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Abstract 

In this article, two exact analytical solutions for heat convection in viscoelastic fluid flow 

through isothermal tubes and slits are presented for the first time. Herein, a Peterlin type 

of finitely extensible nonlinear elastic (FENE-P) model is used as the nonlinear constitutive 

equation for the viscoelastic fluid. Due to the eigenvalue form of the heat transfer equation, 

the modal analysis technique has been used to determine the physical temperature 

distributions. The closed form solution for the temperature profile is obtained in terms of a 

Heun Tri-confluent function for slit flow and then the Frobenius method is used to evaluate 

the temperature distribution for the tube flow. Based on these solutions, the effects of 

extensibility parameter and Deborah number on thermal convection in FENE-P fluid flow 

have been studied in detail. The fractional correlations for reduced Nusselt number in terms 

of material modulus are also derived. Here, it is shown that by increasing the Deborah 

number from 0 to 100, the Nusselt number is enhanced by 8.5% and 13.5% for slit and tube 

flow, respectively. 
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1. Introduction 

Heat convection in straight tubes and channels constitute fundamental and classical 

problems in the science of heat transfer. The heat convection in Newtonian fluids flowing 

through closed channels is well established in the literature and significant experimental 

and theoretical studies have been performed in this regard. However relatively few studies 

have been communicated concerning heat convection in different types of non-Newtonian 

liquids in either straight tubes or ducts. Heat convection in non-Newtonian liquids is 

important in diverse areas of modern technology including biotechnology, drug production, 

pharmaceuticals manufacture (e.g. linctuses), chemical processing industries, food 

production, cosmetic product synthesis, paint and ink production and injection of 

polymeric melts (the main method for producing plastics).         

Seminal analytical investigations addressing the heat convection in Newtonian fluids 

in straight channels were presented by Shah [1] and Shah and London [2]. Subsequently 

considerable theoretical work was conducted in this area and a number of further analytical 

studies emerged which are reviewed in for example [3, 4]. In the context of non-Newtonian 

flows in conduits and slits, a significant development was made by Oliveira and Pinho [5] 

and Oliveira [6]. They derived closed-form solutions for internal heat convection in 

viscoelastic flows through straight pipes and slits using respectively the robust Phan-Thien-

Tanner (PTT) and Peterlin finitely extensible nonlinear elastic (FENE-P) fluid models. 

These studies mobilized a new chapter in rheological heat transfer analysis. Based on the 

solution of Oliveira and Pinho [5], Coelho et al. [7] have investigated the entrance thermal 

problem for PTT fluid flow theoretically using the separation of variables technique. They 

reported that heat transfer characteristics are enhanced by intensifying the shear thinning 
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effect through increasing the parameter 2εWe , where We denotes the Weissenberg number. 

Pinho and Oliveira [8] studied analytically the problem of fully developed forced 

convection in pipes and channels with the simplified Phan-Thien-Tanner (SPTT) fluid. 

Assuming constant wall heat flux and incorporating viscous dissipation, they showed that 

a combination of elasticity and extensibility increases the Nusselt number. Coelho et al. 

[9] presented an analytical solution for the fully developed forced convection of PTT fluid 

in ducts under an  imposed constant wall temperature. 

Several researchers have also studied thermally-developing flow in viscoelastic fluids. 

Filali et al. [10] have numerically solved the Graetz problem for non-linear viscoelastic 

fluids in non-circular tubes deploying the SPTT model. They analyzed the effects of 

rheological parameters on the heat transfer and validated their results with those findings 

reported in [7] and [11]. Norouzi [12] presented an analytical solution for heat convection 

of both linear and exponential PTT fluids in circular pipes with constant wall temperature, 

describing in detail the effects of Weissenberg number and extensional parameter of the 

PTT model on heat convection characteristics. Oliveira et al. [12] presented computational 

solutions for thermally developing FENE-P fluid flow with viscous dissipation in both 

channel and pipe geometries under constant wall temperature and constant heat flux 

boundary conditions. Their results revealed that viscous dissipation and elasticity 

parameter respectively decrease and increase the Nusselt number. Revisiting the analysis 

of Oliveira et al. [12], Filali and Khezzar [13] simulated the same problem through ducts 

with various cross sections geometries under constant wall heat flux without considering 

viscous dissipation. The results verified the independence of the Nusselt number from the 

Reynolds number for the FENE-P fluids and also demonstrated agreement with results 
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reported for SPTT fluids by Filali et al. [10]. Iaccarino et al. [14] presented an eddy 

viscosity model to simulate turbulent flows of homogeneous polymer solutions represented 

by the FENE-P model. They noted that for both low and high drag reduction conditions, 

the kinetic energy, polymer elongation profiles and the mean velocity in the channels are 

in a good agreement with direct numerical simulations (DNS) data. Resende et al. [15] 

developed a comprehensive low Reynolds number -k   model for FENE-P viscoelastic 

fluids. They validated their work for both low and intermediate drag reductions and 

reported good correlation of the -k   model predictions of the mean velocity with the 

-k   model simulations of Resende et al. [16]. Further, the behavior of the -k   model 

was shown to improve with increasing elasticity in the intermediate drag reduction regime, 

and additionally performed better with increasing molecular extensibility parameter. 

Khezzar et al. [17] numerically studied the steady laminar fully developed flow of FENE-

P fluid in both circular and non-circular ducts with uniform surface flux neglecting viscous 

dissipation effects. They computed the Nusselt number distribution and confirmed that the 

heat transfer rate is enhanced with polymer concentration. Recently Masoudian et al. [18] 

conducted a DNS study of turbulent heat transfer in channel flow of homogenous polymer 

solutions modeled by the FENE-P constitutive equation. They developed the first RANS 

model to predict the heat transfer rates in viscoelastic turbulent flows and computed 

velocity and mean temperature profiles which were in good agreement with the DNS 

results. Varagnolo et al. [19] investigated  non-Newtonian drops sliding down a planar 

surface by considering the effects of the polymer solution elasticity. They reported that the 

drops made of flexible polymers exhibit unusual stretching in a steady sliding, while in the 

case of stiff polymers the elongation is not observed even at the higher concentrations and 
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this is attributable to interface bending effects enhanced by viscosity. Finally, it is 

important to mention that flow and heat transfer of the viscoelastic fluids were also studied 

for annular and non-circular cross sections in both straight [20-24] and curved ducts [25-

32]. 

In present study, the exact analytical solutions for heat convection in FENE-P fluid 

flow through isothermal tubes and slits are presented for the first time. The slit temperature 

profile is obtained in terms of the Heun function as a closed form solution. The Frobenius 

method is used to determine the temperature distribution for the tube flow. The fractional 

correlations between the reduced Nusselt number and material modulus are also derived. 

The current analysis strongly indicates that the Frobenius method could be used to find 

solutions for other complicated isothermal systems and alternate viscoelastic fluid models 

which would provide a useful benchmark for numerical computations. 

 

2. Governing Equations and Constitutive Equation 

The governing equations for internal heat convection of viscoelastic flows comprise the 

continuity, momentum and energy equations: 

. 0 V  (1a) 

. .p    V V τ  (1b) 

2.pc T k T   V  (1c) 

 

where V  is velocity vector, p  is pressure, T is temperature,  is density, τ  is stress 

tensor, pc is specific heat capacity and k  is thermal conductivity coefficient. The 
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underlying assumptions for the present study are summarized as follows. The model 

parameters are independent of temperature, the flow is incompressible, rectilinear, laminar, 

hydrodynamically and thermally fully-developed, the vicoelastic fluid is simulated with 

the FENE-P constitutive equation in two dimensions, the velocity profile (along the 

longitudinal axis) is only dependent on the vertical side and axial conduction is negligible 

relative to radial conduction. In light of these assumptions, Eq. (1) can be  simplified as 

follows: 

( ) 0
d

u y
dx

  (2a) 

0 (x) ( )xy

d d
p y

dx dy
    (2b) 

2

2

(y) (y)
( )

dT d T
u y

dx dy
  (2c) 

where   is the thermal diffusivity, y is profile direction (it is identical with y  for the slit 

scenario and r  for the tube case) and j equals 0 for slit flow and 1 for tube flow. Here, the 

FENE-P model [33] is used as the constitutive equation to determine the stress tensor. The 

FENE-P equation is derived for dilute solutions but it can be related to semi-dilute solutions 

which follow the encapsulated dumbbell model from dilute fluids to incompressible 

Newtonian polymers. The appropriate constitutive equation results from a kinetic theory 

derivation using a nonlinear elastic dumbbell model [34] to represent the polymer 

molecules in a dilute solution [35]. In this theory, polymer molecules are modeled as the 

dumbbell beads which are connected to each other via non-Hookean springs. The 

parametera  is a constant which can be expressed through the extensibility parameters, L 

and b: 
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2

1 3

1 3 /

b
a

L b


 


 (3) 

The FENE-P is one of the rare molecular constitutive equations that can be used in 

computational fluid dynamics and analytical fluid mechanics since it circumvents the  need 

for statistical averaging at each grid point at any instant in time. This equation is able to 

accurately predict both shear-thinning viscosity and elongational viscosity. The multi-

mode form of this model conforms accurately to rheological data of dilute polymeric 

solutions in oscillation tests. The FENE-P model is also able to predict the polymer 

turbulence drag reduction. However one drawback of the FENE-P model is that it cannot 

model the second normal stress difference. According to Bird [37], this constitutive 

equation arises from a simple molecular theory. However it has furnished a solid platform 

for understanding of diverse spectrum of rheological phenomena in terms of molecular 

motion.  

 

3. Formulation 

As mentioned before, the principal objective of the current study is to derive, for the first 

time, exact closed-form solutions for heat convection in FENE-P fluid flow through tubes 

and slits. Oliveira [6] presented an exact analytical solution for the velocity field of this 

problem which takes the form: 

    2 2

1 2

( )
1 1 1

u y
y y

U
      (4) 

where u  is the main flow velocity (axial velocity) and U is the mean velocity. In Eq. (4), 

y is dimensionless profile direction and it is defined as / oy r r  for tube flow and 

/y y H for slit flow (here, r  is the radial direction of tube flow, or  is the radius of the 
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tube, y   is the lateral direction in slit flow and H  is the half distance between the two 

parallel plates i.e. semi-channel span). The constants 1  and 2  can be determined from 

the following relationships [6]: 

22 2
,

1 2 2 2

0

( / )3
For slit flow: = / , 9 ,

2 3

xN
N N

p HDe U U
U U U

a L
 


    (5a) 

22 2
,

1 2 2 2

0

( / )
For tubeflow: =2 / , 16 ,

8

x oN
N N

p rDe U U
U U U

a L
 


    (5b) 

In Eq. (5), De is the Deborah number which is defined as /De U H  for slit flows and 

/ oDe U r  for tube flows. Oliveira [6] showed that the velocity ratio ( /NU U ) can be 

calculated from the following formulation in terms of rheological properties [6]: 

1/6 2/3 2/3

1/2 1/3

436 ( 2 )

6

NU

U



 


  (6) 

where   is 

1/2 3/2 1/2(4 27 ) 3      (7) 

In  Eqs. (6) and (7),   is a constant which is determined from the following equations [6]: 

2 2

2 2 2 2

54 64
(slit) & (tube)

5 3

De De

a L a L
    (8) 

The following dimensionless groups are used to normalize the problem i.e. render it non-

dimensional:  
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, and

For slit flow: , , and

For tubeflow: , , and

w h

m w

o o o

T T hdu
u T Nu

U T T k

x r U
x y De

H H H

x r U
x y De

r r r






  



  

  

 (9) 

 

where hd  is the hydraulic diameter (for tube flow: 2h od r  & for slit flow: 4hd H ), mT

is mean temperature, wT is wall temperature, Nu is the Nusselt number and h is the 

convective heat transfer coefficient. In the fully-developed thermal condition, the axial 

gradient of dimensionless temperature is zero [4]: 

,

,

0w
x

m w x

T T
T

T T

 
  

 
 (10) 

 

The following relation is easily derived from the expansion of Eq. (10): 

   ,
, ,

w
x m m

x x
m w

T T
T T T T

T T

 
  

 
 (11) 

 

Also, the axial mean temperature gradient can be obtained by means of balancing the 

energy on a differential control volume [4]: 

 

 

,

,

( )
For slit flow:

( )
2 ( )

For tubeflow:

w m
m

x
p

w m p m

w m
m

x
o p

h T T
T

HUc
h T T Pdx AUc dT

h T T
T

r Uc






 



   

 



 (12) 

where P  and A  denote the perimeter and area of the conduit cross-section, respectively. 

Regarding Eqs. (2c), (9), (11) and (12), the non-dimensional form of the heat transfer 

equation for the FENE-P fluid flow can be expressed as follows: 
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   2 2

, , 1 2

1
. 1 1 1 0

4 3
yy y

j
T T Nu y y T

y j
       

 
 (13) 

where j=0 and j=1 correspond to the slit and tube cases, respectively. The boundary 

conditions for this equation consist of a constant wall temperature and a symmetry 

condition at the centerline. Also, the finite value of temperature at the centerline (no 

singularity point in temperature field) can be used as the boundary condition for only the 

tube flow case, which is suitable for eliminating the singular solution from the final solution 

of this problem. 

,0 0yat y T    (or finite/nonsingular solution for tube 

flow)  

(14a) 

1 0at y T    (14b) 

 

The boundary value problem defining fully developed isothermal internal heat convection, 

which is introduced in Eq. (13) is an eigenvalue differential equation since both differential 

equations and boundary conditions are homogeneous and an unknown constant (Nu) exists 

in the equation. Therefore unlike in other problems of heat convection, it is necessary to 

determine a Nusselt number that satisfies the governing equation and boundary conditions 

and finally obtain the temperature distribution (Note- the procedure for obtaining the 

solution is inverse for other problems where firstly the temperature distribution is 

calculated and secondly the Nusselt number is determined from the temperature field). In 

this paper, the possible value of the Nusselt number is obtained by modal analysis of Eq. 

(13) under the boundary condition introduced in Eq. (14). Due to the homogenous form of 

the governing equation and boundary conditions, they are not sufficient to obtain the non-

zero temperature distribution and a non-homogenous condition or a non-homogeneous 
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constraint is required to complete the solution. Here, a constraint is presented by integrating 

the product of dimensionless velocity profile ( /u u U ) into the dimensionless 

temperature distribution ( ( ) / ( )w m wT T T T T   ) for the entire cross section. The 

solution of this integration can be easily calculated as follows: 

1

0

1
( ) ( )

1

jy u y T y dy
j




     

 (15) 

 

Using the above constraint, the coefficients of the solution of Eq. (13) will be calculated 

and the temperature distribution will be obtained.  

 

3. Analytical Solution of Heat Convection 

3.1. Slit Flow 

The solution of heat convection of FENE-P fluid flow in a slit is obtained by solving Eq. 

(13) and considering j=0. The solution of this second order differential equation can be 

expressed as follows: 

 
21 1 2( ) ( )C F y C F yT y     (16) 

where 

 
 

   

2
1 2

1 2

2 3 22 21/12
1 2 1 6

1 1 24/3 2/3

1 2 1 2

2 1
( ) e 0.13 ,0,0.72 , 0.69

Nu y y

Nu Nu Nu
F y HeunT Nu y

Nu Nu

 

    
 

   


 

  
 
 

  (17a) 

 
 

   

2
1 2

1 2

3/2 22 21/6
1 2 1 6

2 1 24/3 2/3

1 2 1 2

2 1
( )=e 0.13 ,0,0.72 ,0.69

Nu y y

Nu Nu Nu
F y HeunT Nu y

Nu Nu

 

    
 

   


  

 
 
 

 (17b) 
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where HeunT is the Heun Tri-confluent function. A summary about introducing the 

hypergeometric function is provided for readers in Appendix-A. In order to obtain the 

Nusselt number, we should use the boundary conditions defined in Eq. (14). 

1 1 2 20 0 : (0) (0) 0yat y T C F C F        (18a) 

1 1 2 21 0: (1) (1) 0at y T C F C F      (18b) 

The above set of equations is homogenous and therefore its solution will be non-zero if it 

is linearly dependent (determinant of Eq. (18) should be equal to zero): 

1 2

1 2

(0) (0)
0

(1) (1)

F F

F F

 
  (19) 

The remaining unknown of Eq. (19) is the Nusselt number and also Eq. (19) can be 

expanded as follows: 

 

   

 

 
 

   

1 2

1 2

1 2

1 2

2 322 2 1/12
1 2 1 6

1 24/3 2/3

1 2 1 21

2 3 22 21/122
1 2 1 6

1 24/3 2/3

1 2 1 2

2 1
0.13 ,0,0.72 , 0.69 e

( )
4 2 1

e 0.13 ,0,0.72 ,0.69

Nu

Nu

Nu

Nu

Nu Nu
HeunT Nu

Nu NuNu
G Nu

Nu Nu
HeunT Nu

Nu Nu

 

 

 

 

  
 

   

   
 

   






  
   

 
 

 
 
 
 
 




 
 
 
 
 



 
(20) 

For any Deborah number and extensibility parameter (L), it is possible to determine the 

constants of velocity profile ( 1 and 2 ) from Eq. (5). Therefore, for known values of 1

and 2 , the Nusselt number can be obtained by calculating the roots of ( )G Nu  (This 

function is defined in Eq. (20)). For example, the graph of ( )G Nu  versus Nu is plotted in 

Fig. 1 at 10De   and 2 10L  . For clearer display we present the distribution of ( )G Nu  

in three different ranges of Nu.  According to Fig. 1, this function has infinite discrete roots. 

According to the scaling law, the Nusselt number in laminar closed channels is of first 

order. This root is specified by a filled square in Fig. 1 and denotes that Nu=8.0206.  
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After determining the Nusselt number, we should find the remaining constants of C1 

and C2 to complete the solution of heat convection of FENE-P fluid flow in a slit. Owing 

to a linear dependence between Eq. (18a) and Eq. (18b), we should use one of them to 

determine the constants. The other non-homogenous equation which is necessary for 

extracting C1 and C2 can be obtained by substituting Eqs. (4) and (16) into the Eq. (15) and 

performing the resulting integration. In this case (case of Fig. 1), C1=0.6788 and 

C2=0.6792.  

 

3.2. Tube Flow 

The solution of heat convection of FENE-P fluid flow inside a circular tube can be obtained 

by solving Eq. (13) by substituting j=1. Unfortunately, there is no closed form solution for 

this problem based on the known mathematical functions. For this reason, the Frobenius 

method is used to find the Taylor series expansion of this problem.  

Generally, any second order differential equation can be specified in the following 

general form: 

( ) ( ) ( ) 0P x f Q x f R x f     (21) 

 

where P, Q, and R are the arbitrary polynomials. The roots of P(x) are the singularity points 

provided that at least one of the other polynomials (Q(x) and R(x)) is non-zero at these 

roots. Assuming that 0x is a singularity point, this is designated as a regular singular point 

provided the following conditions are satisfied [38]: 

0
0

( )
lim ( ) is finite

( )x x

Q x
x x

P x
  (22a) 
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0

2

0

( )
lim ( ) is finite

( )x x

R x
x x

P x
  (22b) 

 

Based on the conditions presented in Eq. (22), it is evident that the center of the tube (

0y  ) is a regular singular point of Eq. (13). Therefore, the tube temperature distribution 

for FENE-P fluid flow can be derived by applying the Frobenius method on Eq. (13) with 

j=1, as follows: 

 

 

 

3 2 2 2 2 2

2 2

4 4 4
1

6 4 6

4 4

2 2 2 2 4

3 2 2 2 2 2

2 2

2

1
1 ( ) ( ) 16

2

2 4 ( )
1

( )
32

64 ( ) 512

1
1 ( ) ( ) 16

2

ln
1

N

N

N NN

N

N

N

UNu U
a L De y

a L U U

U U
T y C Nu a L

U UUNu
y O y

a L U U
Nu De a L Nu De

U

UNu U
a L De y

a L U U

y

C

  
    

  
 

             
    

  

 
   

 

 

4 4 4

6 4 6

4 4

2 2 2 2 4

3 2 2 2 2 2

2 2

4 4 4

6

4 4

2

2 4 ( )

( )
32

64 ( ) 512

1
( ) ( ) 16

2

2 4 ( )
1 3

( )
8 64

64

N NN

N

N

N

N NN N

U U
Nu a L

U UUNu
y O y

a L U U
Nu De a L Nu De

U

UNu U
a L De y

a L U U

U U
Nu a L

U UU UNu
Nu

U a L U
Nu De

 
 
 
 

   



         
    

  

 
  

 






 

   4 6

2 2 2 4( ) 512
N

y O y
U

a L Nu De
U

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
   
   
   
     
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(23) 

It is important to remember that the temperature distribution is finite over the whole 

of the cross section. Therefore, based on the Eq. (14a), the term C2 should be zero to remove 

the singular solution at r=0. The Nusselt number can be calculated using the thermal 
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boundary condition at the wall. By applying the boundary condition presented in Eq. (14b) 

on the temperature distribution, a polynomial in terms of Nu is obtained. In Appendix-B, 

this polynomial is presented up to seventh order (refer to Eq. (B.1)). According to the 

scaling law in heat convection, the Nusselt number in internal laminar flow is of the first 

order. Therefore, the first order positive root of Eq. (B.1) is the physical Nusselt number 

of the FENE-P fluid flow. It is evident that C1 is equal to the maximum value of 

dimensionless temperature since the maximum dimensionless temperature is located at the 

center of the tube (r=0). Therefore, the temperature distribution of FENE-P fluid flow 

inside the isothermal tube, can be presented with greater accuracy as Eq. (24). 

After calculating the Nusselt number from Eq. (B.1), the remaining constant of 

temperature distributions (C1) can be determined by substitution of Eq. (4) and Eq. (24) 

into the constraint presented in Eq. (15) and by taking j=1into account. 

In Appendix-B, the formulation of this constant (Tmax) is presented (refer to Eq. (B.2)).  
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(24) 

 

4. Results and Discussion 

4.1. Verification 

The present analytical solution is verified in two ways: firstly via comparing the results 

with the analytical solution for the Newtonian case and secondly by comparison with 

numerical solutions for FENE-P fluid flow. The FENE-P constitutive equation is reduced 

to the Newtonian model by considering De=0. In this condition, the Nusselt number for 

the present study in an isothermal slit flow (Eq. (16) to (20)) is equal to 7.541 which is 

exactly equal to the Nusselt number reported in the literature (see for example Bejan [39]). 
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The Nusselt number of Newtonian fluid flow in the isothermal tube is reported as around 

3.66 in the literature [4, 39] which is obtained using successive approximations. Recently, 

Norouzi and Davoodi [40] obtained an exact closed form analytical solution for this 

problem as follows: 

 2

0.6761,0

1.09615
2.7044T M r

r
  (25) 

 

where M  is the mth-kind of Whittaker function. Based on this solution, the Nusselt number 

and dimensionless temperature at the center of the tube are 0 3.6568Nu   and 

1.8026T max,0 [40]. It is important to remember that the solution of heat convection of 

FENE-P fluid flow in isothermal tubes is obtained using Frobenius method. By calculating 

up to the eighth order terms in the Frobenius series (Eq. (24)) and considering De=0, we 

have Nu=3.6571 and Tmax=1.8025 which shows good agreement with the results reported 

by Norouzi and Davoodi [40]. 

We have further verified the analytical solutions for heat convection in FENE-P fluid 

flow by comparing the results with numerical solutions. The solution of Eq. (13) can be 

obtained using second order finite difference discretization. In the case of tube flow, we 

can cancel the singularity situation by avoiding the term , /yT y  at the center of the tube 

(applying the boundary condition (14a)). At last, the discretized form of Eq. (13) for 

isothermal slits and tubes can be specified as follows: 

 ( ) 0ij j j ij ij jA T NuT A Nu T     (26) 

where ijA  is the tri-diagonal matrix of coefficients of discretization and ij  is the 

Kronecker delta. According to the Eq. (26) and scaling law, the Nusselt number is the first 
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order eigenvalue of ijA . Due to the symmetric form of ijA , the eigenvalues are obtained 

using the Jacoby method [41]. Here, the Nusselt number is computed using 500 grid points 

and the convergence condition of Jacoby method is enforced by decreasing the value of 

non-diagonal elements of the mapped matrix of ijA  to less than 10-6. The maximum 

deviation of the present analytical solution for slit and tube flow from the numerical 

solution is less than 1.7% at L2<100 and De<10. This small deviation could be attributed 

to the truncation error of numerical solution and also the truncation of Frobenius series.  

 

4.2. Effect of rheological properties on heat convection 

In this section, the effects of rheological properties characterizing the FENE-P model 

(extensibility parameter and Deborah number) on heat convection in slit and tube flow are 

studied. Figs. 2 and 3 illustrate the velocity and temperature profiles in isothermal slit and 

tube scenarios, respectively. These diagrams are plotted at 2 10L   for different values of 

Deborah number. It is evident from the plots that increasing Deborah number tends to 

increase the flatness of the velocity profile and decrease the maximum value of axial 

velocity. It is also apparent that the velocity gradient is increased near to the wall. This can 

be attributed to an intensification in the shear-thinning behavior of FENE-P fluid which 

manifests in a reduction in fluid viscosity in the vicinity of the wall, associated with higher 

Deborah number. The present solutions are corroborated with similar reports in the 

literature [5, 6, 12, 42] which also describe an accentuation in bluntness of velocity profile 

connected with stronger shear-thinning behavior of non-Newtonian liquids at greater 

Deborah number. According to Figs. 2 and 3, the temperature and Nusselt number are 

increased with a rise in Deborah number. This effect is induced by elevating the velocity 
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gradient near to the wall. The data of Nusselt number, constants of temperature formulation 

(Eq. (16)) and constants of a velocity profile for slit flow (Eq. (4)) are presented in Table 

1. These data are obtained for 0 100De   and L2=10 and 100 which cover a wide range 

of realistic rheological properties of viscoelastic liquids. The corresponding results for tube 

flow are documented in Table 2. It is important to remember that the temperature 

distribution of FENE-P fluid flow is obtained using the Frobenius method and a constant (

maxT ) is utilized in the execution of this solution (see Eq. (24)). The maximum temperature 

for different values of Deborah number is reported in Table 3. According to Tables 2 and 

3, by increasing the Deborah number from 0 to 100, the Nusselt number is boosted up to 

8.5% and 13.5% for the slit and tube flow cases, respectively.  

The reduced Nusselt number is a useful dimensionless group which denotes the 

difference between the heat convection of non-Newtonian and Newtonian flows: 

0

0

r

Nu Nu
Nu

Nu


  (27) 

Here 0Nu  is the Nusselt number of the Newtonian flow and it is equal to 7.5410 and 3.6568 

for isothermal slit and tube, respectively. The evolution of reduced Nusselt number with 

variation in Deborah number for the slit and tube flow scenarios, respectively, are 

illustrated in Figs. 4 and 5. The distribution of maximum temperature for tube flow is also 

depicted in Fig. 5b. According to these plots, the reduced Nusselt number and maxT  are 

enhanced asymptotically by increasing the Deborah number and decreasing the 

extensibility parameter. This indicates that a fractional correlation exists between the 

reduced Nusselt number and rheological properties. It is important to remember that the 

constants of velocity distribution ( 1  and 2 ) are dependent on /De aL  for both slit and 
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tube flow (see Eqs. (4) to (8)). Consequently, the temperature distribution and Nusselt 

number should likewise be dependent on this ratio. The results for Nusselt number 

corresponding to slit and tube flow and maxT  for tube flow in terms of /De aL  are provided 

in Table 3. By applying the fractional curve fitting on this set of data, we can find the 

following correlations: 

0.08428
For slit flow:

/

0.5544 /
r

D
Nu

e aL

De aL
  (28a) 

max

max,0

0.1327 / 0.03621 /

0.5016 / 0.4346 /
For tube flow: & 1r

De aL De aL

De aL

T
Nu

DT e aL
 

 
  (28b) 

The above correlations are exact for the Newtonian case and have around 98% confidence 

for / 10De aL  . Using the above correlations, Nu and Tmax can be calculated and these 

values are necessary to obtain the temperature profiles of FENE-P flow in isothermal slits 

and tubes  

 

5. Conclusions 

In this article, two exact analytical solutions for heat convection in FENE-P fluid flow 

through isothermal tubes and slits have been presented for the first time. The closed-form 

solutions for temperature profiles are obtained based on the modal analysis technique and 

by considering the scaling law in heat convection. Two fractional correlations for the 

Nusselt number of slit flow and tube flow are derived in terms of Deborah number and 

extensibility parameter, key rheological parameters associated with the FENE-P model. It 

is shown that an increase in the Deborah number and decrease in the extensibility parameter 

result in an asymptotic increase in the Nusselt number and temperature in the core flow 

region. It is also found that the Nusselt number and temperature distributions of FENE-P 
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flow are dependent on De/aL. The present method of solution shows significant promise 

for determining exact solutions for other complicated isothermal systems and fluids 

described by alternate viscoelastic constitutive equations. 

 

Appendix A- Heun functions 

Heun functions are one of the closed form solutions for particular ODEs in mathematics 

and there are four standard forms, namely HeunB, HeunC, HeunD and HeunT which 

correspond to Biconfluent, Confluent, Doubleconfluent and Triconfluent Heun equations. 

HeunT function is the solution for the linear differential equation of second order given by: 

    
2

2

2

d d
( ) 3 ( ) 3 ( ) 0

d d
f y y f y y f y

y y
                                                (A.1) 

                        

in which all of the four parameters,  , , , y   , are algebraic expressions. By solving the 

Eq. (A.1) the closed form solution (HeunT) would be derived as follows: 

 

   
2( )

1 2( ) , , , , , , ey yf y C HeunT y C HeunT y                                           (A.2) 

                         

Now based on the boundary conditions introduced in Eqs. (A.3) and (A.4), the second term 

in Eq. (A.2) will vanish, so that Eq. (A.2) will be simplified to the one given by Eq. (A.5). 

,0 0yat y f                                                                                                   (A.3) 

0 0at y f                                                                                                     (A.4) 

 1( ) , , ,f y C HeunT y                                                                                          (A.5) 
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Furthermore, the HeunT function could be written in the series solution form. Since the 

single singularity is located at infinity, this series converges into the entire complex plane. 

The Handbook of Mathematical functions prepared by the National Institute of Standards 

and Technology  (NIST), Maryland, USA, is an excellent reference for Heun functions. 

 

Appendix B- the Nusselt number and constants of temperature profile 

In this section, the polynomial equation of the Nusselt number of FENE-P flow in an 

isothermal tube has been presented. This polynomial is obtained by applying the boundary 

condition (14b) to Eq. (24) and considering C2 =0. According to the scaling law in heat 

convection, the Nusselt number is the first order root of the following algebraic equation: 
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(B.1) 

The nonzero constant of temperature distribution (C1) can be determined using the 

constraint presented in Eq. (15), for j=1, as follows:  
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Table 1. Nusselt number data for FENE-P fluid flow in an isothermal slit for different 

Deborah numbers at three values of extensibility parameter. 

De Nu 
1C   2C   

  

 1   

   

 2  

2 10L   

0.1 7.5484 0.6586 0.6586 1.4945 0.0044 

1 7.6146 0.6617 0.6706 1.1478 0.2582 

10 8.0206 0.6788 0.6792 0.3647 2.6072 

20 8.0787 0.6813 0.6810 0.2380 4.4406 

30 8.1036 0.6832 0.6806 0.1842 5.9829 

40 8.1180 0.6825 0.6829 0.1532 7.3608 

50 8.1275 0.6834 0.6825 0.1327 8.6278 

60 8.1345 0.6811 0.6858 0.1179 9.8128 

70 8.1396 0.6837 0.6832 0.1067 10.9336 

80 8.1438 0.6817 0.6859 0.0978 12.0022 

90 8.1471 0.6859 0.6813 0.0906 13.0271 

100 8.1500 0.6906 0.6763 0.0846 14.0148 
2 100L   

0.1 7.5447 0.0060 -0.1043 1.5008 0.0008 

1 7.5782 0.6607 0.6606 1.3832 0.0720 

10 7.9202 0.6749 0.6751 0.5878 1.3004 

20 7.9507 0.6595 0.6997 0.3947 2.3455 

30 8.0463 0.6797 0.6802 0.3088 3.2304 

40 8.0693 0.6813 0.6801 0.2585 4.0227 

50 8.0848 0.6807 0.6823 0.2247 4.7520 

60 8.0961 0.6825 0.6809 0.2003 5.4344 

70 8.1048 0.6830 0.6811 0.1816 6.0801 

80 8.1118 0.6814 0.6838 0.1667 6.6959 

90 8.1173 0.6824 0.6829 0.1546 7.2866 

100 8.1220 0.6840 0.6813 0.1445 7.8560 

 

 

 

 

 

 

 

 

 

Table 2. Nusselt number data for FENE-P fluid flow in an isothermal tube for different 

Deborah numbers at three values of extensibility parameter. 

De Nu Tmax  1    2  

2 10L   
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0.1 3.6717 1.8048 1.9828 0.0077 

1 3.8039 1.8244 1.3550 0.3598 

10 4.0517 1.8574 0.3952 3.0609 

20 4.0896 1.8616 0.2559 5.1355 

30 4.1056 1.8633 0.1975 6.8788 

40 4.1148 1.8643 0.1640 8.4357 

50 4.1209 1.8649 0.1419 9.8670 

60 4.1248 1.8652 0.1260 11.2056 

70 4.1286 1.8657 0.1140 12.4716 

80 4.1308 1.8658 0.1044 13.6785 

90 4.1329 1.8660 0.0967 14.8361 

100 4.1348 1.8663 0.0902 15.9516 
2 100L   

0.1 3.6628 1.8034 1.9991 0.0015 

1 3.7147 1.8109 1.7397 0.1139 

10 3.9851 1.8496 0.6472 1.5762 

20 4.0429 1.8564 0.4285 2.7643 

30 4.0686 1.8593 0.3335 3.7666 

40 4.0834 1.8609 0.2783 4.6630 

50 4.0936 1.8620 0.2415 5.4876 

60 4.1008 1.8628 0.2149 6.2589 

70 4.1064 1.8634 0.1947 6.9887 

80 4.1108 1.8639 0.1786 7.6845 

90 4.1144 1.8642 0.1655 8.3519 

100 4.1174 1.8645 0.1546 8.9951 

 

 

 

 

 

 

 

 

 

Table 3. Nusselt number data and constants of temperature profile for slit and tube flow 

in terms of /De aL . 
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De

aL  

Slit Tube 

 Nu 
1C  2C  Nu Tmax 

0.1 7.6278 0.6615 0.6582 3.7138 1.8104 

0.2 7.6613 0.6643 0.6643 3.7923 1.8229 

0.3 7.7891 0.6714 0.6601 3.8450 1.8307 

0.4 7.8378 0.6748 0.6609 3.8824 1.8359 

0.5 7.8756 0.6776 0.6613 3.9121 1.8402 

0.6 7.8809 0.6767 0.6658 3.9280 1.8419 

0.7 7.8861 0.6754 0.6699 3.9439 1.8436 

0.8 7.8914 0.6738 0.6738 3.9598 1.8453 

0.9 7.9091 0.6745 0.6747 3.9777 1.8487 

1.0 7.9833 0.6868 0.6612 3.9863 1.8494 

2.0 8.0102 0.6785 0.6786 4.0449 1.8566 

3.0 8.0488 0.6800 0.6800 4.0703 1.8595 

4.0 8.0718 0.6810 0.6807 4.0850 1.8611 

5.0 8.0848 0.6810 0.6817 4.0935 1.8620 

6.0 8.0979 0.6808 0.6833 4.1020 1.8629 

7.0 8.1334 0.6810 0.6817 4.1067 1.8634 

8.0 8.1690 0.7325 0.6301 4.1113 1.8638 

9.0 8.1740 0.7364 0.6267 4.1147 1.8642 

10.0 8.1790 0.7431 0.6199 4.1182 1.8646 
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(a) 

 

(b) 

 

(c) 

 

Fig. 1. Diagrams of G(Nu) versus Nusselt number for an isothermal slit at 2 10L   and 

10De  . 
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(a) 

 

(b) 

 

(c) 

 

Fig. 2. Profiles of velocity and temperature of FENE-P fluid in an isothermal slit at 2 10L   

for different values of Deborah number. (a): axial velocity, (b): temperature and (c): lateral 

temperature gradient. 
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(a) 

 

(b) 

 

(c) 

 

Fig. 3. Profiles of velocity and temperature of FENE-P fluid in an isothermal tube at 
2 10L   for different values of Deborah number. (a): axial velocity, (b): temperature and 

(c): radial temperature gradient. 
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Fig. 4. Diagram of reduced Nusselt number in an isothermal slit versus Deborah number 

for different values of 2L . 
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(a)  

 

 

(b)  

 

 

Fig. 5. Diagrams of (a) reduced Nusselt number and (b) ratio of the maximum temperature 

of FENE-P fluid flow to the Newtonian one versus Deborah number for different values of 
2L . 


