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   Abstract   

The human intestinal tract is a long curved tube constituting the final section of the 

digestive system in which nutrients and water are mostly absorbed. Motivated by the 

dynamics of chyme in the intestine, a mathematical model is developed to simulate the 

associated transport phenomena via peristaltic transport. Rheology of chyme is modelled 

using the Nakamura-Sawada bi-viscosity non-Newtonian formulation. The intestinal tract 

is considered as a curved tube geometric model. Low Reynolds number (creeping 

hydrodynamics) and long wavelength approximations are taken into consideration. 

Analytical solutions of the moving boundary value problem are derived for velocity field, 

pressure gradient and pressure rise. Streamline flow visualization is achieved with 

Mathematica symbolic software. Peristaltic pumping phenomenon and trapping of the 

bolus are also examined. The influence of curvature parameter, apparent viscosity 

coefficient (rheological parameter) and volumetric flow rate on flow characteristics is 

described. Validation of analytical solutions is achieved with a MAPLE17 numerical 

quadrature algorithm. The work is relevant to improving understanding of gastric 

hydrodynamics and provides a benchmark for further computational fluid dynamics 

(CFD) simulations. 
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a    half width of  curve coiled in a circle with centre, O . 
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A algebraic function 

B algebraic function   

b         amplitude of sinusoidal wave 

c          peristaltic wave speed 

eij  ,  ji component of deformation rate 

F           volumetric flow rate in fixed frame 

k   curvature parameter 

 tXH ,  geometric parameter defining wall displacement for flexible channel  

py  yield stress of the biofluid.  

R   radius of curve coiled in a circle with centre, O . 

X

P




    axial  pressure gradient  

P   dimensional pressure 

Q volumetric flow rate in wave frame  

R   radial coordinate in fixed frame  

r  radial coordinate in wave (laboratory) frame 

r non-dimensional wave  frame radial coordinate 

Re Reynolds number 

X    axial coordinate in fixed frame 

x  axial coordinate in wave (laboratory) frame 

 x non-dimensional wave  frame axial coordinate 

U   velocity component in axial  X   direction 

u  velocity component in x  direction in the wave frame. 

u non-dimensional wave  frame axial velocity  

V    velocity component in radial  R  direction 

v  velocity component in r -direction in the wave frame 

v non-dimensional wave  frame radial velocity 
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Greek 

   wave number 

P  dimensionless pressure rise 

β apparent viscosity coefficient (Nakamura-Sawada parameter) 

          wave length. 


 ,,

RRR          shear stress terms  

µβ              plastic dynamic viscosity 

  dimensional stream function  

  non-dimensional stream function  

  dimensional strain rate 

  non-dimensional strain rate 

 

1.  Introduction 

Peristaltic fluid dynamics continues to attract the attention of engineers and scientists 

owing to ever-growing applications in emerging technologies and a need for refining 

understanding of physiological mechanisms in the human body. Peristalsis is an 

automatic and important periodic series of muscle contractions and relaxation that occurs 

during movement of food bolus through the digestive system, urine flow from the 

kidneys into the bladder and transportation of bile from the gall-bladder into 

the duodenum, to name a few medical applications. The wave motion in peristalsis is 

usually a circumferential progressive wave propagating along a flexible conduit. 

Inherently 3-dimensional in nature, peristalsis constitutes an intriguing moving boundary 

value problem in mathematical modelling. Numerous modern mechanical devices have 

been designed on the principles of peristaltic pumping to transport fluids without internal 

moving parts. These include the heart-lung machine [1], dialysis machines [2, 3], and 

blood pump machines [4, 5]. Mechanically since peristalsis requires no pistons, it 

achieves greater overall efficiency and safety (parts do not wear out or degrade leading to 

contamination via debris) which is crucial in the secure transportation of hazardous fluids 

(aggressive chemicals, slurries, corrosive and noxious fluids) and representative designs 

in this context include roller pumps [6], rotary pumps [7], and multi-actuated electro-
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hydraulic peristaltic pumps [8, 9] etc. Peristalsis was first observed by Bayliss and 

Starling [10] during the study of chyme movement in intestines. Their work was largely 

observational. Many decades elapsed before engineering fluid mechanical investigations 

were reported. Defining studies in fluid dynamics of peristalsis were presented by Burns 

and Parkes [11], Fung and Yih [12], Shapiro et al. [13], Jaffrin and Shapiro [14], Shukla 

et al. [15], Takabatake, and Ayukawa [16], Pozrikidis [17]. These analyses were confined 

to steady flow (owing to the intrinsic mathematical simplicity); however from a 

physiological point of view, the vast majority of peristaltic transport phenomena are 

strongly unsteady in nature. Early work on transient peristalsis was presented by Li and 

Brasseur [18]. These studies are limited for Newtonian fluids so further modifications for 

non-Newtonian fluids, MHD fluids, heat transfer and nanofluids are required. Tripathi 

and Bég [19] presented a model for peristaltic viscoelastic fluid propulsion. Tripathi and 

Bég [20] further considered peristaltic dynamics of MHD couple stress fluids. François 

[21] discussed the influence of suspended drops on peristaltic pumping. Ellahi et al. [22] 

reported the heat transfer analysis on peristaltic flow. Tripathi and Bég [23] investigated 

peristaltic transport of nanofluids, Kothandapani and Prakash [24] addressed peristaltic 

hydromagnetic nanofluids. Akbar et al. [25] further considered MHD nanofluid 

peristaltic propulsion through permeable channels. Teran et al. [26] studied peristaltic 

wave propagation in viscoelastic fluids, achieving excellent visualization of 

circumferential waves.  

The above studies were largely confined to straight conduits. Curvature is however a 

significant characteristic of actual physiological vessels, in particular the intestinal ducts 

[27]. The intestine is fact an enormously long duct with many sub-sections including the 

initial stage of the small intestine (duodenum), the pyloric sphincter, the jejunum, and the 

the ileum (the latter two constitute in excess of 4m in length) and the large intestine 

(ascending, descending, transverse and sigmoid colon and cecum) and so on. The key 

attribute which allows the extensive intestine to occupy a small volume in the body is 

curvature i.e. geometric twisting and turning. In fact directly owing to this twisting and 

turning allows the duodenum to be located in close proximity to the head of the pancreas. 

It has been shown clinically that the transport of digested food (achieved with peristalsis) 

and the mixing (achieved via segmentation) are more efficient along lower curvature 
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zones in the intestinal duct [28]. Furthermore the slow contractive waves associated with 

peristaltic propulsion (usually 3 waves per minute) originate in the interstitial cells of 

Cajal in the central section of the larger curvature (proximal corpus) and propagate 

distally towards the pylorus. Therefore curvature (waves move slightly quicker along the 

greater curve than the lesser curve) has a pivotal role to play in sustainable motility in the 

intestine and has indeed stimulated significant attention from engineers and medical 

scientists. Many regions of movement have been categorized in terms of fluid dynamics 

principles including transpyloric flow and retropulsive flow. Peristaltic flow with heat or 

mass transfer in curved vessels has also attracted some attention in recent years, largely 

due to the improvement in experimental and computational methods. Tharakan et al. [29] 

developed an experimental rig that simulates the segmentation motion occurring in the 

small intestine to simulate mass diffusion in the lumen, observing that glucose available 

for absorption may be strongly decreased by altering the lumen viscosity. Pal et al. [30] 

employed a Lattice Boltzmann computational solver to investigate intestinal fluid 

dynamics and mass transport, observing that high retrograde flow velocities arise in the 

narrowest antral segment inducing fast particle separation and that luminal surface 

motions caused by peristaltic contraction waves give rise to recirculating eddies which 

are strongly influenced by wall curvature. Spratt et al. [31] employed a three-stage 

tubular model to simulate transport phenomena in the large human intestine, although 

they did not consider peristaltic waves or pulsating motion, and instead focused attention 

on water transfer across the membrane and also demonstrated that Taylor dispersion 

contributes strongly to gastric mixing.  A seminal analysis of the peristaltic propulsion 

induced by transverse deflections of the walls of a curved channel was presented by Sato 

et al. [32], who computed stream function, flow velocity and pressure distributions and 

observed that pressure-flow characteristic gradient (which is linear) is weakly enhanced  

with greater channel curvature. They also fund that the trapped bolus of fluid is 

composed of two asymmetrical sections, with the outer one growing and the inner one 

shrinking with greater channel curvature.  

The above studies did not consider biorheological effects i.e. the Newtonian viscous flow 

model was utilized. However the non-Newtonian nature of gastric liquids is well known 

and may contribute significantly to peristaltic efficiency. Several researchers in recent 
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years have addressed this aspect and explored a diverse range of rheological constitutive 

models. Narla et al. [33] presented closed-form solutions for peristaltic propulsion of a 

viscoelastic fluid (fractional second grade model) in a curved channel observing that 

pressure-flow relationships are linear and that pressure-flow function is reduced with 

greater values of fractional viscoelastic parameter, curvature parameter and amplitude 

ratio whereas the reverse effect is induced with increasing  relaxation time. Kalantari [34] 

used a finite difference technique to compute Weissenberg effects on peristaltic curved 

channel flow with the Phan-Thien-Tanner elasto-viscous model. Kalantari et al. [35] 

investigated bolus dynamics in peristaltic flow of Giesekus rheological liquids in curved 

channels. Very recently Ali et al. [36] used a finite difference method and Chebyschev 

spectral algorithm to investigate peristaltic motion of a non-Newtonian Carreau fluid 

through a curved conduit. They showed for the first time in the literature, that for weakly 

shear-thinning fluids, an increase in non-Newtonian parameter i.e. Weissenberg number, 

opposes the effects of curvature and serves to enforce symmetry in the velocity profiles. 

They also observed that for strong shear-thinning fluids (power-law index near to zero) 

with larger relaxation times, the gradient of velocity sharply changes near the channel 

walls generating a thin boundary layer. Additionally an increase in Weissenberg number 

was shown to produce a small eddy in the vicinity of the lower wall of the channel, which 

was enhanced with further increase in Weissenberg number. These studies [33-36] did 

not consider the Nakamura-Sawada bi-viscosity model, which has also shown very good 

correlation with intestinal transport experiments [37, 38]. Introduced in the late 1980s 

[39], originally for industrial suspensions, the Nakamura-Sawada model has been 

successfully implemented in hemodynamic [40] and gastric fluid mechanics modelling 

[41]. Essentially a modified Casson model, the yield stress of the biviscosity model is 

however significantly higher than for Casson fluids. It is also superior to the Ostwald-

deWaele power-law model since it avoids the pitfall of predicting for a pseudoplastic 

fluid (power law index less than unity), a diverging apparent viscosity diverges at zero 

flow rate. The Nakamura-Sawada model achieves a finite apparent viscosity coefficient 

even in the low shear rate region and is particularly amenable to mathematical 

simulations. It has been deployed in a number of biofluid dynamic simulations including 

pulsatile magneto-hemodynamics and pharmacological diffusion [42], magnetized heat-
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conducting blood flows in tissue [43] and biopolymer transport in filtered media [44]. 

Akbar and Nadeem [45] have used this model also quite recently in studying 

magnetohydrodynamic peristaltic flow in an endoscope. Further investigations include 

Eldabe et al. [46] who considered peristaltic flow of an incompressible, magnetic bi-

viscosity fluid through an axisymmetric non-uniform tube with a sinusoidal wave. These 

studies have generally found that with increasing rheological (apparent viscosity) 

parameter in the bi-viscosity model, flow is decelerated.  

In the present article, for the first time, we consider the peristaltic flow of a bi-viscosity 

non-Newtonian gastric fluid in a curved channel. Closed form solutions are derived for 

the non-dimensionalized boundary value problem. Verification of solutions is achieved 

with a numerical method. Streamline flow visualization is presented via the Mathematica 

symbolic software to highlight peristaltic pumping and bolus trapping. The effects of the 

curvature parameter, apparent viscosity coefficient (rheological parameter) and 

volumetric flow rate parameter on peristaltic flow characteristics are elaborated.  

 

2. Biviscosity Gastric Fluid Model and Flow Regime 

The constitutive equations for incompressible Nakamura-Swada biviscosity fluids [39] 

are defined as follows: 
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In the above Eqns. (1) and (2), µβ is plastic dynamic viscosity, py is yield stress of the 

biofluid. We consider a curved channel filled with an incompressible bi-viscosity fluid 

fluid.  Let  a   be the half width of a curve coiled in a circle with centre, O ,  and radius,  

R . The flow in the channel is induced by sinusoidal waves of small amplitude, b ,  

traveling along the flexible walls of the channel. The equations for the wall surfaces are: 

(1) 

(2) 
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In the above equations  c   is the peristaltic wave speed, a is wave amplitude and     

denotes the wave length.  

 

3. Mathematical Flow Model 

The governing equations for unsteady, two-dimensional flow of incompressible, bi-

viscosity fluids through a curved tube may be presented as follows: 
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In the above equations,  P   is the pressure,  V   and  U   are the velocity components in 

radial  R   and axial  X   directions respectively,  R  is the constant radius and the  - 

terms represent the stresses. The flow phenomenon is unsteady in the fixed frame. To 

carry out a steady analysis we switch from the fixed frame to the wave (laboratory) frame  

 xr,   moving with the wave speed, c . The transformation between the two frames is 

given by: 

,,

,,

VvcUu

RrtcXx




 

where  v   and  u   are the velocity components along  r   and  x   directions in the wave 

frame. With the help of these transformations the Eqns. )4(  to  )6(   take the form: 

(3) 

(4) 

(4) 

(5) 

(6). 

(7) 
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Introducing the following non-dimensional variables and velocity stream function 

relation: 
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where  Re  is Reynolds number,     is the wave number,  k   is the curvature parameter 

and  β  is the apparent viscosity coefficient (Nakamura-Sawada rheological parameter). 

Eqns.  (9)  and (10),  under the conventional long wavelength and low Reynolds number 

approximations are expressed in the following dimensionless form: 
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The prescribed boundary conditions are: 

 

0,      at   1 sin( ),
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The volumetric flow rates in the fixed and wave frame are related by:  

(14a) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13). 

(14b). 



10 

 

 

                                       2F Q   

 

The momentum equation (13) for the proposed model is a second order linear differential 

equation, which readily yields the following closed-form solution for velocity and axial 

pressure gradient:  
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The dimensionless pressure rise, P , is obtained by substituting Eqn. (17) into the 

following equation : 

                                          

1

0

dP
P dx

dx

 
   

 
 .                                                     (19) 

 

(15). 

(16) 

(17) 



11 

 

4. Validation with MAPLE17   

The linear dimensionless two-point moving boundary value problem (BVP) i.e. eqns. 

(12), (13) with conditions (14a, b) is easily solved using Runge–Kutta–Merson numerical 

quadrature. The solutions are needed to validate against the analytical solutions given 

earlier. A similar methodology is available in MAPLE17 software (RK45 algorithm). 

This approach has been extensively implemented recently in numerous multi-physical 

flow problems including entropy minimization in magnetic materials processing [47], 

nano-structural mechanics [48] and thermo-capillary biopolymer convection [49]. The 

robustness and stability of this numerical method is therefore well established- it is highly 

adaptive since it adjusts the quantity and location of grid points during iteration and 

thereby constrains the local error within acceptable specified bounds. In the current 

problem, the wall boundary conditions given in Eqns. (14a, b) are easily accommodated. 

The stepping formulae although designed for nonlinear problems, are even more efficient 

for any order of linear differential equation and are summarized below [48]: 

         (20) 

      (21) 

    (22) 

 (23) 

 (24) 

 (25) 

  (26) 
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 (27) 

 

Here 𝑦 denotes fourth-order Runge-Kutta phase and 𝑧 is the fifth-order Runge-Kutta 

phase. An estimate of the error is achieved by subtracting the two values obtained. If the 

error exceeds a specified threshold, the results can be re-calculated using a smaller step 

size. The approach to estimating the new step size is shown below: 

      (28) 

 

A comparison of the analytical and numerical quadrature solutions is documented in 

Tables 1 and 2 for pressure rise and Tables 3 and 4 for velocity distribution, 

respectively, with various values of the flow control parameters. Excellent correlation is 

achieved in all cases.  Confidence in the present analytical solutions is therefore high. 

 

 

5. Results and Discussion 

The graphical results are displayed for the influence of axial coordinate (x), Reynolds 

number (Re) wave amplitude (), wave number (), vessel curvature parameter (k) and   

apparent viscosity coefficient (Nakamura-Sawada rheological parameter, ) on fluid 

velocity profile, pressure rise, and the streamlines in Figs. 2-7. Colour visualization is 

employed to highlight more clearly the streamline plots and bolus evolution in figs. 5-7. 

The effect of channel curvature parameter (k), apparent viscosity coefficient (β) and flow 

rate (Q) on flow velocity distributions are illustrated in Figs. 2(a)-(c). Evidently Fig. 2(a) 

indicates that greater curvature parameter effectively decelerates the flow in the region -

1.5≤ r ≤ 0; however for the region, 0.1≤ r ≤ 1.5, a decrease in curvature induces flow 

acceleration. This appears to be consistent with the clinical observation in [28], namely 

that peristaltic flow is aided along low curvature sections of the intestinal tract whereas it 

is impeded along high curvature zones. Flow acceleration resulting from a decrease in 
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curvature has also been reported for viscoelastic (third grade) fluids by Ali et al. [35]. 

Fig. 2(b) shows that velocity is enhanced with increasing volumetric flow rate, which 

follows logically. Increasing apparent viscosity coefficient (β), which corresponds to 

weaker non-Newtonian effect [42-44], effectively lowers the viscosity of the biofluid and 

manifests in acceleration in the flow i.e. increasing velocity, but only for a the range -

1.0≤ r ≤ 0  as observed in Fig. 2(c). The effect of β is therefore opposite to the effect of 

curvature parameter; velocity increases with an increase in β for the region -1.0≤ r ≤ 0 

whereas it is reduced for  1.0r  onwards. This sensitivity to the value of transverse 

coordinate was also reported in Narla et al. [33] indicating, as also elaborated by Skalak 

et al. [38] for both blood flows and gastric flows, that an intricate relationship exists 

between geometrical location in curved vessels and rheological effects. The present 

simulations further warrant experimental investigations along these lines and it is hoped 

that readers may pursue this avenue of research.  

Figs. 3(a, b) depict the response of pressure rise (P) for different values of apparent 

viscosity coefficient, β, and curvature parameter, k, respectively. Fig. 3a shows that with 

an increase in value of β, there is a corresponding decrease in pressure rise in the 

peristaltic pumping region -3≤ Q ≤ 2, whereas pressure rise is conversely enhanced in the  

augmented pumping region 2.1≤ Q ≤ 3. Fig. 3(b) demonstrates that in the peristaltic 

pumping region -3≤ Q ≤ -1 the pressure rise increases with greater curvature (k)  

whereas it is lowered with an increase in k  in the augmented pumping region  -0.99≤ Q ≤ 

3. Comparing Figs 3a and 3b also reveals that significantly greater magnitudes for 

pressure rise are computed in the former as compared with the latter. The inverse 

pressure rise- flow rate relationship is also confirmed in both figures, concurring with 

numerous other non-Newtonian curved tube peristaltic studies e.g. Narla et al. [33], 

Kalantari [34] and Kalantari et al. [35], even though these other studies utilize different 

rheological models.  

Figs. 4(a-c) present the distributions for axial pressure gradient (dp/dx) with variation in 

flow rate (Q), curvature parameter (k), and upper limit apparent viscosity coefficient (β) 

plotted along the x-axis. It is apparent that pressure gradient exhibits a sinusoidal 

behavior for variation of all flow parameters. The pressure gradient magnitudes in fig. 4a 

are however substantially larger than in figs 4b and 4c, principally due to the low 
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curvature (k = 0.5) and high value of rheological parameter ( = 5) in fig. 4a- this 

combination strongly boosts the pressure gradient. In fig. 4a even though the rheological 

parameter is high (i.e. weak non-Newtonian effect), the curvature is also very high (k = 2, 

3, 5) and this latter effect dominates the peristaltic flow and depresses pressure 

magnitudes. In fig. 4c despite the low curvature of the vessel (k = 0.5), the rheological 

parameter is also lower than in fig. 4a which again results in a depression in pressure 

gradient magnitudes. The influence of increasing flow rate, Q, as computed in fig. 4a, is 

consistently to elevate the pressure gradient. However although in fig. 4b, increasing 

curvature parameter, k does increase pressure gradient, this may also be associated with 

weak amplitude and weaker viscosity of the biofluid, rather than purely a geometric 

effect due to the curved vessel. With a weak increase in rheological parameter, , (fig. 

4c) there is as expected a boost in pressure gradient; however the magnitudes attained are 

much lower than in fig. 4a which is associated with a much higher  value of . Again the 

authors encourage experimental work in this area to further elaborate the clinical 

implications of the present computations. 

Figs. 5a-c illustrate the streamlines for various curvature parameters (k). Evidently with 

increasing curvature parameter, the size of the bolus is slightly increased. As with many 

Newtonian [32] and non-Newtonian [35] peristaltic flows, the streamlines on the centre 

line in the wave frame are demarcated under certain conditions in order to enclose a bolus 

of fluid particles circulating along closed streamlines. This phenomenon is termed 

trapping, which is a characteristic of peristaltic motion. In axisymmetric peristaltic flows, 

the positive motion displacing biofluid forwards part is of a torus shape. The bolus is 

trapped by the wave and therefore propagates forward with the same speed as that of the 

wave. In the present simulations, reflux (or retrograde flux) i.e. reversed motion of 

biofluid in the opposite direction opposite to the net flow (i.e. in the negative x-direction) 

was not observed.  

Figs. 6a-c depicts the streamline plots for different values of upper limit apparent 

viscosity coefficient (β). It is noticed that with the increase in upper limit apparent 

viscosity coefficient i.e. decreasing non-Newtonian effect, the size of the bolus also 

slightly increases. Stronger non-Newtonian behavior (fig. 6a) therefore results in a 

smaller bolus size compared with weaker non-Newtonian behavior (fig. 6c). The 
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implication for gastric phenomena is that rheological characteristics of chime actually 

encourage the propagation of smaller bolus sizes rather than larger boluses. This may be 

linked with the efficiency recorded in clinical observations wherein actual intestinal 

dynamics is more efficient than Newtonian models predict [32]. 

Figs.7a-c finally present the streamline visualizations for the effects of flow rate (Q) 

variation. It is seen that with an increase in flow rate (Q) the size of the bolus increases 

and this will also inevitably influence the number of boluses which are expected to 

decrease. 

The present study, it is envisaged, will provide further stimulation for experimental 

investigations in curved tube peristaltic rheological propulsion and serve as a reasonable 

benchmark also for more advanced fluid-structure-interaction simulations of such 

phenomena via advanced commercial software codes. Furthermore it is relevant to 

electro-hydraulically driven peristaltic pumps in bio-robotics [50]. On another note, a 

very significant development in modern peristaltic hydrodynamics simulations has been 

nanofluids. Many important investigations have been communicated very recently 

relating to rheological and other aspects of such fluids which hold immense potential in 

medical engineering. A proposed future extension to the current work is therefore to 

explore nanofluids and nano-particle effects in curved tube peristalsis, in line with other 

key studies including Ahmed and Nadeem [51], Nadeem and Shahzadi [52], Nadeem et 

al. [53], and Nadeem et al. [54]. The inner wall of the curved channel often possesses a 

ciliary surface and metachronal wave beating is also of great interest in refining 

peristaltic flow simulations, as elaborated by Nadeem and Sadaf [55 56] and the authors 

are also keen to pursue studies along these lines in the future.   

 

5. Conclusions 

A mathematical model has been developed for the peristaltic propulsion of non-

Newtonian gastric fluid in a curved tube intestinal geometry. The Nakamura-Sawada bi-

viscosity rheological formulation has been employed. Closed-form solutions have been 

derived for the dimensionless “moving boundary” value problem for velocity field, 

pressure gradient and pressure rise. Verification of solutions has been performed with a 

MAPLE17 numerical quadrature solver. To visualize bolus formation, streamline plots 
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have been presented in colour. Some interesting flow characteristics have been 

determined which agree quite well with clinical observations and also other 

computational simulations. These are summarized as follows: 

(i)Increasing curvature has been found to enhance pressure rise in the peristaltic pumping 

region whereas the converse effect is computed in the augmented pumping region.  

(ii)The inverse pressure rise-flow rate relationship reported in numerous other studies has 

also been observed.  

(iii)The axial velocity is also observed to be depressed with increasing curvature 

parameter in a certain zone of the curved tube whereas further along the opposite effect is 

apparent. 

(iv) Bolus size was also found to be weakly amplified with an increase in upper limit 

apparent viscosity coefficient i.e. reduction in the non-Newtonian effect.  
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