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Abstract 

A theoretical study is presented to examine free convective boundary layer flow of water-based bio-

nanofluid containing gyrotactic microorganisms past a wavy surface. Buongiorno’s nanofluid model 

with passively controlled boundary condition is applied to investigate the effects of the emerging 

parameters on the physical quantities namely, skin friction, Nusselt numbers and density number of 

motile microorganisms. The effects of the both hydrodynamic and thermal slips are also 

incorporated. Local similarity and non-similarity solutions are obtained using the seventh-order 

Runge-Kutta-Fehlberg method (RKF7) coupled with shooting quadrature. In order to compare our 

numerical results with the existing data, the active mass flux boundary condition is also used to 

benchmark MAPLE numerical solutions with earlier similar and non-similar solutions for a smooth 

stationary surface. It is found that the passive boundary condition reduces the skin friction and 

enhances local Nusselt numbers. Also the wavy surface is found to result in higher skin friction and 

higher local Nusselt numbers compared with a stationary surface. It is found that motile micro-

organism density number is elevated with increasing bioconvection Péclet number whereas the 

motile micro-organism species boundary layer thickness is reduced with increasing bioconvection 

Lewis number. The work finds applications in heat transfer enhancement in bio-inspired 

nanoparticle-doped fuel cells. 

 

Keywords: Bioconvection; passively controlled horizontal wavy surface; multiple slip effects; non-

similar, biofuel cells. 
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1. Introduction 

Nanofluid applications in medical engineering are stimulating significant attention. Areas being 

explored range from pharmacodynamics [1] to plant-inspired biofuel cells [2]. Applications in bio-
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energy systems and in particular proton exchange membrane (PEM) bio-inspired fuel cells are also 

increasing [3]. Nanofluids offer a significant thermal enhancement characteristic as compared to 

tradition fluids. They also enable manipulation of designs at the nanoscale, which is of great interest 

in bio-nano-technology. An alternative methodology for enhancing heat/mass/microorganism 

transfer is geometric modification of the surfaces adjacent to the transport medium i.e. biofluid. 

Examples of this geometric modification include irregular or wavy surfaces which have been 

successfully used in a wide spectrum of technological applications including microbial fuel cell walls 

[4,5], plant engineering-inspired bio fuel production [6,7] and solar collectors. The wavy surface 

may be vertical/inclined or horizontal depending upon its application. In the context of biofuel cell 

design, a lot of new developments in the structure of wall surfaces and polymers have enabled 

engineers to explore wavy heat transfer as a viable improved system which can significantly enhance 

fuel efficiencies achievable [7]. Free and mixed convective flow past a wavy surfaces have been 

studied by many scientist. Representative studies in this area include [8]-[15]. These largely 

theoretical and computational studies have used for many hydrodynamic, thermal, concentration and 

microorganism boundary conditions. They found that the frequency of the local heat transfer rate is 

double that of the wavy surface. In the studies [8-15] many multi-physical effects such as the 

temperature-dependent viscosity, heat generation/absorption, buoyancy ratio, magnetic parameter, 

the amplitude of the wavy surface and Prandtl number on the skin friction, dimensionless rate of heat 

and mass transfer were investigated. Natural or mixed convection heat and mass transfer from 

inclined wavy surfaces in porous media saturated with different fluids has also been investigated by a 

number of researchers. Cheng [16] studied the double diffusive free convective flow near an inclined 

wavy surface in porous medium with constant wall temperature and concentration and found that a 

decrease in the angle of inclination lead to increase fluctuation of the local Nusselt and Sherwood 

numbers, and further noting that increasing the angle of inclination tends to increase the total heat 

and mass transfer rates. In another study, Cheng [17] also solved the problem of free convection 

boundary layer flow near an inclined wavy surface. Abdallah and Zeghmati [18] studied numerical 

effects of wavy surfaces and thermal radiation on free convective heat transfer along an inclined 

wavy plate. D'Alessio et al. [19] discussed the two-dimensional problem of gravity-driven laminar 

flow of a thin layer of fluid down a heated wavy inclined surface. They conducted a stability analysis 

and used nonlinear simulations to validate the stability predictions and also to study thermo-capillary 

effects. The effects of thermal stratification and radiation on nanofluid flow past an inclined wavy 

surface embedded in a non-Darcy porous medium were studied by Srinivasacharya and Kumar [20].  
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Horizontal wavy surfaces geometries have been used by many investigators. Siddiqa and Hossain [21] 

analyzed convective flow. Siddiqa et al. [22] illustrated free convective flow past radiative wavy surface. 

They reported that wavy surface enhances heat transfer rate compared to the smooth wall and that high 

amplitude of the wavy surface leads to separation of fluid from the plate. In another report, Siddiqa et al. 

[23] examined the natural convective flow from an irregular semi-infinite triangular wavy surface, 

obtaining solutions for the skin friction, heat transfer rate, streamlines and isotherm distributions. Rees and 

Pop [24] studied the effect of stationary surface waves on the natural convective flow induced due to a 

horizontal plate in a porous medium. They performed extensive computations for a wide range of wave 

amplitudes and phases and found that a thin near-wall boundary layer develops within the basic boundary 

layer as the distance downstream increases. Narayana et al. [25] discussed the double diffusive convection 

induced by a heated and salted horizontal wavy surface. Hossain and Pop [26] reported flow and heat 

transfer on a continuous moving wavy surface in a stationary fluid with magnetic field. Tashtoush and 

Abu-Irshaid [27] investigated heat transfer along a wavy surface with a prescribed heat flux. They found 

that for a given amplitude, a point of separation appears rendering the solution restricted at that amplitude. 

Murrhy et al. [28] analyzed the effect of surface undulations on the natural convection heat transfer from 

an isothermal surface in a Darcian fluid-saturated porous enclosure, indicating that the wavy wall reduces 

the heat transfer into the system. Reddy et al. [29] investigated the flow and heat transfer past a continuous 

moving surface in a Darcian porous medium. The free convective flow along horizontal and slightly 

inclined surfaces was studied by Pera and Gebhart [30]. They measured the temperature distributions and 

heat transfer parameters in air at atmospheric pressure. Pradhan et al. [31] considered the natural 

convective flow of a water-based nanofluid along an isothermal horizontal plate. 

 

Nanofluids can change the transport as well as thermal properties of the carrier fluid and 

consequently enhance thermal as well mass and microorganism transport. These fluids are 

engineered colloids comprising a base fluid (e.g. water) and nanoparticles (e.g. metallic or non-

metalic particles). When microorganisms which are heavier than water are present with nanoparticles 

in water, bioconvection occur due to the movement of microorganisms in a specific direction [32-

33]. Kuznetsov and Avramenko [34] and Kuznetsov and Geng [35-38] investigated theoretically the 

bioconvection behavior of suspensions of gyrotactic microorganisms. The concept of nanofluid 

bioconvection was probably first introduced by Kuznetsov [39-40]. Kuznetsov [41] further 

developed this theory and focused on nanofluids containing gyrotactic microorganisms, confirming 

that the resultant large-scale motion of fluid caused by self-propelled motile microorganisms 

enhances mixing and prevents nanoparticle agglomeration in nanofluids. Aziz et al. [42] applied 

Buongiorno’s model [43] to study boundary layer flow of nanofluid with gyrotactic microorganism. 

http://link.springer.com/search?facet-author=%22B.+Tashtoush%22
http://link.springer.com/search?facet-author=%22E.+Abu-Irshaid%22
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Kuznetsov and Nield [44-45] revisited the problems of natural convective flow of a nanofluid and 

extended their models to the case when the nanofluid particle fraction on the boundary is passively 

rather than actively controlled. This makes the model physically more realistic than the previous 

models and more relevant to actual engineering systems. Subsequently Khan et al. [46] employed the 

same boundary condition which accounts for the effect of both Brownian and thermophoresis 

parameters. According to this new type of boundary condition there exists zero nanoparticle flux at 

the surface and the particle fraction values adjust accordingly. A book on wavy surface has been 

produced recently by Shenoy et al. [47]. Sadia et al. [48] studied gyrotactic bioconvection flow of a 

nanofluid past a vertical wavy surface. Naheed et al. [49] studied nanofluid bioconvection with 

variable thermophysical properties. Sheikholeslami and Rokni [50] studied the effect of melting heat 

transfer on nanofluid flow in the presence of a magnetic field using the Buongiorno model. Soomro 

et al. [51] investigated the effect of passive control boundary on nanoparticle due to convective heat 

transfer of Prandtl fluid model for the stretching surface. 

The above review of literature reveals that there is no study of free convective flow of water-based 

nanofluids with microorganism along a horizontal wavy surface with passively controlled boundary 

condition. This has motivated the present investigation and is particularly relevant to microbial fuel cells 

exploiting both nanofluids and bioconvection. Local similarity and non-similarity solutions of the transport 

equations are obtained by using the Runge-Kutta-Fehlberg method of seventh order (RKF7) coupled with 

a shooting method. The effects of the emerging parameters on the dimensionless velocity, temperature, 

nanoparticle volume fraction, and motile microorganism along with the skin friction, the rate of heat 

transfer and the rate of motile microorganism transfer are examined numerically and discussed in details. 

The numerical results are found to demonstrate good agreement with the published results for certain 

special cases. The present work is aimed at further elucidating the near-wall transport phenomena 

encountered in bio-nanofluid fuel cells [2-7]. 

 

2. Formulation of the Problem 

We consider the steady flow of a water-based nanofluid along a stationary/moving horizontal wavy 

surface in a clam free stream. It is assumed that the nanofluid contains gyrotactic microorganisms. It is 

also assumed that the nanoparticle suspension is stable and the direction of microorganisms’ swimming is 

independent of nanoparticles. The fluid is considered to be homogeneous and incompressible, and the 

volume fraction of the micro-organisms is sufficiently small such that they exert a negligible effect on the 

inertia and the viscosity of the fluid–microbe suspension. The flow model and coordinate system is 

depicted in Fig.1. The temperature wT and the density of motile microorganisms wn  are assumed at the 
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surface, whereas,T , C  and n  are assumed as surrounding temperature, concentration and density of 

motile microorganisms. We used the passively controlled (PC) boundary condition which is imposed at the 

surface (Kuznetsov and Nield [44, 45]). Considering the Oberbeck-Boussinesq approximation and 

following Buongiorno [42], Kuznetsov and Nield [39], the continuity and momentum equations are: 
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The thermal energy equation: 
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The conservation of the nanoparticles: 

2 2

2 2
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x y y T y

    
    
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 (5) 

The conservation of micro-organisms equation 

 
2

2
v .n

n n n
u nv D

x y y y
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  
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            (6) 

The left-hand side of Eq. (6) represents the flux of microorganisms due to the macroscopic motion of 

the fluid, the directional swimming of microorganisms up the oxygen gradients, and a diffusive process 

that models all random motions of the microorganisms. Here  is the thermal diffusivity, 
 

 
p

f

c

c





  

is the ratio of the effective heat capacity of the nanoparticle and fluid, f  is the density of the fluid,   

is the dynamic viscosity,  is the volumetric expansion of fluid, p  is the density of the nanoparticles, 

  is the average volume of the micro-organism,  
f

c  is the heat effective heat capacity of the fluid, 

 
p

c  is the effective heat capacity of the nanoparticle material, k  is the effective thermal 

conductivity, g is the gravitation due to  acceleration, BD  is the Brownian diffusion coefficient, TD  is 

the thermophoretic diffusion coefficient,  ,u v are the velocity components along the axes, 
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the diffusivity of microorganisms, b is the chemotaxis constant [m] and Wc is the maximum cell 

swimming speed [m/s] (the product bWc is assumed to be constant. It is assumed that sheet velocity is 
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. Here 0  stands for a stationary plate, 1   is 

associated with the case of a moving plate. 

 

The geometry of the wavy surface is described by: 

 / .sin x Ly                         (7) 

where is the amplitude,  is the phase shift parameter and L is the characteristic length as shown 

in Fig. 1.  The physically realistic boundary conditions are (Karniadakis et al. [52]): 
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The mass flux boundary condition [44, 45] can be written as 

0
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It is pertinent to introduce a group of dimensionless variables to render Eqns. (1) - (6) into non-

dimensional form. These are defined as follows: 
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where     31 /w fT TRa g C L      is the Rayleigh number.  A stream function   defined by 
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is introduced into Eqns. (2) - (5) which satisfies Eq. (1) identically. Hence 
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The boundary conditions in Eqn. (7) become:  
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The dimensionless parameters in Eqns. (12) - (16) are defined as  
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On substituting the transformations specified in Eq. (15) into the governing Eqns. (12) - (16), we 

obtain the following similarity ordinary differential equations:  
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The transformed boundary conditions can be written as: 
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where primes denote differentiation with respect to . It is important to note that when 0 0   , Eq. 

(31) represents the scenario of a horizontal flat plate i.e. waviness is eliminated.  
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3 Physical Quantities  

The local skin friction factor f xC , the local Nusselt number 
xNu  and the local density number of 

motile microorganisms
xNn  are the parameters of engineering interest. These quantities can be 

obtained from the following relations:  

2
0 0 0

2
, ,f x x x

w wy y yw

u x T x n
C Nu Nn

y T T y n yu



   

         
     
        

  
      

(37) 

Using Eqns. (7) and (15) into Eq. (21), the following expressions emerge:  

     3/5 1/5 1/5,0 , ,0 , ,0x f x x x x xRa C f Ra Nu Ra Nn             (38) 

Here    31 /xRa g C T x    is the local Rayleigh number. Due to zero mass flux boundary 

condition, local Sherwood number will be zero. Following [44, 45], the reduced skin friction, Nusselt 

number and density number of motile microorganisms can be written as 

     ,0 , ,0 , ,0r rCf f Nur Nn                           (39) 

 

4.  Numerical Solution of Boundary Value Problem 

4.1   First Level of Truncation (Local Similarity) 

Equations (31) - (35) with associated boundary conditions (36) constitute highly nonlinear ordinary 

differential boundary value problem. A numerical solution is therefore developed here. Following 

Sparrow et al. [53, 54], for the first level of truncation, it is assumed that the -derivatives in Eqns. 

(31) - (35) are neglected and these equations can be rewritten as: 

 2 3 / 5

0

2 2
'' ' cos 0,

5 5 5 5

3 1
Pr 'f f ff h h     

 
 

       (40) 

1
' =0,

Pr
h Nr Rb         (41) 

2 0,
5

3
f Nb Nt             (42) 

0,
3

5

Nt
Le f

Nb
        (43) 

0.
3

'' ' ' '
5

Pe Lb f            (44) 

These equations along with boundary conditions (36) present a local similarity model where can be 

regarded as a parameter. This model can be solved numerically using the Runge-Kutta-Fehlberg 

method of seventh order (RKF7) coupled with a shooting method [55]. The computations are shown 

in Table 1 for the flow of nanofluids over a smooth horizontal surface (i.e. waviness is negated). We 

further note that more details of the numerical procedure employed are documented in Minkowycz 
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and Sparrow [55]. More recent applications of this method include dispersive and stratified porous 

media convection [56], liquid metal magneto-hydrodynamic induction heat transfer [57] and solar 

collector cross-diffusion transport phenomena [58].  

 

4.2   Second Level of Truncation (Local non-similarity) 

Following Sparrow and co-workers [53, 54], all the terms are retained in Eqns. (31) - (35) without 

any approximation and new auxiliary functions ( , ), ( , ), ( , ), ( , ), ( , )F               are assumed 

which are defined by: 

, , , ,
f h

F
  

    

    
        
    

                             (45) 

Using these functions, Eqns. (31) - (35) can be re-written as 

   2 3 / 5

0

2 2
'' ' cos ' '' ,

5 5 5 5

3 1
Pr 'f f f f F f Ff h h      

   
 

                   (46) 

1
' =0,

Pr
h Nr Rb                                        (47) 

 2 ' ' ,
5

3
f Ff Nb Nt                (48) 

 ' ' ,
3

5
f F

Nt
Le f Le

Nb
          (49) 

 ' .
3

'' ' ' '
5

f FPe Lb f Lb                 (50) 

Differentiating Eqns. (47) - (51) and boundary conditions (36) with respect to   and neglecting 

again -derivatives, we get: 

   

   

2 / 5 2 3 / 5

0 0

3 / 5

0

3
'' cos sin

5 5 5 5

2 2
cos ' '' 0

5 5

3 3 2
Pr 'F f f F f F

f F f F

F h       

    

 



 
       

 

 
      

 

   

    
 (51) 

1
=0,

Pr
Nr Rb       (52) 

     ' ' 0,
5

3
2 f FF f Nb Nt                         (53) 

   ' ' 0,
3

5
f F

Nt
Le F f Le

Nb
             (54) 

   ' .
3

'
5

f FPe Lb F f Lb                              (55) 

The additional boundary conditions are: 
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( ,0) 0, ( ,0) ( ,0), ( ,0) ( ,0), ( ,0) ( ,0) 0,

( ,0) 0, ( , ) ( , ) ( , ) ( , ) 0, ( , ) 0,

F F a F b Nb Nt

F

      

     

            

             
            (56)  

 

Equations (52)-(55) with boundary conditions (56) represent a local non-similarity model. This 

model with Eqns. (47)-(51) with boundary conditions (36) can be solved numerically using the 

Runge-Kutta-Fehlberg method of seventh order (RKF7) coupled with a shooting method. In RKF7 

method, thirteen evaluations are allowed for each step. For lower accuracy, this method provides the 

most efficient results. A step size 0.001   and a convergence criterion of 610 were used in the 

numerical computations. The far field boundary conditions in (36) were replaced by using a finite 

value of 10 for the similarity variable max  as follows. 

 '( ,10) ( ,10) ( ,10) ( ,10) 0, ( ,10) 0f h                                                 (57) 

The choice of max 10   ensures that all numerical solutions approached the asymptotic values 

correctly.  

 

5.  Results and Discussion 

Free convection of water-based nanofluids containing gyrotactic (torque-driven) microorganisms 

along a horizontal wavy surface with zero nanoparticle flux is investigated in this study. Both local 

similarity and non-similarity models along with boundary conditions are solved using the Runge-

Kutta-Fehlberg method of seventh order (RKF7) coupled with a shooting method for both smooth 

and wavy surfaces. The computations are also performed when the sheet is stationary and when it is 

moving with uniform velocity. Mention here that for the case of stationary sheet ( 0  ) and in the 

case of no slip boundary conditions ( 0a b  ), our problem reduces to that of Pradhan et al. [31] 

when 0   in the general mathematical developed in this article. Table 1 presents the comparison of 

local similarity and non-similarity solutions for the values of reduced skin friction and local Nusselt 

numbers for the flow of nanofluids over smooth horizontal surface. These values are obtained for the 

slip flow of nanofluids over smooth horizontal stationary and moving surfaces. It is noticed that the 

local similarity solution over-estimates both skin friction and local Nusselt numbers in each case. 

Also, a moving surface reduces the skin friction and enhances the local Nusselt numbers in each case. 

The comparison of reduced skin friction and Nusselt numbers with existing data is presented in 

Table 2 for nanofluids and regular fluids over smooth surface ( 0 0  ) in the absence of velocity 

and thermal slip effects ( 0a b  ). The computations are presented for both active and passive mass 

flux boundary conditions. The comparison is found to be in good agreement for the active boundary 

condition in both tables. However, for the passive mass flux boundary condition, the Nusselt 
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numbers are higher and skin friction is lower. This is due to the fact that the passive boundary 

condition makes the model physically more realistic than active boundary condition. It is also 

noticed that the reduced skin friction and Nusselt numbers increase with an increase in Prandtl 

number. This is attributable to the fact that the fluids with higher Prandtl number are more viscous 

and have relatively low thermal conductivity which increases velocity boundary layer thickness and 

reduces the thermal boundary layer thickness. Consequently, the shear stress and the heat transfer 

rate increase with Prandtl number. 

 

Table 3 shows the computations of reduced skin friction and Nusselt numbers for both smooth 

and wavy surfaces and stationary and moving with uniform velocity. Both regular and water-based 

nanofluids are utilized in the computations. It is noticed that a moving surface (smooth or wavy) 

achieves higher Nusselt numbers and offers lower frictional resistance whereas a wavy surface offers 

both the highest frictional resistance and attains the highest Nusselt numbers. In each case, the 

buoyancy parameter reduces skin friction and Nusselt numbers whereas bioconvection Rayleigh 

number increases both skin friction and Nusselt numbers. However, Brownian motion has no 

significant effects on skin friction and Nusselt numbers. This is due to passive mass flux boundary 

condition in which both Brownian motion and thermophoresis parameters are present. 

Thermophoresis parameter increases skin friction and reduces Nusselt numbers.  

 

The variation of the dimensionless velocity at the surface with wave amplitude is shown in Fig. 2(a) 

for a stationary plate and in Fig. 2(b) for a moving plate in the streamwise direction. It is noticed that 

for a smooth surface ( 0 0  ), the dimensionless surface velocity remains constant in both cases. 

However, this velocity is found to be higher when the plate is moving. For a wavy surface ( 0 0  ), 

the dimensionless velocity fluctuates between maximum and minimum values and increases with the 

amplitude of the wavy surface. These fluctuations increase with increasing amplitudes in the 

streamwise direction. This is due to the fact that the flow accelerates along the rising portions of the 

surface, where the slope is positive, and decelerates along the portion of the surface, where the slope 

is negative. The variation of the dimensionless axial pressure distribution inside the boundary layer is 

presented in Fig. 3(a) for a stationary surface and in Fig. 3(b) for a moving surface. The flow is 

driven entirely by a pressure difference as there is no component of buoyancy force parallel to the 

horizontal surface. This is due to the normal component of buoyancy and as a result the 

dimensionless pressure distribution is negative. Consequently, the motion of the surface does not 

exert any tangible influence on the boundary layer thickness. However, the motion of the surface 



13 

 

lowers the dimensionless pressure at the surface (Fig. 3b). It is important to note that the 

dimensionless pressure at the surface is higher and it increases with an increase in Prandtl number in 

both cases. In the absence of thermal slip, the surface becomes isothermal which increases the 

dimensionless pressure at the surface.  

 

The effects of multiple slip (hydrodynamic and thermal) on the dimensionless temperature are 

depicted in Fig. 4(a) for a stationary surface and in Fig. 4(b) for a moving surface. It can be seen that 

the dimensionless surface temperature decreases with both velocity and thermal slips in both cases. It 

is well known that the velocity slip reduces the velocity at the surface whereas thermal slip reduces 

the dimensionless temperature at the surface for water-based nanofluids. The effects of momentum 

slip on the rescaled nanoparticle volume fraction are shown in Fig. 5(a) and 5(b) at a selected 

location for different values of Lewis number. It was assumed that the mass flux is zero at the 

surface. It is evident that the rescaled nanoparticle volume fraction increases with an increase in 

Lewis number, and as a result the rescaled nanoparticle volume fraction boundary layer thickness 

decreases. The velocity slip also helps in enhancing rescaled nanoparticle volume fraction within the 

boundary layer in both cases. 

 

Figures 6(a) and 6(b) illustrate the variation of the rescaled density of motile microorganisms with 

bioconvection parameters for both stationary and moving surfaces. Unlike other boundary layers, the 

boundary layer for the rescaled density of motile microorganisms is found to be much thinner. In 

fact, bioconvection Péclet number is the ratio of the characteristic velocity due to gyrotactic 

swimming to a characteristic velocity due to random diffusive swimming. Since the microorganisms 

are heavier than water, their up-swimming creates unstable density stratification and an increase in 

Rb makes the system less stable. The bioconvection Lewis number helps in decreasing the 

microorganism concentration layer thickness. Physically this is because the bioconvection Lewis 

number rises, the viscous diffusion rate enhances which in turn decreases the dimensionless velocity 

and consequently decreases the density of the microorganisms. 

 

The effects of scaled amplitude of the wavy surface, 0 , on the reduced skin friction are discussed in 

Figs. 7(a) and 7(b) for stationary and moving surfaces respectively. The effects of velocity and 

thermal slips are included in the computations. For a smooth surface, 0 0  , the shear stress remains 

constant in both cases. As the amplitude of the wavy surface increases, the maximum shear stress 

increases. It is noted that the fluctuations in the reduced skin friction increase with the amplitude of 
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the wavy surface. The comparison of Figs. 7(a) and 7(b) reveals that the reduced skin friction is 

reduced when the surface is moving. The phase angle  shows the shifting of waveform from the 

reference point 0  . The maximum skin friction increases with an increase in the phase angle. The 

effects of multiple slips on the reduced skin friction are depicted in Figs. 8(a) and 8(b) for two 

different base fluids when the plate is stationary or moving. It is noticed that both velocity and 

thermal slips tend to reduce the skin friction in each case. It is important to note that an increase in 

Prandtl number enhances skin friction. This is due to the fact that Prandtl number depends upon the 

momentum diffusivity or kinematic viscosity of the fluid. An increase in the kinematic viscosity 

helps in increasing Prandtl number and consequently the skin friction increases. 

 

In the presence of velocity and thermal slips, the reduced Nusselt numbers of water-based nanofluids 

are presented in Figs. 9(a) and 9(b) for stationary and moving surfaces respectively. The effects of 

scaled amplitude of the wavy surface, 0 , on the reduced Nusselt numbers are shown for  both 

smooth and wavy surfaces. For a smooth surface, the reduced Nusselt numbers remain constant 

whereas they increase for a wavy surface. The fluctuations in the reduced Nusselt number also 

increase with the amplitude of the wavy surface. It is important to note that the reduced Nusselt 

numbers are raised when the surface is moving. The variation of reduced Nusselt number with 

multiple slips is shown in Figs. 10(a) and 10(b) for two different base fluids over a wavy surface. It 

is noticed that velocity slip and Prandtl number help in enhancing reduced Nusselt numbers while 

thermal slip tends to reduce the reduced Nusselt numbers in both cases. It is due to the fact that 

velocity slip enhances the dimensionless velocity both for the isothermal ( 0b ) and non-isothermal 

( 0b ) plate. Also, due to the motion of the surface, reduced Nusselt numbers are found to be higher 

for the moving surface. 

 

Figures 11(a) and 11(b) illustrate the variation of the rescaled density number of motile 

microorganisms with velocity slip and bioconvection parameters for both stationary and moving 

surfaces. This variation is shown for a nanofluid over a wavy surface at 0.5  . In fact, 

bioconvection Péclet number helps in increasing the speed of the microorganisms and as a result the 

density number of the microorganism increases near the surface. Increasing bioconvection Lewis 

number assists in decreasing the microorganism concentration boundary layer thickness. This trend 

is induced since as the bioconvection Lewis number increases, the viscous diffusion rate increases 

which in turn reduces the dimensionless velocity at the surface and consequently increases the 

density number of the microorganisms. 
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6. Conclusions 

A mathematical model has been developed for investigating the effect of zero mass flux boundary 

condition on the free convective slip flow of a water-based nanofluid with suspended gyrotactic 

micro-organisms along a wavy horizontal surface. The governing partial differential equations have 

been rendered into a set of nonlinear coupled, ordinary differential equations using suitable 

transformations and the resulting well-posed boundary value problem has been solved numerically 

using the Runge-Kutta-Fehlberg method of seventh order (RKF7) coupled with a shooting method. 

Local similarity and non-similarity solutions have been obtained and compared for both smooth and 

wavy surfaces. Numerical solutions generated have also been compared with those obtained for 

active mass flux boundary condition and for stationary and moving surfaces. From the present study, 

the main conclusions may be summarized as follows: 

 A zero-mass flux boundary condition reduces the skin friction and enhances local Nusselt 

numbers. 

 A moving surface reduces skin friction but conversely enhances local Nusselt numbers.  

 A wavy surface offers higher skin friction and enhances local Nusselt numbers. 

 The reduced density number of motile micro-organisms increases with bioconvection 

parameters and velocity slip. 

 The dimensionless temperature decreases with an increase in thermal and velocity slip. 

 The fluctuations in the skin friction increase with an increase in phase shift and wave 

amplitude along streamwise direction. 

The present work has shown that nanofluids combined with bioconvection and hydrophobic slip 

provide a significant improvement in heat transfer rates of interest in nano-bio-fuel cell design 

systems. 

 

Notation 

Symbol Used 

b  chemotaxis constant [m] 

C  nanoparticle volume fraction [-] 

wC  wall nanoparticle volume fraction [-] 

C  ambient nanoparticle volume fraction [-] 

BD  Brownian diffusion coefficient [m
2
s

-1
] 

nD  diffusivity of microorganisms [m
2
s

-1
] 

TD  thermophoretic diffusion coefficient [m
2
s

-1
] 
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)(f  dimensionless stream function [-] 

g   acceleration due to gravity [ms
-2

]   

j  vector flux of microorganism [kgm
-2

 s
-1

] 

k thermal conductivity  [m
2
s

-1
] 

L  characteristic length [m] 

Lb  bioconvection Lewis number [-] 

Le  Lewis number [-] 

m  power law index [-] 

n  ambient density of motile microorganisms [-] 

wn  density of motile microorganisms at surface [-] 

nn  volume fraction of motile microorganisms [-] 

Nb  Brownian motion parameter [-] 

xNn  local density number of the motile microorganisms [-] 

Nr   buoyancy ratio [-] 

Nt  thermophoresis parameter [-] 

xNu  local Nusselt number [-] 

Pe  bioconvection Péclet number [-] 

Pr  Prandtl number [-] 

p  pressure [Pa] 

Ra  Rayleigh number [-] 

Rb  bioconvection Rayleigh number [-] 

T  nanofluid temperature [K] 

wT  wall temperature [K] 

T  ambient temperature [K] 

vu ,  velocity components along x  and y axes [ms
-1

] 

vu
~

,
~

 average directional swimming velocity of microorganisms along axes [ms
-1

] 

cW  constant maximum cell swimming speed [ms
-1

] 

yx,  coordinates along and normal to the plate [m] 

 

Greek symbols 

  amplitude [m] 
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  thermal diffusivity of fluid [m
2
s

-1
] 

  coefficient of thermal expansion [K
 
] 

)(  rescaled nanoparticle volume fraction [-] 

  similarity variable [-] 

   average volume of a microorganism [m
-3

] 

  kinematic viscosity of the fluid [m
2
 s

-1
] 

  phase shift [-] 

 

f  fluid density [kg m
-3

] 

p  nanoparticle mass density [kg m
-3

] 

 
f

c  heat capacity of the fluid [J kg
-3

K
-1

] 

 
p

c  heat capacity of the nanoparticle material [J kg
-3

 K
-1

] 

  ratio between the effective heat capacity of the nanoparticle material and heat capacity of the 

fluid [-] 

)(  rescaled density of motile microorganisms [-] 

  stream function [-] 

)(  dimensionless temperature [-] 

  streamwise coordinate [-] 

Subscripts/superscripts 

pn  nanoparticles 

f  fluid 

w  wall 

  ambient condition 

'  differentiation with respect to    
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Table 1: Comparison of similar and non-similar solutions for reduced skin friction and Nusselt 

numbers of nanofluids along smooth horizontal surface when 010, 0Lb Pe Le           

and Pr 7, 0.5a b   . 

 

 

 

 

Nr  

Local similar solution 

I
st
 truncation 

Local non-similar solution 

2
nd

 truncation 

0   

(stationary surface) 

1   

(moving surface) 

0   

(stationary surface) 

1   

(moving surface) 

rCf  rNu  rCf  rNu  rCf  rNu  rCf  rNu  

0.3, 0.1, 0Nb Nt Rb    

0.001 0.6117 0.3782 0.1315 0.4746 0.6109 0.3778 0.1285 0.4739 

0.1 0.6114 0.3780 0.1310 0.4745 0.6105 0.3776 0.1279 0.4738 

0.3 0.6106 0.3778 0.1299 0.4743 0.6098 0.3774 0.1268 0.4736 

0.5 0.6098 0.3775 0.1288 0.4741 0.6090 0.3771 0.1257 0.4734 

Nb  0.5, 0.2, 0Nr Nt Rb    

0.1 0.6074 0.3697 0.1214 0.4650 0.6055 0.3687 0.1183 0.4642 

0.3 0.6152 0.3724 0.1324 0.4670 0.6133 0.3715 0.1294 0.4662 

0.5 0.6167 0.3730 0.1346 0.4674 0.6148 0.3720 0.1316 0.4666 

Nt  0.5, 0.5, 0Nr Nb Rb    

0.001 0.6047 0.3825 0.1254 0.4812 0.6038 0.3821 0.1223 0.4804 

0.1 0.6106 0.3778 0.1299 0.4743 0.6098 0.3774 0.1268 0.4736 

0.3 0.6167 0.3730 0.1346 0.4674 0.6227 0.3680 0.1314 0.4597 

0.5 0.6360 0.3585 0.1496 0.4465 0.6357 0.3583 0.1420 0.4447 

Rb  0.5Nr Nb Nt    

0.1 0.6564 0.3612 0.1601 0.4476 0.6556 0.3608 0.1526 0.4457 

0.3 0.6950 0.3662 0.1809 0.4497 0.6941 0.3658 0.1734 0.4478 

0.5 0.7309 0.3707 0.2012 0.4517 0.7301 0.3704 0.1937 0.4499 
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Table 2: Comparison of reduced skin friction and Nusselt numbers when 0Pr 7, 10, 0,Le    and 

0, 0a b      for both active and passive controls of solid volume fraction of nanoparticles. 

 

 

 

 

 

Pradhan et al. 

[31] 

Present solution 

Active control  Active control  Passive control  

rCf  rNu  rCf  rNu  rCf  rNu  

Nr  0.3, 0.1Nb Nt   

0.001 0.95374 0.32878    0.95374     0.32878  0.91884 0.42066 

0.1 0.93956 0.32784    0.93956     0.32784  0.91889 0.42052 

0.3 0.91042 0.32591    0.91042     0.32591  0.91900 0.42023 

0.5 0.88058 0.32391    0.88058     0.32391  0.91911 0.41994 

Nb  0.4, 0.2Nb Nt   

0.1 0.86002 0.35744 0.86002 0.35744 0.93076 0.41083 

0.3 0.90520 0.31141 0.90520 0.31141 0.93014 0.41316 

0.5 0.92979 0.26799 0.92979 0.26799 0.92998 0.41361 

Nt  0.2, 0.3Nr Nb   

0.001 0.91340 0.34076 0.91340 0.34076 0.90823 0.42699 

0.1 0.92507 0.32688 0.92507 0.32688 0.91895 0.42038 

0.2 0.93704 0.31362 0.93704 0.31362 0.92994 0.41373 

0.5 0.97398 0.27797 0.97398 0.27797 0.96201 0.39293 

Pr  510Nb Nt Nr     

0.1 - 0.3114 0.8080 0.31100 0.80543 0.31036 

0.72 - 0.3816 0.8580 0.38200 0.85772 0.38159 

5 - 0.4224 0.9000 0.42200 0.89946 0.42175 

10 - 0.4313 0.9160 0.43100 0.91278 0.42951 
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Table 3: Computations of reduced skin friction and Nusselt numbers for different conditions 

when 10, 0.5Lb Pe Le a b     (Passive boundary condition). 

 

 

 

 

 

 

Nr  

Smooth surface ( 0 0  ) Wavy surface ( 0 0.5     ) 

Stationary surface 

( 0  ) 

Moving surface 

( 1  ) 

Stationary surface 

( 0  ) 

Moving surface 

( 1  ) 

rCf  rNu  rCf  rNu  rCf  rNu  rCf  rNu  

0.3, 0.1,Pr 7, 10Nb Nt Le     

0 0.66330 0.38479 0.15848 0.47714 1.10128 0.44044 0.54356 0.51658 

0.1 0.66292 0.38467 0.15796 0.47705 1.10143 0.44036 0.54327 0.51650 

0.3 0.66216 0.38441 0.15690 0.47686 1.09035 0.43651 0.54269 0.51633 

0.5 0.66140 0.38415 0.15584 0.47668 1.09065 0.43634 0.54210 0.51617 

Nb  0.4, 0.2, 7, 10Nr Nt Pr Le     

0.1 0.81653 0.40024 0.24739 0.47878 0.68231 0.42290 0.73519 0.52456 

0.3 0.68775 0.38176 0.16998 0.47047 1.14534 0.43800 0.57583 0.51143 

0.5 0.67087 0.37954 0.16221 0.46974 1.10007 0.43049 0.55490 0.50986 

Nt  0.3, 0.2,Pr 7, 10Nb Nr Le     

0.001 0.63884 0.38637 0.14222 0.48243 1.06288 0.44223 0.51197 0.52097 

0.1 0.66146 0.38401 0.15564 0.47652 1.08442 0.43510 0.54179 0.51618 

0.3 0.68926 0.38226 0.17209 0.47084 1.14486 0.43833 0.57699 0.51175 

0.5 0.79523 0.37984 0.24155 0.45608 1.30111 0.43553 0.71030 0.50078 

Le  Pr=7,Nr=Nb=Nt=0.5  

5 0.73011 0.37652 0.19741 0.45841 1.21451 0.43242 0.63167 0.50110 

10 0.73010 0.37035 0.19998 0.45140 1.21145 0.42570 0.63189 0.49386 

100 0.71165 0.35170 0.19317 0.43348 1.18174 0.40586 0.61058 0.47424 

Pr  -5Le=10,Nr=Nb=Nt=10  

3 0.68253 0.38563 0.08712 0.46665 1.11985 0.43983 0.48142 0.50794 

5 0.69970 0.39332 0.14659 0.47982 1.15244 0.44911 0.55483 0.52120 

10 0.71909 0.40118 0.21268 0.49340 0.50499 0.37798 0.63697 0.53481 

15 0.72804 0.40455 0.24333 0.49934 0.50528 0.37833 0.67555 0.54078 
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FIGURES 

 

 

Fig. 1: Biological flow diagram of wavy surface (microbial fuel cell wall) 

 

 

 



f
'(

,0

)

0 1 2 3 4 5
0.9

0.95

1

1.05

1.1

1.15

1.2

0

0.01

0.02

(b)

=1


0

Nb=Nt=0.2

Pr=6, Pe=Le=10

Rb=Nr=0.1, a=b=0.5, =0



f
'(

,0

)

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0

0.01

0.02

=0

(a)


0

Nb=Nt=0.2

Pr=6, Pe=Le=10

Rb=Nr=0.1, a=b=0.5, =0

 
Fig.2: Variation of dimensionless velocity with wave amplitude along streamwise direction when 

(a) plate is stationary and (b) plate is moving. 
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Fig. 3: Variation of dimensionless axial pressure distribution with thermal slip and Prandtl 

number when (a) plate is stationary and (b) plate is moving. 
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Fig. 4: Variation of dimensionless temperature with thermal and velocity slip when (a) plate is 

stationary and (b) plate is moving. 

 



27 

 




(

,
)

0 1 2 3 4
-0.3

-0.2

-0.1

0

0.1

0

0.5

=0

(a)

Le=10, 12, 16

Pr=7, Lb=Pe=10,=2

Nb=Nt=0.1


0
=Rb=Nr=b==0.5

a




(

,
)

0 1 2 3 4
-0.2

-0.1

0

0.1

0

0.5

(b)

=1

aLe=10, 12, 16

Pr=7, Lb=Pe=10,=2

Nb=Nt=0.1


0
=Rb=Nr=b==0.5

 
 

Fig. 5: Variation of dimensionless rescaled nanoparticle volume fraction with Lewis number and 

velocity slip when (a) plate is stationary and (b) plate is moving. 
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Fig. 6: Variation of rescaled density of motile microorganisms with bioconvection parameters 

when (a) plate is stationary and (b) plate is moving. 
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Fig. 7: Variation of skin friction with phase shift and wave amplitude along streamwise direction 

when (a) plate is stationary and (b) plate is moving. 
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Fig. 8: Variation of reduced skin friction with velocity and thermal slips for two different base 

fluids when (a) plate is stationary and (b) plate is moving. 
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Fig. 9: Variation of reduced Nusselt number with phase shift and wave amplitude along 

streamwise direction when (a) plate is stationary and (b) plate is moving. 
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Fig. 10: Variation of reduced Nusselt numbers with velocity and thermal slips for two different 

base fluids when (a) plate is stationary and (b) plate is moving. 
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Fig. 11: Variation of reduced density number of motile microorganisms with bioconvection 

parameters and velocity slip when (a) plate is stationary and (b) plate is moving. 

 


