
Mathematical modelling of radiation-induced cancer risk from breast screening by 

mammography  

Abstract 

Objectives: Establish a method to determine and convey lifetime radiation risk from FFDM 

screening. 

Methods: Radiation risk from screening mammography was quantified using effective risk 

(number of radiation-induced cancer cases/million). For effective risk calculations, organ doses 

and examined breast MGD were used. Screening mammography was simulated by exposing a 

breast phantom for cranio-caudal and medio-lateral oblique for each breast using 16 FFDM 

machines. An ATOM phantom loaded with TLD dosimeters was positioned in contact with the 

breast phantom to simulate the client’s body. Effective risk data were analysed using SPSS 

software to establish a regression model to predict the effective risk of any screening 

programme. Graphs were generated to extrapolate the effective risk of all screening programmes 

for a range of commencement ages and time intervals between screens. 

Results: The most important parameters controlling clients’ total effective risk within breast 

screening are the screening commencement age and number of screens (correlation coefficients 

were -0.865 and 0.714, respectively). Since the tissue radio-sensitivity reduces with age, the end 

age of screening does not result in noteworthy effect on total effective risk.   

Conclusions: The regression model can be used to predict the total effective risk for clients 

within breast screening but it cannot be used for exact assessment of total effective risk. 

Graphical representation of risk could be an easy way to represent risk in a fashion which might 

be helpful to clients and clinicians. 
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Introduction 

Radiation risk refers to the damage produced by ionising radiation due to energy deposition in 

tissues. The amount of damage is related to radiation dose, radiation source (e.g. whether it is 

internal or external), length of time of exposure, which organs are exposed to radiation and the 

individual’s sensitivity which is influenced by age and gender [1]. Adverse health effects as a 

result of exposure to radiation can be classified into two groups: deterministic which follow high 

radiation doses and result in direct and predictable tissue damage; stochastic effects which follow 

low radiation doses and may result in cancer development [2].  

There are two opposing risk models to estimate the risk from low radiation doses. The first 

adopts the linear no-threshold principle. According to this model any dose, no matter how small, 

can result in cancer. The second model proposes that there is a specific threshold for radiation-

induced cancer, and below this threshold the radiation dose can be considered as safe [3].  It has 

been suggested that the best reasonable risk model to describe the relationship between the 

exposure to low energy radiation and solid cancers incidence is the linear no-threshold model 

(LNT) [2, 4]. 

In 2010, the Health Protection Agency (HPA) reported that medical and dental X-ray procedures 

constituted 90% of man-made radiation sources to the United Kingdom (UK) population [5]. 

However, the medical radiation exposure to the United States (US) population increased by 

600% from 1980 to 2012 [6]. Accordingly, there is a growing need for healthcare professionals 

to be more conscious of the risks associated with imaging when using ionising radiation for 

diagnostic purposes [7]. This is particularly true for mammography breast screening programmes 

where asymptomatic women are imaged [8]. Also, when screening frequency is increased, 

because of increased risk of breast cancer [9], radiation risk also increases as a direct 

consequence of mammography imaging. Extra diligence should therefore be exercised when 

assigning a woman into a high risk cancer category in which more frequent mammography 

screening is required. Overall, the radiation risk from screening mammography is considered to 

be low [10, 11].  Nevertheless, the health profession needs to understand the radiation risks to the 

woman from mammography imaging, in order to justify serial imaging at any frequency level.  

To date, radiation risk has tended to be expressed in terms of dose to the breast (mean glandular 

dose, MGD) which can be a difficult concept to understand by some imaging staff and referring 

clinicians. Equally the woman has to make an informed decision about participating in screening 

taking into account the potential harm the radiation might bring against the benefit of the 

programme [12].  

The work presented here applies previously published data by M.Ali et al. [13] which measured 

the direct absorbed radiation dose from the examined breast, contralateral breast and 19 other 

organs across 16 FFDM machines to estimate lifetime effective risk of radiation induced cancer 

for the UK Breast Screening Programme.  Here we develop the model further to establish a 



method for estimating & conveying lifetime induced cancer risk from breast cancer screening 

(from FFDM) for an average woman, with average breast size and density across a lifetime for a 

range of different FFDM screening scenarios. The method proposed is comprehendible and can 

be used by referring clinicians and breast screening organisations worldwide in the justification 

process and during the development of recommendations. Further, women will be able to make 

an informed decision on whether to attend breast screening.  

Method 

To calculate effective risk, organ dose data was required for all four mammography projections 

along with lifetime attributable risk (LAR) factors for all ages that screening takes place ranging 

from 25 years, the earliest probable age of screening for high risk clients in the US, to 75 years 

the latest age of screening end worldwide [13]. Two breast phantoms, attached to an adult 

dosimetry phantom, were exposed on 16 FFDM machines (Table 1) located in breast screening 

services within the UK. MGD was calculated; all other organ doses were measured directly using 

thermoluminescent dosimeters (TLD) as reported previously by M.Ali et al. [13]. LAR factors 

were calculated for a range of ages using a linear extrapolation method. Dose and LAR data were 

analysed to generate scenarios in order to calculate total effective lifetime risk values. 

Phantoms 

To replicate simulated breast thickness and shape in different positions, two breast phantoms 

constructed of polymethyl methacrylate- polyethylene (PMMA-PE) slabs were used. The Cranio-

caudal (CC) phantom was semi-circular of 95mm diameter  and 53mm thickness (32.5mm 

PMMA and 20.5mm PE); the medio-lateral oblique (MLO) was rectangular of 100×150 mm2 

area and 58mm thickness (32.5mm PMMA and 25.5mm PE). These breast phantoms simulate an 

average breast thickness with 29% breast density [14, 15]. According to Yaffe et al. this density 

can be considered as the common breast density because they found that 95% of 2831 Canadian 

women have a breast density of less than 45% [16]. 280 calibrated TLD-100H dosimeters 

(Thermo Scientific, USA) were accommodated inside an adult ATOM dosimetry phantom (CIRS 

Inc, Norfolk, Virginia, USA)  to measure the radiation dose received by 20 different body organs 

(indicated in Figure 3). Harshaw TLD-100H dosimeters can measure radiation doses across a 

wide range (1 pGy-10 Gy) with linear response at this energy range (according to the 

manufacture guidelines [17]. The total uncertainty, due to sensitivity difference and consistency, 

associated with the detector readings is less than 5%. The ATOM phantom was positioned in 

contact with the breast phantom to simulate the female body (Figure 1). MGD was calculated 

using the Institute of Physics and Engineering in Medicine (IPEM) method [18], which is based 

on the work published by Dance et al. [19]. 

Exposing the phantom 

The breast phantoms (and ATOM phantom) were exposed on 16 FFDM machines (see Table 1); 

exposures were repeated 3 times on each occasion and then averaged to minimise random error. 



Since the full automatic exposure control (including kV, mAs and target/filter combination) is 

recommend by the European commission [20], full automatic exposure control was used to 

expose the breast phantoms on each occasion.     

Calculation of lifetime effective risk 

Organ doses together with tissue specific LAR for the US population (BEIR VII  phase 2 report) 

[4] were used to calculate effective risk from 25 to 75 years, using Brenner’s equation [21].  

R=∑rTHT 

Where R is the effective risk, rT is the cancer LAR for tissue T per unit equivalent dose of that 

tissue, and HT is the equivalent dose for tissue T. For each organ, the radiation dose was 

determined by averaging organ dose values from the sixteen FFDM machines. For breast tissue a 

total of both examined breast MGD and contralateral breast dose were used.  

Since LAR factors are published for each decade of life and our method requires the tissue LAR 

value for each year it was necessary to estimate LAR values for the missing years. A linear 

relationship between LAR value for each decade of life was used (Figure 2).  

Data analysis 

In order to get good statistical power, two hundred and seventy four different screening scenarios 

were proposed which comprised of different commencement / end ages (25-75 years) and 

screening frequencies. For each proposed lifetime interval, such as 25-75 years, 30-75 years, and 

30-70 years, we scheduled three different screening categories with regard to screening 

frequency (annual, biennial, or triennial).  Lifetime risk data, arising from the 274 scenarios were 

analysed in SPSS software (version 22.0, IBM, Armonk, New York, USA) to generate a 

mathematical regression model and relationship establishment between total effective risk and 

number of screens and commencement / end ages. The standard error of the estimate was 

calculated using SPSS software as the square root of the residual mean square to provide a 

measure of prediction accuracy of the regression model. Spearman’s correlation was used to 

determine the effect of screening commencement age, screening ending age and number of 

screens on effective lifetime risk. The statistical significance of each correlation was tested using 

a t-test. To improve accuracy,  for each screening frequency (annual, biennial, triennial) a 

relationship graph between screening commencement age and total effective risk has been 

obtained considering the screening ending age is constant at 75 years. For each graph 50 

different screening scenarios were proposed; the screening commencement age ranged from 25-

74 year.  

 

 



Results 

The total MGD, for both CC and MLO views, for the sixteen considered FFDM machines was 

2.019 (1.871-2.166) mGy; mean (95% CI). The minimum recorded MGD was 1.678 mGy, while 

the maximum MGD was 2.806 mGy. Despite these differences, all values were within the 

acceptable range recommended by national mammographic protocols [20].   

For organs other than the examined breast, it was found that for some organs the radiation dose 

was zero. This means that either these organs did not receive radiation dose during screening 

mammography exposure or the dose received by these organs was below the sensitivity threshold 

of the TLDs. However, some organs received radiation dose ranging from less than 1µGy to 

more than 25 µGy (Figure 3). The contralateral breast tissue received the second highest 

radiation dose after the examined breast; 28.75 [24.20 - 33.3] µGy (mean [95% CI]). However, 

sternum bone marrow radiation dose was the highest bone marrow dose and the third highest 

organ dose after the examined and contralateral breasts; 19.07 [15.81 - 22.34] µGy (mean [95% 

CI]). 

For each year of female lifetime the mean effective lifetime risk from one screening visit, along 

with the 95% confidence interval (CI) for the 16 FFDM machines is included in Table 2. The 

effective lifetime risk is shown to decrease with age. 

The effect of screening commencement age, number of screens and ending age of screening on 

the total effective risk was evaluated using Spearman’s correlation coefficient (Table 3). There is 

strong correlation between the total effective risk and both screening commencement age and 

number of screens during female lifetime.  

Using SPSS, a backward stepwise regression model was generated to predict the total effective 

risk of any screening programme with regard to commencement / end ages of screening and 

number of screens. The regression model is summarised in Table 4. The regression equation 

elucidates the effect magnitude of each parameter on effective lifetime risk. The validity of any 

regression model is determined by its ability to assess the outcome (total effective risk) 

variability by predictors’ variability (adjusted R2), and the interval of predicted outcome 

(variation coefficient).  

If screening mammography ending age is set at a constant level (75 years old), the factors that 

affect the total effective risk reduced down to only two (commencement age and screening 

frequency). The resultant graphical relationship between screening commencement age (year) on 

the X-axis and average total effective risk (case/106) for the sixteen FFDM machines on the Y-

axis is demonstrated in Figure 4 which contains three relationship lines; one for each screening 

frequency (annual, biennial, and triennial). 

 



Discussion 

Several researchers have assessed the radiation dose to other body tissues and organs from 

mammography; here other refers to all organs with the exclusion of the examined breast. In all 

instances, their approaches were different to the methods used here. For instance, Sechopoulos, 

Suryanarayanan , Vedantham , D’Orsi, and Karellas [22] used Monte Carlo dose simulation, 

while Hatziioannou et al. [23] used TLDs accommodated inside Lucite phantom to measure 

radiation dose received by several organs during cranio-caudal and medio-lateral breast 

exposures. Organ radiation doses measured in this work showed some differences between the 

sixteen FFDM machines (Figure 3). For instance, for some FFDM machines the third highest 

other organ radiation dose was received by clavicular bone marrow (after contralateral breast and 

sternum bone marrow), while for other machines the thyroid radiation dose ranks as the third 

highest dose. However, these organ dose differences do not result in large variations in 

calculated total effective lifetime risk because examined breast MGD results in up to 98% of 

effective lifetime risk and other organs cause only 2%.      

Statistical analysis illustrates that there is a strong correlation between total effective risk and 

both screening commencement age and number of screens. The correlation coefficients were -

0.865 and 0.714, respectively. This means that the total effective risk increases with early 

screening commencement age and a greater number of screens. However, a weak correlation is 

seen between the total effective risk and the end age of screening (-0.346). This suggests that for 

any screening programme the total effective risk decreases with increased end age of screening.  

The regression model can be used to predict the total effective risk for any screening programme 

by the screening commencement age, number of screens and ending age of screening. However, 

any regression model has an associated error. Our regression model can explain 87% of total 

effective risk variability by other parameter variability (adjusted R2 = 0.87). For prediction 

purposes, the predicted total effective risk intervals are wide, with a coefficient of variation for 

the model around 31%. The addition of time interval between screens as a predictor to the 

regression model does not increase the model’s accuracy; its effect is statistically non-

significant. 

For accurate calculation of total effective risk for any screening programme we established a 

relationship graph (Figure 4).  To generate the graph, effective risk data for ages 25-75 years 

were used to propose different screening scenarios with regards to the screening commencement 

age and time interval between screens, these were the most important factors affecting the 

radiation effective risk. The proposed commencement ages ranged from 25 years, the earliest 

probable age of screening mammography for high risk women, to 74 years. One, two, and three 

year time intervals were considered in our scenarios. Since human tissue radio-sensitivity 

reduces greatly after age of 70 years and most worldwide screening programmes end between the 

ages 70-75 years [24], the ending age of screening mammography does not generate large 

differences in calculated total effective lifetime risk. Accordingly, the ending age of screening 



mammography was considered as 75 years in all of our scenarios. The graph comprises of three 

lines, one for each time interval, so it can be easily used to evaluate the total effective risk of any 

screening programme by the commencement age of screening using interpolation method. 

The main advantage of our graphical data is that they represent an easy way for radiation risk 

estimation from screening mammography to be illustrated. The graph can be simply used by 

clinicians/referrers or practitioners, and the graphical data are more likely to be understandable 

by the women than MGD. It is useful for screening mammography justification in terms of 

harms versus benefits especially for high breast cancer risk women who are invited for early and 

more frequent screening mammography than average breast cancer risk women. Moreover, the 

radiation risk to other body tissues and organs are included in this model. 

The major limitation of our model is that it was generated for an average size woman who has an 

average breast thickness and density. Accordingly our data are applicable for a breast with 29% 

density and 53 mm CC thickness. Thicker and more dense breasts require higher exposure 

factors (kV and mAs) resulting in higher MGD and consequently more risk of radiation-induced 

breast cancer. This limitation can be addressed by future work using different size body 

phantoms with a series of breast phantoms simulating a range of breast thicknesses and densities. 

Since FFDM is the only available technique for screening in the UK, this model was designed to 

assess the radiation risk when FFDM used. However, other mammographic modalities 

(computed radiography and film screen mammography) were not considered. Finally, the LAR 

factors used in the model generation were for Euro-American population. Accordingly, further 

work is required for other populations.  

A further limitation of our model is that it does not take into account genetic factors which 

increase the risk of developing breast cancer. Clinically, of these breast cancer susceptibility 

genes, BRCA1 and BRAC2 are most important. The risk of developing breast cancer among 

mutation carriers of these genes by the age of 70 is 65% and 45% respectively [25]. In order to 

address this issue, we are preparing a study on the impact of these and other genetic factors. 

Adding these factors to our statistical model as a covariate may lead to a refinement of our model 

and ultimately to a more accurate estimation of the true impact of mammography screening on 

the total effective risk.  

Overall our method can be used to establish a mathematical model for radiation risk assessment 

from any screening procedure involving ionising radiation such as breast cancer screening using 

digital breast tomosynthesis or dedicated breast computed tomography. The incorporation of 

breast density, breast size, genetic factors and different screening procedures (involving ionising 

radiation) into the model would enable the estimation of risk to be personalised for individual 

screening clients. This is the subject of our future work.    

 

 



Conclusion 

The multiple linear regression models can be considered useful for the prediction of the 

radiation-induced cancer from screening programmes for an average woman, albeit with a 

variation of 31%. Graphical representation of data, based upon scenarios, will have a value for 

informing clinicians/referrers and screening clients about the radiation risks from FFDM 

screening as the information is presented in a form which is easily understood compared with 

MGD. 
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                              (1a)                                                                             (1b) 

Figure (1) Breast and ATOM phantoms positioned on FFDM machine (a) in cranio-caudal 

position (b) in medio-lateral oblique position. 

 

Table (1) Study FFDM machines. 

Machine Brand 
Target/filter 

combination 

Number of 

machines 

Hologic Selenia  Mo/Mo 1 

Hologic Selenia Rh/Rh 2 

Hologic Selenia Dimensions  W/Rh 2 

GE Seno Essential  Rh/Rh 8 

Giotto  W/Ag 1 

Siemens Mammomat Inspiration W/Rh 2 

Total 16 

 

 

 

 



 

Figure (2) Breast tissue LAR extrapolation using linear relationship between each decade LAR 

values. 

 

 
Figure (3) The mean organ doses across the sixteen FFDM machines (circles) with 95% CI 

(error bars) for one screening visit (CC and MLO projections for each breast) as measured using 

TLDs. 



Table (2) Mean calculated effective lifetime risk values for each year of female life with 95% 

CI. The 95% CI reflects variation in absorbed dose from the 16 FFDM machines. 

Age 

(year) 

Effective lifetime risk 

(case/106) 
Age 

(year) 

 Effective lifetime risk 

(case/106) 

Mean 95% CI Mean 95% CI 

25 70.0 [64.9 - 75.1] 51 13.6 [12.6 - 14.6] 

26 66.4 [61.5 - 71.2] 52 12.8 [11.9 - 13.8] 

27 62.8 [58.2 - 67.4] 53 12.0 [11.1 - 12.9] 

28 59.2 [54.8 - 63.5] 54 11.2 [10.4 - 12.0] 

29 55.5 [51.5 - 59.6] 55 10.4 [9.7 - 11.2] 

30 51.9 [48.1 - 55.7] 56 9.6 [8.9 - 10.3] 

31 49.6 [46.0 - 53.3] 57 8.8 [8.2 - 9.5] 

32 47.3 [43.9 - 50.8] 58 8.0 [7.4 - 8.6] 

33 45.0 [41.8 - 48.3] 59 7.2 [6.7 - 7.8] 

34 42.7 [39.6 - 45.9] 60 6.4 [6.0 - 6.9] 

35 40.5 [37.5 - 43.4] 61 6.0 [5.6 - 6.5] 

36 38.2 [35.4 - 41.0] 62 5.6 [5.2 - 6.1] 

37 35.9 [33.2 - 38.5] 63 5.3 [4.9 - 5.6] 

38 33.6 [31.1 - 36.0] 64 4.9 [4.5 - 5.2] 

39 31.3 [29.0 - 33.6] 65 4.5 [4.1 - 4.8] 

40 29.0 [26.9 - 31.1] 66 4.0 [3.8 - 4.4] 

41 27.5 [25.5 - 29.5] 67 3.7 [3.4 - 4.0] 

42 26.1 [24.2- 28.0] 68 3.3 [3.1 - 3.5] 

43 24.6 [22.8 - 26.4] 69 2.9 [2.7 - 3.1] 

44 23.2 [21.5 - 24.8] 70 2.5 [2.3 - 2.7] 

45 21.7 [20.1 - 23.3] 71 2.3 [2.2 - 2.5] 

46 20.2 [18.8 - 21.7] 72 2.2 [2.0 - 2.3] 

47 18.8 [17.4 - 20.2] 73 2.0 [1.9 - 2.2] 

48 17.3 [16.1 - 18.6] 74 1.8 [1.7 - 2.0] 

49 15.9 [14.7 - 17.0] 
75 1.7 [1.6 - 1.8] 

50 14.4 [13.4 - 15.5] 

CI, confidence intervals.  Effective lifetime risk refers to an individual’s chance 

of acquiring a radiation-induced cancer.   

 

 

 

 

 

 

 

 



Table (3) The association of different parameters with effective lifetime risk determined by 

Spearman’s correlation coefficient.  Statistical significance was tested using t-test. 

 

Commencement age Ending age Number of screens 

-0.865 -0.346 0.714 

All values were statistically significant (P<0.001). 

 

 

 

 

 

 

Table (4) Multiple linear regression equation. The standard error of the estimate was calculated 

in SPSS as the square root of the residual mean square. 

 

Regression Equation 
Adjusted 

R2 

Std. Error of 

Estimate 

Variation 

Coefficient 

TR= 705.170 –7.763 C – 6.085 E + 17.569 N 0.870  91.127  0.312 

TR, total effective lifetime risk; N, number of screens; C, commencement age of 

screening; E, ending age of screening. 

 



 

 

Figure (4) Total effective lifetime risk of screening mammography ending at age of 75 years 

(data based on calculated total effective risk of 50 scenarios of different commencement age for 

each screening frequency) 


