
 

Comprehensive Survey on Quality of Service Provisioning 

Approaches in Cognitive Radio Networks: Part One 

 

Abstract   Much interest in Cognitive Radio Networks (CRNs) has been raised recently by 

enabling unlicensed (secondary) users to utilize the unused portions of the licensed spectrum. CRN 

utilization of residual spectrum bands of Primary (licensed) Networks (PNs) must avoid harmful 

interference to the users of PNs and other overlapping CRNs. The coexisting of CRNs depends on 

four components: Spectrum Sensing, Spectrum Decision, Spectrum Sharing, and Spectrum 

Mobility. Various approaches have been proposed to improve Quality of Service (QoS) 

provisioning in CRNs within fluctuating spectrum availability. However, CRN implementation 

poses many technical challenges due to sporadic usage of licensed spectrum bands, which will be 

increased after deploying CRNs. Unlike traditional surveys of CRNs, this paper addresses QoS 

provisioning approaches of CRN components and provides an up-to-date comprehensive survey of 

recent improvement in these approaches. Major features of the open research challenges of each 

approach are investigated. Due to the extensive nature of the topic, this paper is the first part of the 

survey which investigates QoS approaches on spectrum sensing and decision components 

respectively. The remaining approaches of spectrum sharing and mobility components will be 

investigated in the next part. 

 

Keywords   CRNs; QoS Provisioning Approaches; QoS Objectives; Spectrum Sensing; 
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1 Introduction 

The rapid proliferation of wireless technologies and services has led to a scarcity of available 

wireless resources [1]. According to the International Telecommunication Union- Radio 

communication sector (ITU-R) there will be a demand for 1280-1720 MHz of extra band in 2020 

to fill up the current allocated radio spectrum in wireless networks [2]. Furthermore, inflexible 

static spectrum management policies followed by government agencies have led to a critical degree 

of spectrum underutilization. Recent spectrum occupancy measurement campaigns revealed that 



many allocated spectrum bands are used only in bounded geographical areas or over limited periods 

of time [3]. To improve spectrum utilization, Cognitive Radio (CR) technology has been proposed 

to sense the spectrum and permit unlicensed devices to use the free spectrum portions on a non-

injurious to licensed users basis [4].  

In the context of CR, unutilized portions of spectrum bands are referred to as “White Spaces” 

(WSs) or “Spectrum Holes”. Additionally, the opportunistic Dynamic Spectrum Access (DSA) of 

CR technology is referred to as Overlay or Interweaves [5, 6]. By periodically sensing its 

surrounding environment, a Secondary User (SU) adapts its transmission parameters (e.g. spectrum 

band, transmission power, and modulation and coding schemes) autonomously, using Software 

Defined Radio (SDR). The SU avoids harmful interference to Primary (licensed) Users (PUs) by 

evacuating the utilized channels once they return [7]. Moreover, when the CRs generate 

interference that is below the interference threshold of the PUs, they can coexist simultaneously 

with PUs in Underlay mode. By the "Underlay" paradigm, the CR uses knowledge of the PUs’ 

transmission power to choose a transmission scheme that may cause an acceptable amount of 

interference [8]. Accordingly, the main characteristics of CR are: Cognitive capabilities (provides 

spectrum awareness) and Reconfigurability (communicates on a variety of channels using different 

transmission access technologies) [9]. 

In the literature, CR Networks (CRNs) refer to adaptive and self-organization wireless 

networks capable of providing services to end users (i.e. SUs) within continuous environmental 

changes [10]. As CRNs are wireless in nature, they inherit all topologies present in traditional 

wireless networks, which are classified into:  a) Centralized CRNs such as IEEE 802.22 Wireless 

Regional Area Network (WRAN), where a Base Station (BS) is deployed with several SUs 

associated with it [11]; and b) Distributed or CR Ad Hoc Networks (CRAHNs), where the SUs 

communicate directly with each other without any central node [9]. These networks are depicted 

in Fig. 1. Unlike in centralized CRN, route and spectrum selections are jointly considered in 

CRAHNs [1]. Furthermore, Hybrid transmission strategy has been proposed as a third spectrum 

access strategy (in addition to Overlay and Underlay strategies) in order to increase spectrum 

utilization [12]. To support intelligent and efficient utilization for the available spectrum, CRN 

functions are categorized in four main components. These functions are: Spectrum sensing 

(detecting the spectrum holes), Spectrum decision (identifying and selecting the best channels), 

Spectrum sharing (coordinating access to channels among the network users) and Spectrum 

mobility (switching to other candidate channels and maintaining seamless communication during 

the transition) [13].  



Since first proposed by Dr. Joseph Mitola in 1999 [4], CR technology has drawn considerable 

attention in the research community as the key enabler for significant wireless systems.  Most of 

the study of implementing CR includes: a) Military applications [14]; b) CR based Smart Grids 

[15]; c) CR based Sensor Networks [16]; d) CR based Femtocells [17]; e) CR based M2M 

communications [18]; f) Vehicular Networks [19]; g) Green Energy Powered CRNs [20]; h) 

CR based Satellite Communications [21]; i) Aeronautical Communications [22]; and j) 

Disaster Response Networks [23]. Furthermore, the success of CR can be seen in its being 

adopted as a key technology in fifth generation (5G) wireless communications systems. Moreover, 

a large number of studies has been for completing (or advancing in) networks standardization of 

IEEE 802.22b, 802.11af, 802.15.4, and 802.19.1 [24]. In addition, due to the highly demand for 

extra spectrum, the growth of CR applications is expected to continue to address other modern 

communications systems. 

To implement all of the above-mentioned CR based applications, the network requires an end-

to-end quality of Service (QoS) to keep its connectivity. Furthermore, providing a satisfactory QoS 

and user experience at the lowest price is key to the commercial success of CRNs [25]. However, 

guaranteeing QoS provision in CRNs is very challenging, due to the sporadic presence of PUs and 

SUs of other CRNs. More specifically, PUs are the owners of the band and have higher priority 

over SUs; therefore, SUs have to stop transmitting immediately once PU returns, and switch to 

another best available spectrum. Furthermore, with the anticipated growth in the number of CRNs, 

there is the possibility of a dramatic decrease in the available spectrum due to SUs’ activities [26] 

with a resulting degradation in the services offered, which has dramatic implications for these 

promising networks.  

A huge number of studies have proposed measures that effectively address the challenges in 

CRN components to maintain QoS objectives (or metrics [27]). These studies can be categorized 

within certain QoS provisioning approaches in CRNs. Therefore, this paper conducts a 

comprehensive survey of QoS approaches and extensively investigates the recent achievements. 

Due to the extent of improvements in these approaches; the article will be divided in two parts. In 

this part, we investigated the improvements of the approaches in spectrum sensing and spectrum 

decision components respectively, while the contributions in remaining approaches of spectrum 

sharing and mobility will be investigated in the second part of the survey. 

Therefore, the main contributions of this work are listed as follows: 

 Summarizing the QoS provisioning approaches. 
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 Classifying the improvements of these approaches into different categories and discussing 

the relevant recent important articles. 

 Outlining several major open research challenges in spectrum sensing and selecting which 

hinder the capacity enhancement of CRNs from coexisting with PNs within a reliable DSA 

system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  The concept of communications in CRNs and PNs. 



 

The remainder of this paper is organized as follows. Section 2 discusses related works (i.e. 

surveys on CRNs) and the motivation of this article survey. Section 3 describes and classifies QoS 

objectives and the approaches of QoS provisioning in CRN components. In Section 4 and Section 

5, the QoS provisioning approaches of spectrum sensing and spectrum decision components and 

the corresponding recent contributions are explained thoroughly. Furthermore, we point out crucial 

open issues on both components. Finally, Section 6 concludes the paper. 

 

2 Related work 

Over the past ten years, we have witnessed a tremendous growth of the research by academia 

and industry on developing CRNs. Each CRN component has received close attention from 

researchers to address QoS requirements. To assimilate the rapid achievements, it is noticeable that 

every year several surveys are published on the state of the art, aiming to address particular points 

in the CRNs context. Indeed, the surveys published in the highest impact factor journals are 

organized with extensive description and discussion to cover the area that they prepared for. After 

an extensive search, we found that these surveys could be grouped into five main categories: (a) 

Concern on a certain QoS objective, such as [8, 14, 21]; (b) Describing the technical development 

in one CRNs component, as in [1, 28-32]; (c) Extensively explaining a function of a CRN 

component, as in [17, 33-43]; (d) Investigating various  security challenges, as in [44-46]; and (e) 

Presenting the latest developments in a CR based application, as in [15, 18-20, 47].  

All previous surveys highlighted the advantages and the disadvantages of the existing 

techniques, algorithms and schemes to improve QoS objectives. To the best of our knowledge, 

none have presented the approaches adopted to improve QoS objectives in CRNs components. 

There have been investigations into these approaches, such as [13, 34]; however, they have not 

provided a comprehensive summary of all proposed approaches in each component. Clearly, some 

of these approaches have been considered in CR technology’s components and continued even 

after proposing CR as a network. In CR as a technology, the approaches of each component were 

limited to Physical layer (PHY) and Link Layer; however, in CRN the approaches have been 

extended to cover the remaining layers in the Open System Interconnection (OSI) model [13].   



Therefore, this work conducts a comprehensive survey of the existing QoS provisioning 

approaches in CRNs components and extensively investigates the recent achievements in each 

approach.   

3 QoS Objectives and Approaches in CRNs 

Satisfying QoS in any mobile communication system means preserving all the requirements 

needed by the applications to guarantee a certain level of successful sessions [48]. Similar to any 

wireless communication network, administrators of CRNs should provide an optimum possible 

QoS to the end users. However, QoS provisioning is a more challenging factor in CRNs than in 

traditional wireless networks, since the spectrum bands are not dedicated. Specifically, QoS must 

be optimized at the CRN user terminal within intermittent PU and SU (in case of overlapping 

CRNs) activities without interfering with both PUs’ and other SUs’ applications. This section 

explains and introduces the reader to the QoS objectives and the proposed approaches in the CRN 

literature. 

3.1 QoS Objectives 

As CRNs are wireless in nature, the QoS objectives of CRNs are similar to traditional mobile 

networks; however, different techniques and schemes are used due to the nature of undedicated 

spectrum access. Thus, QoS objectives may be classified into five categories as follows [13]: 

 Throughput: Defined as the amount of successfully delivered data, as in [49-63]. 

 Spectrum efficiency: Indicates the data rate per frequency band (bit/sec/Hz), such as [39, 

64-73]. 

 Delay: Refers to the total time that the data (or packets) have taken from when the data is 

transmitted till it is successfully received, as in [62, 64, 74-82]. 

 Power consumption: Denotes the total power consumed by the SU terminal device for 

communications, such as [8,20, 54, 83-92]. 

 Reliability: Refers to the performance of the network in completing and starting sessions, 

as in [93-109]. 

Furthermore, some of the articles consider two objectives jointly, such as in [8, 110-113]. 

Moreover, a few papers consider three QoS objectives in the research methodology, such as [87, 

114, 115]. However, all QoS objectives have not been considered in any research studies. Fig. 2  



 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  QoS provisioning objectives in CRNs. 

 

 

illustrates these objectives corresponding to their related sub-objectives. To date, several 

approaches to improving QoS objectives have been proposed. The next sub-section is dedicated to 

classifying them according to the network components. 

3.2 QoS Provisioning Approaches 

To describe QoS provisioning approaches in CRNs coexisting components for reliable 

spectrum sharing among themselves and with PNs, it is necessary here to clarify exactly what is 

meant by these components. As illustrated in Fig. 3 these components as well as their QoS 

approaches can be explained briefly as follows. 

3.2.1 Spectrum Sensing 

It refers to detecting the vacant channels to be utilized via Overlay or the bands that are able 

to be utilized by Underlay strategy [12]. Therefore, it has a crucial impact on CRN performance. 

According to the CRN literature, two main QoS provisioning approaches in spectrum sensing stage, 

which include: a) Sensing Accuracy; and b) Sensing Efficiency. Furthermore, these two main 

approaches include several approaches such as: (i) Optimizing threshold of detection, as in [97-99, 

102, 116]; (ii) Cooperative sensing, as in [55, 74, 87, 95]; (iii) Multi-stage sensing [93, 100, 103, 

104]; (iv) Wideband as in [86-90, 117-131]; (v) Adaptive sensing [49, 115]; and (vi) Obtaining 
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sensing outcomes from external sources, as in [132-138]. It is worth mentioning that several studies 

have been published on achieving accuracy-efficiency tradeoff, such as [75, 76]. 

3.2.2 Spectrum Decision 

It concerns on selecting the best detected channels according to certain constraints (e.g. 

channel holding time, channel capacity, and channel SU location) [41]. In this category, two QoS 

provisioning approaches were proposed in the literature: (a) Optimizing Channel Selection, as in 

[105, 106, 139-142]; and (b) Minimizing Channel Selection Overheads, such as [77, 91, 143-

149]. Indeed the spectrum prediction based on spectrum modelling plays a crucial role in the 

selection, as in [107, 128, 150-152]. 

3.2.3 Spectrum Sharing 

The approaches of this component are concerning accessing the selected bands and adapting 

transmission parameters accordingly [153]. Therefore, the findings of QoS approaches in this 

component concern proposing: (a) Sharing Strategies and Techniques, such as Hybrid 

transmission, as in [59,60], multi-zone access, as in [71], and Multiple Input Multiple Output 

(MIMO) technique [154-157]; (b) Transport Protocols such as in [35, 158, 159]; (c) Resource 

Allocation Techniques with Different Admission Algorithms (also called Intranetwork 

spectrum sharing), as in [109, 145, 160-163]; (c) Routing and Queuing Algorithms (especially 

in CRAHNs), as in  [62, 79-82, 164]; (d) Cooperative Sharing Methods, such as in [29, 165-168]; 

(e) Power Allocation Algorithms, as in [63, 92, 113]; (f) Minimizing the Security Threats and 

Vulnerabilities that may degrade QoS provision of  some or all networks, such as, PUEA, and 

Byzantine attack in [44, 168-172]; and (g) Internetwork spectrum sharing frameworks that 

manage spectrum bands sharing among overlapping CRNs. Based on the concept of spectrum 

pooling, the majority of the proposed frameworks consider cost-benefit trade-off (cost = payment 

to PN, and benefit = achieved spectrum band for CRN) as in [134-138], or by resource allocation 

for overlapped WRANs [173-177].  

3.2.4 Spectrum Mobility 

Spectrum mobility refers reconfiguring SUs by evacuating their utilized spectrum bands when 

PUs are detected and maintain seamless communications requirements during the transition to 

other available spectrum bands [37]. This component depends mainly, on CRNs’ cognitive engine 

(in case proactive handing off) and how long delay that the running applications may permit [1]. 

In other words, spectrum decision and sharing strategies have the main influence to spectrum 



mobility. According to CRNs literature, QoS approaches in this component concern on (a) 

Minimizing number of hand off event, such as in [36], [132]; and (b) Minimizing handoff 

overheads as in [178].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  QoS Provisioning approaches in CRN components. 
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Note that the QoS approaches of both spectrum sharing and mobility are presented in order to 

present all approaches in CRNs literature. Their characteristics with the recent improvements will 

be investigated the second part of this survey. The survey goes in the next section to describe the 

solutions and improvements in QoS approaches of spectrum sensing component. 

4 QoS Provisioning Approaches in Spectrum Sensing Component 

Spectrum sensing is an essential component of a CRN system aiming to obtain awareness of 

the spectrum occupancy and the activities in a specific region in order to achieve successful 

spectrum selection [179]. Additionally, periodic sensing of the selected bands is necessary to be 

aware of any sudden reappearance of the PUs, in order to evacuate them quickly [35]. In the CRN 

literature, the main QoS provisioning approaches are: a) Spectrum sensing accuracy; and b) 

Spectrum sensing efficiency. The section is dedicated to describing recent improvements in these 

two approaches and proceeds as follows: at the beginning, preliminaries of sensing strategies, 

elements and techniques will be explained briefly. 

4.1 Introduction to Spectrum Sensing Features 

There is a large volume of published studies describing spectrum sensing accuracy and sensing 

efficiency without clarifying the approaches used. For example surveys such as that conducted in 

[180] evaluate most sensing types including their capabilities and weaknesses, without highlighting 

on the QoS provisioning approaches. Spectrum sensing procedures can be described using a 

hypothesis testing problem that is given in Eq. 1 [93]: 

𝑦(𝑛) = {
𝑤(𝑛)                               ℋ0

𝑠(𝑛)ℎ(𝑛) + 𝑤(𝑛)        ℋ1
 (1) 

Where 𝑦(𝑛) is the received signal at SU, 𝑠(𝑛) is PU or other SUs (hence forward referred to 

as Incumbent User (IU)) transmitted signal with zero mean and variance 𝜎𝑠
2 and 𝑤(𝑛) is a zero-

mean Additive White Gaussian Noise (AWGN) with variance 𝜎𝑤
2  . ℎ(𝑛) denotes the fading channel 

gain of the sensing channel between SU and IU, and  ℋ0 represents the hypothesis that IUs are 

absent, while hypothesis ℋ1 indicates that IUs are present. After that SU will compute the test 

statistics Γ of the received signal and compare it with a predetermined threshold (static threshold 

approach) (λ) for each band. Mathematically, the comparison is written as [117]. 



ℋ̂0: 𝛤 < 𝜆

ℋ̂1: 𝛤 ≥ 𝜆
 (2) 

where ℋ̂0 and ℋ̂1indicate the sensing decision that the IUs are inactive and active respectively. 

IU detection probability 𝑃𝑑 should be high enough to avoid harmful interference to PU; however, 

two types of detection errors are highly possible measured in terms of (a) False alarm probability 

𝑃𝑓𝑎: which is defined as the detector indicating the IU is present while it is absent (i.e. 𝑃𝑟 {ℋ̂1|ℋ0}); 

and (b) Missed detection probability 𝑃𝑚𝑑: which is defined as the detector deciding that the 

channel is vacant while it is not (i.e. 𝑃𝑟 {ℋ̂0|ℋ1}). Accordingly, the probability of error detection 

𝑃𝐸can be calculated by the following [94]: 

𝑃𝐸 =  𝑃𝑓𝑎 ∗ 𝑃𝑟(ℋ0) + 𝑃𝑚𝑑 ∗ 𝑃𝑟(ℋ1) (3) 

where 𝑃𝑓𝑎 ∗ 𝑃𝑟(ℋ0) indicates that IU is absent while the detection device is reporting that IU 

to be present, whereas 𝑃𝑚𝑑 ∗ 𝑃𝑟(ℋ1) denotes that IU is present while the device reports it is not. 

As illustrated in Fig. 4, all spectrum sensing component that have been proposed in the literature 

are summarized briefly as follows: 

 There are two kinds of spectrum sensing in CRN tasks: a) In Band Sensing (IBS): Indicates 

sensing the current utilized channels; and b) Out of Band Sensing (OBS): Refers to sensing 

unutilized channels to be used in case of handoffs [132]. 

 There are two different sensing dependency: a) Internal sensing: Defined as the CRN 

performs spectrum sensing task locally by its users; and b) External sensing: Indicates 

obtaining the channels’ statues from either a Wireless Sensor Network (WSN) which may 

report the outcomes to CRNs for certain fees [3] or databases (spectrum pooling) which act 

as spectrum brokers between PNs and CRNs [134]. 

 There are two spectrum sensing frequency: a) Proactive sensing: Defined as periodic 

sensing of the spectrum; and b) Reactive sensing: Denotes on-demand sensing that depends 

on the modelling of the utilized spectrum [36]. 

 There are two procedures of spectrum sensing: a) Cooperative sensing: Refers to 

collaborating and sharing sensing outcomes by SUs to achieve detection; and b) Non-

cooperative sensing: Indicates that each SU depends on its own sensor to obtain the status 

of the spectrum (in CRAHNs only) [95]. 



 There are three types of detection methods: a) Transmitter based sensing: Defined as the 

SU analyzing the state of the channel to identify its status; b) Interference temperature 

based sensing: Indicates interference strength brought by SU to IU, which can be measured 

by interference temperature [181]; and c) Receiver based sensing: Refers to the SU 

identifying channel status by exploiting the emitted leakage power from a local oscillator 

of IU RF frontend [37]. 

 There are two ways of spectrum bands sensing: a) Narrow Band Sensing: Refers to SUs 

performing sensing for a single utilized channel; and b) Wideband Sensing: Indicates 

sensing of SUs for multiple channels simultaneously [38]. 

 There are two design elements of spectrum sensing: a) Test statistic: Defined as 

formulating appropriate modelling of test statistics that may provide reliable information 

about a channel’s occupancy; b) Threshold setting: Refers to assigning a certain threshold 

value used to differentiate between the hypotheses 𝐻0 and 𝐻1, which can be fixed [116] or 

adaptive [182]. 

 There are three types of spectrum sensing techniques: a) Blind sensing technique: Defined 

as a detector requiring no information about the received signal, such as Energy Detector 

(ED), Eigen Value based Detector (EVD), and Covariance Absolute value Detector (CAD); 

b) Semi-blind sensing technique: Indicates a detector that needs some prior information 

about the IU, for example noise power estimation, such as Cyclostationary Detection 

(CSD); and c) Non-blind sensing techniques: Refers to the detector needing an IU 

signature as well as noise power estimation, such as Matched Filter (MF), and Coherent 

detector [180]. 

 There are two main QoS provisioning approaches topics in spectrum sensing: a) Spectrum 

sensing accuracy: Defined as the total amount of reliability of detecting spectrum 

opportunities, where 𝑃𝑚𝑑, and 𝑃𝑓𝑎 are measurement metrics of the trustworthiness of 

sensing [83]; and b) Spectrum sensing efficiency: Defined as the total period (unit of time) 

that a CRN spends to determine the spectrum opportunities [13]. 

Finally, efficient detection techniques are pivotal to reducing data transmission interruptions, 

and to selecting the best channels with a seamless handoff from one band to another [117]. 

 

 

 

 



 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  Taxonomy of spectrum sensing components in CRN. 
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4.2 Spectrum Sensing Accuracy 

The performance of spectrum sensing in CRN depends on received Signal to Interference and 

Noise Ratio (SINR). There are four causes of error detection related to SINR, which can be 

summarized as follows [28]: 

 Static threshold setting.  

 Low received (SINR), for example hidden terminal problem. 

 SU is in a deep fade from shadowing and multipath. 

 Sampling requirements. 

The basis of error detection using the energy detection method is best explained in Fig. 5. 

Although the figure is not based on any empirical measurement, it enables the reader to understand 

the error detecting concept. More specifically, Fig. 5(a) presents utilization from PUs in a licensed 

channel, and Fig. 5(b) depicts perfect energy detection. However, because of the aforementioned 

four challenges, SU detection may deteriorate, and this starts with error sensing (i.e. false alarms 

and missed opportunities) as illustrated in Fig. 5(c). In recent years, much research has been 

conducted in order to solve and mitigate problems of error sensing. According to the literature, four 

techniques have been adopted by researchers to improve sensing accuracy. These techniques with 

their characteristics are as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.  Example of error detection probabilities. 

 



4.2.1 Threshold Setting 

Traditionally, SU exploits a spectrum sensor of energy or features of IU to determine whether 

the channels are occupied or not [96]. In ED, the decision threshold λ that distinguishes a channel’s 

status is very important, and this parameter is configured by the system designer. In the literature, 

optimum λ has been chosen based on: a) trade-off between 𝑃𝑑 and 𝑃𝑓𝑎 (as shown in Fig. 6) [183]; 

and b) the knowledge of IU signal power as well as noise power [97]. The IEEE 802.22 working 

group on WRANs recommended that the target false alarm probability 𝑃𝑓𝑎
̅̅ ̅̅  , and target detection 

probability 𝑃𝑑
̅̅ ̅  should be 0.1 and 0.9 respectively [184]. Therefore, the optimal threshold based on 

each target is calculated as follows [98]: 

𝜆𝑃𝑑
= 𝜎𝑤

2 (√
2(2𝛾 + 1)

𝑀
𝒬−1(𝑃𝑑

̅̅ ̅) + 𝛾 + 1) (4) 

𝜆𝑃𝑓
= 𝜎𝑤

2 (√
2

𝑀
𝒬−1(𝑃𝑓̅) + 1) (5) 

where M is number of samples, γ is Signal to Noise Ratio (SNR) (
σs

2

σw
2 ), and 𝒬−1(∙) is the inverse 

of 𝒬(∙) which is a complementary Cumulative Distribution Function (CDF) of a standard Gaussian 

random variable (i.e. 𝒬(x) =
1

√2π
∫ exp (

−t2

2
) dt

∞

x
). As is clear in Eq. (4) & Eq. (5), an increase in 

observed samples increases 𝑃𝑑  and noise uncertainty may decrease it [184]; this fact is illustrated 

 

 

 

 

 

 

 

 

 

Fig. 6.  Threshold setting (modified from [183]). 

 

Fig. 7.  Performance of Pd with and without 

Noise uncertainty [185]. 
 



in Fig. 7. Recently, the authors in [99] proposed a dynamic threshold detection algorithm, where 

the algorithm proposes two threshold levels for average received PUs energy during a specified 

observation period. However, the algorithm suffers from computational complexity. Finally, 

dozens of threshold optimizing ideas correspond with those proposed in the literature; however, 

this approach has been extensively studied, therefore, recently very few articles [183, 185, 186] 

have proposed to consider optimizing λ corresponding with optimizing a set of QoS objective 

targets. 

4.2.2 Multi-Stage Spectrum Sensing 

Each spectrum sensing technique has its own cons, for example ED performance degrades 

with noise uncertainty (as depicted in Fig. 7), and CFD consumes power, in addition to a priori 

information about IU being required. Additionally, the blind techniques suffer from complexity 

and power consumption. Consequently each spectrum sensing technique has its own merits and 

demerits, thus none of these techniques has an optimal performance in all scenarios [64]. Therefore, 

dual stage spectrum sensing was proposed in the literature to mitigate the drawback of single stage 

sensing.  

The majority of recent research studies, such as [64, 65, 74, 84, 100-103] assume the first stage 

is ED, but few studies considered other techniques for example how the authors in [104] exploited 

entropy of power spectrum density in the first stage. In the second stage significant studies such as 

[84, 100, 102] considered CFD, whereas other studies such as [103] considered EVD as a second 

stage. More specifically, in the first stage the observed samples of received signal may be compared 

with the first threshold λΑ using eq. (2); in the case of ℋ0, there is no need to operate the 2nd stage, 

otherwise the second threshold λB will be examined. The flowchart of multi-stage spectrum sensing 

is clarified in Fig. 8. The first stage is chosen for coarse sensing, while the second stage is 

considered in fine sensing. 

The aforementioned researchers considered optimizing spectrum accuracy under constraints 

and/or QoS objectives. For example the authors in [64] proposed an optimizing scheme of sensing 

reliability with minimum delay, whereas the authors in [84] optimized spectrum reliability 

corresponding with minimum energy consumption. However, most articles have drawbacks from 

different perspectives, such as sensing overheads and complexity as documented in Table 1. In 

same way, a scheme of three parallel stages of detectors ED, CFD, and MF was proposed in [66] 

where each detector is used for a certain type of received signal. However, increasing stages may 

increase the complexity at SUs. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.  The flow chart of multi-stage spectrum sensing. 

 

Finally, we noticed that distinguishing step between PUs and existing SUs was missed in the 

aforementioned studies. It is believed that distinguishing PUs activity than SUs activity is very 

important for reliable spectrum modelling and this step belongs to spectrum sensing component 

responsibilities. 

 

Sensing Task 

Start sensing 

Apply 1
st
 stage sensing Energy Detection 

(mostly) 

Compare with threshold A  

(eq. 2) Vacant Band 

Apply 2
nd

 stage sensing 

Compare with threshold   

(eq. 2) Vacant Band 

Continue Transmitting  
(The selected channel previously) or 
FC start selecting the best channels 

𝜆𝐴 > Test 

𝜆𝐴 ≤ Test 

𝜆𝐵 > Test 

Compare PUs features No 

PUs activity  SUs activity 

Yes 

Evacuate the channel immediately 

This step is missed in the 

articles of multi-stage 

spectrum sensing  

𝜆𝐵 ≤ Test 



Table 1  Specifications of multi stage spectrum sensing schemes in sub-section (4.2.2). 
 

 

 

4.2.3 Cooperative Spectrum Sensing for Sensing Accuracy 

Cooperative Spectrum Sensing (CSS) has been proposed in the literature for gathering 

detection information from multiple SUs in order to solve the second and third challenges of 

improving detection accuracy (i.e. hidden terminal detection, and uncertainty due to the SU being 

in deep fade) [143]. CSS has been extensively studied in the literature, as shown in Fig. 9 the CSS 

concept concerns sharing sensing outcomes between SUs (in CRAHNs) or forwarding their local 

observations to a Fusion Center (FC) located at the central node or Base Station (BS) (in centralized 

CRN) which will make the global decision [29]. For brevity, CSS features can be summarized as 

follows: 
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[64] √ - - √ - - - √ √ - √ - - - √ 

[65] √√ - - - - - - √ - - √ √ - - - 

[66] √ √ - - - √ - √ - - √ - √ √ √ 

[74] √√ - - - - - - - - - √ √ - - - 

[84] √ √ - - - - - - - √ √ - √ - - 

[100] √ √ - - - - - - - - √ - √ - - 

[101] √√ - - - - - - - - - √ √ - - - 

[102] √ √ - - - - - √ - - √ - √ √ - 

[103] √ - √ - - - - - - - √ √ - - - 

[104] - - - - - √√ - - - - √ √ - - √ 



 The proposed methods for CSS in the literature are classified into three categories: a) All 

SUs simultaneously [49]; b) Certain selected SUs [143]; and c) Multi groups (cluster 

based) [144]. IEEE recommended CSS to CRN standards IEEE 802.22 WRAN, and is still 

in process in IEEE 802.11ah White Fi [187]. It is worth mentioning that the majority of 

CSS researchers assumed that the reported channels (i.e. Common Control Channels 

(CCCs)) are exclusively dedicated among SUs. 

 There are two reporting schemes in CSS as follows: a) Hard CSS: SUs may report their 

local decision to the FC [50]; and b) Soft CSS: SUs transmit their detection samples (i.e. 

measurements) to the FC [105]. Clearly, Soft CSS may increase the reliability of decisions; 

however, it may increase the overheads of transmitting signals samples instead of 

transmitting one bit decisions. 

 There are four decision rules that can be applied at FC which are as follows: a) AND: means 

that all the participated SUs must report the channel as busy (low protection to IUs). b) OR: 

means only one of the SUs reports an occupied channel (high restricted). c) Majority: 

indicates that most participating users consider the channel is occupied. d) K of N: means 

a certain amount (K) of participating SUs (N) report the scanned channel as not vacant 

(more reliable than the Majority method) [29]. 

It is worth mentioning that another method of CSS was proposed in the literature, called 

collaborative CRNs, where several CRNs share their spectrum sensing outcomes to improve their 

sensing reliability [29]. Additionally, the K of N rule is similar to the OR rule, except that K users 

from total N users (i.e. SUs) will participate to calculate in decision making. Thus, total  𝑃𝑑
𝑇 and 

𝑃𝑓𝑎
𝑇 in the FC rules will be as follows [67], [106]: 

 

 

 AND  

𝑃𝑦
𝑇 =  ∏ 𝑃𝑦,𝑖

𝑁

𝑖=0

 (6) 

 

 OR  

𝑃𝑦
𝑇 = 1 − ∏(1 − 𝑃𝑦,𝑖)

𝑁

𝑖=0

 (7) 



 Majority 

𝑃𝑦
𝑇 =  ∑ (

𝑁 − 𝑀

𝑥
)

𝑁−𝑀

𝑥=⌊
𝑁−𝑀

2
⌋

𝑃𝑦,𝑖
𝑥 (1 − 𝑃𝑦,𝑖)

𝑁−𝑀−𝑥 (8) 

 

A large number of articles have proposed to improve CSS elements such as maximizing energy 

efficiency in [110], and reliability of CSS as in [188]. The main challenge of CSS is reporting false 

detections from SUs; this issue is called Spectrum Sensing Data Falsification (SSDF) or Byzantine 

attack [44]. This problem and other problems will be discussed in the next part of this research on 

spectrum sharing challenges. Finally, the merits and demerits of cooperative sensing and sharing 

elements have also been well researched and documented in a recent survey [29], and summarized 

in Fig. 10. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.  Cooperative spectrum sensing. 
 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.  Cooperative spectrum sensing features. 
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4.2.4 External Sensing 

It is simply defined as the CRN that exploits the information on vacant channels from an 

external source [180]. The information should be reported continuously to BSs of all CRNs in order 

to utilize the best channels in case of handoffs.  Generally, external sensing methods can be 

classified into three categories: 

 Sensor nodes belong to CRN (or other CRNs in case of cooperative CRNs [29]) spread in 

the coverage area; thereby, CRN architecture constitutes of two networks: A) Sensor 

Networks, and B) Operational Networks [180]. 

 External sensor networks may provide details of vacant channels for certain fees [3]. 

 Spectrum pooling or official databases have the capability of identifying the incumbent 

licensed channels on TV bands (-also called TV White Space (TVWS)) [26]. 

Finally, external sensing may tackle some sensing challenges (explained in the introduction of 

the current sub-section), and reduce the time required for OBS; thus it will increase spectrum 

efficiency, and throughput, and reduce the delay of offered services. Consequently, since the SUs 

will not participate in the sensing task, external sensing will reduce the complexity of SU devices 

[182]. As a comparison, the merits and demerits of external and local sensing from different 

perspectives are documented in Table 2. 

 

Table 2  Comparison between local and external spectrum sensing. 
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4.3 Spectrum Sensing Efficiency 

Improving sensing efficiency (or minimizing sensing overheads [97]) is defined as minimizing 

the total amount of time spent on sensing and detecting spectrum status [185]. Clearly, the highest 

sensing overheads may lead to degrading the QoS provisioning to CRN users, in addition to 

impairing spectral efficiency rather than being utilized in data transmitting [34]. In contrast, less 

frequent sensing may lead to increased 𝑃𝑚𝑑  of the PUs’ reappearance in utilized channels and the 

IUs in other candidate channels. Thus, it is of paramount importance to optimize sensing periods 

for licensed channels in order to obtain accurate detection probability.  

4.3.1 Adaptive Sensing 

Spectrum sensing accuracy can be evaluated by minimum sensing periods and frequency of 

sensing [57]. The crucial challenge in CRN implementation is the stochastic utilizing of the 

licensed spectrum from PUs, due to the heterogeneity of the PNs and their licensed spectrum bands 

[189]. Additionally, it is predicted that the licensed spectrum will become more stochastic than 

before when CRNs are implemented [26]. Therefore, frequent static fix is not suitable for all 

licensed channels and may lead to losing spectral opportunities in addition to incurring interference 

with IUs. 

Optimizing sensing frequency can be best understood from Fig. 11 and 12 (inspired from [68]). 

We assumed a CRN attempt to utilize two licensed channels, shown in Fig. 11(a, and b). Although 

the utilization of these channels shown in the figures is not real, we try to depict the issue of 

applying the same sensing frequency in both channels. As observed from Fig. 11(c), the proposed 

sensing frequency led to high interference with PU, and low utilization of available opportunities 

in Channel 1; whereas in channel 2, it tended  to be more satisfactory through achieving high 

utilization of unused portions and less interference, as illustrated in (Fig. 11(d)). Therefore, for the 

frequency of sensing we used the same channel (i.e. channel 1) in Fig. 12(a), and the sensing 

frequency of Fig. 11(d) is repeated in Fig. 12(b). In Fig. 12(c), doubling sensing frequency may 

bring a better utilization of the licensed channel but it was not needed for the licensed channel in 

Fig. 11(a) (i.e. channel 1).  

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11.  Impact of exploiting same sensing frequency for two licensed channels (inspired from 

[68]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Impact of sensing frequency for utilizing a licensed channel (inspired from [68]). 



In this trend, the authors in [111] proposed a Two-phase (coarse and fine) and Two-period 

(long and short) Spectrum Sensing (TTSS) scheme, where coarse phase is used to predict the best 

candidate spectrum bands for fine sensing, and short periods perform at no transmission, whereas 

the latter is exploited during sessions.  Three different schemes for optimizing the duration of 

spectrum sensing at specific sensing accuracy were proposed in [75]. However, the authors 

considered utilization of only one channel; therefore, SUs must wait till the channel is unoccupied 

by PUs. Adaptive sensing, based on a multi-objective scheme, was proposed in [68], where the 

authors aimed to maximize the utilization of the available spectrum.  

Recently, a novel sequential two channels spectrum sensing method was proposed in [51], 

where the author considered imperfect sensing in optimizing spectrum sensing to achieve 

maximum throughput. However, power consumption has not considered. A sequential Channel 

Sensing Probing algorithm in homogeneous channels was used in [52] to optimize the distribution 

 

Table 3  A summary of QoS objectives and procedures of the researches in sub-section (4.3.1). 
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[51] Sequential two channels  sensing  Centralized √ - - - √ √ √ - √ - - 

[52] Sequential Channel Sensing Probing algorithm  Centralized √ - - - √ - √ √ - - √ 

[68] adaptive sensing scheme Base on multi-objective GA  Centralized - √ - - √ - - √ - - - 

[75] 

Optimizing sensing period 

schemes based on different 

objectives (three schemes) 

Maximize throughput Centralized √ - - - √ - - √ - √ - 

Minimize Delay Centralized - - √ - √ - - √ - √ - 

Trade-off  between  

both schemes  
Centralized √ - √ - √ - - √ - √ - 

[76] 
Efficiency-accuracy trade under of specified constant 

detection threshold 
CRAHN - √ - - √ - √ √ - - - 

[85] 
DSM considered both PU status and time-variant 

multipath channels 
CRAHN - - - - √ √ √ - - - - 

[111] 
Two-phase (coarse and fine) and Two-period (long 

and short) Spectrum Sensing 
Centralized - √ - - √ √ √ √ √ - - 

 

 



of the throughput. The algorithm was subjected to constraints of tolerance delay and minimum 

required data rate. To optimize sensing durations in CRAHNs, the authors in [76] proposed an 

efficiency-accuracy trade-off under a specified constant detection threshold. A novel Dynamic 

Discrete State-Model (DSM) for characterizing spectrum sensing process in CRAHN was proposed 

in [85]. However, the model was not tested in terms of complexity and time consumed in the 

sensing task. 

In summary, Table 3 provides further details on the aforementioned articles. 

4.3.2 Cooperative Spectrum Sensing for Sensing Efficiency 

CSS has been adopted as a QoS provisioning approach, but here it can be exploited to reduce 

sensing overheads. In this approach, several significant schemes were proposed to optimize sensing 

efficiency corresponding with two or three QoS objectives. For example, using a coalition game, 

the authors in [53] proposed a sensing technique capable of maximizing throughput under 

minimum targets of 𝑃𝑚𝑑 and 𝑃𝑓𝑎 respectively. Similarly, to maximize throughput, a cluster based 

CSS was exploited recently in several articles. From the most recent research studies, the authors 

in [69] proposed fusing the reported data from clusters twice by using two fusion stages within a 

cluster. 

Although the research studies mitigated the congestion at CCC, the scheme suffered from poor 

performance at a few SUs, and selecting the head of each cluster is still an open research area [39]. 

Maximizing throughput in CRNs needs to improve the capacity of utilizing the available spectrum; 

therefore, the authors in [67] proposed a CSS scheme that aims to maximize the capacity within 

accurate spectrum sensing. Recently, the authors in [67] proposed a spectrum sensing policy that 

employed recency-based exploration in order that SUs do not need to be instructed from FC which 

bands to sense. However, the policy may lead to increased complexity of SU devices. 

Minimizing consumed energy at SUs (i.e. green energy) by using CSS strategy is another 

example of optimizing sensing efficiency. For example, a cooperative periodic sensing technique 

that minimizes power consumption at SU was proposed in [54]. Although the authors considered 

minimum required 𝑃𝑚𝑑 and 𝑃𝑓𝑎, the analysis of fading and path losses were not considered. Power 

consumption and sensing period optimization method was also proposed in [87], where the authors 

aimed to minimize power consumption at SU in a diverse cooperative CRN. Recently, an optimal 

CSS scheme was proposed in [55], where the main aim of the scheme was maximizing energy 

efficiency without degrading achievable throughput. However, the scheme suffered from poor 

performance in a few SUs, which is the most common challenge of CSS strategy.  Very recently, 



the authors in [20] surveyed in detail the green energy techniques that have been proposed in the 

literature. It is worth mentioning that a novel frugal sensing scheme was proposed recently by the 

authors in [88] as a means of wideband CSS. It is worth mentioning, all the aforementioned efforts 

are considered for centralized CRN, because of the co-ordination challenges in neighbour 

discovery in CRAHNs [189]. 

 To sum up, the merits and demerits of the aforementioned sub-section are summarized in 

Table 4. 

 

Table 4  A summary of QoS objectives and procedures of related works in sub-section (4.3.2). 
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[49] Optimum cooperative grouping  Centralized √ - - √ √ √ - √ - - - 

[53] Using coalition game among SUs Centralized √ - - - √ √ √ - - - - 

[54] 
Minimum power consumption at SU at minimum 

reliability 
Centralized - - - √ √ - - √ - - - 

[56] 
Divides SUs into several groups responsible of 

sensing different channels 
CRAHN - √ - - √ √ √ √ - - - 

[67] Cooperative sensing scheme base of  faded signal Centralized - √ - - √ √ √ - √ - - 

[69] Cluster based two stage fusion stages Centralized √ - - √ √ √ √ √ - - - 

[86] Sensing regarding recency-based exploration Centralized - √ - - √ √ √ √ - - - 

[87] 
Sensing period optimization to achieve minimize 

power consumption in a diverse cooperative CRN 
Centralized - - - √ √ - - √ - - - 

 

 

4.3.3 Wideband Spectrum Sensing 

In contrast to single band (narrow band) sensing, wide band sensing aims to obtain more 

spectral opportunities over wide spectrum bands in order to achieve higher QoS provision in the 

offered services [38]. Ideally, CRN should be capable of sensing and utilizing any transmission 

opportunities in the available spectrum band ranging from 30 kHz to - 300GHz, however, non-

permitted bands (e.g. military, security) are excluded [112]. Since CRNs need to continuously 



determine spectrum opportunities simultaneously over a wide frequency range (e.g. several GHz), 

several Wideband Spectrum Sensing (WBS) techniques have been proposed in the literature. These 

techniques have attracted particular attention recently, because they led to merging the periods of 

IBS and OBS in a single period. Furthermore, detecting the status of multiple channels at the same 

time will lead to increased opportunities to select the best channels [1]. WBS methods concentrate 

on reducing the complexity of system design, and these major methods are as follows: 

 Multiband Joint detection [57]. 

 Filter-bank sensing [119]. 

 Wavelet (WL) detection [120], which can be classified into: a) WL modulus maxima [121]; 

b) WL multi-scale product [122]; and c) WL multi-scale sum [123]. 

 Sweep-tune detection [38]. 

These methods are classified as Nyquist wideband sensing techniques, since they depend 

primarily on Nyquist sampling [89]. Several evolved WBS techniques were proposed in the 

literature in order to reduce the operational sampling rate below Nyquist. For that reason, sub-

Nyquist WBS techniques have been proposed in the literature to perform sensing at low sampling 

rates and less complexity than Nyquist WBS techniques. The authors in [38] classified sub-Nyquist 

WBS techniques into two major categories, as summarized in Fig. 13: 

 Compressive sub-Nyquist WBS techniques: the authors in [124] utilized compressive sensing 

to minimize the sampling and signal acquisition rate. However, the technique needed 

increased robustness towards design imperfection. Therefore, the authors in [90] developed 

a Quarter Anolog-to-Information Converter (AIC) for improving power consumption. 

However, design imperfection in addition to model mismatches are major challenges. 

 Multi-channel based sub-Nyquist WBS techniques: These techniques are classified into: a) 

Modulated wideband converter [125]; b) Multi-coset sampling [126]; and c) Multi-rate 

asynchronous sub-Nyquist sampling [127]. Although these techniques solved mismatches 

(as in Compressive techniques), synchronization and power consumption are their main 

issues. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 13.  Merits and demerits of wideband spectrum sensing techniques. 

 

 

4.4 Challenges in the Spectrum Sensing Component 

So far the classifications and influencing factors on spectrum sensing were discussed. Since 

the spectrum sensing task plays a vital role in the performance of any CRN, sensing strategies and 

techniques were investigated in depth. However, there is still work to be done. The remaining 

challenges in the spectrum sensing component can be summarized as follow: 

 Sensing at extremely low SNR. 
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Multiband Joint 

detection [57]  
Filter-bank 

sensing [119] 
Wavelet detection 

(WT) [120] 
Swept-tune spectrum 

analyser [38] 

Merits: 
Low sampling rate, 

and reduce analog 

fronted bandwidth 
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Demerits:  

Design imperfection, 

and model 
mismatches 

Analog-to-Information 

Converter [90] 

WL multi-scale 

product [122] 
WL modulus 
maxima [121] 

WL multi-scale 

sum [123] 

Nyquist 

wideband 

sensing 

Multi-channel sensing [117] Compressive Sensing [124] 

Multi-coset sampling 
 [126] 

Multi-rate 

asynchronous sub-
Nyquist sampling [127] 

Modulated wideband 
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Merits:  
Low sampling rate, 

robust to 
mismatches 

  
Demerits: 

Sensitivity 

performance, and 
multiple sampling 
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Low sampling rate, 

and robust to 
mismatches 

  
Demerits:  
Require 

multichannel 
synchronization  

Merits:  
Low sampling rate, 
no need to perfect 

synchronization, and 

more amenable to 
implement 

  
Demerits:  

Energy consumption 



 Optimal threshold setting in heterogeneity spectrum bands. 

 Detecting spread spectrum primary signals. 

 Imperfect reporting channel. 

 Challenges in interference based detection: How to measure interference temperature in the 

primary. 

 Sensing under practical channel conditions taking into consideration, phenomena such as 

fading, and shadowing. 

 Sensing with limited information, and how to utilize the feedback information (in feedback 

cooperation CRN) efficiently. 

 Complexity of implementing robust wide band hardware. 

Moreover, although improvements in QoS provisioning are expected by applying Nyquist 

WBS techniques rather than narrowband sensing, feasible implementation and power consumption 

are very challenging [89]. These challenges of Nyquist WBS fall under two headline issues: 

 Wideband sensing techniques sampling rate: according to the Nyquist rate the sampling rate 

should be at least twice that of signal frequency. For example, if wide band sensing intends 

to cover 3 GHz bandwidth, the sampling rate must be at least 6 GHz. Consequently practical 

implementation and signal processing will become a crucial issue [38]. 

 Cooperative wideband sensing: In cooperative wideband sensing, SU should be capable of 

reporting the detected status of each band to FC [40]. 

Finally, sensing challenges are related with both incumbent coexistence (i.e. between SUs and 

PUs) and self-coexistence issues (i.e. among overlapped CRNs). Even though several channel 

assignment schemes proposed in [173-177] to mitigate self-coexistence problems, but CRNs 

concept were proposed to compete for spectrum holes without regulation. 

5 QoS provisioning approaches in Spectrum Decision Component 

The success of safe CRNs and PNs coexistence depends primarily on the channels utilized by 

CRNs [3]. After the available spectrum opportunities have been identified, CRN needs to identify 

the best channels in order to select the optimum candidate bands. This procedure falls under the 

Spectrum Decision component, which can be simply defined as the ability of a CRN to select the 

best available spectrum to satisfy the QoS requirements on a non-injurious basis to PUs or attacking 

other existing CRNs [1]. It is very important to distinguish the Spectrum Decision Making (SDM) 



task from spectrum allocation function which concerns assigning the selected channels (selected 

by the SDM algorithm) for different users and applications [109].  

5.1 Introduction to the Spectrum Decision Elements 

A large volume of research has been conducted in the literature to describe the spectrum 

decision component from different perspectives. As illustrated in Fig. 14, the elements that 

influence on spectrum band selection can be summarized as follows: 

 There are seven aspects influencing channel specifications: a) Channel identification: 

deterministic or stochastic; b) Channel holding time; c) Channel capacity; d) Channel 

range: The distance that the signal can be transmitted on the selected channel; e) Channel 

interference: Which refers to the maximum tolerated transmission power; f) Environment 

conditions: physical and weather; and g) Evacuation periods: Which refers to the time 

durations that the channel can accept overlapping PU and SU transmission before the 

transmission is considered as harmful interference (e.g. 2 sec in TV band) [1]. 

 There are five factors influencing channel selection: a) Reliability of sensing reports [143]; 

b) Cognitive engine prediction [128]; c) SU’s remaining energy (considered in CRAHNs 

only) [113]; d) Multi-channel selection [1139]; and e) Common Control Channel (CCC) 

consideration [190]. 

 There are two selection strategies in spectrum bands selection: a) Local: Refers to the 

selection that is performed by SU only (considered in CRAHNs related works only) [145]; 

and b) Central: Indicates that the selection is being made by a central node (e.g. BS in 

centralized CRNs) [191]. 

 There are six criteria used for channel selection: a) Interference: Defined as minimizing the 

interference among SUs and from SUs to PUs [140]; b) Throughput: Refers to selecting 

the channels that will maximize data rates at SUs [58]; c) Delay: Which attempts  to reduce 

the delay in RT applications [77]; d) Energy efficiency: Indicates minimizing power 

consumption at SUs [141]; e) Cross Layer Decision (CLD): Which denotes escaping from 

normal waterfall of ISO model such as a joint route and channel selection approach 

(considered in CRAHNs only) [192]; and f) Cluster based selection: Defined as distributing 

channel selection among several clusters [193]. 



 There are six algorithms and theories used commonly in SDM: a) Game theory [146]; b) 

Graph theory [142]; c) Linear programming [91]; d) Heuristics [78]; e) Evolutionary 

algorithms [147]; and f) Fuzzy logic [194]. 

 There are two QoS provisioning approaches in the spectrum decision component: a) 

Optimum channel selection: Refers to selecting of the channels that meet QoS 

requirements optimally; and b) Minimize channel selection overheads: indicates to 

minimizing the duration needed to complete the optimum decision process, and reducing 

the complexity of selection [41]. 

 There are two methods of channel selection for network applications: a) Optimum channel 

base application type: Defined as selecting different channels for Real Time (RT) (e.g. 

VOIP, TVIP, etc.), and Non-Real Time (NRT) (e.g. texts, emails, etc.) applications 

respectively [70]; b) Optimum channel for all applications: Refers to selecting the best 

channel for all offered services rather than specific applications [6]. 

 There are two sources that spectrum band selection may depend on: a) Prediction 

techniques; and b) Spectrum pooling [3]. 

There is no doubt that the QoS in any CRN will deteriorate by increasing and fluctuating of 

PUs activities as that would cause several channels handoff [31].  Due to sensing and adjusting 

SUs transceivers to pick a new best available channel, the channel handoff process causes 

undeniable overheads and delay in SUs activities, resulting in degradation in network reliability 

through dropping of existing SUs and blocking the incoming users. To overcome this challenge, 

several methods have been proposed, including: a) Channels reservation [195]; b) Traffic 

prioritization methods [196]; c) Spectrum leasing strategies [197]; d) Underlay spectrum 

access strategy [198]; e) Hybrid (Overlay and Underlay) spectrum access strategy [199]; f) 

MIMO Overlay CRNs [200]; g) MIMO Underlay CRNs [201]; and h) MIMO Hybrid CRNs 

[202].  It is important to mention that the selection of spectrum access strategy (Overlay, Underlay 

or Hybrid) is one of a number of spectrum sharing component functions which may be selected 

according to the expected performance on the selected channel [203]. Nevertheless, uncoordinated 

increase the number of CRNs, will affect the existing ones and the newly admitted networks may 

perform poorly. Therefore, the authors in [26] proposed first network admission algorithm namely 

CRNAC capable of assigning the maximum number of CRNs in any specific location. The 

following sub-sections will be dedicated to describing QoS provisioning approaches in this 

component. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.14.  Classification of spectrum decision elements. 
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5.2 Optimum Channel Selection 

A significant improvement in how to select the optimum channel has been proposed in the 

literature. Up to now, two methods have been adopted in optimum channel selection from: a) 

Prediction technique: Which can be defined as selecting the best channels by predicting the 

properties of the candidate channels that are reported from the sensing stage [114]; and b) 

Spectrum pooling: defined as selecting the best channels from databases that record the idle 

channels [137]. The authors in [34] found that selecting the optimum channel will reduce handoffs 

and power consumption by 50% and 55% respectively. Optimum channel selection needs robust 

modelling of the license spectrum activities.  

It is worth mentioning that, when the best channels are selected, these channels will be 

allocated to all services or will be grouped into RT and NRT applications respectively, as in [70, 

108, 161, 162]. Because channel allocation corresponds to Call Admission Control (CAC), it will 

be explained in the Spectrum Sharing component. Furthermore, channel selection and packets 

routing are jointly considered, therefore this will be described under spectrum sharing component. 

5.2.1 Optimum Channel Selection Based Prediction Methods 

In the literature, there are three steps that the cognitive engine of a CRN must perform in order 

to predict the activities on any spectrum band, these steps are as follows: 1) Observing; 2) 

modelling the activities; and 3) applying a prediction model to anticipate the activities [128]. More 

specifically, the steps can be summarized as follows: 

 Observing: In this step, the cognitive engine will observe samples of the activities of PUs 

and SUs (other CRNs) on a certain band. The observation can be performed by using the 

following tools: antennas, spectrum analyzer, and computer (to analyze the data). Generally 

speaking, various spectrum occupancy models from spectrum measurement campaigns were 

proposed. Table 5 summarizes the campaigns [204]-[216] over the past four years; as 

observed from the table, the measurements covered the frequency range below 3000 MHz, 

and the occupancy is less than 13% of the total frequency range. In particular, the migration 

from analogue to digital television broadcasting in a number of countries left specific vacant 

channels in the TV band [217]. 

 Modelling: Spectrum modelling can be used to increase spectrum sensing reliability to select 

the best channels for better opportunistic usage, and to remove sensing for more highly 

efficient resource usage. In the literature, various models have been used to imitate the 



spectrum activities, which can be categorized as follows: a) Statistical models: Refers to 

modelling statistical properties for received signals power, spectrum occupancy, and duty 

cycle; b) Probabilities models: Denotes modelling the Cumulative Distribution Function 

(CDF) or/and Probability Density Function (PDF) for channels’ parameters such as: a) 

signal power; b) duty cycle ; and c) holding time; c) Markov Chain models: Indicates 

modelling two statuses of spectrum occupancy (0, and 1) using one of the MC models, for 

example Continuous MC (CTMC), Continuous Time semi-MC (CTSMC), and Discrete 

Time MC (DTMC); d) Linear regression: Used in modelling the time, frequency, and 

space dimensions of the spectrum occupancy such as Laycock-Gott and space methods.  

Lastly, it is found that spectrum access based on spectrum modelling can increase the 

utilization of deterministic channels by 3% and the throughput by 10%, and reduce 

interference to PUs by 30% [33, 46].  

 

Table 5 Most recent spectrum measurement campaigns specifications. 

Campaign City and Country 
Frequency Rang 

(MHz) 

Average Duty 

Cycle (%) 

Year of 

Campaign  

Campaign 

Period (day) 

[204] Kwara State, Nigeria 

Rural 

50 - 6000 

0.18 

2016 

weekdays 

Urban 5.08 Weekdays 

Urban 1.45 weekends 

[205] San Luis Potosi, Mexico 2401 – 2499 7.00 to 34.00  2016 1 

[206] Dhaka city, Bangladesh 0 – 3000 19.00 2015 1 

[207] Kwara State, Nigeria 48.5 – 880 12.02 2015 1 

[208] Selangor, Malaysia 

880 – 960 35.31 

2014 1 

1710 – 1880 9.59 

1885 – 2200 26.08 

174 – 230 10.92 

470 – 798 13.36 

[209] Ruwi, Oman 40 – 3000 13.00 2014 6 

[210] Beijing 1, China 470 - 806  38.00 2014 7 

[211] Kuala Lumpur, Malaysia 470 – 798 27.89 2013 1 

[212] Kampala, Uganda 50 – 1100 37.00 2013 1 

[213] Rio de Janeiro, Brazil 144 – 2690  19.60  2013 90 

[214] San Luis Potosi, Mexico 30 - 910 12.50 2013 1 

[215] Suburb of Pune India 

174 - 230 03.55 
2013 1 

470 - 806 07.22 

[216] Hatfield area of Pretoria, South Africa 

470 - 854 20.00 

2013 42 935 - 960 92.00 

1805 - 1880 40.00 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 15.  Spectrum bands prediction steps and features. 
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 Predicting: Spectrum prediction in CRNs is a challenging problem, since it concerns several 

open research areas such as channel usage prediction [107], PU activity prediction [114], 

SU activity prediction [26], and channel MAC protocols prediction [150], [218].  In the 

literature, there are several prediction techniques applied in this area; the most frequently 

used techniques are: (a) Hidden Markov Model (HHM) [151]; (b) Bayesian inference 

Model [219]; (c) Auto-Regressive Model [220]; (d) Moving Average Model [221]; and 

(5) Neural Network [152].  The prediction model must then be trained using an optimizing 

algorithm such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA) etc. A 

summary of the spectrum prediction components is illustrated in Fig. 15. 

5.2.2 Optimum Channel Selection based Spectrum Pooling 

In September 2010, the Federal Communications Commission (FCC) released a memorandum 

opinion for eliminating spectrum sensing task from CRN responsibilities [30]. This elimination 

paved the way for geo-location databases capable of offering information on idle channels. 

However, these databases have the capability of identifying the vacant channels on the TV band 

only (i.e. TVWS). Because the PNs are not willing to provide unused portions of their licensed 

spectrum bands free of charge to any network, it is impossible to make official servers or databases 

assist the operation of CRNs by providing online information on the utilization in licensed spectrum 

bands at no cost.  

Recently, AIR.U company [222] (which is a collaboration between the declaration network 

group and various higher education groups from the USA and UK), began to develop a roadmap 

for Next Generation wireless Networks (NGNs) by utilizing unused TVWS to provide an upgrade 

of the available broadband network. In July 2013 the AIR.U deployed the first Super Wi-Fi on 

TVWS on the West Virginia University campus and nearby community, providing access to the 

internet for students [223]. The range of coverage is up to 5 Km, due to the fact that the propagation 

path loss and the attenuation by material such as walls are lower in the TV bands (VHF, and UHF) 

than in traditional Wi-Fi bands (e.g. 2.4 GHz, and 5 GHz) [224]. On November 2013 AIR.U 

announced the Quick Start Network Programme to accelerate the deployment of the NGN in rural 

areas exclusively for higher education institutions [225]. 



5.3 Minimize Channel Selection Overheads 

By selection overheads we mean the issues that the selection techniques may suffer from: a) 

complexity of considered optimizing methods; and b) the time needed to obtain the optimum 

channel. Regarding the first issue, the author in [128] trained an HMM model using four 

algorithms: Baum-Welch, Viterbi, PSO, and Memetic (Similar to GA). The model considered two 

different spectrum bands (heavy and light utilization from PUs). The performance of the model 

was then compared by considering each algorithm. It was found that PSO predicted the best 

channels faster than the other algorithms, and was not trapped in a local minimum as the other 

algorithms might be. However, using floating point operation, the author found that PSO suffered 

more from complexity than the other algorithms.   

In the CRN literature, significant studies have been conducted to reduce the decision period. 

The majority of methods concentrate on adapting and developing machine learning techniques. For 

example the authors in [148] combined two crossovers to develop a new version of GA in order to 

increase converging speed. In the same way, adaptive GA was proposed in [153] the converging 

period. The authors in [226] proved that adaptive Discrete PSO converged faster compared with 

normal PSO, and GA. 

Moreover, several studies have been published concerning WSS decision making on the status 

of sub-bands. For example, the authors in [129] designed robust 1-bit compressive sensing to 

reduce decision complexity. Exponential decay of reconstruction error from binary measurements 

of sparse signals was investigated in [130]. Very recently, a maximum likelihood of passive and 

active wideband power spectra scheme was proposed in [112]. However, power consumption is 

still the main challenge of soft CSS in WBS [42]. 

5.4 Challenges in the Spectrum Decision Component 

The spectrum decision component has attracted great attention due to the fact that the best 

channels will improve the reliability of the network in terms of call blocking, outage, and dropping 

probabilities respectively. However, there are many impairments looking for remedy. The most 

critical challenges that may face in obtaining an optimum selection can be summarized as follows: 

 Wide range of spectrum channels to select. 

 Dynamic availability of spectrum due to PUs and other SUs activity. 

 Long term prediction of each channel’s behaviour. 

 Complexity of modelling PUs and SUs activity separately. 



 Complexity of considering all QoS objectives; for that reason the majority of articles consider only 

one or two QoS objectives (e.g. only throughput [227], and throughput and efficient energy [149]). 

Undoubtedly, with expected increase in number of CRNs, spectrum decision may become 

more complicated because of coexisting CRNs activities (-so called SUs activity). Therefore, the 

authors in [26] presented a novel framework contribute for modelling SUs activity, as result more 

accurate modelling and anticipating of spectrum bands availability. Nevertheless the key solution 

of spectrum availability is assigning maximum number of CRNs allowed to operate in any location 

[26]. 

6 Conclusion 

Developing CRN components is currently experiencing remarkable advances. As it constitutes 

several QoS approaches to achieving high performance, it has to be robust enough against sporadic 

spectrum bands utilization. CRN’s unique characteristics are sufficient to allow the transformation 

from inflexible static spectrum management to DSA. However, there is work to be done. Although 

the literature contains plentiful productive research into QoS approaches, there are many challenges 

still requiring further research attention. The most vital CRNs’ components include: Spectrum, 

spectrum selection, spectrum sharing, and spectrum management. Spectrum sensing and spectrum 

selection components have attracted a great deal of attention from scholars, due to fact that they 

are very important roles to ensure reliable spectrum sharing, since spectrum sensing in CRNs is 

crucial, to ensure that all important spectrum opportunities are detected in a correct form. 

Furthermore, spectrum selection is also pivotal to ensuring appropriate bands are selected to satisfy 

QoS requirements of the services offered. 

This paper has been dedicated to presenting the main QoS provisioning approaches based on 

an extensive study of the most recent literature. So far, these approaches have not been investigated 

together in all CRN components. Due to the enormous studies in this area, we have separated the 

paper into two parts. In this part, we focused on the main approaches in spectrum sensing and 

spectrum decision making components. Spectrum sensing approaches include: sensing accuracy, 

and sensing efficiency; while spectrum decision making includes: optimum channel selection, and 

minimizing selection complexity. Furthermore, we explored the solutions and improvements on 

the most cited articles last four years. Moreover, we identified a significant number of open 

research issues relating to sensing and selection tasks. In the second part of this paper, we will 



investigate in depth the QoS provisioning approaches of intranetworking internetworking spectrum 

sharing and management. 
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