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Data analytics enhanced component volatility model 

 

Abstract 

Volatility modelling and forecasting have attracted many attentions in both finance and computation areas. 

Recent advances in machine learning allow us to construct complex models on volatility forecasting. 

However, the machine learning algorithms have been used merely as additional tools to the existing 

econometrics models. The hybrid models that specifically capture the characteristics of the volatility data 

have not been developed yet. We propose a new hybrid model, which is constructed by a low-pass filter, the 

autoregressive neural network and an autoregressive model. The volatility data is decomposed by the low-

pass filter into long and short term components, which are then modelled by the autoregressive neural network 

and an autoregressive model respectively. The total forecasting result is aggregated by the outputs of two 

models. The experimental evaluations using one-hour and one-day realized volatility across four major 

foreign exchanges showed that the proposed model significantly outperforms the component GARCH, 

EGARCH and neural network only models in all forecasting horizons. 

 

 

1. Introduction 

Volatility is considered the “barometer for the vulnerability of financial markets and the economy” (Jiang, 

Ahmed, & Liu, 2016) (Poon & Granger, 2003) and is crucial for asset pricing, derivative valuation and risk 

management. Volatility modelling and forecasting is a much devoted area of research and have attracted 

many attentions of researches. A number of econometrics and machine learning models have been developed 

in past years. Conventional models include generalized autoregressive conditional heteroskedastic (GARCH) 

model, developed by (Tim, 1986) and (Bollerslev, 1990), was accepted as one of the most popular volatility 

models for years. At the same time, autoregressive fractionally integrated moving average (ARFIMA) model 
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has been proposed to capture the long memory property in realized volatility (Granger C. W., 1980) (Granger 

& Joyeux, 1980). In 1999, (Lee & Engle, 1999)  introduced a component GARCH model, which decomposes 

volatility into two components: a permanent long run trend component and a transitory short-run one that is 

mean-reverted to the long-run trend (Harris, Stoja, & Yilmaz, 2015). After that, more empirical evidences 

suggested that two-component model can capture the volatility structure much better than the one-component 

models. For example, (Brandt & Jones, 2006) showed that daily volatility can be well characterized by two-

component model structure with one highly persistent component and one strongly stationary component. A 

number of literatures have found that two-component volatility models perform better than the one-

component models in explaining stock as well as exchange rate volatilities. Started from component GARCH 

model, introduced by (Lee & Engle, 1999), those two-component models usually consider the volatilities as 

a composition of a permanent long-run trend component and a transitory short-run component, both of which 

follow a mean-reverting process with a slow reversion speed in long-run trend and quick reversion speed in 

the short-run one. 

 

Additional to the traditional econometrics models, machine-learning algorithms have been widely used in 

financial modelling (Jia, Yi, Yuan, Xuemei, & Yuhua, 2017) (Zhai, Cao, Yao, Ding, & Li, 2017) (Yi, Yuhua, 

Sonya, Ammar, & Martin, 2015) in recent years. (Boyacioglu & Avci, 2010) proposed an adaptive neural 

fuzzy inference system (ANFIS) for predicting earning per shares on Istanbul stock market and concluded 

that their method performed well on monthly forecasting. This ANFIS model was also effectively applied in 

predicting closing price of Zagreb Stock Market index (Svalina, Galzina, Lujić, & Šimunović, 2013). Two 

hybrid models were proposed in (Hajizadeh, Seifi, Zarandi, & Turksen, 2012), where explanatory input 

variables were selected based on GARCH, EGARCH and GJR-GARCH models and were fed into neural 

network model for volatility forecasting. The experimental evaluations showed that the hybrid models 

outperforming traditional models effectively. A hybrid model of self-organized fuzzy neural network and 

ARIMA model has been proposed in (McDonald S. , Coleman, McGinnity, & Li, 2013) and applied on 
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financial markets. This hybrid model was thoroughly compared with other traditional forecasting models in 

(McDonald S. , Coleman, McGinnity, Li, & Belatreche, 2014). The results showed that hybrid model 

achieved better forecasting results in average. (Kristjanpoller, Fadic, & Minutolo, 2014) developed a hybrid 

model composed of neural network and GARCH model, where the volatility is modelled and forecasted by 

GARCH model at the first step and the output of the GARCH as well as the original volatility data were then 

fed into a neural network model for forecasting the volatility. It showed that the hybrid model significantly 

outperformed the traditional ARFIMA and GARCH model. The hybrid model was extended in 

(Kristjanpoller & Minutolo, 2016) for spot and future oil price and showed 30% increase on precision over 

previous models. Among the structures of most hybrid models, artificial neural network is widely used for 

modelling the non-linear part of the underlying variable. Artificial neural network is also widely used in time 

series forecasting in recent studies (Rubio, Elias, Cruz, & Pacheco, 2016) (Aljarah, Faris, Mirjalili, & Al-

Madi, 2016) (Rubio, 2016) (Restrepo, Manotas, & Lozano, 2016 ) (Jesús, 2016) (Liu, et al., 2016). Those 

studies show that careful feature selection and certain neural network structure with tailor-made algorithms 

can reach a stable, convergent, and better accuracy when compared with the traditional neural network for 

the prediction of time-series in different areas, i.e., mechatronic processes, brain signal, and some other 

biomedical data. (Kristjanpoller, Fadic, & Minutolo, 2014) and (Kristjanpoller & Minutolo, 2016) further 

show that particularly designed hybrid model composed of the artificial neural network and traditional 

GARCH models achieves significantly better performance than the traditional models, i.e., GARCH, 

EGARCH, and ARFIMA in forecasting the volatility of foreign exchange and commodity future. The hybrid 

models are trained by carefully selected features that are related to the volatility. In addition, the work in 

(Sharda & Patil, Oct 1992) (Gorr, June 1994) (Zhang & Qi, 16 January 2005) show that autoregressive neural 

network (ARNN) outperforms other structure of artificial neural network in trend and seasonality forecasting 

of a non-linear time series, where the trend is defined as removing the short-term components from the raw 

time series and the seasonality is defined as removing the long-term components. (Zhang & Qi, 16 January 

2005) and (Nelson, Hill, Remus, & O'Connor, 1999) show that prior data processing, removing either the 
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trend or the seasonality, can dramatically reduce forecasting errors and is critical to build an adequate ARNN 

based forecasting model. 

 

Inspired by previous work of two-component models in econometrics area and hybrid models in machine 

learning area, we propose an alternative, very simple-structured model to capturing and forecasting volatility 

across short and long forecasting horizons. Our measure of volatility is based on the realized volatility. We 

decompose the volatility to long-term and short-term components using a low-pass Hodrick-Prescott filter, 

and then model the long-term component using an autoregressive neural network and the short-term 

component as a stationary autoregressive process around the long-term component. The structure of a low-

pass filter, a first order autoregressive process and an autoregressive neural network is simple but effective 

to capture the dynamics of two components of the realized volatility. Since neural network is one of the most 

popular data analytics algorithms, we name it as “data analytics enhanced component volatility model”. We 

evaluate the model’s out-of-sample forecasting performance based on the one-hour and one-day realized 

volatility constructed using EUR/USD, GBP/EUR, GBP/JPY and GBP/USD high frequency exchange rates 

over the period 27 September 2009 to 12 August 2015, which includes around 7.7 billion observations across 

2145 days. As a benchmark, we compare the forecasting accuracy of the proposed model with those of the 

two-component GARCH model (Lee & Engle, 1999) and the traditional EGARCH model as well as the 

neural network only model. We evaluate the performances up to 500 time points, which are 50 days for one-

hour volatility and roughly two years for one-day volatility. Consistent with the findings of (Lee & Engle, 

1999) and (Brandt & Jones, 2006), our experimental evaluations also show that in almost all the cases, our 

proposed model provides a significant improvement in forecasting performance over Component GARCH 

and EGARCH as well as the neural network only model. The improvement is stable across short and long 

horizons. In particular, the forecasting accuracy of our proposed model is roughly consistent across all 

horizons while the performance of the Component GARCH and EGARCH model deteriorate significantly in 
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long horizon forecasting. Overall, the experimental evaluations show that our proposed model achieves a 

stable and much better forecasting performance than most of the traditional volatility models. 

 

The outline of the remainder of this paper is as follows. In Section 2, we present the structure and details of 

the proposed model. Section 3 describes the data used in the empirical analysis and the forecasting evaluation 

criteria. Section 4 presents the empirical results and Section 5 provides a summary, concluding remarks and 

some future research directions. 

 

 

2. Methodology 

2.1 Model structure 

In this paper, we follow this idea and the model format in (Lee & Engle, 1999), we assume the realized 

volatility follows a two-component process given by  

 σt = 𝐿𝑡 + 𝑆𝑡 (1) 

 𝑆𝑡 = 𝛼𝑆𝑡−1 + εt (2) 

where 𝐿𝑡 and 𝑆𝑡 are the long and short term component of the realized volatility respectively and εt is the 

random error term with zero mean and constant variance. The short term component 𝑆𝑡 is an autoregressive, 

AR(1), process with the parameter 𝛼, which measures the speed of the short term revision to long term trend. 

This structure of the volatility is following the two-component characteristics in previous literatures, for 

example (Lee & Engle, 1999), (Alizadeh, Brandt, & Diebold, 2002), and (Brandt & Jones, 2006). However, 

the implementation of our two-component model is different from traditional Component GARCH model.  

 

We implement the two-component model given in equation (1) and (2) in three steps. Firstly, we decompose 

and extract the long-term component 𝐿𝑡 from the realized volatility using low-pass Hodrick-Prescott filter 
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(Hodrick & Prescott, 1997). After getting 𝐿𝑡 , the short term component of the realized volatility can be 

obtained by 𝑆𝑡 = σt − 𝐿𝑡. In the second step, we train an artificial neural network (ANN) using the long-term 

component 𝐿𝑡 to obtain a forecasting model. A future value of 𝐿𝑡+𝑛 at time 𝑡 + 𝑛 can be forecasted by the 

trained ANN.  In the last step, the AR(1) process model 𝑆𝑡 = 𝛼𝑆𝑡−1 + εt is estimated using the short term 

component 𝑆𝑡 , which is obtained from the first step. A future value of 𝑆𝑡+𝑛  at time 𝑡 + 𝑛  can be then 

forecasted by the estimated AR(1) model. Therefore, we can calculate the future value of the realized 

volatility at time 𝑡 + 𝑛 by 𝜎𝑡+𝑛 = 𝐿𝑡+𝑛 + 𝑆𝑡+𝑛.  

 

2.2 Volatility decomposition 

In the first step, the long-term component 𝐿𝑡 is extracted from the realized volatility. To do this, the low-pass 

Hodrick-Prescott filter (Hodrick & Prescott, 1997) is applied to extract a low frequency non-linear component 

from a time-series. That low frequency component represents the trend of the long-term component of the 

realized volatility. Hodrick-Prescott filter (Hodrick-Prescott filter) is widely used in applied macroeconomics 

(Stock & Watson, 1999) (McElroy, 2008) (Stock & Watson, 2016) for removing the short-term cyclical 

component of a time series from raw data. Given the value of the smoothing parameter 𝜆, the long term trend 

component shall solve  

min
𝜏

(∑(𝑦𝑡 − 𝜏𝑡)
2 + 𝜆∑[(𝜏𝑡+1 − 𝜏𝑡) − (𝜏𝑡 − 𝜏𝑡−1)]

2

𝑇−1

𝑡=2

𝑇

𝑡=1

) 

where the smoothing parameter 𝜆 penalizes the variations in the growth rate of the trend component. The 

larger the value 𝜆, the higher is the penalty. We follow the studies in (Baxter & King, 1999) (Ravn & Uhlig, 

2002) (Harris, Stoja, & Yilmaz, 2015) to set the 𝜆 as the widely used empirical value of 100 multiplied by 

the squared frequency of the data, which for one hour realized volatility (assuming 360 trading days per year 

and 8 hours per day) is 𝜆 = 100 ∗ (360 ∗ 8)2 = 829440000.  
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2.3 Autoregressive Neural Network 

2.3.1 Network structure 

In the second step of implementing our two-component model, we use an autoregressive neural network 

(ARNN), a special format of artificial neural network, to model and forecasting the long-term component 𝐿𝑡 

of realized volatility. As the discussion in Section 1, the work in (Sharda & Patil, Oct 1992) (Gorr, June 1994) 

(Zhang & Qi, 16 January 2005) show that ARNN outperforms other structure of artificial neural network in 

trend and seasonality forecasting of a non-linear time series. (Zhang & Qi, 16 January 2005) and (Nelson, 

Hill, Remus, & O'Connor, 1999) further show that prior data processing, removing either the trend or the 

seasonality, can dramatically reduce forecasting errors and is critical to build an adequate ARNN based 

forecasting model. Therefore, in our paper, we follow the existing study and employ the ARNN to model and 

forecasting the trend, the long-term component 𝐿𝑡 of realized volatility. The reason of selecting ARNN is 

twofold. First, main strand finance literature usually assumes the volatility is composed of two autoregressive 

process, long term and short term. We follow the traditional assumption with augmented adjustment: ARNN, 

which models the lags as a nonlinear function. Secondly, compared with other artificial neural network, 

ARNN can achieve even better accuracy in “deseasonalized” financial time-series forecasting by a relatively 

simple structure, where appropriate lags instead of a number of additional features is crucial for the 

forecasting performance. ARNN is also proved to have advantages over recurrent feed-forward neural 

network and is less sensitive to the problem of long-term dependence (Mustafaraj, Lowry, & Chen, 2011). 

Compared with traditional feed-forward artificial neural network, the ARNN has interconnection from the 

lagged input to the output layer, which enhances its capability of forecasting more than one-step as a time-

series predictor. We follow the traditional ARNN structure: 

𝑌𝑡 = 𝛼0 +∑𝛼𝑖𝑌𝑡−𝑖

𝑛

𝑖=1

+∑Ψ(𝛾0𝑗 +∑𝛾𝑖𝑗𝑌𝑡−𝑖

𝑛

𝑖=1

)𝛽𝑗

ℎ

𝑗=1

+ 𝜀𝑡 

where 𝑛 is the number of lags, ℎ is the number of hidden neurons, Ψ(. ) is the activation function, 𝛾 is the 

weights between input and hidden neurons, 𝛽 is the weights between hidden and output neurons. The non-
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linear part contains ℎ hidden neurons transforms the input variables, defined as the 𝑛-lagged long-term 

component 𝐿𝑡 of realized volatility, weighted by parameters 𝛾𝑖𝑗 plus a bias 𝛾0𝑗, via a non-linear activation 

function Ψ(. ). If representing the number of lags and hidden neurons as 𝑖 and 𝑗, a hidden neuron can be 

denoted by  

Ψ(𝛾0𝑗 +∑𝛾𝑖𝑗𝑌𝑡−𝑖

𝑛

𝑖=1

) 

each of which is weighted by a parameter 𝛽𝑗 before it produces the output layer. Since we want to model and 

forecasting the long-term component of volatility, ARNN operates as a non-linear regression function at the 

end as 

𝑌𝑡 = 𝐺(𝑌𝑡−1, 𝑌𝑡−2, … , 𝑌𝑡−𝑛) + 𝜀𝑡,𝐴𝑅𝑋𝑁𝑁 

which maps the unknown relation, 𝐺(∙), between the input variable and the target function 𝑌𝑡 and the error 

term 𝜀𝑡,𝐴𝑅𝑋𝑁𝑁. For the purpose of this study, the hidden layer uses the hyperbolic tangent sigmoid transfer 

function, while the output layer uses a linear transfer function. The ARNN structure with only one hidden 

layer is considered since it operates as a non-linear regression function and can be trained to approximate 

most non-linear function arbitrarily well (Siegelmann, Horne, & Giles, 1997 ), (Andreou, Charalambous, & 

Martzoukos, 2008) (Mustafaraj, Lowry, & Chen, 2011). Following this structure, in this paper, to forecasting 

long-term component 𝐿𝑡  of the realized volatility, an autoregressive neural network (ARNN) with three 

layers structure is used: an input layer that includes lagged 𝐿𝑡 inputs to the network; a hidden layer with 

hyperbolic tangential activation function, and an output layers with a linear activation function. In previous 

studies, the estimation of the model parameters usually follows the back-propagation algorithm. It is shown 

in (Charalambous, June 1992) that the back-propagation algorithm is often unable to converge rapidly to the 

optimal solution. Therefore, we utilize the modified Levenberg-Marquardt (LM) algorithm, which is much 

more sophisticated and efficient in terms of time capacity and accuracy (Hagan & Menhaj, 1994). When 

training the ARNN, we divide the training dataset into three subsets, 80% of the data for training the ARNN, 

10% for validation, and the last 10% for testing. During the training process, the errors on the training dataset 
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and validation dataset are monitored at the same time. When the validation error rises while the training error 

maintains, the ARNN begins to overfit the data. The weights and bias at the minimum of the validation error 

are saved as the trained ARNN 

 

2.3.2 Network parameters 

Under this structure of ARNN, the number of lags 𝑛 and the number of hidden neurons ℎ are the crucial 

parameters for constructing the ARNN model. We follow the widely used configuration for the ARNN in 

(Siegelmann, Horne, & Giles, 1997 ) and (Mustafaraj, Lowry, & Chen, 2011), and investigate the 

performance using the number of lags from 2 to 5, which is 𝑛 = 2,3,4,5. We firstly use ℎ = 10 as the 

preliminary configuration for the number of hidden neurons and finds the appropriate lags. We use the long-

term component 𝐿𝑡 of one hour realized EURUSD rate from 27 Sep 2009 to 06 Dec 2012 to train the ARNN 

model under 𝑛 = 2,3,4,5 and use 500 long-term component values of EURUSD rate from 07 Dec 2012 to 15 

Jan 2013 to test the trained model. The forecasting error is defined as 𝐿̂𝑡 − 𝐿𝑡, the difference between the 

original value 𝐿𝑡 and the forecasted one. The average errors across the forecasting horizons is listed in Table 

1, where we can observe that the best average error is at 𝑛 = 4, although the errors do not show a significant 

difference among different configuration of lag numbers. Four lags also conform to the configuration 

suggested in (Siegelmann, Horne, & Giles, 1997 ) and (Mustafaraj, Lowry, & Chen, 2011). Therefore, in this 

paper, we use four lags autoregressive neural network (ARNN) following the suggested configuration and 

our empirical investigation. 

Table 1 This table contains the average forecasted error across the horizon from 07 Dec 2012 to 15 Jan 2013 under configurations 

of lag number from 2, 3, 4 and 5 

 𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5 

Average error  1.22807E-05 1.22647E-05 1.21385E-05 1.2293E-05 

 

The following Error! Reference source not found.Figure 1 shows an example of using ARNN model to 

forecasting the long-term component 𝐿𝑡 of one hour realized EURUSD rate from 07 Dec 2012 to 15 Jan 

2013. The ARNN model was constructed using one hidden layer with 10 neurons and was trained using the 
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𝐿𝑡 of EURUSD rate from 27 Sep 2009 to 06 Dec 2012. The forecasting results 𝐿̂𝑡 include 500 long-term 

component values of EURUSD rate from 07 Dec 2012 to 15 Jan 2013. The forecasting error, defined as 𝐿̂𝑡 −

𝐿𝑡, between the original value 𝐿𝑡 and the forecasted one 𝐿̂𝑡 are shown in the bottom sub-figure, from which 

we can observe that out-of-sample forecasting errors are around 10−5. 

 

Figure 1 This figure shows an example of out-of-sample forecasting long term component 𝑳𝒕 of EURUSD using ARNN. The top 

figure shows the long term component of EURUSD from 07 Dec 2012 to 05 Feb 2013 decomposed by Hodrick-Prescott filter. The 

middle figure shows the forecasted value 𝑳̂𝒕 of the long term component of EURUSD from 07 Dec 2012 to 15 Jan 2013 using ARNN 

model. The bottom figure shows the differences 𝑳̂𝒕 − 𝑳𝒕 between the original long term component of EURUSD and the forecasted 

one. 

 

 

2.4 Autoregressive model 

In the third step, we estimate an autoregressive model for the short-term component 𝑆𝑡: 𝑆𝑡 = 𝛼𝑆𝑡−1 + εt. The 

n-step ahead forecasting of the short-term component 𝑆𝑡 is therefore given by 

 𝑆̂𝑡+𝑛 = 𝛼𝑛𝑆𝑡 + ∑ 𝛼𝑖𝑛−1
𝑖 εt−i (3) 

We can obtain the forecasted the long-term component 𝐿̂𝑡+𝑛 of the realized volatility through ARNN model. 

Therefore, the n-step ahead forecasting of the one hour realized volatility is given by Equation (1) as σ̂t+n =

𝐿̂𝑡+𝑛 + 𝑆̂𝑡+𝑛 . We name the proposed model as autoregressive neural network enhanced two-component 

model (shorted as: NNE2C) due to the implementation of the model structure. To estimate the autoregressive 
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model for the short-term component 𝑆𝑡, we utilize the method of moment through Yule–Walker equations, 

named for Udny Yule and Gilbert Walker (Yule, 1927) (Walker, 1931): 

𝛾𝑚 = ∑𝛼𝑘𝛾𝑚−𝑘

𝑝

𝑘=1

+ 𝜎𝜖
2𝛿𝑚,0 

where 𝛾𝑚 is the autocovariance function of 𝑆𝑡, 𝜎𝜖
2 is the variance of the input noise process and the 𝛿𝑚,0 is 

the Kronecker delta function. For the case 𝑝 = 1, one lag autoregressive process AR(1), the 𝛼1  can be 

obtained by 𝛾1/𝛾0. 

 

2.5 Model flow 

We summarize the NNE2C model workflow when applied in realized volatility forecasting. Different from 

other hybrid models, which usually use the neural network as the dominate one to model the non-linear part 

of the underline financial variable, i.e. volatility or foreign exchange and use the ARIMA (McDonald S. , 

Coleman, McGinnity, Li, & Belatreche, 2014) or GARCH model (Kristjanpoller, Fadic, & Minutolo, 2014) 

as the pre-processing part for modelling the linear part of the underline financial variable, the NNE2C model 

follows the traditional financial theory to consider the volatility as a combination of the long and short term 

while producing an enhanced mechanism through explicitly decomposing the two components and modelling 

them separately. The simple NNE2C model follows and enhances the financial theory by capturing the 

volatility structure explicitly and effectively. 

 

Algorithm 1 Workflow of proposed NNE2C model 

1 Given the realized volatility σt of selected financial security, i.e. FX, we assume it is composed of long and short term 
components: σt = 𝐿𝑡 + 𝑆𝑡 

2 We use Hodrick-Prescott filter as a low-pass filter to explicitly extract the long term component 𝐿𝑡. The smoothing 
parameter 𝜆 of Hodrick-Prescott filter is selected according to the empirical study: 𝜆 = 100 ∗ (360 ∗ 8)2 =
829440000. 

min
𝜏

(∑(σt − 𝜏𝑡)
2 + 𝜆∑[(𝜏𝑡+1 − 𝜏𝑡) − (𝜏𝑡 − 𝜏𝑡−1)]

2

𝑇−1

𝑡=2

𝑇

𝑡=1

) 

3 The short term component 𝑆𝑡 is then obtained by 𝑆𝑡 = σt − 𝐿𝑡 

4 Modelling 𝐿𝑡 and 𝑆𝑡 simultaneously: 
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Using 𝐿𝑡 to train the ARNN with 4 lags and 10 hidden neurons, 𝑛 step ahead 𝐿𝑡+𝑛 is forecasted by the trained ARNN 
model; 

𝐿𝑡 = 𝛼0 +∑𝛼𝑖𝐿𝑡−𝑖

𝑛

𝑖=1

+∑Ψ(𝛾0𝑗 +∑𝛾𝑖𝑗𝐿𝑡−𝑖

𝑛

𝑖=1

)𝛽𝑗

ℎ

𝑗=1

+ 𝜀𝑡 

Using 𝑆𝑡 to estimate the AR(1) model, 𝑛 step ahead 𝑆𝑡+𝑛 is forecasted by the estimated AR(1) model; 
𝑆𝑡 = 𝛼𝑆𝑡−1 + εt 

5 𝑛 step ahead realized volatility is obtained by σt+n = 𝐿𝑡+n + 𝑆𝑡+n 

 

 

3. Data and forecasting evaluation 

3.1 Data 

We use the neural network enhanced two-component model defined in Section 2 to forecasting the volatility 

of the EUR/USD, GBP/EUR, GBP/JPY and GBP/USD exchange rates. High frequency exchange rate data 

(tick data) were obtained from Oricode Inc for the period 27 September 2009 to 12 August 2015 and included 

around 7.7 billion observations across 2145 days. The unobserved true volatility, in principle, can be 

estimated arbitrarily accurately using a measure of realized volatility calculated through the intraday returns 

(Harris, Stoja, & Yilmaz, 2015). It is proved by (Torben, Tim, & Francis, 2009) that the sum of squared 

intraday returns converges to the unobserved true volatility with the intraday interval approaching to zero. In 

this study, we use realized volatility as the proxy of the unobserved true volatility. This is obtained by 

aggregating the intraday squared returns using the approach given by (Andersen & Bollerslev, 1998): 

𝜎̂𝑟𝑣,𝑡
2 = ∑𝑟𝑡,𝑛

2

𝑁

𝑛=1

 

where 𝜎̂𝑟𝑣,𝑡
2  is the realized volatility for time 𝑡, and 𝑟𝑡,𝑛

2  is the squared log return on time 𝑡 for interval 𝑛 (𝑛 =

1,2,… ,𝑁). In this paper, we use one-hour and one-day realized volatilities, both of which are constructed 

from 10 millisecond log return, which is the highest frequency in our data.  

 

The one-hour realized volatility is obtained by aggregating 360,000 10-millisecond log returns 𝑟𝑡,𝑛
2  in each 

hour. The data from 27 September 2009 to 07 December 2012 (20000 observations) is used for the initial 
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estimation of the model, while the data from 08 December 2012 to 12 August 2015 (16681) is used for out-

of-sample evaluation. The one-day realized volatilities is constructed by the sum of 3,600,000 log returns in 

each trading day. For the one-day realized volatilities, the data from 27 September 2009 to 07 December 

2012 (1000 observations) is used for the initial estimation of the model, while the remained data (837 

observations) is used for out-of-sample evaluation. 

 

Table 2 reports summary statistics for the one-hour and one-day realized volatilities of full observations of 

four exchange rates. Panel A reports the mean, standard deviation, skewness and excess kurtosis and Bera–

Jarque statistic and Panel B reports the first six autocorrelation coefficients and the Ljung–Box Q statistic for 

autocorrelation of six lags for the realized volatilities. P-values are also reported in parentheses. In the Ljung–

Box Q tests, the null hypothesis that the residuals of the returns are not autocorrelated is rejected in both one-

hour and one-day realized volatilities. Therefore the two realized volatilities are all highly autocorrelated. 

Table 2 Summary statistics and autocorrelations 

 mean Standard deviation Skewness Excess kurtosis Bera-Jarque 

Panel A: Summary statistics 

GBP/USD 1 Hr 1.6657E-06 9.1010E-06 1.0231E+02 1.1661E+04 2.0743E+11 

GBP/JPY 1 Hr 3.6200E-06 7.6346E-06 4.5817E+01 3.4566E+03 1.8227E+10 

GBP/EUR 1 Hr 1.8514E-06 3.1560E-06 2.5651E+01 1.1853E+03 2.1401E+09 

EUR/USD 1 Hr 2.1207E-06 5.6940E-06 4.4465E+01 3.8006E+03 2.2055E+10 

      

GBP/USD Daily 3.2698E-05 7.2746E-05 3.5359E+01 1.4143E+03 1.5292E+08 

GBP/JPY Daily 7.0981E-05 6.8848E-05 7.5062E+00 1.0538E+02 8.2050E+05 

GBP/EUR Daily 3.6060E-05 2.4165E-05 2.4964E+00 1.6728E+01 1.6342E+04 

EUR/USD Daily 4.1188E-05 5.5114E-05 2.1497E+01 7.0608E+02 3.8019E+07 

 

Panel B: Autocorrelations 

 1 2 3 4 5 6 Ljung–Box Q 

GBP/USD 1 Hr 0.6638 0.2696 0.0387 0.0210 0.0216 0.0225 1.8952E+04 (0.0000) 

GBP/JPY 1 Hr 0.2870 0.1879 0.1897 0.1569 0.1559 0.1502 1.4856E+04 (0.0000) 

GBP/EUR 1 Hr 0.2381 0.1711 0.1363 0.1149 0.0903 0.0784 5.8392E+03 (0.0000) 

EUR/USD 1 Hr 0.3683 0.2986 0.2442 0.2361 0.1952 0.1588 1.7166E+04 (0.0000) 

        

GBP/USD Daily 0.0569 0.0255 0.0214 0.0218 0.0753 0.1139 6.8927E+01 (2.7236E-07) 

GBP/JPY Daily 0.5392 0.2908 0.2817 0.2527 0.2763 0.3728 2.8913E+03 (0.0000) 

GBP/EUR Daily 0.4351 0.1860 0.1641 0.1646 0.3203 0.5706 3.3945E+03 (0.0000) 

EUR/USD Daily 0.1811 0.1007 0.0914 0.0894 0.1412 0.2041 6.3254E+02 (0.0000) 
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In the example in the following Figure 2(a-b), Hodrick-Prescott filter is applied to one hour realized volatility 

with smoothing parameter 𝜆 of 829440000 (blue curve in Figure 2(a)) of EURUSD exchange rate from 27 

Sep 2009 to 07 Dec 2012 to extract the long term component 𝐿𝑡 (red curve in Figure 2(b)). Figure 2(c-d) 

shows an example of one-day realized volatility with long term component extracted by Hodrick-Prescott 

filter with smoothing parameter 𝜆 of 12960000 (assuming 360 trading days per year, the 𝜆 is calculated by 

100 multiplied by the squared frequency of the data). 

  

                                         (a)                                                                              (b) 

 

                                         (c)                                                                              (d) 

Figure 2 (a) Blue curve in the figure: One-hour realized volatility of EURUSD exchange rate from 27 Sep 2009 to 07 Dec 2012; Red 

curve: the long term component 𝑳𝒕of the realized volatility extracted by low-pass Hodrick-Prescott filter; (b) Short term component 

of one-hour realized volatility of EURUSD exchange rate; (c) Blue curve in the figure: one-day realized volatility of EURUSD 

exchange rate from 27 Sep 2009 to 07 Dec 2012; Red curve: the long term component 𝑳𝒕of the realized volatility extracted by low-

pass Hodrick-Prescott filter; (d) Short term component of one-day realized volatility of EURUSD exchange rate. 
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3.2 Forecasting evaluation 

The proposed neural network enhanced two-component model is used to calculate out-of-sample forecastings 

of the realized volatilities of up to 500 hours or days ahead across the evaluation period for the one-hour or 

one-day realized volatility respectively. As the benchmark, we select one-factor EGARCH and two-factor 

Component GARCH of (Lee & Engle, 1999). In addition, we also employ four lags autoregressive neural 

network applied directly on realized volatility as one of the benchmark models. We therefore estimate four 

models: a) four lags autoregressive neural network enhanced two-component model (NNE2C); b) one-

component EGARCH model; c) two-component GARCH model; and d) four lags autoregressive neural 

network model (NNOnly). The four models are evaluated using one-hour and one-day realized volatilities 

respectively. For one-hour and one-day data, four models are initially estimated using the first 20,000 and 

1,000 observations from 27 Sep 2009 to 07 Dec 2012 respectively and then the volatilities at different 

estimation periods are calculated. Following (Michael & Christopher, 2006), we consider forecasting 

horizons of 5, 20, 100, 200, 360, and 500 hours or days ahead for one-hour or one-day volatility respectively. 

We choose the root mean square error (RMSE) with respect to the true realized volatility as the measure of 

the forecasting performance: 

 𝑅𝑀𝑆𝐸 = [
1

𝑇
∑ (𝜎𝑡(𝜏𝑡, 𝜏𝑡+𝑇) − 𝜎̂𝑡(𝜏𝑖,𝑡, 𝜏𝑡+𝑇))

2
𝑇
𝑡=1 ]

1

2

 (4) 

For the shorter evaluation horizons of 5, 20, 100, we calculate the RMSE over the forecasting horizon, i.e. 

(𝜏𝑡 , 𝜏𝑡+𝑇) = (1,5), (1,20) and (1,100). For the three longer horizons, we calculate the RMSE over 100 time 

points, i.e. (𝜏𝑡 , 𝜏𝑡+𝑇) = (100,200), (260,360)  and (400,500) . For the one-hour realized volatility, the 

RMSE is to evaluate the average performance over 10 days (10 trading hours in each day). For the one-day 

realized volatility, the RMSE is to evaluate the average performance over 3 month ahead. 
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4. Results 

4.1 Model parameter 

In theory, three-layer autoregressive neural network can approximate most of the functions as long as a 

sufficient number of hidden neurons is provided. In this paper, we construct the NNE2C with 5, 10, and 15 

neurons in the hidden layer and test the forecasting performance of the proposed model. The results are 

illustrated in Table 3 and Table 4 for one-hour and one-day realized volatility data respectively. For the 

comparison purpose, we also included the forecasting results with 10 hidden neurons in Table 3 and Table 4. 

From Table 3, it is very clear that for the NNE2C, the forecasting accuracies are roughly the same by using 

different number of hidden neurons. The forecasting accuracy does not increase with the number of hidden 

neuron increases. This result is consistent in all forecasting horizons across four currencies. The only case 

that the forecasting accuracy rises with the increase of the number of hidden neurons is highlighted in Table 

3 as GBP/USD rate at (100,200) horizon. However, the accuracy increase is as subtle as around 10E-8. For 

all the cases in Table 4, the forecasting accuracy differences by different number of hidden neurons are also 

tiny. The only three cases that the forecasting accuracy increases (although tiny) with the rise of the number 

of hidden neurons are highlighted in Table 4: GBP/JPY rate at horizon (260,360), (400,500) and GBP/EUR 

at horizon (400,500). In addition, the forecasting accuracies of NNOnly model with different number of 

hidden neurons do not show significant differences in Table 3 and Table 4 as well. Our results also conform 

to the previous researches in (Kristjanpoller & Minutolo, 2016) and (Kristjanpoller, Fadic, & Minutolo, 2014). 

Therefore, based on our experimental evaluations in Table 3 and Table 4, we believe our proposed NNE2C 

can achieve the best forecasting performance under the structure of three-layer autoregressive neural network 

with 10 hidden neurons. 

 

Table 3 Forecasting performance of one-hour realized volatilities. This table reports the Root mean square error (RMSE) for the 

autoregressive neural network enhanced two-component model constructed by one hidden layer with 5 and 15 neurons (NNE2C) and 

autoregressive neural network model constructed by one hidden layer with 5, 10 and 15 neurons (NNOnly). 

𝜏1 𝜏2  NNE2C 
(5 neurons) 

NNE2C 
(10 neurons) 

NNE2C 
(15 neurons) 

NNOnly 
(5 neurons) 

NNOnly 
(10 neurons) 

NNOnly 
(15 neurons) 

1 5 EUR / USD 2.9838E-06 3.0167E-06 2.9828E-06 5.8882E-02 5.8289E-02 5.8018E-02 
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  GBP / EUR 9.8432E-06 9.8434E-06 9.8435E-06 7.5266E-02 7.4758E-02 7.4355E-02 

  GBP / JPY 4.9453E-05 4.9452E-05 4.9452E-05 1.4364E-01 1.3907E-01 1.4022E-01 

  GBP / USD 1.1083E-05 1.1081E-05 1.1087E-05 5.5426E-02 5.2369E-02 5.4421E-02 

         

1 20 EUR / USD 5.7274E-05 5.7239E-05 5.7276E-05 1.3165E-01 1.3015E-01 1.3121E-01 

  GBP / EUR 4.8869E-05 4.8870E-05 4.8870E-05 1.2097E-01 1.2032E-01 1.2054E-01 

  GBP / JPY 5.3459E-05 2.3459E-05 5.3459E-05 1.5310E-01 1.4879E-01 1.5035E-01 

  GBP / USD 2.6065E-05 2.6063E-05 2.6069E-05 7.4815E-02 7.2129E-02 7.3733E-02 

         

1 100 EUR / USD 3.1612E-05 3.1565E-05 3.1614E-05 1.0184E-01 1.0078E-01 1.0153E-01 

  GBP / EUR 3.0537E-05 1.0537E-05 3.0538E-05 1.0201E-01 1.0147E-01 1.0153E-01 

  GBP / JPY 4.4369E-05 4.4369E-05 4.4369E-05 1.4828E-01 1.4397E-01 1.4558E-01 

  GBP / USD 2.6203E-05 2.6201E-05 2.6207E-05 7.4542E-02 7.1763E-02 7.3194E-02 

         

100 200 EUR / USD 2.8230E-05 2.8183E-05 2.8229E-05 9.4983E-02 9.4030E-02 9.4606E-02 

  GBP / EUR 3.3874E-05 3.2874E-05 3.3874E-05 1.0056E-01 1.0006E-01 1.0004E-01 

  GBP / JPY 6.0882E-05 6.0882E-05 6.0882E-05 1.8717E-01 1.8326E-01 1.8483E-01 

  GBP / USD 2.3845E-05 2.3844E-05 2.3843E-05 7.8703E-02 7.6050E-02 7.7510E-02 

         

260 360 EUR / USD 3.8015E-05 3.8012E-05 3.8012E-05 1.5028E-01 1.4931E-01 1.4995E-01 

  GBP / EUR 2.0364E-05 2.0363E-05 2.0364E-05 8.7187E-02 8.6600E-02 8.6657E-02 

  GBP / JPY 4.8720E-05 4.8719E-05 4.8720E-05 1.7955E-01 1.7590E-01 1.7743E-01 

  GBP / USD 1.0392E-04 1.0396E-04 1.0393E-04 5.5737E-01 5.5654E-01 5.5698E-01 

         

400 500 EUR / USD 6.1426E-05 6.1437E-05 6.1424E-05 1.7433E-01 1.7332E-01 1.7402E-01 

  GBP / EUR 3.9610E-05 3.9608E-05 3.9608E-05 1.2262E-01 1.2199E-01 1.2209E-01 

  GBP / JPY 7.0257E-05 7.0253E-05 7.0258E-05 2.0427E-01 2.0026E-01 2.0216E-01 

  GBP / USD 4.7603E-05 4.7615E-05 4.7608E-05 1.9838E-01 1.9656E-01 1.9750E-01 

 

Table 4 Forecasting performance of one-day realized volatilities. This table reports the Root mean square error (RMSE) for the 

autoregressive neural network enhanced two-component model constructed by one hidden layer with 5 and 15 neurons (NNE2C) 

and autoregressive neural network model constructed by one hidden layer with 5 and 15neurons (NNOnly) 

𝜏1 𝜏2  NNE2C 
(5 neurons) 

NNE2C 
(10 neurons) 

NNE2C 
(15 neurons) 

NNOnly 
(5 neurons) 

NNOnly 
(10 neurons) 

NNOnly 
(15 neurons) 

1 5 EUR / USD 1.2852E-04 1.2854E-04 1.2860E-04 4.4915E-01 4.5038E-01 4.5214E-01 

  GBP / EUR 2.3046E-04 2.3082E-04 2.3053E-04 5.0792E-01 5.0309E-01 5.0854E-01 

  GBP / JPY 2.7913E-04 2.7904E-04 2.7938E-04 7.6417E-01 7.6045E-01 7.6562E-01 

  GBP / USD 3.3468E-05 3.1831E-05 3.3231E-05 4.0386E-01 4.0349E-01 4.0417E-01 

         

1 20 EUR / USD 1.7691E-04 1.7692E-04 1.7702E-04 5.7042E-01 5.7113E-01 5.7226E-01 

  GBP / EUR 1.3060E-04 1.3087E-04 1.3088E-04 4.4148E-01 4.3658E-01 4.4204E-01 

  GBP / JPY 2.2931E-04 2.2910E-04 2.3074E-04 7.8099E-01 7.7768E-01 7.8039E-01 

  GBP / USD 3.4261E-04 3.4074E-04 3.4227E-04 1.4302E+00 1.4300E+00 1.4300E+00 

         

1 100 EUR / USD 1.8115E-04 1.8101E-04 1.8164E-04 5.6324E-01 5.6411E-01 5.6537E-01 

  GBP / EUR 1.9050E-04 1.9037E-04 1.9162E-04 5.8821E-01 5.8323E-01 5.8888E-01 

  GBP / JPY 2.9117E-04 2.9235E-04 2.9621E-04 9.1889E-01 9.1522E-01 9.1853E-01 

  GBP / USD 1.8631E-04 1.8424E-04 1.8571E-04 7.5809E-01 7.5764E-01 7.5780E-01 

         

100 200 EUR / USD 1.7611E-04 1.7565E-04 1.7784E-04 5.5212E-01 5.5295E-01 5.5436E-01 

  GBP / EUR 1.7733E-04 1.7777E-04 1.7590E-04 5.6214E-01 5.5714E-01 5.6286E-01 

  GBP / JPY 3.0586E-04 3.0894E-04 3.0814E-04 9.5076E-01 9.4728E-01 9.5029E-01 

  GBP / USD 1.7191E-04 1.6691E-04 1.7008E-04 5.4682E-01 5.4626E-01 5.4663E-01 
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260 360 EUR / USD 1.3838E-04 1.3791E-04 1.4283E-04 4.2934E-01 4.3042E-01 4.3157E-01 

  GBP / EUR 1.6731E-04 1.6787E-04 1.6194E-04 5.2557E-01 5.2051E-01 5.2631E-01 

  GBP / JPY 2.0534E-04 2.0251E-04 1.7687E-04 6.4310E-01 6.3951E-01 6.4250E-01 

  GBP / USD 1.3880E-04 1.3370E-04 1.3637E-04 4.2614E-01 4.2548E-01 4.2597E-01 

         

400 500 EUR / USD 1.0489E-04 1.0359E-04 1.1499E-04 3.2422E-01 3.2540E-01 3.2634E-01 

  GBP / EUR 1.4010E-04 1.3893E-04 1.3327E-04 4.3346E-01 4.2840E-01 4.3424E-01 

  GBP / JPY 1.6133E-04 1.4925E-04 1.0101E-04 5.0550E-01 5.0165E-01 5.0518E-01 

  GBP / USD 1.0201E-04 9.7793E-05 9.9039E-05 3.1800E-01 3.1736E-01 3.1824E-01 

 

 

 

4.2 Experimental results 

Following the configurations, we employ our experiments using NNE2C with 4 lags and 10 neurons. Table 

5 and Table 6 report the RMSE of the one-hour and one-day realized volatilities given by equation (4) for 

four models over six forecasting intervals for four currencies respectively. Overall, for all models in the 

experiments in Table 5 and Table 6, the RMSE measures fall at the first with the forecasting horizon and then 

rise for four currencies. This is due to the reason that initially the forecasting interval increases from five to 

20 and then to 100 time points. After the horizon (𝝉𝒕, 𝝉𝒕+𝑻) = (𝟏, 𝟏𝟎𝟎), the forecasting interval is fixed at 

100 time points, and therefore the forecasting error rises as the horizon increases.  

 

In one-hour realized volatility evaluations in Table 5, the NNE2C model shows the highest forecasting 

accuracy in 23 out of 24 cases (four currencies with each having 6 horizons) followed by CGARCH model. 

The only exception is the highlighted case in Table 5: CGARCH achieved RMSE of 3.2067E-05 at horizon 

(𝟏𝟎𝟎, 𝟐𝟎𝟎) on GBP/EUR and was more accurate than the NNE2C, which had 3.2874E-05 RMSE at the 

same case. At horizon of (𝟏, 𝟏𝟎𝟎), the performance of CGARCH model is lower but close to the performance 

of the NNE2C in all four currencies. In other horizons, the NNE2C is significantly more accurate than 

CGARCH model. Particularly, the decline of the forecasting accuracy of the CGARCH model as well as 

EGARCH and NNOnly model is obvious from horizon (𝝉𝒕, 𝝉𝒕+𝑻) = (𝟏𝟎𝟎, 𝟐𝟎𝟎) to (𝟐𝟔𝟎, 𝟑𝟔𝟎) and then to 

(𝟒𝟎𝟎, 𝟓𝟎𝟎). It shows that at longer forecasting horizon, the NNE2C has sufficiently stronger forecasting 

capability than the traditional models.  

 

Table 5 Forecasting performance of one-hour realized volatilities. This table reports the Root mean square error (RMSE) for the 

autoregressive neural network enhanced two-component model constructed by one hidden layer with 10 neurons (NNE2C 10 
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neurons), Component GARCH model, EGARCH model, and autoregressive neural network model (NNOnly), for the forecasting 

interval 𝝉𝟏 to 𝝉𝟐, where 𝝉𝟏 = 𝒎𝒂𝒙(𝟏, 𝝉𝟐 − 𝟏𝟎𝟎), for the one-hour realized volatilities of four currencies. 

𝜏1 𝜏2  NNE2C 
(10 neurons) 

CGARCH EGARCH NNOnly 
(10 neurons) 

1 5 EUR / USD 3.0167E-06 5.1341E-04 8.1872E-04 5.8289E-02 

  GBP / EUR 9.8434E-06 1.7790E-04 5.8565E-04 7.4758E-02 

  GBP / JPY 4.9452E-05 1.9269E-04 1.0531E-03 1.3907E-01 

  GBP / USD 1.1081E-05 3.2305E-04 6.4933E-04 5.2369E-02 

       

1 20 EUR / USD 5.7239E-05 1.6669E-04 1.7328E-04 1.3015E-01 

  GBP / EUR 4.8870E-05 1.7436E-04 1.3082E-04 1.2032E-01 

  GBP / JPY 2.3459E-05 2.9617E-05 3.5046E-04 1.4879E-01 

  GBP / USD 2.6063E-05 1.1403E-04 4.5078E-04 7.2129E-02 

       

1 100 EUR / USD 3.1565E-05 2.2018E-05 2.4161E-04 1.0078E-01 

  GBP / EUR 1.0537E-05 1.9650E-05 2.1353E-04 1.0147E-01 

  GBP / JPY 4.4369E-05 6.9260E-05 4.0864E-04 1.4397E-01 

  GBP / USD 2.6201E-05 8.3107E-05 3.9228E-04 7.1763E-02 

       

100 200 EUR / USD 2.8183E-05 5.1364E-05 3.0277E-04 9.4030E-02 

  GBP / EUR 3.2874E-05 3.2067E-05 2.5238E-04 1.0006E-01 

  GBP / JPY 6.0882E-05 1.7346E-04 4.3271E-04 1.8326E-01 

  GBP / USD 2.3844E-05 5.2547E-05 3.2808E-04 7.6050E-02 

       

260 360 EUR / USD 3.8012E-05 2.2140E-04 3.0277E-04 1.4931E-01 

  GBP / EUR 2.0363E-05 1.2524E-04 2.6884E-04 8.6600E-02 

  GBP / JPY 4.8719E-05 1.0468E-04 1.2865E-03 1.7590E-01 

  GBP / USD 1.0396E-04 1.2240E-03 2.9355E-04 5.5654E-01 

       

400 500 EUR / USD 6.1437E-05 5.3047E-04 1.6394E-04 1.7332E-01 

  GBP / EUR 3.9608E-05 1.7219E-04 2.3168E-04 1.2199E-01 

  GBP / JPY 7.0253E-05 4.0934E-04 8.0361E-04 2.0026E-01 

  GBP / USD 4.7615E-05 5.8900E-04 1.5979E-04 1.9656E-01 

 

In Table 6, the NNE2C was significantly more accurate than other three models in all 24 cases. In the 

highlighted cases in Table 6, which include GBP/EUR rate at (1,5) and (1,20) horizons, and GBP/EUR rate 

at (400,500)  horizon, CGARCH model achieved the forecasting accuracies lower but close to the 

performance of the NNE2C. In other cases, the NNE2C remarkably outperforms all other models.  

 

It is worth noting that the NNOnly model performs the worst in all cases while the NNE2C achieves the 

significantly accurate performance. Our results conform to that of (Zhang & Qi, 2005) and (Nelson, Hill, 

Remus, & O'Connor, 1999), which concluded that neural network is not able to model volatility directly 

but neural networks built with deseasonalized data could produce significantly more accurate forecasting 

than with non-deseasonalized data. 
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Table 6 Forecasting performance of one-day realized volatilities. This table reports the Root mean square error (RMSE) for the 

autoregressive neural network enhanced two-component model constructed by one hidden layer with 10 neurons (NNE2C 10 

neurons), Component GARCH model, EGARCH model, and autoregressive neural network model constructed by one hidden layer 

with 10 neurons (NNOnly 10 neurons), for the forecasting interval 𝝉𝟏 to 𝝉𝟐, where 𝝉𝟏 = 𝒎𝒂𝒙(𝟏, 𝝉𝟐 − 𝟏𝟎𝟎), for the one-day realized 

volatilities of four currencies. 

𝜏1 𝜏2  NNE2C 
(10 neurons) 

CGARCH EGARCH NNOnly 
(10 neurons) 

1 5 EUR / USD 1.2854E-04 5.7251E-04 8.4922E-04 4.5038E-01 

  GBP / EUR 2.3082E-04 3.7841E-04 1.2353E-03 5.0309E-01 

  GBP / JPY 2.7904E-04 1.1783E-03 2.2118E-03 7.6045E-01 

  GBP / USD 3.1831E-05 3.9678E-04 1.2697E-03 4.0349E-01 

       

1 20 EUR / USD 1.7692E-04 5.4301E-04 1.7308E-03 5.7113E-01 

  GBP / EUR 1.3087E-04 2.1771E-04 7.0773E-04 4.3658E-01 

  GBP / JPY 2.2910E-04 1.5067E-05 1.3846E-04 7.7768E-01 

  GBP / USD 3.4074E-04 3.1626E-03 5.9010E-04 1.4300E+00 

       

1 100 EUR / USD 1.8101E-04 9.4802E-04 1.0034E-04 5.6411E-01 

  GBP / EUR 1.9037E-04 1.1753E-03 1.1850E-03 5.8323E-01 

  GBP / JPY 2.9235E-04 1.5569E-03 5.2037E-04 9.1522E-01 

  GBP / USD 1.8424E-04 1.8094E-03 1.4454E-03 7.5764E-01 

       

100 200 EUR / USD 1.7565E-04 9.4161E-04 7.8610E-04 5.5295E-01 

  GBP / EUR 1.7777E-04 1.0306E-03 1.1111E-03 5.5714E-01 

  GBP / JPY 3.0894E-04 1.9363E-03 3.8808E-04 9.4728E-01 

  GBP / USD 1.6691E-04 1.7113E-03 1.7661E-03 5.4626E-01 

       

260 360 EUR / USD 1.3791E-04 2.9667E-04 2.2160E-03 4.3042E-01 

  GBP / EUR 1.6787E-04 6.3274E-04 1.0282E-03 5.2051E-01 

  GBP / JPY 2.0251E-04 9.6631E-04 1.5438E-03 6.3951E-01 

  GBP / USD 1.3370E-04 6.2537E-04 8.5126E-04 4.2548E-01 

       

400 500 EUR / USD 1.0359E-04 1.3025E-03 3.3809E-03 3.2540E-01 

  GBP / EUR 1.3893E-04 2.1427E-04 2.4499E-03 4.2840E-01 

  GBP / JPY 1.4925E-04 2.3339E-03 3.5560E-03 5.0165E-01 

  GBP / USD 9.7793E-05 4.3271E-04 3.0735E-04 3.1736E-01 

 

 

5. Conclusions 

The fact that volatility comprises both a long-term trend component and a strongly oscillation short-term 

component has crucial implications for modelling and forecasting volatility over both short and long 

horizons. In this paper, we develop a simple but effective volatility-forecasting model. The model is based 

on a decomposition of intraday realized volatility into the long and short-term components using the low-

pass Hodrick-Prescott filter. The three-layer autoregressive neural network with 10 hidden neurons models 

the long-term component and the short-term component is modelled as a simple autoregressive process. 
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Therefore, we name the proposed model as “neural network enhanced two-component volatility model”. The 

model was thoroughly evaluated using high frequency tick data of four currencies across six forecasting 

horizons. The out-of-sample forecasting results consistently and significantly outperform the Component 

GARCH and EGARCH models as well as the autoregressive neural network model, which is applied on 

modelling the volatility directly.  

 

The results reported in this paper are based on two simple structures: the low-pass Hodrick-Prescott filter 

uses a fixed smoothing parameter and the short-term component follows a first order autoregressive progress. 

Future work would be to consider using an optimized smoothing parameter that decomposes a stationary 

short-term component. A higher order ARMA process would provide a better fit for the decomposed short-

term component and may bring improved out-of-sample forecasting performance. Moreover, a higher 

smoothing parameter brings more smoothed long-term component, which can be easier to forecasting by 

neural network with higher accuracy, and decomposes a more volatile short-term component, which may not 

follow a stationary process. Indeed, it would be a sufficiently further improvement if considering the 

forecasting model as an optimization framework to find an optimal parameter, which decomposes a stationary 

short-term process while maintaining a smooth long-term component, which can be forecasted by 

autoregressive neural network with high accuracy. 
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