DSTWW for Lemna minor L. and algae ponds 

Dye concentration mg/l 0.5 0.20 0.1 0.8 35 

pH - 7.6 0.31 7.2 8.7 35 

Redox mv -64.5 17.26 -122.0 -43.0 35 

Dissolved oxygen mg/l 8.5 0.34 7.2 9.4 35 

Electrical conductivity µS/cm 122.6 12.36 103.9 149.4 35 

Total dissolved solids mg/l 55.4 9.08 36.4 77.0 37 

Suspended solids mg/l 3.7 3.51 0.0 17.0 35 

Turbidity NTU 3.7 0.66 2.7 6.3 35 

Colour Pt Co 244.4 51.30 165.0 361.0 35 

Chemical oxygen demand mg/l 21.3 9.33 7.1 33.3 8 

Ammonium-nitrogen mg/l 0.09 0.050 0.02 0.13 8 

Nitrate-nitrogen mg/l 0.22 0.103 0.01 0.35 8 
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Table 5.10 (Continued)       

Ortho-phosphate-phosphorus mg/l 1.70 1.209 0.60 3.36 8 

Basic red 46 + DSTWW for algae ponds 

Dye concentration mg/l 2.4 1.22 0.5 5.0 35 

pH - 7.6 0.26 6.9 8.3 35 

Redox mv -60.9 14.98 -104.5 -23.0 35 

Dissolved oxygen mg/l 8.5 0.18 8.2 8.9 35 

Electrical conductivity µS/cm 119.0 11.24 103.3 145.0 35 

Total dissolved solids mg/l 73.6 48.57 58.5 361.0 37 

Suspended solids mg/l 3.4 2.10 0.0 9.0 35 

Turbidity NTU 3.7 0.46 2.9 5.0 35 

Colour Pt Co 351.7 84.70 215.5 589.5 35 

Chemical oxygen demand mg/l 33.1 21.91 5.8 83.1 8 

Ammonium-nitrogen mg/l 0.09 0.056 0.00 0.20 8 

Nitrate-nitrogen mg/l 0.22 0.081 0.02 0.30 8 

Ortho-phosphate-phosphorus mg/l 1.60 0.330 1.22 2.20 8 

Basic red 46 + DSTWW for control ponds 

Dye concentration mg/l 5.0 0.85 2.6 6.0 35 

pH - 7.6 0.16 7.3 8.1 35 

Redox mv -61.3 8.97 -92.0 -48.0 35 

Dissolved oxygen mg/l 8.5 0.17 8.2 8.9 35 

Electrical conductivity µS/cm 119.0 12.31 99.3 140.2 35 

Total dissolved solids mg/l 59.6 5.57 47.7 73.4 37 

Suspended solids mg/l 2.1 1.61 0.0 6.5 35 

Turbidity NTU 3.4 0.41 2.5 4.6 35 

Colour Pt Co 472.0 87.48 265.0 605.0 35 

Chemical oxygen demand mg/l 15.3 5.25 8.2 26.9 8 

Ammonium-nitrogen mg/l 0.10 0.05 0.02 0.18 8 

Nitrate-nitrogen mg/l 0.23 0.103 0.04 0.33 8 

Ortho-phosphate-phosphorus mg/l 2.25 0.576 1.42 3.14 8 

DSTWW for Lemna minor L. and algae ponds 

pH - 7.6 0.19 7.3 8.3 35 

Redox mv -66.6 10.56 -104.0 -54.0 35 

Dissolved oxygen mg/l 8.5 0.17 8.2 8.9 35 

Electrical conductivity µS/cm 129.8 14.24 103.5 156.0 35 

Total dissolved solids mg/l 54.0 3.73 45.5 58.8 37 

Suspended solids mg/l 3.6 2.80 0.0 12.0 35 

Turbidity NTU 3.6 0.65 2.2 6.0 35 

Colour Pt Co 41.9 18.22 18.0 99.0 35 

Chemical oxygen demand mg/l 19.6 7.90 12.8 35.8 8 

Ammonium-nitrogen mg/l 0.04 0.052 0.01 0.17 8 

Nitrate-nitrogen mg/l 0.17 0.352 0.01 1.10 8 

Ortho-phosphate-phosphorus mg/l 0.58 0.210 0.18 0.94 8 

DSTWW for algae ponds 
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Table 5.10 (Continued)       

pH - 7.7 0.24 7.4 8.5 35 

Redox mv -69.0 13.35 -115.0 -50.0 35 

Dissolved oxygen mg/l 8.5 0.17 8.2 9.0 35 

       
Total dissolved solids mg/l 40.2 3.93 32.3 48.8 37 

Suspended solids mg/l 4.0 4.76 0.0 17.0 35 

Turbidity NTU 4.3 1.30 2.7 8.5 35 

Colour Pt Co 41.7 20.38 12.0 89.0 35 

Chemical oxygen demand mg/l 30.4 9.01 23.5 50.4 8 

Ammonium-nitrogen mg/l 0.05 0.019 0.03 0.10 8 

Nitrate-nitrogen mg/l 0.23 0.479 0.02 1.50 8 

Ortho-phosphate-phosphorus mg/l 0.83 0.224 0.44 1.19 8 

DTW for Lemna minor L. and algae ponds 

pH - 7.5 0.14 7.2 7.8 35 

Redox mv -56.1 7.36 -76.5 -45.0 35 

Dissolved oxygen mg/l 8.5 0.14 8.2 8.8 35 

Electrical conductivity µS/cm 109.4 12.59 87.1 141.9 35 

Total dissolved solids mg/l 54.0 3.73 45.5 58.8 37 

Suspended solids mg/l 3.2 2.59 0.0 10.5 35 

Turbidity NTU 3.6 0.45 2.6 4.5 35 

Colour Pt Co 39.4 15.20 12.0 71.0 35 

Chemical oxygen demand mg/l 24.5 11.97 16.2 51.9 8 

Ammonium-nitrogen mg/l 0.04 0.042 0.02 0.12 8 

Nitrate-nitrogen mg/l 0.05 0.024 0.01 0.08 8 

Ortho-phosphate-phosphorus mg/l 0.58 0.264 0.13 1.12 8 

DSTWW for algae ponds 

pH - 7.5 0.12 7.1 7.7 35 

Redox mv -57.6 6.68 -69.5 -37.0 35 

Dissolved oxygen mg/l 8.5 0.14 8.2 8.8 35 

Electrical conductivity µS/cm 117.8 5.80 106.0 130.0 35 

Total dissolved solids mg/l 40.2 3.93 32.3 48.8 37 

Suspended solids mg/l 3.1 2.68 0.0 12.5 35 

Turbidity NTU 3.5 0.61 2.5 5.6 35 

Colour Pt Co 34.8 15.69 9.0 66.5 35 

Chemical oxygen demand mg/l 17.9 5.76 12.0 28.6 8 

Ammonium-nitrogen mg/l 0.05 0.055 0.02 0.19 8 

Nitrate-nitrogen mg/l 0.07 0.031 0.02 0.13 8 

Ortho-phosphate-phosphorus mg/l 0.76 0.374 0.13 1.37 8 

Note: NTU, nephelometric turbidity unit; DSTWW, diluted synthetic textile wastewater; 

DTW, dechlorinated tap water. 
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Table 5.11 Overview of the statistical analysis for outflow water quality parameters and corresponding removal efficiencies for each 

system between 18 October 2016 and 30 June 2017 

Parameter Shapiro-Wilk test (p value1) Statistical test 
p values2 for different system combinations 

P1 & P2 & P3 P1 & P2 P1 & P3 P2 & P3 

Dye (mg/l) 

RB198 0.017 K-W 0.548 N/A N/A N/A 

BR46 <0.001 K-W <0.001 <0.001 <0.001 <0.001 

Dye removal (%) 

RB198 0.178 ANOVA 0.010 0.016 0.033 0.960 

BR46 <0.001 K-W <0.001 <0.001 <0.001 <0.001 

Colour (Pt Co) 

RB198 <0.001 K-W 0.005 0.008 0.003 0.888 

BR46 0.001 K-W <0.001 <0.001 <0.001 <0.001 

DSTWW 0.001 M-W  0.874   

DTW 0.014 M-W  0.235   

Chemical oxygen demand (mg/l) 

RB198 0.196 Annova 0.638 N/A N/A N/A 

BR46 <0.001 K-W 0.071 N/A N/A N/A 

DSTWW 0.062 t-test  0.033   

DTW <0.001 M-W  0.140   

Chemical oxygen demand removal (%) 

RB198 0.498 ANOVA 0.202 N/A N/A N/A 

BR46 0.095 ANOVA 0.639 N/A N/A N/A 

DSTWW 0.006 M-W  0.009   

DTW 0.005 M-W  0.036   

Ammonium-nitrogen (mg/l) 

RB198 <0.001 K-W 0.188 N/A N/A N/A 

BR46 0.045 K-W 0.362 N/A N/A N/A 

DSTWW 0.002 M-W  0.074   
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Table 5.11 (Continued)       

DTW <0.001 M-W  0.874   

Ammonium-nitrogen removal (%) 

RB198 0.057 ANOVA 0.039 0.451 0.031 0.300 

BR46 0.176 ANOVA 0.001 0.801 0.002 0.009 

DSTWW 0.043 M-W  0.462   

DTW 0.098 t-test  0.257   

Nitrate-nitrogen (mg/l) 

RB198 <0.001 K-W 0.758 N/A N/A N/A 

BR46 0.006 K-W 0.744 N/A N/A N/A 

DSTWW <0.001 M-W  0.128   

DTW 0.652 t-test  0.245   

Nitrate-nitrogen removal (%) 

RB198 0.002 K-W 0.001 0.141 0.001 0.002 

BR46 0.137 ANOVA <0.001 0.742 <0.001 <0.001 

DSTWW 0.826 t-test  0.014   

DTW 0.683 t-test  0.038   

Ortho-phosphate-phosphorus (mg/l) 

RB198 0.067 ANOVA 0.099 N/A N/A N/A 

BR46 0.171 ANOVA 0.278 N/A N/A N/A 

DSTWW 0.358 t-test  0.048   

DTW 0.794 t-test  0.297   

Ortho-phosphate-phosphorus removal (%) 

RB198 0.909 ANOVA 0.008 0.043 0.008 0.740 

BR46 0.231 ANOVA 0.124 N/A N/A N/A 

DSTWW 0.084 t-test  N/A N/A N/A 

DTW 0.002 M-W  0.005   

Suspended solids (mg/l) 

RB198 <0.001 K-W 0.120 N/A N/A N/A 

BR46 <0.001 K-W 0.029 N/A N/A N/A 
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Table 5.11 (Continued)       

DSTWW <0.001 M-W  0.422   

DTW <0.001 M-W  0.962   

Turbidity (NTU) 

RB198 <0.001 K-W 0.611 N/A N/A N/A 

BR46 <0.001 K-W 0.058 N/A N/A N/A 

DSTWW <0.001 M-W  0.052   

DTW <0.001 M-W  0.055   

Dissolved oxygen (mg/l) 

RB198 0.001 K-W 0.391 N/A N/A N/A 

BR46 <0.001 K-W 0.805 N/A N/A N/A 

DSTWW 0.123 t-test  0.326   

DTW 0.027 M-W  0.651   

pH (-) 

RB198 0.000 K-W 0.062 N/A N/A N/A 

BR46 0.000 K-W 0.580 N/A N/A N/A 

DSTWW 0.000 M-W  0.414   

DTW 0.275 t-test  0.266   

Electrical conductivity (µS/cm) 

RB198 0.000 K-W 0.672 N/A N/A N/A 

BR46 0.001 K-W 0.432 N/A N/A N/A 

DSTWW 0.077 t-test  0.477   

DTW 0.414 t-test  0.001   

Note: 1Test of normality (if p > 0.05, data are normally distributed; if p < 0.05, data are not normally distributed); 2p value, probability of the 

statistical test (if p > 0.05, the variables are not statistically significantly different; if p < 0.05; the variables are statistically significantly 

different); NTU, nephelometric turbidity unit; P1, Lemna minor L. and algae ponds; P2, algae ponds; P4, control ponds; RB198, reactive blue 

198; BR46, basic red 46; K-W, Kruskal-Wallis test; ANOVA, one-way analysis of variance test; t-test, independent samples t-test; M-W, 

Mann-Whitney U test; N/A, not applicable, because the difference among the variables is not significant; DSTWW, diluted synthetic textile 

wastewater; DTW, dechlorinated tap water.
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Figure 5.23 Ultraviolet visible analysis for the outflow samples at the end of the second 

phase of the experimental rig, which was operated between 18 October 2016 and 30 

June 2017. Note: (a), ponds treating the dye reactive blue 198; (b), ponds treating the dye 

basic red 46; IF, inflow; P1, Lemna minor L. and algae ponds; P2, algae ponds; P4, control 

ponds. 

5.3.3.2 Chemical oxygen demand and dissolved oxygen  

Figure 5.24 summarises the overall COD removal efficiency for each system, the results 

showed no significant differences among the design variables in ponds containing dyes. 

However, for ponds without dyes, the values were significantly higher (Table 5.11) in the 

combined L. minor and algae ponds than the corresponding algae only ponds. In addition, 

no significant differences (Table 5.11) were found between the design parameters in terms 

of average outflow COD concentrations (Table 5.10) for either dye, which were lower 

compared to the inflow ones (Table 5.6). All these findings indicate that the presence of dyes 

in the system has an adverse effect on organic matter degradation, which can be attributed 

to the dye impact on the plants. However, algae seem to be not affected by the dye due to 

the COD removal similarity in all algae ponds with and without dye. This indicates that the 

COD degradation was due to microbial activities for all systems except L. minor and algae 

ponds without dyes. In this phase, all outflow COD values were less than the standard limits. 

For Do, the average outflow concentrations were lower compared to the inflow ones (Tables 
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5.6 and 5.10) for all ponds. Statistically significant (Tables 5.11) differences were not found 

among the pond design variables indicating that the oxygen content in all ponds was affected 

by the atmosphere rather than the plants and/or algae. 

 

Figure 5.24 Mean chemical oxygen demand removal efficiency during the experiment 

between 18 October 2016 and 30 June 2017. Note: P1, Lemna minor L. and algae ponds; 

P2, algae ponds; P4, control ponds; DSTWW, diluted synthetic textile wastewater; DTW, 

dechlorinated tap water. 

5.3.3.3 pH and redox potential  

The mean pH outflow values (Table 5.10) were a little bit higher than the inflow ones (Table 

5.6) concerning all systems. In addition, a statistical analysis of the outflow pH values 

showed no significant (Table 5.11) differences among the pond types. This could be 

attributed to the long-term nature of this study, as it is continuous for the first phase leading 

to the absence of the impact of plants on pH modification. According to European and 

international standards, the pH outflow values for L. minor and algae ponds containing 

RB198, L. minor and algae ponds treating BR46, and algae ponds containing synthetic 

wastewater were 1, 1 and 1 times non-compliant, respectively. 

Regarding redox potential, some outflow values of the first few weeks of this phase were 

lower than -100 mV indicating anaerobic conditions. However, after that, all outflow values 

ranged between -98 and -23 mV (Table 5.10) indicating the dominant anoxic conditions in 

the systems (Ong et al., 2009a). The mean outflow redox potential values showed no 

significant differences between the design parameters for all ponds (Table 5.11). 
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5.3.3.4 Suspended solids and turbidity  

Regarding SS concentrations, the mean outflow concentrations (Table 5.10) were elevated 

compared to the corresponding inflow ones (Table 5.6) for all ponds which could be due to 

organic matter degradation. Furthermore, the outflow concentrations for the planted ponds 

(P1 and P2) comprising dyes were higher than the corresponding values of the control ponds. 

This was attributed to the die-off of some plants, dried plants on the walls of the artificial 

ponds and the presence of algae in the planted ponds. These results indicate that both algae 

and L. minor impacted on the SS concentrations in this study. Note that the outflow values 

followed this order: P1 > P2 > P4. Significant (Table 5.11) differences were found between 

control ponds and planted ponds (L. minor and algae, and algae ponds) containing BR46. 

This could be due to the high degradation of this dye in planted ponds compared to ponds 

without L. minor and/or algae. Dye degradation also increased the SS content in the system. 

According to the European and international standards (Carmen & Daniela, 2012), all 

outflow values were below the standard limits.  

Concerning turbidity (Tables 5.6 and 5.10), the average outflow turbidity concentrations 

mirrored those for SS. Based on a correlation analysis, SS was significantly (p < 0.01) 

positively correlated with turbidity. 

5.3.3.5 Electrical conductivity and total dissolved solids 

The average outflow EC (Table 5.10) was slightly lower than the corresponding inflow one 

(Table 5.6) for all ponds containing dyes. In addition, no significant (Table 5.11) differences 

were found between the design parameters in terms of the outflow EC, whereas there was a 

significant difference between L. minor ponds and control ponds in the first phase. This was 

attributed to salt saturation and/or exhaustion after two phases of weekly dosages due to 

using the same plants from the first phase, which were not harvested during the second phase 

as a result of their low growth rate.  

Based on TDS values, both average inflow and outflow TDS concentrations had the same 

trend with respect to the inflow and outflow EC, as explained previously (Tables 5.6 and 

5.10, respectively). According to the European and international standards, the results 

showed that all outflow TDS concentrations were less than the standard limits of 500 mg/l 

and 2000 mg/l for discharge of effluents to the receiving watercourses (Carmen & Daniela, 

2012).  
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5.3.3.6 Nutrients 

Regarding NH4–N, higher removal was found in ponds planted with L. minor and algae 

followed by algae ponds and the lowest removal was noticed in control ponds for all 

treatment systems (Figure 5.25). Significant differences (Table 5.11) were found between 

ponds planted with L. minor and algae, and control ponds for both dyes. In terms of outflow 

concentrations, the values were lower compared to the corresponding inflow concentrations 

(Table 5.6 and 5.10), although the outflow numbers were higher in the control ponds than 

the planted ponds. These results showed that both L. minor and algae contributed to nitrogen 

removal. However, the removal values for algae ponds compared with L. minor and algae 

ponds for all treatment systems (Figure 5.25) suggest that algae have higher contributions to 

nitrogen removal than L. minor. This result confirmed findings previously reported by 

Kadlec et al. (2000) that the plant potential does not exceed 10% of the total nitrogen 

removal. In addition, this is also attributed to the impact of mean pH outflows, which were 

higher than 7 in this study, as clarified by Zimmo (2003). He mentioned that higher nitrogen 

removal occurs in algae ponds than L. minor ponds in the case of pH values between 7 and 

9, as a best condition for algae growth. Nitrogen removal is due to biological uptake by 

dispersed algae, which settle and attach themselves to the wall of the ponds. However, L. 

minor is able to accumulate nitrogen, which depends on the plant state in the treatment 

system and on other conditions related temperature and pH level. The other impact for NH4–

N removal in this experiment was the nitrification process by nitrifying bacteria that depends 

on the oxygen supplied by the atmosphere, diffusion and/or plant transfer via their roots. The 

results shown in Figure 5.25 confirm the outcome of the first phase highlighting that the 

presence of the dye impacted on the of NH4–N removal efficiency. All the outflow values of 

NH4–N in this phase were lower than the threshold limit.  

Based on NO3–N, a low mean removal efficiency was found in all ponds especially the 

control ones (Figure 5.26). The removal values follow this order: P1 > P2 > P4. Statistically, 

significant (Table 5.11) differences were found between L. minor and algae ponds, and algae 

ponds compared to the control wetlands. In terms of NO3–N concentrations, all average 

outflow concentrations were lower compared to the inflow ones (Table 5.6 and Table 5.10), 

although the control ponds showed outflow concentrations higher than the planted ponds. 

These findings indicate that L. minor and algae use nitrate as a source for nutrients (Selvarani 

et al., 2015) resulting in a significant (p < 0.05) potential for NO3–N reduction by both L. 

minor and algae, in addition to the denitrification mechanism. However, it seems that the 
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potential of algae is higher than that for L. minor due to the same removal found in algae 

ponds compared with ponds containing both algae and L. minor. This is because algae 

reduces in the presence of L. minor making the impact of both of them together similar to 

ponds containing algae or L. minor separately. Note that in this phase, anaerobic micro-

niches within the container also have some contribution to the denitrification rate, in addition 

to the impact of micro-sites of the biofilm attached to L. minor, supporting both nitrification 

and denitrification (Zimmo, 2003). For both phases, the synthetic wastewater composition 

supplied energy to micro-organisms to enhance denitrification by providing a long-term 

source of carbon and nutrients, which supported the micro-organism population as well. This 

source of carbon is necessary, as during the nitrification process carbon dioxide is utilised 

as a source of carbon and energy. The denitrification process under anoxic conditions 

requires carbon, which is lacking at the end of the nitrification process. High nitrate 

concentrations present in the system outflow indicate limited denitrification, which is due to 

the fact that most carbon sources have been utilised by the nitrification process (Mohammed, 

2017). Therefore, the carbon source promoted the long-term functioning of the wetlands.  

The PO4–P removal efficiency was very low for all ponds containing dyes compared with 

ponds without dyes (Figure 5.27). In addition, the removal of ponds planted with L. minor 

and algae was significantly higher than that for algae ponds containing RB198, control 

wetland systems comprising RB198, and algae wetlands without dyes. It was evident that 

the state of L. minor was better in these ponds due to the potential of L. minor for phosphorus 

uptake compared with systems treating BR46. Results of low removal reflect the high 

outflow values, which were higher than the inflow values for all ponds containing dyes 

(Table 5.6 and Table 5.10). These findings indicate that the mechanisms of phosphorus 

removal were the uptake by plants and microbes, which are the main mechanisms for 

phosphorus removal in wetlands (Vymazal, 2007). Generally, these low removal efficiencies 

were expected, due to the relatively low potential of wetland systems for PO4–P removal. 

Concerning the guideline threshold for PO4–P of 1 mg/l, this is indicated by Al-Isawi et al. 

(2017), as the UK Government (1994) does not set regulations for PO4–P relating to the 

treatment system in this study. All outflow values concerning L. minor and algae, algae, and 

control ponds containing RB198 as well as algae and control ponds treating BR46 were non-

compliant. However, L. minor and algae ponds comprising BR46, algae ponds containing 

synthetic wastewater, L. minor and algae, and algae ponds containing tap water were 3, 1, 1 

and 1 times non-compliant.  
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Figure 5.25 Mean ammonium-nitrogen removal efficiency during the experiment 

between 18 October 2016 and 30 June 2017. Note: P1, Lemna minor L. and algae ponds; 

P2, algae ponds; P4, control ponds; DSTWW, diluted synthetic textile wastewater; DTW, 

dechlorinated tap water. 

 

Figure 5.26 Mean nitrate-nitrogen removal efficiency during the experiment between 

18 October 2016 and 30 June 2017. Note: P1, Lemna minor L. and algae ponds; P2, algae 

ponds; P4, control ponds; DSTWW, diluted synthetic textile wastewater; DTW, 

dechlorinated tap water. 

 

Figure 5.27 Mean ortho-phosphate-phosphorus removal efficiency during the 

experiment between 18 October 2016 and 30 June 2017. Note: P1, Lemna minor L. and 

algae ponds; P2, algae ponds; P4, control ponds; DSTWW, diluted synthetic textile 

wastewater; DTW, dechlorinated tap water. 
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5.3.3.7 Trace elements  

The mean inflow and outflow concentrations of the elements detected through the ICP-OES 

analyses are presented in Figure 5.12. Mean outflow zinc values (Figure 5.12a) were lower 

than the mean inflow concentrations for all systems with and without dye. In addition, all 

the outflow zinc values were higher for ponds containing plants compared with the 

corresponding outflow values for control ponds in terms of the dye RB198, although no 

significant differences were found (p > 0.05,) between the outflow values in terms of the 

design variable for all ponds, except those treating BR46 which were significantly higher in 

P4 followed by P2 and then P1 (p < 0.05). This confirmed zinc reduction by L. minor ponds. 

Mean zinc outflows were within the acceptable range for L. minor survival (Khellaf & 

Zerdaoui, 2009), as well as being lower than the threshold set of 2 mg/l for irrigation (Metcalf 

& Eddy, 2003). Mean outflow iron values (Figure 5.12b) were slightly higher than the mean 

inflow ones for all treatment systems, indicating low iron removal efficiency. This result of 

outflow iron values does not match with the outcome of the first phase (Figure 5.11b), where 

outflow values were slightly lower than the inflow values for most of the treatment systems. 

This is because after weekly doses iron increased gradually in the systems, due to the low 

reduction rate, to be higher during the second phase as it continued on from the first phase. 

No differences were found between the design variables for all systems (p > 0.05). The 

standard limit of iron for irrigation is 5 mg/l (Metcalf & Eddy, 2003), and all outflow values 

were compliant. Lower mean outflow values of potassium and sodium (Figures 5.12d and f, 

respectively) than the inflow ones were found for all ponds, and the outflow values were 

ranked as follows P4 > P2 > P1. However, the mean outflow values of magnesium and 

calcium were higher than the corresponding inflow values indicating accumulation of these 

elements in the system (Figures 5.12c and e, respectively). Figure 5.28 shows an overview 

of the concentration of elements accumulated in plant tissues for all ponds with and without 

dyes. The results of zinc in plants (Figure 5.28a) reflect the inflow and outflow zinc 

concentrations in treatment systems for all ponds, and therefore higher mean zinc is found 

in plant tissue for ponds comprising BR46, which is linked with high inflow values. The 

levels of zinc and iron in plants (Figures 5.28a and b) were higher than the permissible limits 

of 50 mg/kg and 20 mg/kg, respectively (Nazir et al., 2015). The BCF, Figures 5.29a and b, 

indicates that the plant was positive for phytoremediation of zinc and iron, respectively, for 

all samples. These results were mirrored for the zinc and iron concentrations in L. minor 

which are presented in Figures 5.28a and b, respectively. 
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Figure 5.28 Mean concentrations of the detected elements in plant tissue harvested at 

the end of the experiment between 18 October 2016 and 30 June 2017. Note: (a), zinc; 

(b), iron; (c), magnesium; (d), manganese; (e), sodium; (f), potassium; (g), calcium; 

DSTWW, diluted synthetic textile wastewater; DTW, dechlorinated tap water. 
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Figure 5.29 Bioconcentration factor during the experiment between 18 October 2016 

and 30 June 2017. Note: (a), zinc; (b), iron; DSTWW, diluted synthetic textile wastewater; 

DTW, dechlorinated tap water. 

5.3.4 Plant monitoring 
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for the toxicity of dyes and the diluted synthetic textile wastewater on L. minor growth. For 

the first phase between 20 January 2016 and 18 October 2017, results showed that the mean 

values of plant growth rate were higher in ponds comprising only dechlorinated tap water 

followed by wetlands treating diluted synthetic textile wastewater. Then came the ponds 

comprising diluted textile synthetic wastewater mixed with RB198, and finally ponds 

containing diluted synthetic textile wastewater mixed with BR46. Statistically, plant growth 

rate in wetlands comprising BR46 was significantly (one-way ANOVA, p < 0.05) lower 

than in those containing RB198, as well as in those without dye. These outcomes suggest 

that the synthetic wastewater used in this study reduced the growth of the plants but not the 

toxicity level, as in Section 5.2.3. In addition, the presence of dyes negatively impacts on the 
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significant for either dye, although the growth values were slightly higher in ponds receiving 

inflow of a pH value of 6 followed by the values at normal conditions. A lower growth rate 

was linked to ponds receiving inflow of a pH value of 9 for both studied dyes. This can be 

explained by the mean outflow pH values (Table 5.9). The findings matched those by 

Movafeghi et al. (2013) and Khataee et al. (2012), indicating that the optimum growth 

conditions for L. minor were at pH values between 6 and 7.5. At the end of the second phase, 

the overall growth rate was calculated according to the total experimental period between 20 

January 2016 and 30 June 2017. The growth values were significantly lower than the growth 

rate within the first period. This could be attributed to the weekly doses accumulated in the 

system during this long period making the plant exhausted and over-saturated with nutrients. 

Especially in the second phase, the plants were not harvested monthly, because they suffered 

and did not spread over the surface area. Overall, the relative growth rates of the ponds 

containing dechlorinated tap water were higher than for the other ponds followed by ponds 

containing RB198 and ponds containing only diluted synthetic textile wastewater, which 

were not significantly (one-way ANOVA, p > 0.05) different from each other. Finally, a 

significantly (one-way ANOVA, p <0.05) lower growth was observed in ponds comprising 

BR46. Note that, all plants in ponds treating BR46 died (Appendix F, Figure F.5) and 

decomposed. This was not due to the impact of aromatic amine, because all systems 

containing L. minor completely degraded the dyes, consequently decreasing the possible 

toxicity of the parent compound as shown by Sponza and Isık (2005). In addition, the plants 

in the first experiment (Chapter 4, Section 4.2.3) did not die after treatment of the same dye, 

indicating the aromatic amine was not the main reason for the plant death. Therefore, the 

expected reason for the plant death in ponds treating BR46 is due to the dye concentration 

of 10 mg/l or as a result of mixing this dye with the diluted synthetic textile wastewater. 

Visual monitoring of the plants at the end of the experiment with the help of the Munsell 

(1977) chart showed that L. minor in ponds containing tap water was associated with light 

green (2.5GY) and dark green (5GY) fronds. In comparison, ponds comprising diluted 

synthetic textile wastewater only and RB198 mixed with diluted synthetic textile wastewater 

showed that most of the fronds were linked to dark green (5GY). This can be ascribed to the 

lack of nutrients in ponds receiving only tap water, although a lack of nutrients did not affect 

the growth of L. minor. The photosynthetic process and the chlorophyll content are not 

affected considerably (Khataee et al., 2012), as the fronds remained green in colour with 

some variation of the degree of this colour among the ponds. Furthermore, the presence of 
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white fronds in all ponds with and without dyes indicated the die-off of L. minor during its 

life cycle. For ponds comprising BR46 mixed with diluted synthetic textile wastewater, most 

of the plants turned a brown colour and only a low percentage of plants were associated with 

light green (2.5 GY), dark yellow (5 Y) and white colours. 

Table 5.12 Overview of the relative growth rate of Lemna minor L. during the periods 

between 20 January 2016 and 18 October 2017, and 18 October 2016 and 30 June 

2017 

Treatment system 

Relative growth rate (per day) 

period between 20/1/2016 and 

18/10/2017 

period between 20/1/2016 and 

30/6/2017 

pH of 6 Normal pH pH of 9 pH of 7 

Reactive Blue 198+DSTWW 0.01380 0.01378 0.01371 0.00713 

Basic Red 46 +DSTWW 0.01174 0.01161 0.01137 0.00561 

DSTWW N/A 0.01414 N/A 0.00703 

DTW N/A 0.01492 N/A 0.00733 

Note: DSTWW, diluted synthetic textile wastewater; DTW, dechlorinated tap water; N/A, 

not applicable. 

5.3.5 Environmental conditions 

The mean temperature was 25°C and 23°C for the first and second phase, respectively. The 

maximum and minimum values were 29°C and 21°C for the first phase, and 27°C and 19°C 

for the second phase in this order. Temperature records in this experiment did not affect the 

growth of plants in the system (Ozengin & Elmaci, 2007).  

Regarding light intensity, the mean readings of light intensity were 6962 lux and 6853 lux 

for the first and second phase, respectively, which were within the acceptable range for plant 

growth (Yin et al., 2015). Table 5.13 provides an overview of laboratory conditions during 

the experimental period. 

Table 5.13 Overview of environmental boundary conditions in the laboratory during 

the periods between 20 January 2016 and 18 October 2017, and 18 October 2016 and 

30 June 2017 

Parameter Unit Mean 
Standard 

deviation 
Minimum Maximum N 

First phase between 20/1/2016 and 18/10/2017 

Temperature °C 24.5 1.87 21.2 28.5 174 

Temperature (minimum within 24 h) °C 22.0 1.82 18.5 26.9 174 

Temperature (maximum within 24 h) °C 25.4 2.20 20.4 28.9 174 
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Table 5.13 (Continued)       

Relative humidity % 61.8 7.39 48.0 76.0 174 

Relative humidity (minimum within 24 h) % 58.9 8.99 41.0 74.0 174 

Relative humidity (maximum within 24 h) % 68.3 7.62 50.0 84.0 174 

Illuminance (one-off records) lux 6962.1 354.17 6220 7735 98 

Second phase between18/10/2016 and 30/6/2017 

Temperature °C 23.3 1.85 19.4 26.8 171 

Temperature (minimum within 24 h) °C 21.7 1.42 17.4 26.9 171 

Temperature (maximum within 24 h) °C 23.7 3.01 18.1 26.9 171 

Relative humidity % 64.0 4.05 51.0 73.0 171 

Relative humidity (minimum within 24 h) % 61.9 4.49 44.0 70.0 171 

Relative humidity (maximum within 24 h) % 69.9 5.47 53.0 80.0 171 

Illuminance (one-off records) lux 6853.5 382.90 6335 7722 94 

Note: N, number of records; h, hours. 

5.4 Chapter summary 

• Pond systems effectively removed the dye BR46 at a concentration of 10 mg/l 

compared with the dyes AB113, RB198 and DO46.  

• The potential of L. minor and algae for elimination of BR46 was around 31% and 

25%, respectively, without any noticeable impacts of different pH values regarding 

the treatment performance.  

• The removal of BR46 within ponds planted with L. minor and algae or only algae by 

phyto-transformation, bio-transformation and adsorption process, was significantly 

(p < 0.05) higher than the corresponding removal by the control ponds, which was 

due to bio-transformation and bio-sorption processes.  

• L. minor ponds completely mineralise BR46 by removing the aromatic amines after 

dye decolourization compared with algae and control ponds, which consequently 

shows the effectiveness of L. minor.  

• All outflow COD, NH4–N, NO3–N, SS, and TDS concentrations were below the 

standard discharge thresholds. Therefore, the treated effluents were suitable for safe 

discharge or reusable for other purposes. 

• Synthetic textile wastewater used in this research was not suitable, and dilution of (1 

part of artificial wastewater to 24 parts of raw water) was required for the treatment 

systems using L. minor, although the growth was inhibited.  

• The outflow values of zinc and iron were below the thresholds set for irrigation 

purposes, and within the tolerated limits for plants. 

• Dyes reduced the growth rate of L. minor. This was particularly the case for BR46.
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Chapter 6                                          
Assessment of System Performance for 

Treating Dye Mixtures 

6.1 Overview 

The overall results and discussions of the fourth experiments are documented in this chapter. 

The set-up and operational processes of this experiment are explained Chapter 3 (Section 

3.4.5). Section 6.1 provides an overview of the chapter. Section 6.2 presents the evaluation 

results of the system performance for the treatment of diluted synthetic textile wastewater 

containing three mixtures of two dyes reactive blue 198 (RB198) and basic red 46 (BR46). 

The chapter summary is presented in Section 6.3. 

6.2 Performance of L. minor ponds treating wastewater 

containing dye mixtures 

6.2.1 Inflow water quality parameters 

The characteristics of the inflow water used in this experiment are summarised in Table 6.1 

and Figure 6.1. All mean inflow values, as well as the inflow dye concentrations of each 

mixture, were within the typical range of textile effluent characteristics (Ghaly et al., 2014), 

except for chemical oxygen demand (COD), suspended solids (SS) and total dissolved solids 

(TDS) concentrations, which were lower.  

Table 6.1 Inflow water quality parameters for the experiment between 14 October 

2016 and 27 June 2017 

Parameter Unit Mean 
Standard 

deviation 
Minimum Maximum Number 

Mixture 1: (8 mg/l of basic red 46 + 2 mg/l of reactive blue 198) 

pH - 7.3 0.11 7.1 7.5 34 

Redox mv -41.9 5.42 -54.0 -33.0 34 

Dissolved oxygen mg/l 8.9 0.30 8.3 9.4 34 

Electrical conductivity µS/cm 109.9 14.20 88.9 128.0 34 

Total dissolved solids mg/l 55.0 7.10 44.5 64.0 34 

Suspended solids mg/l 2.3 0.76 1.0 3.0 34 
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Table 6.1 (Continued)       

Turbidity NTU 2.4 0.39 1.8 3.4 34 

Colour Pt Co 571.4 47.06 452.0 615.0 34 

Absorbance - 0.45 0.016 0.43 0.520 34 

Chemical oxygen demand mg/l 33.7 0.30 33.0 34.0 9 

Ammonium-nitrogen mg/l 0.24 0.021 0.22 0.288 9 

Nitrate-nitrogen mg/l 0.58 0.027 0.52 0.610 9 

Ortho-phosphate-phosphorus mg/l 1.71 0.119 1.50 1.940 9 

Mixture 2: (2 mg/l of basic red 46 + 8 mg/l of reactive blue 198) 

pH - 7.2 0.09 7.1 7.4 34 

Redox mv -41.8 5.70 -50.0 -32.0 34 

Dissolved oxygen mg/l 8.8 0.29 8.2 9.3 34 

Electrical conductivity µS/cm 112.4 15.47 85.5 131.9 34 

Total dissolved solids mg/l 56.2 7.73 42.8 66.0 34 

Suspended solids mg/l 3.0 1.22 2.0 5.0 34 

Turbidity NTU 3.1 0.56 2.1 3.6 34 

Colour Pt Co 254.7 17.76 220.0 288.0 34 

Absorbance - 0.22 0.022 0.12 0.251 34 

Chemical oxygen demand mg/l 29.2 0.35 28.8 30.0 9 

Ammonium-nitrogen mg/l 0.19 0.013 0.17 0.22 9 

Nitrate-nitrogen mg/l 0.48 0.027 0.44 0.53 9 

Ortho-phosphate-phosphorus mg/l 1.59 0.052 1.48 1.65 9 

Mixture 3: (5 mg/l of basic red 46 + 5 mg/l of reactive blue 198) 

pH - 7.2 0.08 7.1 7.3 34 

Redox mv -39.3 4.77 -46.0 -32.0 34 

Dissolved oxygen mg/l 8.9 0.37 8.2 9.5 34 

Electrical conductivity µS/cm 112.1 15.54 86.6 132.1 34 

Total dissolved solids mg/l 56.1 7.77 43.3 66.1 34 

Suspended solids mg/l 2.8 0.86 2.0 4.0 34 

Turbidity NTU 3.0 0.57 2.1 3.6 34 

Colour Pt Co 411.5 37.33 338.0 469.0 34 

Absorbance - 0.32 0.032 0.21 0.391 34 

Chemical oxygen demand mg/l 31.8 0.35 31.2 32.5 9 

Ammonium -nitrogen mg/l 0.22 0.022 0.17 0.260 9 

Nitrate-nitrogen mg/l 0.53 0.025 0.49 0.580 9 

Ortho-phosphate-phosphorus mg/l 1.64 0.028 1.60 1.700 9 

Diluted synthetic textile wastewater 

pH - 7.1 0.07 7.0 7.3 31 

Redox mv -26.2 7.16 -37.0 -18.0 34 

Dissolved oxygen mg/l 9.2 0.42 8.5 9.7 34 

Electrical conductivity µS/cm 89.9 1.34 88.5 95.4 34 

Total dissolved solids mg/l 45.0 0.67 44.3 47.7 34 

Suspended solids mg/l 1.5 0.50 1.0 2.0 34 

Turbidity NTU 1.6 0.43 1.0 2.1 34 

Colour Pt Co 8.0 1.71 6.0 12.0 34 

Chemical oxygen demand mg/l 18.5 0.16 18.1 18.7 9 

Ammonium -nitrogen mg/l 0.16 0.004 0.16 0.17 9 

Nitrate-nitrogen mg/l 0.41 0.020 0.38 0.44 9 

Ortho-phosphate-phosphorus mg/l 1.19 0.038 1.11 1.25 9 

Note: NTU, nephelometric turbidity unit.  



Chapter 6: Assessment of System Performance for Treating Dye Mixtures 

273 

 
Figure 6.1 Mean inflow and outflow concentrations of the detected trace elements 

during the experiment between 14 October 2016 and 27 June 2017. Note: (a), zinc; (b), 

iron; (c), manganese; (d), magnesium; (e), potassium; (f), sodium; (g), calcium; M1, mixture 

1 (8 mg/l of basic red 46 + 2 mg/l of reactive blue 198); M2, mixture 2, (2 mg/l of basic red 

46 + 8 mg/l of reactive blue 198); M3, mixture 3, (5 mg/l of basic red 46 + 5 mg/l of reactive 

blue 198); DSTWW, diluted synthetic textile wastewater; DTW, dechlorinated tap water; 

P3, Lemna minor L. ponds; P4, control ponds. 
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6.2.2 Treatment performance 

6.2.2.1 Dye and apparent colour  

Figure 6.2 shows the mean removal efficiency of dye mixtures during the experiment period 

between 14 October 2016 and 27 June 2017, and Table 6.2 provides an overview of the 

statistical analysis between the treatment systems. Findings showed that the mean removal 

efficiency of each mixture in L. minor ponds was significantly (Table 6.2) higher than 

unplanted ponds (Figure 6.2). This indicates the high influence of L. minor in enhancing the 

potential of dye removal within the ponds. The mean removal values of dye mixtures were 

as follows: mixture one > mixture three > mixture two for both L. minor and control ponds. 

Significant differences were found among all L. minor ponds (Kruskal-Wallis, p < 0.05). 

However, control ponds showed that the removal values of mixture two were significantly 

lower than the corresponding removals of mixtures one and three (Kruskal-Wallis, p < 0.05), 

which may due to the presence of a high percentage of non-biodegradable dye RB198 in this 

mixture. 

The results of mixed dye elimination are attributed to the impact of dye BR46 removal in 

each solution. This is because BR46 exhibited a high percentage of degradation by L. minor 

ponds of around 85% in previous experiments (Chapter 5, Section 5.2.2.1, Figure 5.2) and 

64% (Chapter 5, Section 5.3.2.1, Figure 5.22) at concentrations of 10 mg/l, and 69% 

(Chapter 4, Section 4.2.2.1, Table 4.2) at concentrations of 5 mg/l compared with very low 

or negligible removal linked to the dye RB198. Therefore, mixture one, which contained 

80% BR46, displayed higher removal than mixture three, which had 50% BR46, whereas 

lower removal was found in mixture two comprising only 20% BR46. This suggests that the 

removal levels by pond systems are stable. However, high loads of BR46 led to achieving 

high percentages of degradation. This observation matched findings by Davies et al. (2006). 

The authors noticed that although the removal rate of the system was constant, the percentage 

of dye degradation enhanced when the loading rate of the dyes was increasing. By comparing 

the mean removal of dye mixtures achieved in this experiment (Figure 6.2) with the 

individual dye BR46 removal values, as mentioned above, the results clearly showed that 

RB198, which is recalcitrant to degrade, had an adverse impact on the removal efficiency of 

the mixture. The inflow and outflow absorbance values (Table 6.1 and 6.3) reflect the mixed 

dye elimination findings. The longitudinal profiles and trends of the mixed dye removals are 

shown in Figure 6.3 highlighting that the removal values were low and fluctuated during the 

first period of the experiment. This may be explained by considering the first period as an 
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acclimatisation stage for the plants and organisms within the inflows, which contained 

mixtures of two dyes and synthetic wastewater chemicals. Note that since the amount of 

plants was limited during the first period, according to the set-up design, sufficient time 

would have been required for them to grow and regenerate due to the shock received from 

the dye mixture dosages. However, higher removal was achieved in planted ponds between 

17 January 2017 and 18 April 2017, which was possible because the biomass of L. minor 

reached a high level. Then, the plants started to become saturated with dyes, except for the 

plants within mixture two. This consequently led to a noticeable reduction in the removal by 

L. minor ponds, especially ponds treating mixture one. The maximum and minimum mean 

removal values were as follows: for ponds treating mixture one: 66% and 38% for L. minor 

ponds, and 35% and 13% for control ponds; for ponds comprising mixture two: 33% and 

20% for L. minor ponds, and 27% and -5% for control ponds, respectively; and for ponds 

containing mixture three: 47% and 31% for L. minor ponds, and 32% and 13% for control 

ponds, in that order. Negative removal values were found in control ponds treating mixture 

two, which contained a high percentage of RB198. This was attributed to dried RB198 

continuously attaching itself to the walls of the pond sides. The findings of dye mixture 

removal confirmed the low removal of RB198 and high degradation of BR46. The main 

causes of high BR46 removal are the absence of sulpho groups, low molecular weight and 

the simple chemical structure compared to RB198, as mentioned previously. 

Ultraviolet visible scans showed that the maximum adsorption wavelength of each separate 

dye was 625 and 530 nm for RB198 (blue inflow colour) and BR46 (red inflow colour), 

respectively (Chapter 3, Table 3.1). However, the inflow mixtures, after dilution, showed 

maximum absorbances at wavelengths of 528, 524 and 524 nm with dark red, purple and red 

inflow colours for mixtures one, two and three, respectively (Figure 6.4). This was due to 

the interference between dyes mixed together. The outflow samples illustrated a reduction 

of the dye intensity for control ponds, which was due to dye adsorption by microbes in the 

system, as well as biotransformation. However, the intensity dropped in L. minor ponds for 

all mixtures. This was confirmed by the higher decolourisation of each mixture in L. minor 

ponds compared to the control ones (Figure 6.4). The peaks for the outflow samples in this 

study did not completely disappear, which indicated that particularly the dye RB198 was 

difficult to biologically degrade. The inflow peaks shifted in the decolourised samples to be 

at 282, 277 and 277 nm for mixtures one, two and three, in this order. These changes 

probably resulted from the metabolites or degradation of the dye (BR46). Similar results and 
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explanations have been reported by Chen et al. (2003). 

The HPLC chromatogram analysis for dye mixtures before treatment showed two minor 

peaks besides the main peak at 3.385 min for mixture one (Appendix E, Figure E.18a). 

However, the outflow samples for L. minor ponds showed that the main peak disappeared 

and new major peaks appeared at 1.88 and 2.58 min besides several minor peaks (Appendix 

E, Figure E.19a); whereas the control ponds showed only appearances of new major peaks 

at 1.543 and 2.101 min (Appendix E, Figure E.19b). Regarding the second mixture, the 

inflow samples presented major peaks at 2.175 min with minor peaks at 1.49 and 1.9 min 

(Appendix E, Figure E.18b). The outflow samples of L. minor ponds showed that the inflow 

peaks disappeared with appearances of major peaks at 2.155 min in addition to several minor 

peaks (Appendix E, Figure E.20a). In comparison, the control ponds had major peaks at 

1.885 min and minor peaks at 2.714 and 2.37 min (Appendix E, Figure E.20b). Finally, the 

third mixture showed major peaks for inflow samples at 2.813 min and two other minor 

peaks (Appendix E, Figure E.18c). However, the outflow samples for L. minor ponds were 

linked to a major peak at 1.7 min and a minor one at 2.216 min (Appendix E, Figure E.21a). 

The control ponds had a major peak at 2.207 min and other minor ones (Appendix E, Figure 

E.21b). The variation between the inflow and outflow samples concerning the presence of 

new peaks can be explained by the formation of different products during molecule 

transformation and consequently decolourisation (Joshi et al., 2010). These changes 

occurred for both L. minor and control ponds due to dye BR46 degradation, although the 

mechanism and percentage of elimination was different. As a result, the mechanism of 

removal was due to phytotransformation with adsorption and/or accumulation by plants 

(Kabra et al., 2012; Khandare et al., 2011) besides the microbial impact in L. minor ponds, 

such as biotransformation and bio-sorption. However, the control pond potential was due to 

microbial bio-sorption, as well as by the biotransformation process due to the production of 

aromatic amine in these control ponds, as indicated below. 

The results of GCMS analysis related to mixture one showed that the treated samples of L. 

minor ponds did not contain aromatic amines. This indicates that the cleavage products 

completely mineralised. Although aromatic amines are toxic to plants and organisms, 

Sponza and Isik (2005) confirmed that toxicity effects were eliminated during the 

decolourisation process, being followed by complete mineralisation. However, the control 

ponds provide outflows containing one trace peak for N-(4-methylphenyl)- 

benzenemethanamine (CAS: 5405-15-2). The concentration of this amine was below 10 
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mg/l, which was the detection limit of the machine. This aromatic compound was considered 

as a non-hazardous material. However, as an environmental precaution, discharge of this 

compound should be avoided. Toxicological and ecological properties were not evaluated 

for this type of aromatic amine. This result indicates that the wetland systems without plants 

were unable to achieve complete mineralisation. 

Regarding apparent colour monitoring (Table 6.3), the average outflow colour numbers for 

both planted and control ponds were lower than the corresponding inflow numbers (Table 

6.1) for all mixtures. In addition, all outflow colour values in the L. minor ponds were very 

significantly lower (Table 6.2) than the control ones. This reflects the significant removal 

achieved for dye mixtures in L. minor ponds compared with the control ones, which 

consequently reduced the apparent colour in the planted system. The colour of inflow 

samples was dark red, purple and red for mixtures one, two and three, respectively. However, 

the outflow samples were rather colourless for L. minor ponds, and light pink for control 

ponds containing mixture one. Blue and dark blue outflows were found in L. minor and 

control ponds treating mixture two, and, finally, light blue and blue outflows were recorded 

for L. minor and control ponds treating mixture three. The colour parameter of ponds without 

dyes showed a significantly (Kruskal-Wallis, p < 0.05) reduced outflow colour compared to 

ponds containing dyes. Inflow and outflow sample pictures are shown in Appendix F, Figure 

F.6. 

 

Figure 6.2 Mean removal efficiency of dye mixtures during the experiment between 14 

October 2016 and 27 June 2017. Note: P3, Lemna minor L. ponds; P4, control ponds; 

Mixture 1, 8 mg/l of basic red 46 + 2 mg/l of reactive blue 198; Mixture 2, 2 mg/l of basic 

red 46 + 8 mg/l of reactive blue 198; Mixture 3, 5 mg/l of basic red 46 + 5 mg/l of reactive 

blue 198.  
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Table 6.2 Overview of the statistical analysis for outflow water quality parameters and 

corresponding removal efficiencies for each system between 14 October 2016 and 27 

June 2017 

Parameter 
Shapiro-Wilk test 

(p value1) p value2 Parameter 
Shapiro-Wilk test 

(p value1) 
p value2 

Dye removal (%) Colour (Pt Co) 

Mixture 1 0.00 0.00 Mixture 1 0.01 0.00 

Mixture 2 0.00 0.00 Mixture 2 0.00 0.00 

Mixture 3 0.00 0.00 Mixture 3 0.07 0.00 

Chemical oxygen demand (mg/l) Chemical oxygen demand removal (%) 

Mixture 1 0.05 0.55 Mixture 1 0.15 0.16 

Mixture 2 0.28 0.63 Mixture 2 0.07 0.12 

Mixture 3 0.24 0.77 Mixture 3 0.39 0.19 

Ammonium-nitrogen (mg/l) Ammonium-nitrogen removal (%) 

Mixture 1 0.38 0.08 Mixture 1 0.08 0.04 

Mixture 2 0.00 0.01 Mixture 2 0.55 0.03 

Mixture 3 0.00 0.10 Mixture 3 0.32 0.01 

Nitrate-nitrogen (mg/l) Nitrate-nitrogen removal (%) 

Mixture 1 0.00 0.00 Mixture 1 0.00 0.00 

Mixture 2 0.04 0.00 Mixture 2 0.06 0.00 

Mixture 3 0.03 0.01 Mixture 3 0.03 0.01 

Ortho-phosphate-phosphorus (mg/l) Ortho-phosphate-phosphorus removal (%) 

Mixture 1 0.15 0.09 Mixture 1 0.88 0.09 

Mixture 2 0.99 0.00 Mixture 2 0.83 0.04 

Mixture 3 0.16 0.01 Mixture 3 0.73 0.00 

Suspended solids (mg/l) Turbidity (NTU) 

Mixture 1 0.01 0.00 Mixture 1 0.00 0.02 

Mixture 2 0.00 0.00 Mixture 2 0.00 0.00 

Mixture 3 0.00 0.02 Mixture 3 0.00 0.01 

Dissolved oxygen (mg/l) pH (-) 

Mixture 1 0.11 0.89 Mixture 1 0.03 0.10 

Mixture 2 0.13 0.83 Mixture 2 0.53 0.45 

Mixture 3 0.05 0.71 Mixture 3 0.15 0.06 

Electrical conductivity (µS/cm) Turbidity (NTU) 

Mixture 1 0.00 0.08 Mixture 1 0.06 0.11 

Mixture 2 0.00 0.00 Mixture 2 0.27 0.49 

Mixture 3 0.00 0.04 Mixture 3 0.01 0.09 

Note: 1Test of normality (if p > 0.05, data are normally distributed and the test used is 

independent samples t-test; if p < 0.05, data are not normally distributed and the test used is 

Mann-Whitney U test); 2p value, probability of the statistical test (if p > 0.05, the variables 

are not statistically significantly different; if p < 0.05; the variables are statistically 

significantly different); NTU, nephelometric turbidity unit; Mixture 1, (8 mg/l of basic red 

46 + 2 mg/l of reactive blue 198); Mixture 2, (2 mg/l of basic red 46 + 8 mg/l of reactive 

blue 198); Mixture 3, (5 mg/l of basic red 46 + 5 mg/l of reactive blue 198). 
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Table 6.3 Outflow water quality parameters for the experiment between 14 October 

2016 and 27 June 2017 

Parameter Unit Mean 
Standard 

deviation 
Minimum Maximum Number 

Lemna minor L. ponds containing mixture 1 

pH - 7.4 0.12 7.3 7.7 34 

Redox mv -54.9 7.10 -65.5 -44.0 34 

Dissolved oxygen mg/l 8.5 0.18 8.1 8.8 34 

Electrical conductivity µS/cm 115.8 11.99 101.1 144.4 34 

Total dissolved solids mg/l 57.9 6.00 50.6 72.2 34 

Suspended solids mg/l 5.1 1.38 2.5 8.5 34 

Turbidity NTU 4.3 1.49 2.9 9.2 34 

Colour Pt Co 277.0 81.66 156.0 413.5 34 

Absorbance - 0.14 0.045 0.09 0.30 34 

Chemical oxygen demand mg/l 12.13 2.232 8.91 15.00 9 

Ammonium-nitrogen mg/l 0.06 0.027 0.03 0.10 9 

Nitrate-nitrogen mg/l 0.21 0.023 0.17 0.25 9 

Ortho-phosphate-phosphorus mg/l 2.00 0.373 1.30 2.64 9 

Control ponds containing mixture 1 

pH - 7.5 0.17 7.2 7.9 34 

Redox mv -58.5 10.61 -80.5 -40.0 34 

Dissolved oxygen mg/l 8.5 0.17 8.0 8.9 34 

Electrical conductivity µS/cm 117.5 17.89 64.6 149.4 34 

Total dissolved solids mg/l 58.8 8.95 32.3 74.7 34 

Suspended solids mg/l 3.2 1.82 1.0 8.0 34 

Turbidity NTU 3.4 0.38 2.6 4.3 34 

Colour Pt Co 447.6 124.00 213.5 644.5 34 

Absorbance - 0.29 0.057 0.22 0.43 34 

Chemical oxygen demand mg/l 13.10 3.506 9.66 21.00 9 

Ammonium-nitrogen mg/l 0.10 0.041 0.03 0.17 9 

Nitrate-nitrogen mg/l 0.32 0.089 0.24 0.49 9 

Ortho-phosphate-phosphorus mg/l 2.41 0.455 2.00 3.49 9 

Lemna minor L. ponds containing mixture 2 

pH - 7.5 0.13 7.1 7.7 34 

Redox mv -54.9 7.58 -69.0 -36.5 34 

Dissolved oxygen mg/l 8.5 0.14 8.2 8.9 34 

Electrical conductivity µS/cm 114.8 14.57 99.3 146.9 34 

Total dissolved solids mg/l 57.4 7.29 49.6 73.5 34 

Suspended solids mg/l 5.3 1.74 3.0 9.5 34 

Turbidity NTU 4.9 1.75 3.1 8.8 34 

Colour Pt Co 151.0 26.85 70.0 193.0 34 

Absorbance - 0.13 0.020 0.10 0.22 34 

Chemical oxygen demand mg/l 10.80 1.995 8.11 15.10 9 

Ammonium-nitrogen mg/l 0.06 0.014 0.04 0.08 9 

Nitrate-nitrogen mg/l 0.16 0.029 0.11 0.20 9 

Ortho-phosphate-phosphorus mg/l 1.62 0.249 1.15 2.00 9 

Control ponds containing mixture 2 

pH - 7.5 0.11 7.2 7.7 34 
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Table 6.3 (Continued)       

Redox mv -56.1 6.26 -66.0 -40.0 34 

Dissolved oxygen mg/l 8.5 0.14 8.2 8.8 34 

Electrical conductivity µS/cm 121.5 13.71 105.4 152.0 34 

Total dissolved solids mg/l 60.8 6.86 52.7 76.0 34 

Suspended solids mg/l 3.4 1.09 2.0 5.5 34 

Turbidity NTU 3.3 0.45 2.4 4.1 34 

Colour Pt Co 210.9 46.68 115.5 362.5 34 

Absorbance - 0.21 0.043 0.13 0.35 34 

Chemical oxygen demand mg/l 11.40 2.458 8.18 16.00 9 

Ammonium-nitrogen mg/l 0.13 0.064 0.04 0.27 9 

Nitrate-nitrogen mg/l 0.24 0.055 0.20 0.38 9 

Ortho-phosphate-phosphorus mg/l 2.16 0.309 1.55 2.61 9 

Lemna minor L. ponds containing mixture 3 

pH - 7.4 0.14 7.2 7.6 34 

Redox mv -54.6 7.68 -65.5 -42.5 34 

Dissolved oxygen mg/l 8.4 0.14 8.2 8.8 34 

Electrical conductivity µS/cm 115.1 13.12 100.8 144.6 34 

Total dissolved solids mg/l 57.5 6.56 50.4 72.3 34 

Suspended solids mg/l 4.4 1.69 2.0 8.0 34 

Turbidity NTU 4.1 1.22 2.8 6.8 34 

Colour Pt Co 199.7 49.28 92.5 270.0 34 

Absorbance - 0.14 0.023 0.10 0.21 34 

Chemical oxygen demand mg/l 11.66 3.378 6.61 18.00 9 

Ammonium-nitrogen mg/l 0.05 0.014 0.02 0.07 9 

Nitrate-nitrogen mg/l 0.13 0.043 0.10 0.23 9 

Ortho-phosphate-phosphorus mg/l 1.78 0.309 1.23 2.10 9 

Control ponds containing mixture 3 

pH - 7.5 0.12 7.3 7.7 34 

Redox mv -57.4 7.10 -68.5 -44.0 34 

Dissolved oxygen mg/l 8.5 0.15 8.2 8.8 34 

Electrical conductivity µS/cm 119.4 12.85 103.0 149.0 34 

Total dissolved solids mg/l 59.7 6.43 51.5 74.5 34 

Suspended solids mg/l 3.3 1.16 1.5 5.5 34 

Turbidity NTU 3.3 0.39 2.8 4.2 34 

Colour Pt Co 327.7 80.11 118.0 446.5 34 

Absorbance - 0.23 0.031 0.16 0.28 34 

Chemical oxygen demand mg/l 12.19 3.208 7.73 18.50 9 

Ammonium-nitrogen mg/l 0.09 0.058 0.04 0.23 9 

Nitrate-nitrogen mg/l 0.21 0.062 0.14 0.31 9 

Ortho-phosphate-phosphorus mg/l 2.19 0.388 1.62 3.08 9 

Lemna minor L. ponds containing diluted synthetic textile wastewater 

pH - 7.5 0.14 7.2 7.8 34 

Redox mv -60.3 8.87 -74.5 -40.0 34 

Dissolved oxygen mg/l 8.3 0.76 4.5 8.9 34 

Electrical conductivity µS/cm 110.6 14.98 79.8 141.5 34 

Total dissolved solids mg/l 55.3 7.49 39.9 70.8 34 

Suspended solids mg/l 3.9 2.50 1.0 9.0 34 
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Table 6.3 (Continued)       

Turbidity NTU 3.8 0.83 2.6 5.9 34 

Colour Pt Co 32.0 17.86 7.0 88.0 34 

Chemical oxygen demand mg/l 9.60 1.043 8.20 11.70 9 

Ammonium-nitrogen mg/l 0.04 0.018 0.02 0.07 9 

Nitrate-nitrogen mg/l 0.06 0.075 0.02 0.26 9 

Ortho-phosphate-phosphorus mg/l 0.87 0.403 0.24 1.71 9 

Lemna minor L. ponds containing dechlorinated tap water 

pH - 7.4 0.13 7.2 7.7 34 

Redox mv -54.4 7.14 -66.0 -40.0 34 

Dissolved oxygen mg/l 8.4 0.16 8.2 8.9 34 

Electrical conductivity µS/cm 93.1 8.98 77.0 107.5 34 

Total dissolved solids mg/l 46.6 4.49 38.5 53.8 34 

Suspended solids mg/l 3.0 1.71 1.0 6.5 34 

Turbidity NTU 3.5 0.68 2.6 5.4 34 

Colour Pt Co 27.1 11.27 2.0 45.0 34 

Chemical oxygen demand mg/l 4.74 0.840 3.30 6.20 9 

Ammonium-nitrogen mg/l 0.02 0.004 0.01 0.03 9 

Nitrate-nitrogen mg/l 0.05 0.049 0.03 0.18 9 

Ortho-phosphate-phosphorus mg/l 0.40 0.289 0.11 0.87 9 

Note: NTU, nephelometric turbidity unit; mixture 1, (8 mg/l of basic red 46 + 2 mg/l of 

reactive blue 198); mixture 2, (2 mg/l of basic red 46 + 8 mg/l of reactive blue 198); mixture 

3, (5 mg/l of basic red 46 + 5 mg/l of reactive blue 198). 

 

 

Figure 6.3 Mean values of dye mixture removal profiles during the experiment between 

14 October 2016 and 27 June 2017. Note: P3, Lemna minor L. ponds; P4, control ponds; 

M1, mixture 1 (8 mg/l of basic red 46 + 2 mg/l of reactive blue 198); M2, Mixture 2 (2 mg/l 

of basic red 46 + 8 mg/l of reactive blue 198); M3, Mixture 3 (5 mg/l of basic red 46 + 5 

mg/l of reactive blue 198). 
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Figure 6.4 Ultraviolet visible analysis for the inflow and outflow samples at the end of 

the experiment, which was operated between 14 October 2016 and 27 June 2017. Note: 

(a), mixture 1 (8 mg/l of basic red 46 + 2 mg/l of reactive blue 198); (b), mixture 2 (2 mg/l 

of basic red 46 + 8 mg/l of reactive blue 198); (c), mixture 3 (5 mg/l of basic red 46 + 5 mg/l 

of reactive blue 198); IF, inflow; P3, Lemna minor L. ponds; P4, control ponds. 

6.2.2.2 Chemical oxygen demand and dissolved oxygen  

Tables 6.1 and 6.3 show that the mean COD values after treatment were less than the average 

inflows. Moreover, all mean outflow COD values in L. minor wetlands were lower than the 

values for the control ponds. This has been confirmed by COD removal values (Figure 6.5), 

which were higher in L. minor ponds than the control ones. However, no significant (Table 

6.2) differences were found in the case of COD mean outflow values and COD removal 

efficiencies. These results confirm the low impact of plants on COD degradation besides 

microbial activities. Similarly, a negligible impact of COD removal by reeds was concluded 
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by Ong et al. (2009a). The removal of COD for all simulated ponds containing dyes was 

lower in comparison to those ponds without dyes (Figure 6.5). This may be attributed to the 

impact of incomplete organic molecule degradation for all dye mixtures. Comparable 

findings were reported by Sarayu et al. (2007) using ozonation for dye removal. The authors 

found that the presence of small molecules of untreated dyes has a considerable contribution 

to incomplete COD reduction. Common international standards state limits for COD of 

around 125 mg/l in the case of direct discharge. The results highlight that all COD outflow 

concentrations were below this limit. 

Based on DO, all ponds with and without dyes showed lower outflow concentrations 

compared with the inflow ones (Table 6.1 and 6.3, respectively). The outflow concentrations 

were high and varied between 8.0 and 8.9 mg/l. No significant differences (Table 6.2) were 

found between L. minor and control ponds in terms of mean outflow DO values. These 

results indicate that the main source of oxygen in the system was atmospheric diffusion and 

the plants did not play a major role in enhancing the DO content. 

 

Figure 6.5 Mean chemical oxygen demand removal efficiency during the experiment 

between 14 October 2016 and 27 June 2017. Note: P3, Lemna minor L. ponds; P4, control 

ponds; Mixture 1, 8 mg/l of basic red 46 + 2 mg/l of reactive blue 198; Mixture 2, 2 mg/l of 

basic red 46 + 8 mg/l of reactive blue 198; Mixture 3, 5 mg/l of basic red 46 + 5 mg/l of 

reactive blue 198; DSTWW, diluted synthetic textile wastewater; DTW, dechlorinated tap 

water. 

6.2.2.3 pH and redox potential  

Regarding pH, all inflow and outflow (Table 6.1 and 6.3, respectively) values were within 

the tolerable range for L. minor growth which is between 4.0 and 9.0, as mentioned by 
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Movafeghi et al. (2013), and for bacteria survival between 4.0 and 9.5 (Kadlec & Wallace, 

2009). The mean pH outflow was slightly more than the mean inflow for all ponds, and all 

values were within the neutral range. These results confirmed that values of pH were within 

the optimum range, between 6 and 10, for high colour elimination (Saratale et al., 2011), 

although the exact amount of pH for higher removal is dependent on the dye itself (Yaseen 

& Scholz, 2016). No significant (Table 6.2) differences were found between vegetated and 

control ponds. The international lower and upper thresholds for pH are 6.5 and 8.5 for safe 

discharge to receiving watercourses. All outflow values were compliant. 

The redox potential is used as an indicator for the presence of aerobic or anaerobic 

environments in wetlands (Ong et al., 2009a). Generally, minimum and maximum redox 

potential outflow values for all ponds were between -80.5 and -36.5 mV, respectively, which 

indicates that anoxic conditions dominate. 

6.2.2.4 Suspended solids and turbidity  

Concerning SS, all ponds with and without dyes showed high mean SS outflow values (Table 

6.3), compared with the inflow concentrations (Table 6.1). This reflects that the COD and 

other organic substances degrade in addition to organic dye molecule degradation in the case 

of ponds containing dyes. Also, L. minor ponds showed that outflows were significantly 

(Table 6.2) higher than the corresponding concentrations for control ones. This can probably 

be attributed to the impact of L. minor and their die-off, which enhanced the organic load 

(Dalu & Ndamba, 2003), as well as the effect of higher COD removal, molecule degradation 

and aromatic amine mineralisation in planted ponds compared with unplanted ones. A 

typical international standard limit for SS is 35 mg/l; all outflow values of SS were lower 

than this limit. 

The mean inflow and outflow turbidity values (Table 6.1 and 6.3, respectively) had the same 

trend as SS, and the planted ponds also showed an outflow turbidity significantly higher 

(Table 6.2) than the unplanted ones. Note that correlation analysis showed that SS was 

significant (p < 0.01) and correlated positively (r = 0.281, p = 0.000) with turbidity. 

6.2.2.5 Electrical conductivity and total dissolved solids  

Based on EC (Tables 6.1 and 6.3), all mean outflow numbers were a little higher than the 

corresponding influent values. L. minor ponds showed lower EC values than the control 

ones, which confirms that L. minor has a good ability in reducing the EC. These results are  
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similar to the findings in previous sections for treating the dyes individually. However, the 

differences were significant (Table 6.2) in terms of L. minor compared with control ponds 

regarding EC outflows found in the case of mixtures two and three. This was perhaps due to 

the state of L. minor in the system, with plants being healthier in ponds treating mixture two 

followed by mixture three, compared with the plants within mixture one. 

Regarding TDS values (Tables 6.1 and 6.3), the inflow and outflow concentrations of TDS 

in each mixture mirrored the corresponding inflow and outflow EC values. This is because 

TDS concentrations were equal to half of the EC values, as mentioned in earlier sections. 

According to common international standards, the results showed that all outflow TDS 

concentrations were less than the thresholds of 3000 mg/l and 500 mg/l (Carmen & Daniela, 

2012). 

6.2.2.6 Nutrients 

Regarding ammonium-nitrogen (NH4–N) and nitrate-nitrogen (NO3–N), all mean outflow 

values (Table 6.3) were lower, compared with the corresponding inflow concentrations 

(Table 6.1), indicating a reduction of these two compounds in the system. Also, control 

ponds showed higher outflow concentrations than the corresponding values associated with 

L. minor ponds. This was attributed to the significant (Table 6.2) removal of NH4–N and 

NO3–N in L. minor ponds compared to the corresponding removal related to control 

wetlands (Figures 6.6 and 6.7, respectively). Ong et al. (2009a) highlighted that the effect of 

vegetation on nitrogen reduction in wetland systems is not evident in all applications and 

depends on the type of plants and operational period as well as wastewater characteristics. 

However, the results of this study confirmed a considerable impact of the plants for take-up 

of nitrogen, which may due to the low loading rate of nitrogen in the system. These results 

are confirmed by Bragato et al. (2006) who found that wetland plants potentially sequester 

nutrients from wastewater to their roots and/or shoots, and, as a result, they remediate these 

pollutants due to the rapid growth and biomass production of these macrophytes. Similarly, 

Selvarani et al. (2015) elucidated that L. minor has a vital role for nitrogen reduction in pond 

systems. In addition to the plants, nitrification and denitrification processes are also 

responsible for NH4–N and NO3–N reductions, respectively. Temperature and pH values in 

addition to the high concentrations of oxygen in all ponds were suitable for enhancing the 

nitrification level by nitrifying bacteria (Kadlec et al., 2000; Ozengin & Elamic, 2007). 

Nitrogen reduction of around 4% can be attributed to nitrification and denitrification 
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occurring on micro-sites of the biofilm attached to L. minor (Zimmo, 2003). The mean 

reduction values of NO3–N were not as high as those for NH4–N, which may either be 

because of the plants using NO3–N after assimilation of ammonia as a second source for 

nutrients or because the environmental conditions within the ponds were not suitable for 

high denitrification to occur, for example due to low carbon source, which is normally 

lacking at the end of nitrification process (Mohammed, 2017). In addition, the high level of 

nitrification linked with oxygen availability reflects the increase of NO3–N concentration in 

the pond systems (Vymazal, 2007). The typical international limits for NH4–N and NO3–N 

regarding secondary treatment of effluent are 20 mg/l and 50 mg/l, in this order, as discussed 

by Al-Isawi et al. (2017). All outflow values of NH4–N and NO3–N were less than the 

corresponding standard thresholds. 

Concerning PO4–P, higher mean outflow values (Table 6.3) were found, compared to the 

corresponding inflow records (Table 6.1). Also, the mean outflow PO4–P concentrations 

were significantly lower (Table 6.2) in L. minor ponds compared to the ponds without plants, 

reflecting better removal of PO4–P in ponds containing L. minor than the control ones, 

although the system showed low overall reductions for all ponds (Figure 6.8). This outcome 

is similar to that of other authors: wetland systems are relatively ineffective in phosphorus 

removal (Vymazal, 2007; Al-Isawi et al., 2017). Significant removal (Table 6.2) of PO4–P 

between L. minor and control ponds was noticed in ponds treating mixtures two and three. 

This may be due to the state of L. minor plants in ponds containing mixture one, which were 

not well compared to the other ponds, making their ability to assimilate phosphorus not 

effective. The expected mechanisms for PO4–P removal, except for chemical precipitation, 

were uptake by plants, especially mixtures two and three, and via microbes in planted ponds 

(Vanitha et al., 2013). However, only biological processes associated with microbial uptake 

were possible in control ponds. A common international limit for PO4–P outflow is 1 mg/l, 

as indicated by Sani et al. (2013). In this study, all outflow values for ponds containing dyes 

were higher than this standard value. 
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Figure 6.6 Mean ammonium-nitrogen removal efficiency during the experiment 

between 14 October 2016 and 27 June 2017. Note: P3, Lemna minor L. ponds; P4, control 

ponds; Mixture 1, 8 mg/l of basic red 46 + 2 mg/l of reactive blue 198; Mixture 2, 2 mg/l of 

basic red 46 + 8 mg/l of reactive blue 198; Mixture 3, 5 mg/l of basic red 46 + 5 mg/l of 

reactive blue 198; DSTWW, diluted synthetic textile wastewater; DTW, dechlorinated tap 

water. 

 

Figure 6.7 Mean nitrate-nitrogen removal efficiency during the experiment between 14 

October 2016 and 27 June 2017. Note: P3, Lemna minor L. ponds; P4, control ponds; 

Mixture 1, 8 mg/l of basic red 46 + 2 mg/l of reactive blue 198; Mixture 2, 2 mg/l of basic 

red 46 + 8 mg/l of reactive blue 198; Mixture 3, 5 mg/l of basic red 46 + 5 mg/l of reactive 

blue 198; DSTWW, diluted synthetic textile wastewater; DTW, dechlorinated tap water. 
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Figure 6.8 Mean ortho-phosphate-phosphorus removal efficiency during the 

experiment between 14 October 2016 and 27 June 2017. Note: P3, Lemna minor L. ponds; 

P4, control ponds; Mixture 1, 8 mg/l of basic red 46 + 2 mg/l of reactive blue 198; Mixture 

2, 2 mg/l of basic red 46 + 8 mg/l of reactive blue 198; Mixture 3, 5 mg/l of basic red 46 + 

5 mg/l of reactive blue 198; DSTWW, diluted synthetic textile wastewater; DTW, 

dechlorinated tap water. 

6.2.2.7 Trace elements  

Mean outflow zinc and iron values (Figures 6.1a and b, respectively) were higher than the 

corresponding inflow concentrations for both L. minor and control ponds. Ponds containing 

L. minor showed lower zinc outflows than the control ones reflecting zinc uptake by plants, 

although no significant (t-test, p > 0.05) differences were found for any mixtures. All zinc 

outflows were lower than the values that cause growth reductions in L. minor, between 0.5 

and 15 mg/l (Khellaf & Zerdaoui, 2009). All zinc outflow values were compliant with the 

standard threshold for irrigation which is 2 mg/l (Metcalf & Eddy, 2003). Regarding iron, 

the L. minor ponds showed high outflow concentrations compared to the control ones for all 

dye mixtures, which can be attributed to plant die-off and subsequent decomposition. Lemna 

minor is able to take-up iron from the water and accumulate this metal in its tissue (see also 

Figure 6.9b). However, when this plant dies during its natural life cycle or due to the toxic 

impacts of water contaminants, these dead plants consequently will be a source of iron and 

other elements in the liquid phase. Significant differences between L. minor and control 

ponds were found for mixtures one and two (t-test, p < 0.05), which reflect high growth 

limitations and decompositions related to these ponds. The standard limit of iron for 

irrigation is 5 mg/l (Metcalf & Eddy, 2003). Concerning manganese (Figure 6.1c), inflow 
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concentrations were not detectable. This is because the only source of manganese in the 

system was tap water. However, outflow values were detectable during the last few months 

of operation. This is attributed to low manganese reduction and weekly accumulation within 

the ponds. Outflow concentrations were higher in the control ponds than in the L. minor-

planted ponds, which was ascribed to manganese being a nutrient for plants. All outflow 

values were less than the maximum allowable concentration for irrigation of 0.2 mg/l 

(Metcalf & Eddy, 2003). Higher mean outflow concentrations than inflow ones were found 

for magnesium, sodium and calcium (Figures 6.1d, f and g, respectively) due to the weekly 

dosages and low reductions except for potassium (Figure 6.1e) in all mixtures. The ponds 

not exposed to the dyes showed lower outflows related to these elements than ponds 

containing dye, because the plants were healthier and their ability for growth and 

acquirement of micro-nutrients was higher. 

Figure 6.9 provides an overview of the concentrations of elements accumulated in plant 

tissues for all ponds with and without dyes. The plants linked to ponds without dye showed 

higher capacity for element accumulation due to their growth state, except for zinc which 

could be due to the low inflow zinc concentration in ponds without dyes. The levels of zinc 

and iron in plants (Figures 6.9a and b) were more than the allowable boundaries of 50 mg/kg 

and 20 mg/kg, respectively, as mentioned by Nazir et al. (2015). 

The BCF illustrated in Figure 6.10, is an indicator of the potential of the plants for bio-

accumulating heavy metals. A BCF of higher than 1000 indicates that the plant is a positive 

accumulator for heavy metals, as mentioned by Sukumaran (2013). The results in Figures 

6.10a and b, indicate that the plant was positive for phytoremediation of zinc and iron, 

respectively. 
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Figure 6.9 Mean concentrations of the detected elements in plant tissue during the 

experiment between 14 October 2016 and 27 June 2017. Note: (a), zinc; (b), iron; (c), 

manganese; (d), magnesium; (e), potassium; (f), sodium; (g), calcium; M1, mixture 1 (8 mg/l 

of basic red 46 + 2 mg/l of reactive blue 198); M2, mixture 2 (2 mg/l of basic red 46 + 8 

mg/l of reactive blue 198); M3, mixture 3 (5 mg/l of basic red 46 + 5 mg/l of reactive blue 

198).; DSTWW, diluted synthetic textile wastewater; DTW, dechlorinated tap water. 
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Figure 6.10 Bioconcentration factor during the experiment between 14 October 2016 

and 27 June 2017. Note: (a), zinc; (b), iron; Mixture 1, 8 mg/l of basic red 46 + 2 mg/l of 

reactive blue 198; Mixture 2, 2 mg/l of basic red 46 + 8 mg/l of reactive blue 198; Mixture 

3, 5 mg/l of basic red 46 + 5 mg/l of reactive blue 198; DSTWW, diluted synthetic textile 

wastewater; DTW, dechlorinated tap water. 

6.2.3 Plant monitoring 

The growth of L. minor was monitored during the experimental period between 14 October 

2016 and 27 June 2017 as an indicator for the toxic impact of each dye mixture as well as 

the prepared wastewater. During the first two months of the experimental operation, the 

growth of L. minor in all mixtures was limited. This period can be seen as an acclimatisation 

stage for plants with the inflow dye mixtures, which contained two dyes at a total 

concertation of 10 mg/l mixed with the synthetic textile wastewater chemicals. After the set-

up phase, the plants started to increase in numbers and cover some of the surface area of the 

ponds, although a full coverage of the simulated pond surface was not achieved. After March 

2017, the toxic signs of the dye mixtures were obvious in most systems; green fronds of L. 

minor turned light green and yellow. Although the plants associated with mixture three 

looked healthier and better than those in mixture one during the experiment, most L. minor 

plants in both mixtures were dead (partly dry at the sides of the pond walls) when the 
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light green 2.5 GY (Munsell, 1977) and the remaining plants were white. The growth rate 

was also inhibited in ponds comprising mixture two in comparison to ponds without dyes. 

Ponds comprising diluted synthetic textile wastewater and tap water showed that most of the 

leaves of L. minor were light green (2.5 GY) and dark green (7GY) according to Munsell 

(1977). Plants within diluted synthetic textile wastewater were mostly green and healthier 

than those in tap water due to the presence of sufficient nutrients in the synthetic wastewater. 

The growth rate of L. minor (Table 6.4) was ranked as follows: ponds containing tap water 

> ponds containing diluted synthetic textile wastewater > ponds containing mixture two. 

Significantly (Kruskal-Wallis, p < 0.05) lower growth was noted for ponds treating mixture 

two compared to ponds containing tap water, and ponds containing diluted synthetic textile 

wastewater. These results suggest that a mixture of dyes restrains the photosynthesis process, 

impacts on the chlorophyll pigments in the fronds and consequently inhibits the growth of 

the plants, particularly when the concentration of the dye BR46 in the mixture was high and 

the dye removal was at a maximum. 

Findings regarding chlorophyll pigments do not agree with Khataee et al. (2012) and the 

findings in Chapter 4, Section 4.2.3, where the dyes do not adversely impact on the 

chlorophyll content, although the observed growth rate of L. minor was reduced. This can 

be attributed to the separate dye preparation process in aqueous solution (Khataee et al., 

2012) and the benefits of fertiliser application in the first experiment under controlled 

conditions (Chapter 4, Section 4.2) compared to the mixture of dyes added to synthetic 

textile wastewater chemicals in this experiment. However, the results of the plant growth 

rate in each mixture matched findings published by Movafeghi et al. (2013). Authors found 

that an increase in BR46 concentration to 10 mg/l was linked to a reduction in L. minor 

growth rate, although the inhibition in this study was higher in the presence of this dye at 

concentrations less than10 mg/l, which were 8 mg/l in the first mixture followed by the third 

and second mixture of 5 and 2 mg/l, respectively. Therefore, a growth reduction of L. minor 

was due to the presence of three adverse factors working together in combination: dye 

mixture, concentration of BR46 and synthetic textile wastewater. Furthermore, zinc was also 

present within BR46, although it was within the tolerable range for plant growth within the 

outflow samples. However, the concentration of zinc accumulated within plant tissue was 

higher than the allowable limit, as clarified earlier. This could be the main reason for plant 

damage in ponds containing BR46. The impact of zinc treated by L. minor was investigated 

by Radic et al. (2010). The authors concluded that zinc caused a reduction in the plant growth 
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and chlorophyll pigments. This experiment also showed that the synthetic textile wastewater 

had a slightly negative influence on plant growth, which could be negligible, if compared 

with plants in tap water. Significantly (Kruskal-Wallis, p > 0.05) no differences were 

observed between ponds containing diluted synthetic textile wastewater and tap water 

regarding L. minor growth. However, the growth of L. minor within tap water ponds (Table 

6.4) was significantly lower in comparison with the same species of plants subjected to TNC 

complete fertiliser for optimum growth, which led to a growth rate of around 0.011 per day 

(Chapter 4, Section 4.2.3; Appendix F, Figure F.7). This indicates that the growth of L. minor 

was inhibited in ponds containing tap water, and ponds containing synthetic textile 

wastewater. Note that within the last period of the experiment, an algal biofilm appeared in 

the bed of each pond (including those without dyes), which was due to the low growth rate 

of L. minor providing an uncovered surface area. However, the impact of algae was 

neglected during their appearance within the last weeks of the experimental operation, 

because the results were stable. 

Table 6.4 Overview of Lemna minor L. growth rate (four replicates) during the 

experiment between 14 October 2016 and 27 June 2017 

Treatment system Fresh weight (gram) Dry weight (gram) Relative growth rate per day 

Mixture 1 2.150±0.1872 0.102±0.0165 N/A 

Mixture 2 5.793±1.1150 0.309±0.0703 0.00425±0.001517 

Mixture 3 2.250±0.1118 0.103±0.0077 N/A 

DSTWW 10.241±0.4101 0.609±0.0238 0.00793±0.000209 

DTW 10.437±0.8689 0.622±0.04344 0.00801±0.000433 

Note: N/A, not applicable; DSTWW, diluted synthetic textile wastewater; DTW, 

dechlorinated tap water; Mixture 1, 8 mg/l of basic red 46 + 2 mg/l of reactive blue 198; 

Mixture 2, 2 mg/l of basic red 46 + 8 mg/l of reactive blue 198; Mixture 3, 5 mg/l of basic 

red 46 + 5 mg/l of reactive blue 198. 

6.2.4 Environmental conditions 

The optimum temperature required for ideal growth of L. minor has been reported by Bekcan 

(2009) as 26°C. L. minor growth reduction occurs at temperature values below 17°C and 

higher than 35°C (Ozengin & Elmaci, 2007). In this experiment laboratory conditions were 

controlled and the mean temperature value was 23°C. The maximum and minimum values 

were 27°C and 19C, respectively (Table 6.5). These results indicate that temperature 

records in this experiment do not have any adverse impact on the growth of L. minor in the  

system, although the growth will not be at an optimum rate.  
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The mean record of light intensity was 6853 lux. The corresponding maximum and minimum 

readings were 7722 lux and 6335 lux in that order (Table 6.5). These values were within the 

suitable range, between 1480 lux and 8140 lux, for a high rate of L. minor production, as 

mentioned by Yin et al. (2015). 

Table 6.5 Overview of environmental boundary conditions in the laboratory between 

14 October 2016 and 27 June 2017 

Parameter Unit Mean 
Standard 

deviation 
Minimum Maximum Number 

Temperature °C 23.3 1.83 19.4 26.8 172 

Temperature (minimum within 24 h) °C 21.8 1.42 17.4 26.9 172 

Temperature (maximum within 24 h) °C 23.6 3.00 18.1 26.9 172 

Relative humidity % 64.0 4.05 51.0 73.0 172 

Relative humidity (minimum within 24 h) % 61.9 4.49 44.0 70.0 172 

Relative humidity (maximum within 24 h) % 69.9 5.39 53.0 80.0 172 

Illuminance (one-off records) lux 6853.5 382.9 6335 7722 96 

Note: h, hours. 

6.3 Chapter summary 

• Pond systems effectively improved the main parameters of water quality including 

COD, NH4-N and NO3-N, but not PO4-P with a considerable impact of L. minor 

ponds compared with the control ones. 

• The outflow values of pH, COD, NH4-N, NO3-N, SS and TDS were within the 

acceptable limits for direct discharge. 

• The planted pond efficiency in terms of removing dye mixtures was significantly (p 

< 0.05) higher than that for unplanted ones. High removals were associated with 

mixtures containing higher percentages of biodegradable dyes. 

• The HPLC and UV–Vis analyses confirmed phyto-transformation and adsorption of 

BR46 in planted ponds. In addition, GC-MS data confirmed the complete aromatic 

amine mineralisation for the treated dye BR46 within the mixtures to water and 

carbon dioxide in planted ponds, whereas the control ponds showed the presence of 

N-(4-methylphenyl)-benzenemethanamine in the outflow samples. 

• L. minor ponds are more effective to operate in case of wastewater treatment, 

containing separate (or individual) textile dyes, although the pond systems are able 

to treat mixtures of dyes.  

• The treatment of BR46 when it forms only part of a dye mixture is lower, compared  
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to its corresponding removal as an individual dye. 

• The outflow values of zinc and iron were below the thresholds set for irrigation 

purposes, and within the tolerated limits for plants. 

• The artificial wastewater reduced the growth of L. minor. However, dye mixtures 

have a toxic impact on L. minor, particularly when the concentration of BR46 in the 

mixture was 5 mg/l or more.  
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Chapter 7                                    
Conclusions and Recommendations 

7.1 Conclusions 

Four small-scale experimental wetlands (shallow ponds) were operated between July 2014 

and June 2017 to fill the knowledge gaps found in previous research for the treatment of 

synthetic wastewater containing textile dye contamination by assessing the internal 

processes and the system efficiency using different design variables (presence of L. minor 

and/or algae), operational parameters (pH variation and dye concentration), and 

environmental conditions (controlled and semi-natural conditions).  

The aim of the submitted thesis was to assess the potential of an economic, effective and 

sustainable approach for treating the coloured effluents from the textile industry to reduce 

the problems associated with these effluents in developing countries. The examined 

treatment system was successfully operated and the overall results indicate that the treatment 

systems vegetated by Lemna minor L. were highly efficient as a polishing stage for 

decolourisation and complete mineralisation the dye contaminant, basic red 46 (BR46) at 

low concentrations, and for the improvement of most other water quality parameters, 

especially in warmer regions. Additionally, findings confirmed that phytotransformation, 

biotransformation and adsorption are likely to be the main mechanisms for BR46 removal. 

Five objectives were proposed and achieved successfully to fulfil the aim of this research 

(Section 1.4). The key conclusions emanating from this research, which are linked to each 

objective consequently, are summarised as follows: 

1. Experimental shallow ponds under controlled conditions, which were operated 

between 15 December 2014 and 15 September 2015, were able to remove the dye 

BR46 at concentration of 5 mg/l significantly better than other dyes (acid blue 113 

(AB113), reactive blue 198 (RB198), and direct orange 46 (DO46)), although all 

dyes showed higher outflow concentration in control ponds than other ponds. In 

addition, ponds containing L. minor (P1 and P3) significantly (p < 0.05) 

outperformed algae-dominated ponds (P2) and control ponds (P4) in terms of BR46 

removal efficiency. Mean BR46 elimination was 67%, 53%, 69% and 31% for L. 
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minor and algae ponds (P1), algae ponds (P2), L. minor ponds (P3) and control ponds 

(P4), respectively. Furthermore, low chemical oxygen demand (COD) removal was 

achieved in all ponds, with and without dyes, due to the accumulation of weekly 

doses in the systems and low microbial activities. However, higher COD removal 

values were found in planted ponds (P1 and P3) treating BR46. Ponds treating BR46, 

except for the control ones, showed that all outflow values of pH, suspended solids 

(SS), COD and total dissolved solid (TDS) were within the threshold set for 

discharge to the aquatic environment. Based on outdoor experimental shallow ponds 

in Salford, which were operated between 15 December 2014 and 2 February 2016, 

the results indicated better treatment of BR46 than all other dyes. In addition, 

significantly higher removal was linked to L. minor ponds (P3; 51% and 19%) than 

control ones (P4; 38% and 11%) regarding the dyes basic red 46 and reactive blue 

198, in that order. Furthermore, mean COD removals were higher in L. minor ponds 

than control ponds for all ponds. The treated wastewater values of pH, TDS and COD 

for L. minor ponds treating BR46 were within the allowable ranges for discharge to 

watercourses.  

2. Regarding comparison assessment between the performances of shallow ponds 

operated under controlled (laboratory) and uncontrolled (semi-natural) conditions 

during the period between 15 December 2014 and 15 September 2015, findings 

showed a significant (p < 0.05) removal for the dye BR46 at concentration of 5 mg/l 

by L. minor ponds (P3) under both studied environmental conditions. However, the 

potential of L. minor ponds for the treatment of BR46 was considerably better under 

controlled conditions (mean temperature records of 27.3°C) than those under semi-

natural conditions (mean temperature records of 12.6°C), and the potential of L. 

minor-plant only in removing BR46 was 38% and 13%, respectively. The outflow 

values of zinc, iron, and copper were below the thresholds set and within the tolerated 

limits for plant survival and for irrigation purposes in both experiments. This result 

suggests that L. minor-based treatment systems would be suitable for operation in 

tropical and subtropical regions, as the bio-sorption of BR46 by L. minor is an 

endothermic process, and therefore, in this research other experiments designed to 

evaluate the capability of L. minor systems were conducted under controlled 

conditions only. 

3. The impact of pH variation regarding short-term experimental ponds, which were 

operated between 1 October 2015 and 19 January 2016, was very low for the dyes 
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AB113, RB198 and DO46, and negligible for BR46. In addition, pH variation did 

not impact significantly (p > 0.05) on the treatment performance of other water 

quality parameters. Findings also showed that higher mean removal, 85%, was 

noticed in L. minor ponds treating BR46, and only RB198 and BR46 removal was 

significantly (p < 0.05) higher in L. minor ponds compared with the control ones. 

However, the long-term operation, between 20 January 2016 and 18 October 2016, 

showed that the removal efficiency of RB198 at acidic conditions (pH of 6) was 

significantly higher (p < 0.05) than at normal conditions, indicating that the 

adsorption capacity of RB198 increased at low pH, although the overall removal was 

very low in all ponds. Regarding the treatment of BR46, the removal within ponds 

containing L. minor was more than 85%, without any noticeable impact of different 

pH values. Based on the impact of Oedogonium algae within the second phase of the 

experiment between 18 October 2016 and 30 June 2017, findings showed that the 

presence or absence of algae in the system do not considerably affect the pond 

performance when treating RB198. However, BR46 removal was significantly 

higher (p < 0.05) within L. minor and algae ponds (P1, 85%) followed by algae ponds 

(P2, 58%) and control ponds (P4, 33%). Findings also showed that only L. minor was 

able to completely mineralise BR46 by removing the aromatic amines after dye 

decolourisation, and the very high removal within L. minor and algae ponds was due 

to the phytotransformation, biotransformation and adsorption processes. Whereas, 

the elimination mechanism was by biotransformation and bio-sorption processes 

within algae and control ponds, as confirmed by ultraviolet (UV)-scan, high 

performance liquid chromatography (HPLC) and gas chromatography mass 

spectrometry (GCMS) data. All outflow COD, ammonium-nitrogen (NH4–N), 

nitrate-nitrogen (NO3–N), SS, and TDS concentrations were below the standard 

limits for safe discharge and therefore reusable for other purposes. 

4. The assessment of pond systems for treating diluted synthetic textile wastewater 

containing a mixture of dyes showed that the treatment system effectively improved 

the main parameters of water quality, including COD, NH4‒N and NO3–N, but not 

ortho-phosphate-phosphorus (PO4–P), with a considerable impact of L. minor ponds 

compared with the control ones. The outflow values of pH, COD, NH4–N, NO3–N, 

SS and TDS were within the acceptable limits for direct discharge. In addition, the 

outflow concentrations of zinc and copper were below the standard limits for plant 

survival and for irrigation purposes. The L. minor pond (P3) efficiency in terms of 
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removing dye mixtures was significantly (p < 0.05) higher than that for control ones 

(P4). High removals were associated with mixtures containing higher percentages of 

biodegradable dyes (Mixture 1; 20% RB198 + 80% BR46). In addition, outcomes 

confirmed the phytotransformation, biotransformation and adsorption of BR46 in L. 

minor ponds with complete dye mineralisation in each mixture, and 

biotransformation and bio-sorption of the same dye in control ponds with production 

of aromatic amine in the outflow samples. Overall findings showed that the system 

potential for BR46 degradation when it forms only part of a dye mixture is lower, 

compared to its corresponding removal as an individual dye, suggesting that L. minor 

ponds are more effective in operation for the treatment of wastewater containing 

separate textile dyes, although the pond systems are able to treat mixtures of dyes. 

5. Plant monitoring showed that the impact of environmental conditions on the growth 

rates of L. minor under controlled conditions (higher temperature records) were 

clearly higher than under semi-natural conditions in Salford, UK (lower temperature 

records), as the environment in the laboratory was suitable for optimum growth of L. 

minor. In terms of the impact of synthetic wastewater (dechlorinated tap water and 

TNC complete fertiliser), the plants showed growth rates that were significantly 

higher compared to other ponds fed by dyes or those fed by only tap water or diluted 

synthetic textile wastewater. Regarding the impact of pH on plant development, 

results showed that the pH variation did not significantly affect plant growth rate, 

although the growth values were slightly higher in ponds receiving inflow of a pH 

value of 6 followed by the values at normal conditions and lower growth rate was 

linked to ponds receiving inflow of a pH value of 9. The synthetic textile wastewater 

(chemicals composition) used at 100% without dilution was not suitable (toxic) for 

L. minor. However, diluted synthetic textile wastewater (1 part wastewater to 24 parts 

raw water) had a slightly negative influence on plant growth, which was less but not 

significant (p > 0.05), if compared with plants in tap water. Regarding the assessment 

of dye impact on L. minor growth rate, as a toxicity indicator, findings showed that 

all dyes inhibited the growth rates of L. minor compared with ponds without dyes, 

with the following growth rate ranking: wastewater without dye > AB113 > RB198 

> DO46 > BR46. This indicates that BR46, which was successfully treated, had a 

significantly (p < 0.05) higher negative impact on the plant growth rate compared to 

ponds fed with wastewater without dye. In addition, an increase in BR46 

concentration to 10 mg/l, as a separate dye, was linked to a reduction in L. minor 
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growth rate. However, a dye mixture containing diluted synthetic textile wastewater 

mixed with BR46 at concentrations of 2 mg/l impacted on the chlorophyll pigments 

in the fronds and consequently inhibited the development of L. minor, and at 

concentrations of 5 or 8 mg/l was toxic to the plant. Overall, findings suggest that 

the growth reduction of L. minor was due to the presence of three adverse factors 

working together in combination: dye mixture, concentration of BR46 and synthetic 

textile wastewater after dilution.  

7.2 Recommendations for further research 

The main recommendations for further research work are listed below: 

1. Any future experimental work carried out on field-scale CWs for treating coloured 

textile effluents would benefit from finding out more about the potential of plants 

and microbes responsible for dyes, chemical oxygen demand, elements, nutrients and 

SS reduction. 

2. Future research on specifying the microbial population (i.e. characteristics and 

composition) and examination of their exact contribution to the treatment of dyes 

and other pollutants in wetland systems is needed. 

3. Future study on assessing the system performance using unstable (high and low) 

inflow dye concentrations is proposed, in addition to the importance of examination 

of other commercial azo dyes with the same or other plant. 

4. Further research on assessing the system efficiency using real textile wastewater 

could be also applied to give better insight into the overall system performance 

instead of using synthetic wastewater chemicals that may affect the plant potential 

and survival. 

5. Recycling of the treated wastewater from constructed wetland systems for irrigation 

purposes under both lab and field conditions to understand the impact of pollutants 

accumulation on the chemical and biological properties of the soil and crop 

production would be an additional advantage. 
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Appendices 

Appendix A Textile wastewater characteristics 
 

Table A.1 Typical characteristics of textile effluents 

Reference 

Avlonitis 

et al. 

(2008)a 

Eswaramoorthi 

et al. (2008) 

Al-Kdasi et al. 

(2004), Turhan 

and Turgut 

(2009) 

Kalra et al. 

(2011) 

Upadhye and Joshi 

(2012) 

Hussein 

(2013) 

Ghaly et al. 

(2014), Suresh 

et al. (2014)  

Kehinde and 

Aziz (2014) 

Temp. (°C)  35–45  35–45 35–45 33–45 35–45 21–62 

pH (-)  6–10 7–9 6–10 6–10 5.5–10.5 6–10 6.95–11.8 

Colour (Pt Co)   50–2500 50–2500 50–2500  50–2500 50–2500 

COD (mg/l) 100 1000–1500 150–12000 150–10000 150–10000 150–10000 150–12000 150–30000 

BOD (mg/l)  300–500 80–6000 100–4000 100–4000 100–4000 80–6000 80–6000 

EC (µS/cm) 1000        

TS (mg/l)        6000–7000 

TSS (mg/l)  200–400 15–8000 100–5000 100–5000 100–5000 15–8000 15–8000 

TDS (mg/l)  8000–12000 2900–3100 1800–6000 1800–6000 1500–6000 2900–3100 2900–3100 

Chlorine (mg/l)   1000–1600    1000–6000  

Chlorides (mg/l)  3000–6000  1000–6000 1000–6000 200–6000   

Free chlorine (mg/l)  <10     <10  

TA (mg/l) as CaCo3    500–800 500–800 500–800  17–22 

TH (mg/l) as CaCo3         

TKN (mg/l)   70–80 70–80 70–80 70–80 70–80 70–80 
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Table A.1 (Continued)         

TNK(mg/l)  10–30     10–30  

NO3–N (mg/l)  <5     <5  

Free ammonia (mg/l)  <10     <10  

Na2CO3 (mg/l) 20        

NaOH (mg/l) 10        

NaCl (mg/l) 300        

Phosphate (mg/l)       <10  

Sulphates (mg/l)  600–1000    500–700 600–1000  

Sulphides (mg/l)      5–20   

Sulphur trioxide (mg/l)         

Oil and grease (mg/l)  10–30    10–50 10–30 5–5.5 

Dye (mg/l) 70        

Zink (mg/l)  <10    3–6 <10  

Nickel (mg/l)  <10     <10  

Manganese (mg/l)  <10     <10  

Iron (mg/l)  <10     <10  

Copper (mg/l)  <10    2–6 <10  

Boron (mg/l)  <10     <10  

Arsenic (mg/l)  <10     <10  

Silica (mg/l)  <15     <15  

Mercury (mg/l)  <10     <10  

Fluorine (mg/l)  <10     <10  

Chromium (mg/l)      2–5   

Potassium (mg/l)      30–50   

Sodium (mg/l)  7000  610–2175 610–2175 400–2175 7000  

Note: COD, chemical oxygen demand; BOD, five-day biochemical oxygen demand; TOC, total organic carbon; EC, electrical conductivity; TS, 

total solids; TSS, total suspended solids; TDS, total dissolved solids; TVS, total volatile solids; TA, total alkalinity; TH, total hardness; TKN, total 

kjeldahl nitrogen; TN, total nitrogen; NO3–N, nitrate-nitrogen; Na2CO3, sodium carbonate; NaOH, sodium hydroxide; NaCl, sodium chloride; a, 

typical cotton dye industry effluent.
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Table A.2 Characteristics of textile wastewater according to process 

Reference Seif and Malak (2001) 

Process Dyeing 

pH (-) 6–10 

COD (mg/l) 475–1835 

BOD (mg/l) 295–1280 

TS 710–960 

TDS 650–1940 

Reference Ahmed et al. (2007), Lau and Ismail (2009), Ibrahim et al. (2009) 

 Process Bleaching and Dyeing    

pH (-) 2–10     

Colour (ADMI) 280–2000     

COD (mg/l) 200–5500     

BOD (mg/l) 2000–30000     

TS 100–5000     

Reference Dos Santos et al. (2006), Carmen and Daniela (2012) 

Process Desizing Scouring Bleaching Mercerising Dyeing 

pH (-)  10–13 8.5–9.6 5.5–9.5 5–10 

Colour (ADMI) 16000–32000 694 153  1450–4750 

TS (mg/l)  7600–17400 2300–14400 600–1900 500–14100 

TDS (mg/l)   4800–19500 4300–4600 50 

COD (mg/l) 4600–5900 8000 6700–13500 1600 1100–4600 

BOD (mg/l) 1700–5200 100–2900 100–1700 50–100 10–1800 

Reference Savin and Butnaru (2008) 

Process Burning Bleaching Dyeing Dyeing Gauge Dressing 

pH (-) 5–6.5 7–12.4 6.3–10.7 6.5–12.1 7–7.11 

COD (mg/l) 1512–7802 1060–6556 258–1970.6 458–7561 825–1905 

TSS (mg/l) 105–936 56–147 72–956 175–325 135–544 

BOD (mg/l) 675–925 80–520 70–300 230–410 60–180 

Cl- (mg/l) 64–169 40–175 48–601 70–230 40–80 

NH4 (mg/l) 3–7.9 2.15–18.6 0.48–33.3 18.4–18.8 5.06–14.8 

NO2 (mg/l) 0.08–2.5 0.025–12.8 0.08–1.32 0.19–0.21 1–2.2 

NO3–N (mg/l) 0.025–5.3 3.3–9.4 3.7–8.3 4.7–4.8 1.6–3.6 

Reference Zhang et al. (2012) 

Process Bleaching Fibre scouring Rinsing Soaping  

pH (-) 9.4 7.3 8.6 12  

Colour (ADMI) 17 21 7 38  

COD (mg/l) 528 ± 7.9  311 ± 2.1 578 ± 23.5  

Salinity (mg/l)  2000 2000 5000  

Note: ADMI, American Dye Manufactures Institute unit; TSS, total suspended solids; TDS, 

total dissolved solids; TS, total solids; COD, chemical oxygen demand; BOD, biochemical 

oxygen demand; Cl-, chloride; NH4, ammonium; NO2, nitrite; NO3–N, nitrate-nitrogen.
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Table A.3 Reported real textile effluent characteristics from different sources and countries 

Reference 
Lin and Lin 

(1993) 

Georgiou and 

Melidis (2002) 

Hussain et al. 

(2004) 
Brik et al. (2006) 

Chatzisymeon et 

al. (2006) 

Bulc and 

Ojstrsek (2008) 

Bes-Pia et al. 

(2010) 

Source 

Typical 

characteristics of 

textile wastewater 

Cotton textile 

wastewater 

characteristics 

Range of 6 major 

textile industries 

effluents 

Mixed textile 

wastewater from a 

polyester finishing 

factory 

Actual textile 

effluent from 

Epilektos SA 

manufacturing 

industry 

Real textile 

wastewater 

Textile mill 

wastewater from 

secondary 

treatment plant in 

the rinsing 

process 

Country India Greece India Austria Greece   Spain 

Temp. (°C) 289-1030     30–38  

pH (-) 99-1010 8.2 7–9 6.36–9.67 9.5 8–9 7.6–7.8 

Colour (Pt Co)       0.39–0.54a 

COD (mg/l) 460–1500 150 1600–3200 1380–6033 404 276–1379 200–315 

BOD (mg/l) 100–500 80 500–1010 177–720  99–350  

TOC (mg/l)      74–530  

EC (µS/cm) 2100–2900  44309–108710 0.661–4.95  2050–6430 2600–2800 

TS (mg/l)     75   

TSS (mg/l) 91–250  8309–101580 75–220  27–408 15–46 

TDS (mg/l)   40409–107500    1456–1568 

DS (mg/l)   32109–105920     

Turbidity (NTU)       8.2–12.6 

DO (mg/l)      1.2–1.7  

Chlorides as Cl- (mg/l)   980–2185    200–365 

TH (mg/l) as CaCo3 
  120–150    133–171 

TN (mg/l)    7.53–75.2    

NO3–N (mg/l)   120–627 0.26–11.1    

NH4–N (mg/l)    0.76–23.7  0.2–4.5  
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Table A.3 (Continued)        

Na2SO4 (mg/l)     5500   

Na2CO3 (mg/l)     440   

NaOH (mg/l)     110   

Carbonate (mg/l)   110–120    96–96 

Bicarbonate (mg/l)   555–1464    800–1000 

Total phosphor (mg/l)    0.58–17.9    

Phosphate (mg/l)    0.25–5.38    

Sulphates (mg/l)   307–620 60–294  76–2200 124–176 

Sulphur trioxide (mg/l)    0.1–73    

AOX (mg/l)    0.11–1.05    

Reference Lim et al. (2010) 
Abid et al. 

(2012) 

Aouni et al. 

(2012) 

Imtiazuddin et al. 

(2012) 

Joshi and 

Santani (2012) 

Nopkhuntod et 

al. (2012) 

Nopkhuntod et al. 

(2012) 

Source 

Textile 

wastewater from a 

garment factory 

Raw textile 

wastewater 

from14-

Ramadhan 

textile mill 

Raw textile 

wastewater from 

the rinsing baths 

of Colortex textile 

industry 

Range of raw 

textile wastewater 

from 7 textile mills 

from different steps 

Raw textile 

wastewater from 

Sumukh textile 

mill collected 

from 6 sites 

Actual textile 

wastewaters 

from dyebath 

wastewater 

 Raw textile 

wastewater from 

equalising tank 

Country Malaysia Iraq Spain Pakistan India Thailand Thailand 

Temp. (°C) 35–58   36–49.2 31.53–50.67   

pH (-) 3.85–11.4 5–8 7.11 7.5–11.5 9.17–12.7   

Colour (Pt Co) 76–1777.33     2502000±500 2105±13 

COD (mg/l) 231.67–990  708 115.66–705.25 449.50–2078.55 45500±182 2600±3.78 

BOD (mg/l)    125.55–653.75 71.75–852.63 5±0.00 520±0.47 

EC (µS/cm) 690–1381 700–1300 3840 175.7–345.0 1340–6550   

TS (mg/l) 39.33–11689.33       

TSS (mg/l) 22.67–150   934–1619 419.87–1549 45±0.73 130±0.85 
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Table A.3 (Continued)        

TDS (mg/l) 14.00–11564 400–1000 3137 2469–7295 1235.58–4975.2 45000±123 5600±6.54 

TVS (mg/l) 54.46–531       

Turbidity (NTU)   4.02     

DO (mg/l) 1.5–7.5       

Chlorides as Cl- (mg/l)   >125     

NO3–N (mg/l) 1.23–5.60       

NH4–N (mg/l) 0.47–50.83       

Phosphate (mg/l) 0.07–4.01       

Sulphates (mg/l)   28     

Reference 
Nopkhuntod et al. 

(2012) 

Paul et al. 

(2012) 

Syafalni et al. 

(2012) 

Al-Shuwaik et al. 

(2013) 

Al-Shuwaik et 

al. (2013) 
Hussein (2013) Qian et al. (2013) 

Source 

Actual textile 

wastewaters from 

textile industry 

from activated 

sludge treatment 

unit 

Range of 6 

textile industries 

effluent  

Dye wastewater 

taken from 

Penfabric Mill  

Textile wastewater 

from Al-Hilla 

factory 

Textile 

wastewater from 

Al-Khadimia 

factory 

Real textile 

wastewater 

Textile 

wastewater passed 

from activated 

sludge unit 

Country Thailand India Malaysia Iraq Iraq Iraq China 

Temp. (°C)        

pH (-)  7.54–9.59 9–10.18 7.9–8.5 7–9.5 12.9 8.0–8.3 

Colour (Pt Co) 420±3  680–750 85 50–65  310–325b 

COD (mg/l) 750±1.67 381–1548 298–360 80–90 120–140 225.084 61–75 

BOD (mg/l) 25±0.04 130–500  50–60 15–20 149.3 6–10 

TSS (mg/l) 90±0.33  0.0076 312–400 200–300   

TDS (mg/l) 4800±15 2264–7072  1340–1350 600–730   

Turbidity (NTU)   63–74c  26–30  40–61 

DO (mg/l)        
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Table A.3 (Continued)        

Chlorides as Cl- (mg/l)  950–2750  542–550 120–140 63.91  

TA (mg/l) as CaCo3  280–500    73.68 102.5–109.2 

TH (mg/l) as CaCo3 
 470–1050    237  

Free ammonia (mg/l)   2.1–3.8     

Phosphate (mg/l)  1.6–10.45   0.64   

Sulphates (mg/l)  440–912  410˗580 140–200   

Sulphides (mg/l)  12–79      

Reference 
Sivakumar et al. 

(2013) 

Un and Aytac 

(2013) 

Manekar et al. 

(2014) 

Manekar et al. 

(2014) 

Shehzadi et al. 

(2014) 
Sun et al. (2014) 

Uysal et al. 

(2014) 

Source 

Textile 

wastewater from 

the final clarifier 

of textile 

industrial effluent 

treatment plant 

Wastewater 

from textile 

factory in 

Eskisehir 

Raw textile 

wastewater 

Raw textile 

wastewater passing 

from an 

equalisation tank 

Range of 4 

textile industries 

effluent 

Textile dye 

wastewater from 

Jinyang textile 

industry 

Real wastewater 

from textile 

factory in Bursa 

city 

Country India Turkey India India Pakistan China Turkey 

Temp. (°C)   43–46 28–30 38–42   

pH (-)  9.01 7.8–9 7.7–8.0 7.24–12.93 7.4–7.9 8.22±0.5 

Colour (Pt Co)   25–260d 240–290d 42–61  2200±800 

COD (mg/l) 3458 1953 752–1120 678–932 320–925 1114–1350 300±100 

BOD (mg/l) 2895  368–458e 272–310 172–450   

TOC (mg/l)     124–324   

EC (µS/cm) 4856 739   3.2–8.07   

TS (mg/l)     3112–5125   

TSS (mg/l)   120–170 120–180 200–391   

TDS (mg/l) 3108  1670–2040 1632–1902 2912–4834   

MLSS (mg/l)       165±80 
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Table A.3 (Continued)        

Turbidity (NTU)      125–137  

Chlorides as Cl- (mg/l) 942  384–452 384–412 90–800   

TA (mg/l) as CaCo3 
  480–510 460–500    

TH (mg/l) as CaCo3 
    380–520   

NO3–N (mg/l)     20–24   

NH3–N (mg/l)   5–10 4–8    

Carbonate (mg/l)        

Bicarbonate (mg/l)        

Phosphate (mg/l)   BDL–1.8 BDL–3 9.32–19.02   

Sulphates (mg/l) 758  320–380 300–320 215.6–672.8   

Acidity (mg/l)        

Phenol (mg/l) 155       

Reference 
Buscio et al. 

(2015) 

Kaur and 

Sharma (2015), 

Singh et al. 

(2013) 

Punzi et al. (2015) 
Almazan-Sanchez 

et al. (2016) 

Bhuvaneswari et 

al. (2016) 

Tomei et al. 

(2016) 
 

Source 

Textile effluents 

from dyeing 

process 

Range of seven 

woven and knit 

textile mills of 

finishing 

industry 

Real textile 

wastewater from a 

textile factory in 

Tirupur 

Textile effluents 

from rinsing step of 

a denim textile 

industry 

Textile industry 

effluents limits 

of three samples 

Textile effluents 

from dyeing 

bath 

 

Country Spain India India Mexico India Italy  

Temp. (°C)     28–29   

pH (-) 6.9 4.3–11.9 10 6.84 8.6–9.2 9±0.5  

Colour (Pt Co) 300   330  0.66±0.06a  

COD (mg/l) 806 195–3050 1714 344 3880–4400 1017±58  

BOD (mg/l)  108–790  91.91 1206–1750 9.8±1.3  

TOC (mg/l)  101–7784  84.92  158.0±9.8  
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EC (µS/cm) 1825  12500 471.3    

TS (mg/l)  450–6510   2670–2850   

TSS (mg/l) 112 0.535±0.1   550–650   

TDS (mg/l)  430–49440   2070–2200   

Turbidity (NTU)    104.66 12.5–16.6   

Chlorides as Cl- (mg/l) 270   338.19 4005–4320 38.6±3.1  

TA (mg/l) as CaCo3 150   83.25    

TH (mg/l) as CaCo3 50   119.17 1750–1900   

NO3–N (mg/l)   3.6 1.9  3.8±0.1  

NH4–N (mg/l)   1.7   40.01±4.5  

NH3–N (mg/l)     73–85.6   

Carbonate (mg/l)    0.035    

Bicarbonate (mg/l)    101.5    

Phosphate (mg/l)   16.8 287.08 72.8-86.8 3.2±0.1  

Sulphates (mg/l) 387   227.06 2050–2250 4.5±0.1  

Acidity (mg/l)    20.75    

Note: Temp, temperature; COD, chemical oxygen demand; BOD, five-day biochemical oxygen demand; TOC, total organic carbon; EC, electrical 

conductivity; TS, total solids; TSS, total suspended solids; TDS, total dissolved solids; TVS, total volatile solids; DS, dissolved solids; MLSS, 

mixed liquor suspended solids; NTU, nephelometric turbidity unit; DO, dissolved oxygen; TA, total alkalinity; TH, total hardness; TKN, total 

kjeldahl nitrogen; TN, total nitrogen; NO3–N, nitrate-nitrogen; NO2–N, nitrite-nitrogen; NH4–N, ammonium-nitrogen; NH3–N, ammonia-nitrogen; 

Na2SO4, sodium sulphate; Na2CO3, sodium carbonate; NaOH, sodium hydroxide; NaCl, sodium chloride; AOX, adsorbable organic halogens; 

EC50, half maximal effective concentration; BDL, below detected limits; a, Absorbance unit; b, hazen units; c, BOD3 days; d, American dye 

manufacturer’s institute unit; e, formazin attenuation units. 
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Table A.4 Heavy metal and trace element concentrations (mg/l) of real textile wastewater 

Reference 
Hussain et al. 

(2004) 

Bes-Pia et al. 

(2010) 

Lim et al. 

(2010) 

Aouni et al. 

(20120 

Imtiazuddin et al. 

(2012) 

Joshi and 

Santani (2012) 
Paul et al. (2012) 

Syafalni et al. 

(2012) 

Source 

Range of six 

major textile 

industry 

effluents 

Textile mill 

wastewater from 

the rinsing 

process of a 

secondary 

treatment plant 

Textile 

wastewater 

from a garment 

factory 

Raw textile 

wastewater from 

the rinsing baths 

of a Colortex 

textile factory 

Range of raw 

textile 

wastewater from 

seven textile 

mills from 

different steps 

Real effluents 

from Sumukh 

textile mill 

Range of six 

textile industry 

effluents 

Dye 

wastewater 

taken from 

Penfabric 

Mill 

Country India Spain Malaysia Spain Pakistan India India Malaysia 

Zinc   0.11–2.93  2.36–6.03 0.48–7.32  <0.2 

Lead 0.011–0.061  0.08–0.09  0.16–0.35    

Cadmium   0.01–0.05 42  0.02–0.74   

Nickel   0.02–0.04  0.66–1.53 0.06–1.16   

Magnesium 13–29   18.6   88–210  

Iron 0.017–0.163  0.11–0.16  1.08–3.11 0.3–111.38  0.13–0.15 

Chromium 0.015–7.854    1.05–1.86 1.16–2.2  0.5–0.6 

Copper 0.006–0.311  <0.001–0.1  0.07–5.14 0.17–9.26  0.03 

Fluorine 0.7–2.2        

Calcium 12–28      128–404  

Manganese 0.001–0.022  0.01–0.04  0.88–1.85 0.07–7.74   

Potassium 11–19 54–67    40.50–113.64   

Sodium 975–2185 179–190  1008  86.32–259.06   

Phosphorus      0.17–2.35   

Arsenic   <0.001      

         



Appendices: Appendix A 

342 

Table A.4 (Continued) 

Reference 
Al-Shuwaik et 

al. (2013) 
Hussein (2013) 

Manekar et al. 

(2014) 

Manekar et al. 

(2014) 

Shehzadi et al. 

(2014) 

Almazan-

Sanchez, et al. 

(2016) 

Bhuvaneswari et 

al. (2016) 
 

Source 

Textile 

wastewater from 

Al-Khadimia 

factory 

Real textile 

wastewater 

Raw textile 

wastewater 

passing from 

an equalisation 

tank 

Raw textile 

industry 

wastewater 

Range of 4 

textile industries 

effluent 

Textile effluents 

from the rinsing 

step of a Denim 

textile factory 

Textile industry 

wastewater 

(range for three 

samples) 

 

Country Iraq Iraq India India Pakistan Mexico India  

Zinc  0.256 0.01–0.3 0.06–0.27     

Lead 1–2  0.1–0.13 0.11–0.12     

Cadmium   0.01 0.01–0.02 0.1–0.27    

Nickel  0.104 0.07–0.26 0.08–0.3 1.1–2.7    

Cobalt   0.03–0.06 0.02–0.03     

Magnesium      4.39   

Iron 0.1–1.0  1.42–8.25 0.7–1.41 1.6–3.3 0.343   

Chromium 0.1–1.0  0.04–0.07 0.03–0.05 0.08–0.25    

Copper  0.27 0.07–0.11 0.03–0.04     

Lithium       68–83.6  

Silica      5.6   

Calcium     80.16–104.2 5.65 2185–2378.5  

Manganese   BDL–0.26 BDL–0.16 48.6–68.04 1.99   

Potassium  44.831   624–1092 3.08 2490–2685  

Sodium  697.6   3242–1656 44.99 2710–2900  

Note: BDL; below detection limits. 
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Table A.5 Level of dye concentrations (mg/l) of real textile wastewater 

References Concentration 

Laing (1991) 10–50 

Pierce (1994), Shelley (1994) 60 

Gahr et al. (1994) 100–200 

Koprivanac et al. (1992) 7000 

Vandevivere et al. (1998), Jadhav et al. (2007), Saratale et al. (2011) 600–800 

Sivakumar (2014) 45 

Abid et al. (2012) 20–50 

Ghaly et al. (2014) 10–250 
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Table A.6 Reported chemical constituents used for preparation of synthetic textile wastewater containing dyes 

Reference Marquez and Costa (1996) Basibuyuk and Forster (1997) Panswad and Luangdilok (2000) 

Country Spain UK  

Method 
Adsorption by powdered activated carbon 

and activated sludge 
Sequential biofilter using activated sludge 

Anaerobic/aerobic sequential batch reactor 

 

 
Meat extract 110 mg/l Starch 1.28 g/l Glucose 860 mg/l 

 
Urea 30 mg/l Lab Lemco 400 mg/l Acetic acid 0.150 ml/l 

Dipotassium hydrogen phosphate 28 mg/l Ammonium sulphate 353 mg/l Urea 108 mg/l 

Sodium chloride 7 mg/l Magnesium sulphate heptahydrate 108 mg/l Potassium dihydrogen phosphate 67 mg/l 

 
Calcium chloride dihydrate 4 mg/l Calcium chloride 40 mg/l Sodium bicarbonate 840 mg/l 

Magnesium sulphate heptahydrate 2 mg/l Iron (II) sulphate heptahydrat 750 µg/l Magnesium sulphate heptahydrat 38 mg/l 

Acid Orange 7 20 mg/l Nickel (II) sulphate heptahydrate 500 µg/ l Calcium chloride 21 mg/l 

 
  Manganese (II) chloride tetrahydrate 500 µg/ l Iron (III) chloride hexahydrate 7 mg/l 

  Zinc sulphate heptahydrate 500 µg/ l Reactive Black 5, Reactive Blue 19, 

Reactive Blue 5, Reactive Blue 198 

20 mg/l 

   Boric acid 100 µg/ l 

  Cobalt(II) chloride hexahydrate 50 µg/ l   

  Copper(II) sulphate pentahydrate 5 µg/ l   

 

 
  Maxilon Red 25-50 mg/l  

Reference Panswad et al. (2001) Alaton et al. (2002) Kang et al. (2002) 

Country Thailand  Taiwan 

Method Anaerobic/aerobic sequential batch reactor Advanced oxidation Fenton process 

Nutrient broth  500, 350, 250 mg/l (a) Acetic acid 0.79 g/l Polyvinyl alcohol 125 mg/l 

Sodium acetate  150, 250, 500 mg/l (a) Sodium chloride 41 g/l Reactive Blue dye R94H 20 mg/l 

Glucose  500 mg/l (a) Sodium carbonate 13 g/l   
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Table A.6 (Continued)      

Urea 50, 25 mg/l (as N) Sodium hydroxide 0.51 g/l   

  
Polyether based co-polymer micro- 

dispersion 
1.2 g/l   

Potassium dihydrogen phosphate 15, 5 mg/l (as P)     

Sodium bicarbonate 500 mg/l (as CaCO3)     

Calcium chloride 7.5, 2.5 mg/l (as Ca) Acryl co-polymer-phosphor mixture 0.85 g/l   

Iron (III) Chloride Hexahydrate 2.5 mg/l (as Fe) Alcyl phenol polyglycol ether 0.5 g/l   

Magnesium sulphate heptahydrate 3.75, 1.25 mg/l (as Mg) Procion blue HERD 6.83 mg/l   

Remazol black B 10 mg/l Procion crimson HEXL 40.6 mg/l   

  Procion Yellow HE4R 15 mg/l   

  Procion navy HEXL 86.3 mg/l   

  Procion yellow HEXL 33.3 mg/l   

Reference Mohan et al. (2002) Mbuligwe (2005) 
Sakkayawong et al. (2005), Noonpui and Thiravetyan 

(2011) (c) 

Country India Tanzania Thailand 

Method Biological treatment by algae Engineering wetland with emergent plants Adsorption by chitosan; constructed wetland 

D-glucose 0.1 g/l Caustic soda 0.2 g/l Sodium carbonate 90 g/l 

Sodium chloride 0.05 g/l Sodium hydrosulphate 0.3 g/l Sodium sulfate 20 g/l 

FeCl3.H2O  7100 mg/l (b) Dye 0.2 g/l Reactive red 141 4 g/l 

Zinc sulphate heptahydrate  1 mg/l (b)   

Magnesium sulphate heptahydrate  5000 mg/l (b)   

Boric acid  1 mg/l (b)   

Copper (II) sulphate pentahydrate  1 mg/l (b)   

Ammonium Molybdate  1.1 mg/l (b)   

Manganese(II) Chloride 

Dihydrate  
80 mg/l (b) 

  

  

Aluminium sulphate 

hexadecahydrate  
550 mg/l (b) 
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Table A.6 (Continued)    

Calcium chloride dihydrate 10000 mg/l (b)   

Cobalt(II) chloride hexahydrate  2000 mg/l (b)   

Thiamine– HCl hydrogen 

chloride  
2000 mg/l (b) 

  

  

Reactive Yellow 22 0.25, 0.5, 1.0 g/l   

Reference Khehra et al. (2006) Bali and Karagozoglu (2007) Keskinkan and Lugal Goksu (2007) (d) 

Country India Turkey Turkey 

Method Sequential anoxic/aerobic bioreactor Fenton process Constructed wetland with submerged plants 

Disodium phosphate 3.6 g/l polyvinyl alcohol 100 mg/l Calcium nitrate 492 mg/l 

Ammonium sulphate 1 g/l Remazol Turquoise Blue G-133 50 mg/l Ammonium dihydrogen phosphate 230 mg/l 

Potassium dihydrogen phosphate 1 g/l   Magnesium sulphate heptahydrate 420 mg/l 

Magnesium sulphate heptahydrate 1 g/l   Boric acid 2.86 mg/l 

Fe (NH4) citrate 0.01 g/l   Manganese(II) chloride tetrahydrate 1.81 mg/l 

Calcium chloride dihydrate 0.1 g/l   Molybdenum(VI) acid monohydrate 0.09 mg/l 

Yeast extract 0.05% (w/v)   Iron(II) sulphate heptahydrate 0.07 mg/l 

Glucose 2.8 mM   (CHOH)2(COOH)2 0.02 mg/l 

Zinc sulphate heptahydrate 10 mg/l (b)   Potassium nitrate 1020 mg/l 

Manganese(II) chloride 

tetrahydrate 
3 mg/l (b) 

  Basic Blue 41 11 mg/ l 

      

Cobalt(II) chloride hexahydrate 1 mg/l (b)       

Nickel(II) chloride hexahydrate 2 mg/l (b)       

Sodium molybdate dihydrate 3 mg/l (b)       

Boric acid 30 mg/l (b)       

Copper(II) chloride dihydrate 1 mg/l (b)       

Acid Red 88 100 mg/l       

        

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjflPGv7bzRAhViBcAKHeb5AsAQFggdMAA&url=http%3A%2F%2Fwww.endmemo.com%2Fchem%2Fcompound%2Fmgso47h2o.php&usg=AFQjCNEOMdTMCl6HuHZhvYswSfFazZbmOw&bvm=bv.143423383,d.bGg
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&sqi=2&ved=0ahUKEwjdr_izr8nRAhWCrxoKHVDkAEYQFggiMAI&url=http%3A%2F%2Fwww.endmemo.com%2Fchem%2Fcompound%2Ffeso47h2o.php&usg=AFQjCNHhe0LL5RGltNA_zwqZ1O0u5mDTXw&bvm=bv.144224172,d.bGg
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwiP0L2-8ZXTAhVKLMAKHVUvBy8QFgggMAE&url=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsigald%2F331058&usg=AFQjCNGoNbOlFyrc6fy_sQTGT-iIEuqgtw&bvm=bv.152174688,d.d24
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Table A.6 (Continued) 

Reference Ojstrsek et al. (2007) Avlonitis et al. (2008) Hassani et al. (2008) (e) 

Country Austria Austria Iran 

Method Constructed wetland with emergent plants Nanofiltration processes  

Alvirol AGK 0.46 g/l 0.3 g/l 0.3 g/l Sodium carbonate 20 mg/l 80 mg/l 

 

100 mg/l 

 

Sodium chloride 1000, 2000, 

3000 mg/l  
Alviron VKSB 0.67 g/l 0.4 g/l  Sodium hydroxide 600 mg/l 40 mg/l 50 mg/l 

Sodium chloride 2 g/l 2 g/l  Sodium chloride 600 mg/l 1200 mg/l 1500 mg/l Cyanine 5R, Red E3B, Direct 

red 105, Carmozin 206 

5, 50, 100 

mg/l 
Sodium hydroxide 2 ml/l 2 ml/l  Reactive Black 5 130 mg/l 260 mg/l 230 mg/l 

Irgapadol MP   1.67 g/l       

Cibaflow PAD   0.3 g/l     

 
  

Reactive Red 22 0.03 g/l         

Reactive Black 5  0.03 g/l    

 

 

    

Vat Red 13   0.03 g/l   

 

 

 

 

  

 

 

 
Reference Bulc and Ojstrsek (2008) Ong et al. (2009a, 2010) Muda et al. (2010) 

Country Austria Japan  

Method Constructed wetland with emergent plants Up-flow constructed wetland with emergent plants Sequential batch reactors using granular sludge 

Alvirol AGK 0.3 g/l 0.3 g/l 0.3 g/l Sodium acetate 

 

204.9 mg/l 

 
Glucose 0.5 g/l 

Cibaflow PAD 0.3 g/l 0.3 g/l 0.3 g/l Ammonium nitrate 176.1 mg/l Ethanol 0.125 g/l 

Sodium chloride 2 g/l   Sodium chloride 7 mg/ Sodium acetate 0.5 g/l 

Sodium hydroxide 2 ml/l   Magnesium chloride hexahydrate 3.4 mg/l Ammonium chloride 0.16 g/l 

Irgapadol MP  2 g/l 

 
2 g/l Calcium chloride dihydrate 4 mg/l Potassium dihydrogen phosphate 0.23 g/l 

 

Reactive Black 5 0.03 g/l   
Potassium Hydrogen Phosphate 

Trihydrate 
36.7 mg/l Dipotassium phosphate 0.58 g/l 

Disperse Yellow 211  0.03 g/l    Calcium chloride dihydrate 0.07 g/l 

Vat Yellow 46   0.03 g/l Sodium benzoate 107.1 mg/l 

 

Magnesium sulphate heptahydrate 0.09 g/l 

    Acid Orange 7 50, 100 mg/ l Ethylenediaminetetraacetic acid 0.02 g/l 

      Boric acid  0.15 g/l (b) 

      Ferrous chloride  1.5 g/l (b) 
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Table A.6 (Continued)      

    Zinc chloride  0.12 g/l (b) 

    Manganese(II) chloride tetrahydrate  0.12 g/l (b) 

    Copper(II) chloride dihydrate  0.03 g/l (b) 

    Sodium molybdate  0.06 g/l (b) 

    Cobalt(II) chloride hexahydrate  0.15 g/l (b) 

    Potassium iodide  0.03 g/l (b) 

    Sumifix Black EXA, Sumifix Navy Blue 

EXF and Synozol Red K-4B 

50 mg/l 

 

     

Reference Ozdemir et al. (2011) Aouni et al. (2012) Cumnan and Yimrattanabovorn (2012) 

Country Turkey Spain Thailand 

Method Fenton process Ultrafiltration and nanofiltration processes Constructed wetlands with emergent plants 

Polyvinyl alcohol 100 mg/l  Sodium chloride 500 mg/l 500 mg/l 500 mg/l Acetic acid sodium salt 

 

204.9 mg/l 

 
Reactive yellow 145 50–250 mg/l Everzol Black 600 mg/l   Ammonium nitrate 176.1 mg/l 

  Everzol Blue  600 mg/l  Sodium chloride 7 mg/l 

  Everzol Red   600 mg/l Magnesium chloride hexahydrate 3.4 mg/l 

    Calcium chloride dihydrate 4 mg/l 

    Potassium hydrogen phosphate 

Trihydrate 
36.7 mg/l 

    

    Benzoic acid sodium salt 53.55 mg/l 

 
    Dye 11.5 mg/l 

Reference Nopkhuntod et al. (2012) Verma et al. (2012, 2015) Al-Amrani et al. (2014) 

Country Thailand India  

Method Adsorption by shale column Coagulation method Anoxic/aerobic REACT operated sequential batch reactor 

Sodium chloride 

 
40 g/l Acetic acid 200 mg/l Sucrose 563 mg/l 

Sodium hydroxide 1.5 g/l Sucrose 600 mg/l Bacto-peptone 188 mg/l 
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Table A.6 (Continued)      

Sodium carbonate 

 
2 g/l Sodium hydroxide 500 mg/l Iron (III) Chloride Hexahydrate 11.3 mg/l 

Reactive dye 0.67 g/l Sulphuric acid 300 mg/l Calcium chloride 40 mg/l 

  Sodium carbonate 500 mg/l Magnesium sulphate 49 mg/l 

  Sodium chloride 3000 mg/l Sodium bicarbonate 100 mg/l 

  Sodium lauryl sulphate 100 mg/l Ammonium chloride 172 mg/l 

  Starch 1000 mg/l Potassium dihydrogen phosphate 513 mg/l 

  Reactive Black 5, Congo Red, Disperse 

Blue 3 
200 mg/l 

Acid Orange 7, Acid Orange 10, Acid 

Yellow 9 and Acid Red 14 

30, 75, 150 

mg/l   

Reference Aldoury et al. (2014) Mountassir et al. (2015) Punzi et al. (2015) 

Country  Morocco India 

Method Sequential anaerobic/aerobic reactor Electrocoagulation Anaerobic biofilm reactors 

Calcium chloride 20 mg/l Starch 2.78 mg/l Starch 0.465 g/l 

Magnesium sulfate heptahydrate 20 mg/l Ammonium sulphate 5.56 mg/l Sodium chloride 10 g/l 

Zinc sulfate 1 mg/l Disodium phosphate 5.56 mg/l Remazol Red 

 

10 g/l 

Iron(III) chloride 2 mg/l Reactive Violet 4 0.8 absorbance unit   

Sodium bicarbonate 50 mg/l     

Ammonium chloride 10 mg/l     

Peptone 

 

50 mg/l 

 
    

Dipotassium hydrogen phosphate 15 mg/l     

Acid Orange 12, Disperse Red 17 100, 150, 200 mg/l     

Reference Dhaouefi et al. (2018)     

Country Spain     

Method anoxic-aerobic photobioreactor     

COTOBLANC KRS 330 mg/l     

BIAVIN BPA 330 mg/l     
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Table A.6 (Continued) 

MEROPAN DA 170 mg/l     

Trisodium phosphate 330 mg/l     

Sodium hydroxide 1000 mg/l     

Sodium hydrosulphate 900 mg/l     

Acetic acid 170 mg/l     

Ammonium sulphate 600 mg/l     

Disperse blue 1 12 mg/l     

Disperse orange 3 20 mg/l     

Note: a, the chemicals mixed with either NB and SA or with glucose providing 500 mg/l as COD; b, composition of trace element solution using (1 

ml/l) except Khehra et al. (2006) used (10 ml/l); c, this ingredient is of stock solution and further dilution applied for making 20 mg/l dye 

concentration; d, 5% of the chemical solution mixed with the dye; e, the authors mixed each dye separately at three concentrations with sodium 

chloride which provide three concentrations of TDS (total dissolved solid). 
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Table A.7 Characteristics of the reported chemical constituents in Table A.6 

Parameter 
Marquez and 

Costa (1996) 
Panswad et al. (2001) Kang et al. (2002) Mbuligwe (2005) 

Bali and Karag-

ozoglu (2007) 

Avlonitis et al. (2008) 

Bath1             Bath2           Bath3 

pH (-) 7.3 7.4–7.5  10.68±0.78     

COD (mg/l) 250±30 492–552 250 85.28±6.5 213  180 360 360 

COD/BOD (-) 1.44        

EC (µS/cm)      1500 2120 3070 

N (mg/l)  25,50,70       

P (mg/l)  5.3–15.5       

Alkalinity (mg/l)  444–762       

TKN (mg/l)  24.8–72.3       

Sulphate (mg/l)    48.2±7.7     

Colour (Pt Co)   1050a 100.2± 21.87     

Dye (mg/l)      130 260 230 

Parameter 
Ong et al. (2010) 

            b                                 c 

Aouni et al. (2012) 

        d                   e                        f 

Verma et al. (2012, 

2015) 

Aldoury et al. 

(2014) 

Mountassir et 

al. (2015) 

Punzi et al. 

(2015) 

pH (-)   9.89 10.46 10.27 7.5 ± 0.1 6,7,8 6.8  

COD (mg/l) 383.8±13.7 450±8 566 450 470 770 –790 650–900 736 590 

COD/BOD (-)       5.37  

EC (µS/cm)   2490 1407 2240   1500  

TDS (mg/l)      370–550   

Chloride (mg/l)        320  

N (mg/l) 55.4±3.4 59±2       

P (mg/l) 6.7±0.3 6.5±0.3       

NH4–N (mg/l) 34.8±2.8 36±4       

NO3-N (mg/l) 29.5±2.2 28±2       

Alkalinity (mg/l)     1150–1130    

Colour (Pt Co)   2.05g 1.92g 1.76g   0.8g  

Dye (mg/l) 51±2 103±3 600 600 600     

Note: a, colour based on American dye manufacturer’s institute unit; b, at dye concentration of 50 mg/l; c, at dye concentration of 100 mg/l; d, 

using the dye everzol black; e, using the dye everzol blue; f, using the dye everzol red; g, colour based on the spectral absorption coefficient; COD, 

chemical oxygen demand; BOD, biochemical oxygen demand; P, phosphorus; N, nitrogen; NH4 ̶ N, ammonium-nitrogen; NO4 ̶ N, nitrate-nitrogen; 

TDS, total dissolved solids; EC, electrical conductivity. 
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Appendix B Pictures of the ponds experiments set-up 
 

 

Figure B.1 First phase of the first experiment (plant collection) 
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Figure B.2 Second phase of the first experiment set-up of pond systems (acclimatisation 

and monitoring) 
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Appendix C Aletheia Lemna edition software 

1. Goals of Aletheia Software:  

• Measure how much of the total water surface area is covered by L. minor fronds 

(relative value %). 

• Estimate how many fronds the measured area contains. 

 

2. Using Software Tools  

2.1 Open New Image:  

Start new document, or drag and drop image file from Windows Explorer into the tool.  

 

2.2 Mark the Border of the Water Surface:  

To be able to calculate the relative frond coverage, the border of the water surface has to be 

specified as follow: 

• Activate the ‘Polygon’ tool.  

• Click on the image to add a point, and keep adding points. 

• Finish with double click (adds a last point) or with right click.  
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To Edit or Delete the Current Border:  

• Activate the ‘Edit’ tool.  

• Hover with the mouse over a corner point of the border and click and hold to move 

it or press the ‘Delete’ key to remove it, or click and drag on a line segment to add 

a new point and move it.  

To delete the current border: 

• Click on ‘Delete’ to remove the current border and start again.  

 

2.3 Highlighting/Selecting the L. minor Fronds:  

After activating the ‘Add by colour’ tool and selecting a specific colour in the Munsell colour 

chart, all L. minor fronds in the image that are similar to the colour selected in Munsell chart 

(as found at the click position) are highlighted and added to the current selection.  

 

The current selection can be viewed in three ways: 

• Colourised overlay on the original image (combined) 
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• Black-and-white image (black; selected area; white; background) 

 

• Hidden (only the original image is visible)  

 

2.4 Modifying the Selection of Fronds:  

• Activate ‘Add by colour’ or ‘Remove by colour’.  

• Adjust the colour selection sliders. 

• Click on the Munsell colour chart, which refers to a specific L. minor frond, and 

repeat until all L. minor fronds have the same clicked colour highlighted.   

• Use ‘Reset’ to delete the current selection and start again.  

 

2.5 Viewing and Zoom Functions:  

To move the image:  

• Activate the ‘Hand’ tool (ESC key) and click and drag the mouse. 

• Use the mouse wheel to move the image up or down or use the scroll bars at the 

side of the window.  

To zoom in or out:  

• Use the toolbar buttons or use keyboard shortcuts on number pad.  
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3. Understanding the selection by colour:  

3.1 Hue, Saturation, and Brightness 

Colour selection is done via hue (colour tone), saturation (greyness), and brightness (value). 

Each point (pixel) of the image has a specific colour, defined by those three values. When 

the user clicks on the Munsell colour chart image, the tool automatically finds all areas of 

the L. minor image that have a ‘similar’ colour and adds to the current selection (or removes 

them, if the ‘Remove’ tool is used). The sliders for hue, saturation and brightness can be 

used to change ‘how similar’ the colours of the other areas can be. Low values (slider 

towards left side) mean very similar. High values (slider towards right side) mean rather 

different colours are added to the selection. 

    

Example for using ‘Add by colour’ in presence of calibration card after clicking on a 

specific colour in the Munsell colour chart:  
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3.1.1 Allowed hue deviation (hue; colour tone)  

• Low value 

 

• Higher value 

 

3.1.2 Allowed saturation deviation (saturation; greyness)  

• Low value • Higher value 

  

3.1.3 Allowed brightness deviation (dark colours; low brightness)  

• Low value • Higher value 

  

3.2 Strategies to Select all Fronds: 

3.2.1 Small slider settings, many clicks (set the sliders to a low value and click on many 

different colours).  
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3.2.2 High slider settings, few clicks (if the sliders are set to a high value, less clicks are 

necessary; risks selecting too much).  

 

3.2.3 Reverse: select everything (all sliders to highest setting) and remove the non-leaf area 

by using the ‘Remove by colour’ tool.  

 

4. Calculating the Coverage Area and Fronds Number 

The main steps of using Aletheia software, are mentioned previously in Chapter 3 Section 

3.5. These steps lead to the appearance of numbers in the ribbon including:  

• Pixel count of current selection (black area in B/W image).  

• Relative area of selection in relation to inside area of marked border (or full image 

area if no border defined). 

• Number of L. minor leaves (based on predefined bucket and leaf size).  
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Note: use ‘Recalculate’ if the border has been changed manually.  

 

 

5. Saving and Loading:  

 

• Click ‘Save’ (or Ctrl+S) when finished or any time before (saves XML file and 

black-and-white image).  

• To open saved data, use the XML file (‘Open document’ or drag and drop from 

Windows Explorer).  

 

Note: The specified water border is saved to the XML file. When loading an image that has 

been previously worked on, it is important to open the XML file and not the image. 

Otherwise the border will not be there and will have to be redone.  

Aletheia Lemna Edition Software 

Version 3.0 

Date: October 2014 

Copyright © 2014 Pattern Recognition and Image Analysis (PRImA) Research Lab, 

University of Salford, United Kingdom 

www.primaresearch.org 

http://www.primaresearch.org/
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Figure C.1 Steps of counting Lemna minor L. fronds number and coverage area by 

using Aletheia Lemna Edition software 
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Appendix D Pictures of algae, and samples sent for 

external analysis  
 

 

Figure D.1 Algae identification by microscope in the pond systems of the first 

experiment. Note: (1), Oedogonium; (2), four-celled Scenedesmus; (3), two-celled 

Scenedesmus; (4), Cosmarium species. 

 

 

Figure D.2 Aqueous samples sent to Culture Collection of Algae and Protozoa Research 

Services Limited for algae identification. Note: (1), pond comprising RB198; (2), pond 

comprising BR46; (3), pond comprising synthetic wastewater without dye. 
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Figure D.3 Filamentous algae of Oedogonium species identified in pond systems of the 

third experiment by The Culture Collection of Algae and Protozoa Research Services 

Limited 

 

Figure D.4 Outflow samples sent to Concept Life Sciences Analytical & Development 

Services Limited for GC-MS analysis 
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Appendix E High performance liquid chromatograph 

(HPLC) data 
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Figure E.1 HPLC analysis of dye solutions before treatment. Note: (a), acid blue 113; 

(b), reactive blue 198; (c), basic red 46; (d), direct orange 46. 
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Figure E.2 HPLC analysis at the end of the experiment rig, which was operated 

between 15 December 2014 and 15 September 2015 for acid blue 113 after treatment. 

Note: (a), Lemna minor L. and algae ponds; (b), algae ponds; (c), Lemna minor L. ponds; 

(d), control ponds. 
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Figure E.3 HPLC analysis at the end of the experiment rig, which was operated 

between 15 December 2014 and 15 September 2015 for reactive blue 198 after 

treatment. Note: (a), Lemna minor L. and algae ponds; (b), algae ponds; (c), Lemna minor 

L. ponds; (d), control ponds. 
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Figure E.4 HPLC analysis at the end of the experiment rig, which was operated 

between 15 December 2014 and 15 September 2015 for basic red 46 after treatment. 

Note: (a), Lemna minor L. and algae ponds; (b), algae ponds; (c), Lemna minor L. ponds; 

(d), control ponds. 
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Figure E.5 HPLC analysis at the end of the experiment rig, which was operated 

between 15 December 2014 and 15 September 2015 for direct orange after treatment. 

Note: (a), Lemna minor L. and algae ponds; (b), algae ponds; (c), Lemna minor L. ponds; 

(d), control ponds. 
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Figure E.6 HPLC analysis at the end of the experiment rig, which was operated 

between 15 December 2014 and 2 February 2016 for acid blue 113 after treatment. 

Note: (a), Lemna minor L. ponds; (b), control ponds. 
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Figure E.7 HPLC analysis at the end of the experiment rig, which was operated 

between 15 December 2014 and 2 February 2016 for reactive blue 198 after treatment. 

Note: (a), Lemna minor L. ponds; (b), control ponds. 
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Figure E.8 HPLC analysis at the end of the experiment rig, which was operated 

between 15 December 2014 and 2 February 2016 for basic red 46 after treatment. Note: 

(a), Lemna minor L. ponds; (b), control ponds. 
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Figure E.9 HPLC analysis at the end of the experiment rig, which was operated 

between 15 December 2014 and 2 February 2016 for direct orange 46 after treatment. 

Note: (a), Lemna minor L. ponds; (b), control ponds. 
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Figure E.10 HPLC analysis at the end of experiment rig, which was operated between 

1 October 2015 and 19 January 2016 for acid blue 113 after treatment. Note: (a), Lemna 

minor L. ponds receiving inflow at normal pH; (b), control ponds receiving inflow at normal 

pH; (c), Lemna minor L. ponds receiving inflow at pH of 9; (d), control ponds receiving 

inflow at pH of 9; (e), Lemna minor L. ponds receiving inflow at pH of 6; (f), control ponds 

receiving inflow at pH of 6. 
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Figure E.11 HPLC analysis at the end of experiment rig, which was operated between 

1 October 2015 and 19 January 2016 for reactive blue 198 after treatment. Note: (a), 

Lemna minor L. ponds receiving inflow at normal pH; (b), control ponds receiving inflow at 

normal pH; (c), Lemna minor L. ponds receiving inflow at pH of 9; (d), control ponds 

receiving inflow at pH of 9; (e), Lemna minor L. ponds receiving inflow at pH of 6; (f), 

control ponds receiving inflow at pH of 6. 
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Figure E.12 HPLC analysis at the end of experiment rig, which was operated between 

1 October 2015 and 19 January 2016 for basic red 46 after treatment. Note: (a), Lemna 

minor L. ponds receiving inflow at normal pH; (b), control ponds receiving inflow at normal 

pH; (c), Lemna minor L. ponds receiving inflow at pH of 9; (d), control ponds receiving 

inflow at pH of 9; (e), Lemna minor L. ponds receiving inflow at pH of 6; (f), control ponds 

receiving inflow at pH of 6. 
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Figure E.13 HPLC analysis at the end of experiment rig, which was operated between 

1 October 2015 and 19 January 2016 for direct orange 46 after treatment. Note: (a), 

Lemna minor L. ponds receiving inflow at normal pH; (b), control ponds receiving inflow at 

normal pH; (c), Lemna minor L. ponds receiving inflow at pH of 9; (d), control ponds 

receiving inflow at pH of 9; (e), Lemna minor L. ponds receiving inflow at pH of 6; (f), 

control ponds receiving inflow at pH of 6. 
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Figure E.14 HPLC analysis at the end of experiment rig, which was operated between 

20 January 2016 and 18 October 2016 for reactive blue 198 after treatment. Note: (a), 

Lemna minor L. ponds receiving inflow at normal pH; (b), control ponds receiving inflow at 

normal pH; (c), Lemna minor L. ponds receiving inflow at pH of 9; (d), control ponds 

receiving inflow at pH of 9; (e), Lemna minor L. ponds receiving inflow at pH of 6; (f), 

control ponds receiving inflow at pH of 6. 
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Figure E.15 HPLC analysis at the end of experiment rig, which was operated between 

20 January 2016 and 18 October 2016 for basic red 46 after treatment. Note: (a), Lemna 

minor L. ponds receiving inflow at normal pH; (b), control ponds receiving inflow at normal 

pH; (c), Lemna minor L. ponds receiving inflow at pH of 9; (d), control ponds receiving 

inflow at pH of 9; (e), Lemna minor L. ponds receiving inflow at pH of 6; (f), control ponds 

receiving inflow at pH of 6. 
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Figure E.16 HPLC analysis at the end of experiment rig, which was operated between 

18 October 2016 and 30 June 2017 for reactive blue 198 after treatment. Note: (a), 

Lemna minor L. and algae ponds; (b), algae ponds; (c), control ponds. 
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Figure E.17 HPLC analysis at the end of experiment rig, which was operated between 

18 October 2016 and 30 June 2017 for basic red 46 after treatment. Note: (a), Lemna 

minor L. and algae ponds; (b), algae ponds; (c), control ponds. 
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Figure E.18 HPLC analysis of the dye mixtures solution before treatment. Note: (a), 

mixture 1 (8 mg/l of basic red 46 + 2 mg/l of reactive blue 198); (b), mixture 2 (2 mg/l of 

basic red 46 + 8 mg/l of reactive blue 198); (c), mixture 3 (5 mg/l of basic red 46 + 5 mg/l 

of reactive blue 198). 
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Figure E.19 HPLC analysis at the end of experiment rig, which was operated between 

14 October 2016 and 27 June 2017 for mixture 1 (8 mg/l of basic red 46 + 2 mg/l of 

reactive blue 198) after treatment. Note: (a), Lemna minor L. ponds; (b), control ponds. 
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Figure E.20 HPLC analysis at the end of experiment rig, which was operated between 

14 October 2016 and 27 June 2017 for mixture 2 (2 mg/l of basic red 46 + 8 mg/l of 

reactive blue 198) after treatment. Note: (a), Lemna minor L. ponds; (b), control ponds. 
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Figure E.21 HPLC analysis at the end of experiment rig, which was operated between 

14 October 2016 and 27 June 2017 for mixture 3 (5 mg/l of basic red 46 + 5 mg/l of 

reactive blue 198) after treatment. Note: (a), Lemna minor L. ponds; (b), control ponds. 
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Appendix F Pictures of the inflow and outflow samples, 

and plant 
 

 

Figure F.1 Inflow and outflow filtered samples of both indoor and outdoor set-ups of 

the first experiment. Note: (a), acid blue 113; (b), reactive blue 198; (c), basic red 46; (d) 

direct orange 46; P1, Lemna minor and algae ponds; P2, algae ponds; P3, Lemna minor 

ponds; P4, control ponds. 
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Figure F.2 Inflow and outflow filtered samples of second experiment between 1 October 

2015 and 19 January 2016. Note: (a), acid blue 113; (b), reactive blue 198; (c), basic red 

46; (d), direct orange 46; P3, Lemna minor L. ponds receiving inflow at normal pH; P4, 

control ponds receiving inflow at normal pH; P5, Lemna minor L. ponds receiving inflow at 

pH of 9; P6, control ponds receiving inflow at pH of 9; P7, Lemna minor L. ponds receiving 

inflow at pH of 6; P8, control ponds receiving inflow at pH of 6. 
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Figure F.3 Inflow and outflow filtered samples of the third experiment (first phase), 

which operated between 18 October 2016 and 30 June 2017. Note: (a), reactive blue 198; 

(b), basic red 46; P3, Lemna minor L. ponds receiving inflow at normal pH; P4, control 

ponds receiving inflow at normal pH; P5, Lemna minor L. ponds receiving inflow at pH of 

9; P6, control ponds receiving inflow at pH of 9; P7, Lemna minor L. ponds receiving inflow 

at pH of 6; P8, control ponds receiving inflow at pH of 6. 

 

Figure F.4 Inflow and outflow filtered samples of the third experiment (second phase), 

which operated between 18 October 2016 and 30 June 2017. Note: (a), ponds treating the 

dye reactive blue 198; (b), ponds treating the dye basic red 46; P1, Lemna minor L. and algae 

ponds; P2, algae ponds; P4, control ponds. 

 

Figure F.5 Lemna minor L. state at the end of third experiment (second phase), which 

operated between 18 October 2016 and 30 June 2017. Note: (a), ponds treating the dye 

reactive blue 198; (b), ponds treating the dye basic red 46. 
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Figure F.6 Inflow and outflow filtered samples of the fourth experiment between 14 

October 2016 and 27 June 2017. Note: (a), mixture 1 (8 mg/l of basic red 46 + 2 mg/l of 

reactive blue 198); (b), mixture 2 (2 mg/l of basic red 46 + 8 mg/l of reactive blue198); (c), 

mixture 3 (5 mg/l of basic red 46 + 5 mg/l of reactive blue 198); P3, Lemna minor L. ponds; 

P4, control ponds. 

 

Figure F.7 Lemna minor L. state at the end of first and fourth experiment in ponds 

without dye. Note: (a), ponds containing synthetic wastewater (tap water and TNC complete 

fertilizer/first experiment); (b), ponds containing only dechlorinated tap water (fourth 

experiment); (c) ponds containing synthetic textile wastewater after dilution (fourth 

experiment). 

 


