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 

Abstract—With increasing reliance on Internet of Things (IoT) 

devices and services, the capability to detect intrusions and 

malicious activities within IoT networks is critical for resilience 

of the network infrastructure. In this paper, we present a novel 

model for intrusion detection based on two-layer dimension 

reduction and two-tier classification module, designed to detect 

malicious activities such as User to Root (U2R) and Remote to 

Local (R2L) attacks.  The proposed model is using component 

analysis and linear discriminate analysis of dimension reduction 

module to spate the high dimensional dataset to a lower one with 

lesser features. We then apply a two-tier classification module 

utilizing Naïve Bayes and Certainty Factor version of K-Nearest 

Neighbor to identify suspicious behaviors. The experiment results 

using NSL-KDD dataset shows that our model outperforms 

previous models designed to detect U2R and R2L attacks. 

 
Index Terms— Anomaly Detection, CF-KNN, Intrusion Detection 

System, IoT, Multi-layer Classification 

I. INTRODUCTION 

nternet of Things (IoT) technologies are becoming 

increasingly    prevalent across different industry sectors 

such as  health care, personal and social domains, and smart 

cities [1]. Similar to most consumer technologies, IoT 

technologies are not designed with security in mind, which are 

now emerging as a key barrier in the wider adoption of IoT 

networks and services [2]. Intrusion detection is one of several 

security mechanisms for managing security intrusions [3], 

which can be detected in any of four layers of IoT architecture 

shown in Figure 1 [4]. The Network layer not only serves as a 

backbone for connecting different IoT devices, but also 

provides opportunities for deploying network-based security 

defense mechanisms such as Network Intrusion Detection 
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Systems (NIDS) [5],[6],[7]. According to the analysis of 

KDD99 [3] and its latter version NSL-KDD [9], malicious 

behaviors (attacks) in network-based intrusions can be 

classified into the following four main categories [7]: 

 Probe: when an attacker seeks to only gain information 

about the target network through network and host 

scanning activities (i.e. ports scanning). 

 DoS (denial of service): when an attacker interrupts 

legitimate users’ access to the given service or 

machine. 

 U2R (User to Root): when an attacker attempts to 

escalate a limited user’ privilege to a super user or root 

access (e.g. via malware infection or stolen 

credentials). 

 R2L (Remote to Local): when an attacker gains remote 

access to a victim machine imitating existing local 

users. 

User to Root (U2R) and Remote to Local (R2L) attacks are 

among the most challenging attacks to detect as they mimick 

normal users behavior [10] [11].  

IDS are categorized into signature-based and anomaly-

based detection based on their technique in detecting an 

intrusion [12]. Signature-based IDS relies on a set of pre-

defined malicious activates patterns and  attack signatures to 

detect intrusions while anomaly-based IDS relies on 

deviations from normal behaviors to detect intrusions [6]. 

Signature-based IDSes generally outperform anomaly-based 

IDSes in detecting previously known attacks, but the former is 

ineffective against unknown or polymorphic attacks [13]. On 

the other hand, anomaly-based IDSes are capable of detecting 

unknown attacks in the absence of a predefined pattern. Due to 

the diversity of devices deployed in IoT networks, it would be 

unrealistic and impractical to rely on pre-defined attack 

patterns for intrusion detection, which limits signature-based 

IDS utilization in IoT networks [14]. 

In this paper, we present a network anomaly-based model 

for intrusion detection, hereafter referred to as Two-layer 

Dimension Reduction and Two-tier Classification (TDTC) 

model.
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Fig 1.  IoT Network Security Architecture [4] 

The proposed model, designed for anomaly-based intrusion 

detection in IoT backbone networks, uses two-layer dimension 

reduction and two-tier classification detection techniques to 

detect “hard-to-detect” intrusions, such as U2R and R2L 

attacks. We also demonstrate that the proposed model has the 

following characteristics: 

 Higher overall detection rates due to the deployment 

of a multi-layer classifier 

 Lower false positive due to deployment of a 

refinement feature 

 Accurate detection of U2R and R2L attacks, without 

reducing performance 

 Lower computational complexity due to deployment 

of dimension reduction in the two layers. 

In the next section, we present related work. The proposed 

model is presented in Section 3, and evaluation of the model is 

presented in Section 4. Section 5 concludes this paper and 

outlines future research topics. 

II. RELATED WORK 

Existing intrusion detection and prevention models generally 

use statistical approaches [15] such as Hidden Markov Model 

(HMM) [15], Bayes theory [16], cluster analysis [17], signal 

processing [18] and distance measuring [19] to detect 

anomalous activities. Anomaly detection approaches can be 

broadly categorized into supervised and unsupervised learning 

[6]. In supervised anomaly detection approach, normal 

behavior of a system or networks is constructed using a 

labeled dataset [20]. Unsupervised technique assumes that 

normal behaviors are more frequent and, thus, the model is 

built based on this assumption; thus, no training data is 

required [21].  

Casas et al. [22] proposed an unsupervised NIDS based on 

subspace clustering and outlier detection and demonstrated 

that their approach performs well against unknown attacks. In 

[23], a feature section filter module is proposed, which utilizes 

Principal Component Analysis and Fisher Dimension 

Reduction to filter noises. In the approach, Self-Organizing 

Maps (SOMs) neural model is also used to filter out normal 

activities. However, this approach has a high false positive 

rate. Bostani and Sheikhan [24] proposed an unsupervised 

framework based on Optimum-path forest algorithm and K-

Means clustering technique. This framework models malicious 

and normal behavior of networks.  

The supervised anomaly detection approach in [25] 

leverages both distance measure and density of clusters for 

intrusion detection. Zhaung et al [26] proposed a model based 

on random forest algorithm to discover anomaly patterns with 

a high accuracy yet low false negative rate.  

Guo et al. [27] proposed a two-level intrusion detection 

approach which first detects misuse and then uses KNN 

algorithm to reduce false alarms. Toosi et al. [28] proposed a 

multi attack classifier model, which implements a mix of 

fuzzy neural network, fuzzy inference approach, and genetic 

algorithms for intrusion detection. Despite a high accuracy 

rate in identifying normal behaviors and detecting simpler 

attacks such as DoS attacks and probe, the model performs 

poorly in detecting low frequency and distribution attacks 

such as R2L.  Horng et al [29] proposed a multi-classification 

attack model consisting of support vector machines (SVM) 

and BRICH hierarchical clustering technique to extract 

significant attributes from KDD99 dataset. Their proposed 

model has a high detection rate for DoS and Porbe attacks, but 

is ineffective against U2R and R2L attacks.  

Tan et al. [30] proposed a system for DoS detection using 

multivariate correlation analysis (MCA) to improve the 

accuracy of network traffic characterization. In [31], a two-

layer classification module was used to detect U2R and R2L 

attacks with low computational complexity due to its 

optimized feature reduction. Osanaiye et al. [13] proposed an 

ensemble-based multi-filter feature selection method to detect 

distributed DoS attacks in cloud environments using four filter 

methods to achieve an optimum selection over NSL-KDD 

dataset. Iqbal et al. [32] presented an attack taxonomy for 
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cloud services and suggested a cloud-based intrusion detection 

system.  

Ambusaidi et al. in [33] proposed a mutual information 

based IDS that selects optimal feature for classification based 

on feature selection algorithm. Their approach was evaluated 

using three benchmark data set (KDD Cup 99, NSL-KDD and 

Kyoto 2006+). 

Intrusion detection systems have also been used for 

managing security risks in industrial control systems [14].  For 

example, Pan et al. [34] proposed  a systematic and automated 

approach to build a hybrid IDS that learns temporal state-

based specifications for electric power systems to accurately 

differentiate between disturbances, normal control operations, 

and cyber-attacks. Zhou et al. [35] presented an industrial 

anomaly and multi model driven IDS based on Hidden 

Markov Model to filter attacks from actual faults.  

Security issues can be a barrier to widespread adoption of 

IoT devices [36]. Whitmore et al., [37] showed that wide 

range of techniques could mitigate cyber threat targeting IoT 

systems. Ning et al. [38] proposed a hierarchical 

authentication architecture to provide anonymous data 

transmission in IoT networks.  Cao et al. [39] highlighted the 

impact and importance of ghost attacks on ZigBee based IoT 

devices. Chen et al. [40] proposed an autonomic model-driven 

cyber security management approach for IoT systems, which 

can be used to estimate, detect, and respond to cyberattacks 

with little or no human intervention. Teixeira et al. [41] 

proposed a scheme for thwarting insiders attacks in IoT 

networks by crosschecking data transformation of every IoT 

node.  

III. PROPOSED TDTC MODEL 

The proposed model comprises a dimension reduction module 

and a classification module, to be discussed in sections III.A 

and III.B, respectively. 

 

 
Fig 2. In PCA, linear transformation is used to reduce high dimension dataset 

to a low dimension dataset  

A. Dimension Reduction Module 

The dimension reduction module is deployed to address 

limitations due to dimensionality that may lead to making 

wrong decisions while increasing computational complexity of 

the classifier. We deployed both Linear Discriminant Analysis 

(LDA) (i.e. a supervised dimension reduction technique) and 

Principal Component Analysis (i.e. an unsupervised 

dimension reduction technique) in order to address the high 

dimensionality issue. Principal Component Analysis (PCA) 

can be used to perform feature selection and extraction [42]:   

a) Feature selection: choose a subset of all features based 

on their effectiveness in higher classification (i.e. 

choosing more informative features)  

b) Feature extraction: create a subset of new features by 

combining existing features. 

In TDTC, we used PCA as a feature extraction mechanism to 

map the NSL-KDD dataset, which consists of 41 features to 

one with a lower feature space by removing less significant 

features. Feature extraction technique is commonly limited to 

linear transforms: y = Wx as shown in in Figure 2.  

Let X be an N-dimensional random vector in the original 

dataset, and the new feature space consists of lower M-

dimensions (M is the number of new dataset features that are 

transformed) where (𝑀 < 𝑁). For the transformation 

operation, we will need to compute Eq. 1 to Eq.3: 

 

Covariance matrix:  

∑ = ∑ (𝑥𝑘 − 𝑚)(𝑥𝑘 − 𝑚)𝑇𝑛
𝑘=1𝑥 ,      (Eq.1) 

 

Where m (mean vector) is: 

𝑚 =  
1

𝑛
∑ 𝑥𝑘

𝑛
𝑘=1          (Eq.2) 

 

Eigenvector-eigenvalue decomposition:   

 

Σv = λv   Where v=Eigenvector λ=Eigenvalue (Eq.3) 
 

PCA will then sort the eigenvectors in descending order. In 

other words, eigenvectors with lower eigenvalues have the 

least information about the distribution of the data and these 

are the eigenvectors we wish to drop. A common approach is 

to rank the eigenvectors from the highest to the lowest 

eigenvalue and choose the top 𝒌 eigenvectors based on 

eigenvalues. Similarly, in TDTC, one may decide which 

eigenvalues are more useful; thus, the ideal feature mapping 

matrix 𝑊 can be concluded and used for linear transformation 

of training and test dataset.  

At this layer of dimension reduction, Imbedded Error 

Function (IEF) factor analysis measure [43] is used to select 

the  principal [44] as shown in Eq.4, where l, m denotes the 

number of Principal Components (PCs). Both l and m are used 

to represent the data and number of dimension, respectively. N 

and 𝜆 denote the number of samples and Eigenvalues, 

respectively.  

 

IEF(l) =  [
𝑙 ∑ 𝜆𝑚

𝑗=𝐼+1

𝑁𝑚(𝑚−𝑙)
]

1
2⁄

       (E q.4) 

 

Cross Validation (CV) is used to evaluate optimum principals 

with minimum errors as shown in Figure 3. Applying selection 

criteria would reduce some features and help the next layer of 

dimension reduction module to compute lower dimension 

matrix and spreadable objects. 
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Fig 5. Imbedded Error Function measure of NSL-KDD train 

data set to select optimum number of dimension with minimum 

error and information loss. 

 

As observed in Figure 5, Cumulative Percent Variance (CPV) 

measure with 95% threshold is also examined to justify the 

selection of optimum dimensions.  

CPV(𝑙) = 100 [
∑ 𝜆𝑗

𝑙
𝑗=1 

∑ 𝜆𝑗
𝑚
𝑗=1

] %        (Eq.5) 

B. Linear Discriminant Analysis  

Linear computation can be used to achieve a reasonable speed 

in intrusion detection systems [31].  

Since objects (samples) in the PCA-transformed dataset are 

not ideal for classification, the proposed model utilized 

another feature reduction module to apply the labeled data in 

an optimal transformation to new dimensions. LDA examines 

the class labels to reduce the dimension of large working 

datasets and LDA is widely used in different domains such as 

image processing and stock analysis [45]. LDA chooses an 

After the transformation using LDA, the new mapped features 

will have only four dimensions {lda1, ..., lda4}.  

Figure 4 shows the two-dimension of the newly mapped 

original data set transformed by LDA. In other words, the 

dataset has been converted into 𝐶 − 1 dimensions, where C is 

number of class labels that exist in the original dataset. 

optimal projection matrix to map a higher dimensional feature 

space to a new lower dimensional space while preserving the 

required information for data classification [46].  

 

There are two scatter matrices that need to be obtained in 

LDA, namely: SB which is the between-class scatter matrix, 

and SW the within-class scatter matrix. In TDTC, the LDA 

dimension reduction module transforms the NSL-KDD dataset 

to a lower dimension. It is assumed that there is a set of n d-

dimensional vectors of xi, ..., xn belonging to k different class 

labels of Ci, where each i = 1, 2, 3,...,k has ni samples (in 

TDTC k = 5 e.g. normal, DoS, Probe, U2R, L2R).  

The projection matrix 𝑊 is calculated to maximize SB – see 

Eq. 6, and minimize SW – see Eq. 7. 

 

SB= ∑ (μ
c
 - x̅)(μ

c
 - x̅)

T
 c         (Eq.6) 

SW= ∑ ∑ (xi - μc
)(xi - μc

)
T
 i ∈ cc      (Eq.7) 

 

𝜇𝑐 is the mean value of class Ci samples, and is given by Eq.8. 

μ
c
= 

1

ni
 ∑ xx∈ Ci

          (Eq.8) 

 

Since the ratio J in Eq.9 is within the range of SB and SW, it 

can be easily maximized as an optimization problem using the 

projection matrix Wr (see Eq.9). 

J = 
Wr

TSB Wr

Wr
TSW Wr

          (Eq.9) 

 

All these operations will be conducted on the training dataset 

(see Section IV) to obtain an ideal transformation matrix that 

can be applied to future test sets or unknown instances. 
 

Table 1. Transformed Features Dependency Of Train+ Data Set After 

Applying Two Level Of Reduction Due To Correlation Coefficient Measure.   

features LDA1 LDA2 LDA3 LDA4 

LDA1 1 -3.76E-17 4.73E-16 1.06E-16 

LDA2 -3.76E-17 1 -6.69E-17 -3.52E-16 

LDA3 4.73E-16 -6.69E-17 1 -1.65E-15 

LDA4 1.06E-16 -3.52E-16 -1.65E-15 1 

 
Fig 3. Imbedded Error Function measure of NSL-KDD train data set to select optimum number of dimension with minimum error and 

information loss. 
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Fig 4. Two-dimensions of new mapped dataset processed by dimension reduction module 

 
Table 2. Transformed Features Dependency Of Train_20%  Data Set After 
Applying Two Level Of Reduction Due To Correlation Coefficient Measure.   

features LDA1 LDA2 LDA3 LDA4 

LDA1 1 -8.37E-17 -4.20E-17 2.49E-16 

LDA2 -8.37E-17 1 -1.89E-16 -4.88E-16 

LDA3 -4.20E-17 -1.89E-16 1 4.81E-16 

LDA4 2.49E-16 -4.88E-16 4.81E-16 1 

 

C. Classification Module 

At this stage, TDTC is already trained using the transformed 

dataset and classified incoming traffic utilizing a multilayer 

classifier (introduced in [31]) to detect anomalies. The choice 

of the classifier is due to its capability in detecting abnormal 

behaviors due to the use of: 

 Two embedded classifiers for assigning exact class 

labels; 

 Simple classifier techniques such Naïve Bayes [47] and 

K-Nearest Neighbor (KNN); 

 Good similarity measure for rare instances to handle 

imbalanced datasets; and 

 Bucketing technique to speed up classification tasks. 

Figure 6 illustrates how classification modules are applied on 

incoming labeled instances. The Naïve Bayes classifier is used 

to classify anomalous behavior, which is then refined to 

normal instances using the Certainty-Factor version of K-

Nearest Neighbor (CF-KNN).  Naïve Bayes is an efficient 

classification method since it presumes independence of all 

features of each sample in the given class-label (conditional 

independence assumption).  

The transformed features are assessed using correlation 

coefficient parameter. This measure [48] shows the relation 

between variables (features) by giving a number in the [-1, 1] 

interval, where 1 indicates a positive linear correlation, 0 no 

linear correlation, and −1 a negative linear correlation. The 

Correlation Coefficient assessments of the final features shows 

that the transferred features at two layers of dimension 

reduction module are mostly independent, since ρ=0.   
This measure indicates that there is no strict dependency 

among the classifier input features – see also Tables 1 and 2. 

The figures dependency among the features also significantly 

decreases, in comparison to the findings reported in [31]. The 

certainty-factor similarity measure in the classification module 

is based on the distribution proportion of classes in the 

training dataset to resolve imbalance data set issue. Certainty-

Factor (CF) is a number that lies in [-1, 1] interval and 

specifies the amount of certainty for a given incoming sample 

[49]. 

CF measure is included in the KNN [50] classification 

module:  

 Let N (S, k) be k closest adjacent of S; 

 P (C= ci |D) be the ratio of ci in training set D; and 

 P (C= ci |N (S, k)) be the ratio of ci in the query 

result. 

Now, CF measure can be computed using Eq. 10 and Eq. 11: 

 

if (p(C= ci |N (S, k)) ≥ p(C= ci |D)) 

 

CF(C= ci, N(S, k)) = 
p(C=ci | N(S, k))  - p(C= ci |D) 

1- p(C= ci |D)
     (Eq.10) 

Else 

CF(C= ci, N(S, k)) = 
p(C=ci | N(S, k))  - p(C= ci  |D) 

 p(C= ci |D)
     (Eq.11) 

 

The values of CF(C= ci, N (Q, k)) are in the range of [-1, 1]. 

The CF strategy for KNN classification is defined as: 

SCF = argmax {CF(C= ci, N(Q, k))}        (Eq.12) 

 

At this tier, KNN classifier uses a bucketing technique called 

K-d tree [51] to accelerate the nearest neighbor searching 

process of KNN. 
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TABLE 3. NSL-KDD  DATA SET CLASSES DISTRIBUTION 
Datasets Total 

Records 

Normal Probe DoS U2R R2L 

Train_20% 25192 13449 2289 9234 11 209 

Train+ 125973 67343 11656 45927 52 995 

Test+ 22544 9711 2421 7458 67 2887 

 

IV. EXPERIMENT SETUP 

A. NSL-KDD 

In the NSL-KDD dataset, flaws reported in the original 

KDD99 dataset [52] were removed. Although there are still 

known issues in the NSL-KDD dataset [53], this does not 

affect the application of the dataset in this research or the 

validity of the findings. Each NSL-KDD record consists of a 

network connection with 41 defined attributes (e.g. protocol 

type, service and flag), which are labeled as normal or one of 

the 24 type of attack classes (e.g. Probe, DoS, U2R and R2L). 

NSL-KDD has two training sets and one test set with different 

distribution – see Table 1. Since the test set contains 17 new 

attack types not included in the training set, we can evaluate 

the effectiveness of TCTD in detecting unknown or 

uncommon attacks. 

B. Data transformation 

Before the dataset is applied, each feature vector is normalized 

to a positive integer value within the range of [1,100] in order 

to improve the performance of the classifier and dimension 

reduction module. 

Each nominal feature value is specified with a unique 

integer number (e.g. TCP = 1, UDP = 2, ICMP = 3). The result 

value of each feature is mapped into an integer number, to 

avoid any bias, as shown in Eq.13 for each continuous-

valued 𝑧. Continuous-valued features is normalized using 

logarithm to base 2 and then casting into an integer value. 

 

if (z  > 2) z = ∫ ( log
2

(z) +1)           (Eq.13) 

C. Performance indicators 

The four common performance indicators for the intrusion 

detection systems are as follows [54]:   

 True Positive (TP): indicates that benign behavior is 

correctly predicted as benign; 

 True Negative (TN): indicates that malicious 

behavior is correctly detected; 

 False Positive (FP): indicates that malicious behavior 

is identified as benign; and 

 False Negative (FN): indicates that benign behavior 

is wrongly detected as malicious.  

The Detection Rate (DR) is a measure of the classifier 

correctly detecting malicious samples of all malicious objects, 

and is computed as: DR = 
TP

 FN+TP
.  

The False Alarm Rate is a measure of the classifier wrongly 

detecting benign samples as malicious of all benign objects, 

and is computed as:  FAR   = 
FP

FP + TN
 

V. FINDINGS 

The experiment was conducted using MATLAB R2015a 

running on a personal computer (PC) powered by AMD 

Phenom II X6 3.8GHz and 12 GB RAM. TDTC is trained 

with both training sets and then evaluated using the test set 

(Test+). TDTC’s classification module is adopted from [31], 

with the same the parameter setting. Thus, k = 3 was used for 

CF-KNN classifier. 

Figure 7 shows the mapped test dataset into new feature 

space, after applying the dimension reduction module. TDTC 

only uses two features of new mapped data (instead of all four 

features of lda1 to lda4, based on detection rates) – see Figure 

8. 

 

 

 

 
Table 4 NSL-KDD Data Set Attacks Label Taxonomy And Their Existence In Train And Test Set Respectively. 

Main Class Sub Class (Attacks) in Train set New Subclass (Attacks) in Test set 

DoS back, land, neptune, pod, smurf, teardrop Apache2, Mailbomb, Processtable 

Probe ftp write, guess passwd, imap, multhop, phf, 

spy, warezclient, warezmaster 

Mscan, Saint 

User-to-Root (U2R) Buffer overflow, perl, loadmodule, rootkit. Httptunnel, Ps, Sqlattack, Xterm 

Remote-to-Local (R2L) ipsweep, nmap, portsweep, satan Sendmail, Named, Snmpgetattack, Snmpguess, 

Xlock, Xsnoop, Worm 

 
FIG. 6. APPLIED CLASSIFICATION MODULE IN TDTC 
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In addition, TDTC has an improved performance in detecting 

U2R and R2L attacks as shown in Table 5, as well as 

achieving a higher detection rate against probe attacks. The 

detection rate for DoS attacks in TDTC is also better than the 

two-tier model proposed in [16] and [55]. False alarm rate 

shows a reduction to 5.56% from 6.3% reported in [55]. 

A. Computation complexity  

In TDTC, the complexity overhead was reduced to half since 

only 35 out of 41 data set features were used. TDTC two 

dimension reduction module performance is an offline task, 

which is applied once to obtain the transform vectors for 

incoming samples. 

The first dimension reduction module is completely 

unsupervised while the generated class labels were added to 

the training dataset for another transformation based on the 

(supervised) LDA technique. The two-tier classification 

module (defined in [31]) embedded into TDTC reduces the 

computational complexity.  

The computational complexity of Naïve Bayes classifier of 

the classification module is determined as 𝑂(𝑒 × 𝑓), where e 

is the count of samples in dataset and f represents number of 

features. Therefore at this level, due to LDA optimum 

transformation, the first classifier of TDTC is equipped with 

only four features instead of 35. Thus, the computation 

overhead decreases by approximately ten times. In the second 

tier of classifier where KNN classifier was implemented, 

TDTC maintains only two attributes of the training dataset 

with the highest detection rate, as shown in Fig 8. Therefore, 

KNN consumes less memory space than the original dataset. 

In addition KNN classifier is equipped with k-d tree [51] for 

searching nearest samples. K-d tree is a data structure which 

keeps the data sample based on their distances; thus, this 

technique helps KNN to search faster than using the traditional 

approach.  

According to the second tier of classifier, searching nearest 

samples will take O(log n) time on average. 

 
FIG 7. TWO-DIMENSIONS OF TRANSFORMED TEST SET WITH OBTAINED PROJECTION MATRIX 

 

 
Fig 8. TDTC KNN classifier feature evaluation

B. Real-world Applications  

Since TDTC has a higher performance yet relatively lower 

resource requirements, it can be deployed to detect intrusion 

attempts in IoT backbone networks and their infrastructure 

services. TDTC also can be deployed as an auxiliary service 

for digital forensics in IoT ecosystem, such as those discussed 

in [56] to detect residual attack patterns of IoT network layer. 
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Due to the increases in low frequency, low profile IoT-

based attacks [39], TDTC capabilities in detection of U2R and 

R2L attacks are useful in incident detection and handling.  

 
TABLE 5. A COMPARATIVE SUMMARY 

 
Method Normal Probe DoS U2R R2L 

TDTC 94.43 87.32 88.20 70.15 42 

Two-tier[31] 94.56 79.76 84.68 67.16 34.81 

SVM with 

BIRCH [29] 

99.3 99.5 97.5 28.8 19.7 

ESC-IDS[28] 98.2 99.5 84.1 31.5 14.1 

Association 

rule IDS [57] 

99.5 96.8 74.9 0.79 0.38 

HFR-MLR 

Method [55] 

93.70 80.2 89.70 29.50 34.20 

 

TABLE 6. TWO CLASSES CLASSIFICATION COMPARISON RESULT IN PERCENT 

USING TRAIN_20% AND TEST
+
  

 
Method Train set Detection 

Rate 

False Alarm 

Rate 

TDTC Train_20% 84.82 5.56 

Two-tier [31] Train_20% 83.24 4.83 

Naïve Bayes [9] Train_20% 76.56 N/A 

Random forest [9] Train_20% 80.67 N/A 

SVM [9] Train_20% 69.52 N/A 

Decision trees (J48) [9] Train_20% 81.05 N/A 

TABLE 7. BINARY CLASSIFICATION COMPARISON RESULT IN PERCENT USING 

TRAIN
+ 

AND TEST
+ 

 
Method Train set Detection 

Rate 

False Alarm 

Rate 

TDTC Train+ 84.86 4.86 

Two-tier [31] Train+ 81.97 5.44 

SOM IDS [58] Train+ 75.49 N/A 

Fuzzy Classification 

by Evolutionary 

Algorithms [59] 

Train+ 82.74 3.92 

Feature selection 

with SVM IDS [26] 

Train+ 82 15 

VI. CONCLUDING REMARKS 

With the widespread adoption of IoT devices and services in 

our data-centric and Internet-connected societies, ensuring the 

security of IoT infrastructure is important to ensure a secure 

and stable society. A successful attack on the IoT 

infrastructure can have crippling effects. For example, 

compromise of IoT services in smart cities could easily lead to 

a major chaos or even life threatening situations (see [58], 

[59], [60]).  

In this paper, a model with two-layer dimension reduction 

and classification was proposed. This model is designed to 

detect intrusive activities in IoT backbone networks, 

particularly in detecting low frequency attacks (e.g. U2R and 

R2L) that could have potentially damaging consequences. Our 

proposed model outperformed existing similar models in terms 

of detection rate for both low frequency and common attacks. 

Since TDTC uses both unsupervised (PCA) and supervised 

(LDA) feature extraction methods, we were able to accurately 

distinguish between different attack types and normal 

behaviors, thanks to utilized classification algorithms.  

Future research includes exploring the potential of non-

parametric methods such as dimension reduction module and 

fuzzy clustering to achieve a better classification against U2R, 

R2L and other attacks. Another interesting future work could 

be extension of the proposed model to detect intrusions at 

other layers of the IoT architecture such as application and 

support layers, as well as other protocols running in the 

network layer. 
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