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Abstract 

The influence of transverse magnetic field on time-dependent peristaltic transport of 

electrically-conducting fluids through a microchannel under an applied external electric field 

with induced electric field effect is considered, based on lubrication theory approximations. 

The electrohydrodynamic (EHD) problem is also simplified under the Debye linearization. 

Closed-form solutions for the linearized dimensionless boundary value problem are derived. 

With increasing Hartmann number, the formation of bolus in the regime (associated with 

trapping) is inhibited up to a critical value of magnetic field. Flow rate, axial velocity and local 

wall shear stress are strongly decreased with greater Hartmann number whereas pressure 

difference is enhanced with higher Hartmann number at low time values but reduced with 

greater elapse in time. With greater electro-osmotic parameter (i.e. smaller Debye length), 

maximum time-averaged flow rate is enhanced, whereas the axial velocity is reduced. An 

increase in electrical field parameter (i.e. maximum electro-osmotic velocity) causes an 

increase in maximum time-averaged flow rate. The simulations find applications in 

electromagnetic peristaltic micro-pumps in medical engineering and also “smart” fluid 

pumping systems in nuclear and aerospace industries.  
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1. INTRODUCTION 

Significant technological advances have been made in recent years in the field of microscale 

pumping designs including the development of microfluidics devices, micropumping and 

peristaltic micropumping [1]. An electro-osmotic pump is capable of generating high pressure 

and flow without moving mechanical parts and a robust design in this regard has been presented 

by Goodson et al. at the Nano Heat Mechanical Engineering Laboratory, Stanford University, 

USA [2]. Peristalsis is a physiological mechanism which achieves excellent and efficient 

transport of materials via periodic contraction of the conveying conduit. In this sense it is a 

smart system as it responds to electrical nerve stimulation and is mobilized intelligently to 

varying needs. Exploiting this principle of peristalsis, an electrostatically-actuated, biomimetic, 

micro- peristaltic pump has also been designed and fabricated by Xie et al. [3]. A microfluidic 

peristaltic pump has further been developed by Thomas and Dorrer [4]. Most recently, a 

microfluidic device comprising pumps, valves, and fluid oscillation dampers has been 

engineered by Chou et al. [5]. Furthermore an efficient, valve-less microfluidic peristaltic 

pumping method has been introduced by Zhang et al. [6]. A theoretical study on   electro-

magneto-hydrodynamic micropumps using Jeffrey viscoelastic working fluids in two parallel 

microchannels has been reported by Si and Jian [7]. As elaborated earlier, peristalsis is a unique 

mechanism in biology which comprises an automatic periodic series of muscle contractions 

and relaxation that occurs during movement of, for example, food bolus through the digestive 

system, urine flow from the kidneys into the bladder, transportation of bile from the gall 

bladder into the duodenum and many other physiological systems. Peristalsis has been studied 

in medical sciences for over a century. In the context of theoretical and experimental fluid 

dynamics, it received attention in the mid-1960s onwards, again motivated by the development 

of efficient pumps for medical and other applications. Important mathematical works in this 

regard have been communicated by Burns and Parkes [8], Fung and Yih [9], Shapiro et al. [10], 

Jaffrin and Shapiro [11], Shukla et al. [12], Takabatake, and Ayukawa [13], Pozrikidis [14] and 

Li and Brasseur [15]. More recent studies which have extended the purely Newtonian fluid 

models described in [8]-[15] include Tripathi and Bég [16] who examined viscoelastic 

peristaltic propulsion, Tripathi and Bég [17] who studied peristaltic flows of magnetized couple 

stress fluids, Blanchette [18] who considered the influence of suspended drops on peristaltic 

pumping, Ellahi et al. [19] who computed heat transfer in peristaltic flow. Further recent studies 

exploring other areas of peristaltic transport are the articles of Tripathi and Bég [20] concerning 
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nanofluids, Kothandapani and Prakash [21] on magnetic nanofluids and Akbar et al. [22] also 

on magnetic nanofluids in permeable channels. 

Although, as described earlier, numerous experimental studies have been communicated 

concerning electrohydrodynamic (EHD) and magnetohydrodynamic (MHD) peristaltic micro-

pumps, relatively few investigations of a theoretical nature in the former have been presented. 

Mathematical and computational models provide nowadays an essential compliment to 

experimental studies. They further allow the optimization of new designs which are critical for 

sustained performance in many areas including medicine, process, aerospace and nuclear 

engineering. Although Bég et al. [23] studied electrohydrodynamic flows in diabetic micro-

pumps and included electrical Reynolds number and electrical slip effects, they did not 

consider the peristaltic mechanism i.e. the analysis in [23] was confined to a non-deformable 

channel. Electrokinetic theory was first applied to peristaltic transport by Chakraborty [24] who 

explored the deployment of an axial electric field (and therefore an axial electro-kinetic body 

force) for enhancing microfluidic pumping rates in peristaltic microtubes and examined the 

modes of interaction between the electro-osmotic and peristaltic mechanisms for the effects of 

occlusion number, characteristic electro-osmotic velocity and the peristaltic wave speed. This 

work demonstrated that for small occlusion numbers, an axial electrokinetic body force in 

peristalsis may successfully augment the time-averaged flow rate and improve efficiency 

considerably. The work in [24] however was confined to the case of an electroosmotic slip 

boundary condition and external electric field effects were neglected in the model. 

Electrokinetics is the study of a group of numerous complex phenomena which occur in 

particles (solid, liquid or gas) containing fluids which respond to an intrinsic or extrinsic 

electric field.  Essentially it involves the hydrodynamics of the movement of ionic solutions in 

the vicinity of electrically-charged interfaces. The seminal work in this field is that of Saville 

[25], which addresses both chemical engineering and biophysical phenomena. Electrokinetic 

phenomena include di-electrophoresis (the force applied to polar liquids in the presence of non-

uniform electric fields which has also been utilized for digital bio-microfluidics), electro-

osmosis, diffusiophoresis, capillary osmosis, sedimentation potential, streaming 

potential/current, colloid vibration current and electric sonic amplitude effects, to name a few. 

Attracted by ever-growing applications of electrokinetics in various fields (including nano-

technology), a number of investigators have more recently studied the electrokinetic flows in 

various configurations. Vakili et al. [26] investigated the hydrodynamically fully developed 

electro-osmotic flow of power-law fluids in rectangular microchannels, solving the Poisson 

https://en.wikipedia.org/wiki/Electrophoresis
https://en.wikipedia.org/wiki/Electro-osmosis
https://en.wikipedia.org/wiki/Electro-osmosis
https://en.wikipedia.org/wiki/Diffusiophoresis
https://en.wikipedia.org/wiki/Capillary_osmosis
https://en.wikipedia.org/wiki/Sedimentation_potential
https://en.wikipedia.org/wiki/Streaming_potential/current
https://en.wikipedia.org/wiki/Streaming_potential/current
https://en.wikipedia.org/wiki/Colloid_vibration_current
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electrical potential and momentum equations with a computational finite difference procedure 

utilizing a non-uniform grid. They showed that dimensionless mean velocity (and electrical 

zeta potential) is elevated with channel aspect ratio and the dimensionless Debye–Hückel 

parameter but depressed with rheological power law index. Chakraborty and Paul [27] analyzed 

the collective effects of electrical and magnetic forces in micro-channel flow control. They  

simulated the electric double layer (EDL) effects using the classical Poisson–Boltzmann 

equation, and found that volumetric flow rates are significantly increased with comparatively 

weak magnetic field, whereas with stronger magnetic fields, significant volumetric forces can 

oppose and inhibit flow rate augmentation. Other studies include Dey et al. [28] who examined 

heat transfer in electro-osmotic and pressure-driven flows in narrow confinements with thick 

electric double layers [28]. Mohammadi et al. [29] reported very recently on hydrodynamic 

and direct-current insulator-based dielectrophoresis (H-DC-iDEP) microfluidic blood plasma 

separation. Sheikholeslami  and Ellahi [30] studied transport in electrohydrodynamic 

nanofluids with sinusoidal upper wall and hydrothermal effects. 

However the models described in [25]-[30] ignored the peristaltic effect. Recently however 

several authors have considered electro-kinetic peristaltic transport, extending the earlier work 

of Chakraborty [24]. El-Sayed et al. [31] studied the influence of an alternating vertical electric 

field and heat transfer on a peristaltic flow of an incompressible dielectric viscoelastic 

(Oldroyd) fluid in a symmetric flexible channel. They derived perturbation solutions for 

electric field, flow field and temperature distributions, and noted that backflow may be induced 

close to the lower bound of the channel with greater electrical Rayleigh number, Reynolds 

number and Weissenberg (viscoelastic) numbers. They further observed that trapped bolus 

magnitude is reduced at the upper bound of the channel and increases at the lower bound of the 

channel with higher electrical Rayleigh number, with the contrary behaviour for increasing 

temperature parameter. Very recently Goswami et al. [32] investigated theoretically the 

electro-kinetically modulated peristaltic transport of power law fluids through a narrow 

deformable tube delineated into two regions (a non-Newtonian core region (described by the 

power-law behavior) engulfed by a thin wall-adhering layer of Newtonian fluid), aimed at 

simulating the wall-adjacent cell-free skimming layer in blood samples typically handled in 

microfluidic transport. Their computations showed that the influence of electro-osmosis on 

pressure rise is prevalent at lower occlusion values (which highlights the significance for 

transport modulation in weakly peristaltic flow) and that trapping is successfully regulated via 

http://www.mdpi.com/search?authors=Mohsen%20Sheikholeslami&orcid=
http://www.mdpi.com/search?authors=Rahmat%20Ellahi&orcid=
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electric field and infect is eliminated at sufficiently strong electrical field strengths as is the 

reflux phenomenon. 

Motivated from the combined applications of peristalsis and electrokinetic transport in 

fabrication of microfluidic pumping devices, a new fluid mechanical model is developed in the 

present work, to discuss the effects of external electric field and thickness of electric double 

layer (EDL) on peristaltic pumping of viscous fluids through microchannels. A non-integral 

number of fluid boluses are taken as propagating along the microchannel length. The potential 

for electrokinetic peristaltic pumps may be considerable [33-34]. Electrokinetic pumping 

without peristalsis has been shown to be limited to relatively few applications e.g. capillary 

electrophoresis which is ideal for electroosmotic) but presents a number of difficulties 

including the micro-machining expense of specific surfaces needed to operate (usually glass), 

over-sensitivity to ionic composition of the buffer (hydroxyl group dissociation at the walls), 

relatively high-voltage sources and switches which are costly and difficult to install and also 

may have associated health hazards. Many of these drawbacks are considered in [35]-[41].  

Other works have rigorously explored magnetohydrodynamic peristaltic pumping and 

identified certain advantages and disadvantages of this method. These include the studies of 

Kumari and Radhakrishnamacharya [42] and Ramesh and Devakar [43] which have also 

incoporated slip effects and couple stress rheological effects. Other researchers have explored 

magnetohydrodynamic transport with a range of different formulations including Lorentz body 

forces [44], streamwise magnetic field [45], ferrohydrodynamics [46], magnetic nanofluids 

[47], magnetic induction [48] and mesoscopic hydromagnetic heat transfer [49]. Furthermore 

magnetohydrodynamic micropumps (which propel conductive liquids which are subjected to 

perpendicular applied electric and magnetic fields across a microchannel via the Lorentz force) 

suffer from bubble problems associated with electrolysis which can seriously inhibit flow and 

reduce efficiency and the range of applications, especially in medicine. Therefore a principal 

objective of the present study is to combine magnetohydrodynamic and electro-kinetic 

phenomena to explore the resulting performance in peristaltic transport mechanisms. Currently 

there is no universally recognized standard for achieving the optimized performance of 

micropumps. Different designs are dependent on many factors including operating mechanism, 

construction materials, expense, portability, relative facility for fabrication, bio-compatibility 

and re-usability. The present work therefore investigates the fluid mechanics of magnetized 

peristaltic pumping with   electrokinetic transport. Integral to this is the need to establish exactly 

how peristaltic pumping can be controlled by Debye length thickness and strength of applied 
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external electric field. The Debye length quantifies the charge carrier's net electrostatic effect 

in solution, and to what physical extent such electrostatic effects persist. It has different 

meaning in plasma physics, semi-conductor materials and electro-kinetics. We elaborate at 

length the influence of this parameter in addition to Hartmann (magnetic body force) 

parameter. Extensive visualization of flows is also included as are the effects of time and other 

parameters on pressure and velocity distributions in a finite channel as this geometry is 

physically more realistic for actual engineered systems. Detailed interpretations of the flow 

phenomena are presented. The present mathematical model is therefore envisaged to be of 

some significance in the field of biomimetic microfluidics utilizing peristalsis and electro-

magnetic flow phenomena in the pumping process. 

 

 

2. MATHEMATICAL FORMULATION 

The geometric model for the electrokinetic peristaltic transport under transverse magnetic field 

through a finite length ( L ) channel, as a simulation of an electromagnetic biomimetic pump, 

depicted in Fig.1, is mathematically defined according to the following relations: 
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where a , , , , c , t , L  are the radius of tube, amplitude, wavelength, axial coordinate, 
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Fig.1. Geometry of conductive peristaltic pumping with electrical and magnetic field effects. 

 

The governing equations for unsteady, two-dimensional, electrically-conducting, 

incompressible flow with an applied electrokinetic body force in the axial (longitudinal) 

direction and static magnetic field in the transverse direction (i.e. mutually orthogonal subject 

to Maxwell’s equations) can be shown to take the form: 
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where   is the permittivity and )(   nneze , in which n and n  are the number of 

densities of cations and anions respectively and are given by the Boltzmann distribution 

(considering no EDL overlap), viz,  
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concentration of ions at the bulk, which is independent of surface electro-chemistry, e  is the 

electronic charge, z is charge balance, BK  is the Boltzmann constant, T  is the average 

temperature of the electrolytic solution. Introducing a normalized electro-osmotic potential 

function   with zeta potential  of the medium along with other non-dimensional variables, 
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Debye length or characteristic thickness of electrical double layer (EDL). Under the 

assumptions of long wave length and low Reynolds number, the electro-magneto-

hydrodynamic peristaltic flow is governed by the following equations:   
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where  ,,,vu  are the axial velocity, transverse velocity, axial coordinate and transverse 
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velocity or maximum electro-osmotic velocity and E  is axially-applied electric field. The 

imposed boundary conditions are: 

0
0
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Integrating Eq. (7) and using boundary conditions (8), the axial velocity is obtained as: 
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Using Eqn. (9) and boundary condition (8), the transverse velocity from the continuity equation 

(6) is obtained as: 
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Furthermore, utilizing Eqn. (10) and boundary condition (8), the pressure gradient emerges as: 
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where )(0 tG  is arbitrary function of time (t) to be evaluated by using finite length boundary 

conditions. The pressure difference can be computed along the axial length by the expression: 
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The local wall shear stress is defined as: 
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The flow rate is defined as: 
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The time averaged volume flow rate may then be defined as: 

2/1

1
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  hQQdtQ .                                                                                                   (16) 

Using Eqn. (9), the stream function in the wave frame (obeying the Cauchy-Riemann 

equations, 







u and 








v ) takes the form: 



























)cosh(

)sinh(

)cosh(

)sinh(

)cosh(

)sinh(1
22

2

2 mhm

m

HahHa

Ha

Ham

Um

HahHa

Hap

Ha

HS 





 .    (17)                     

All the above expressions will reduce to the corresponding expressions for peristaltic transport 

of viscous fluids through finite length channel with 0HSU  i.e. for vanishing Helmholtz-

Smoluchowski velocity (maximum electro-osmotic velocity). It is also noteworthy that the 

expressions (9)-(17) contract to the case for electro-kinetic peristaltic transport through a very 

thin electric double layer with electro-osmotic parameter m . Finally for 0Ha , 

magnetic body force effects are negated and the general model reduces to purely electro-kinetic 

peristaltic transport without magnetic field. 

 

3. RESULTS AND DISCUSSION 

A parametric study of the influence of the key electro-magnetic and hydrodynamic parameters 

on the flow variables has been conducted. Solutions are illustrated in Figs. 2-6. 
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Fig.2. Initial axial velocity profile vs. Hartmann number at 0.6,  and (a) U 1Hs  for different 

Debye length (b) 5m   for different external electric field 

 

   

  

 

 

 

Fig.3. Pressure distribution along the length of channel at 00.6, 2, 0, 1, 5l HSl p p U m       . 

Color lines represent the pressure distribution for different values of Hartmann number at (a) 0t , (b) 

0.3t  , (c) 0.6t  , (d) 0.9t  . Black lines show the single wave propagation.  
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Fig.4. Local wall shear stress along the length of channel for 

00.6, 2, 0, 1, 5l HSl p p U m       . Color lines represent the Local wall shear stress for 

different values of Hartmann number at (a) 0t , (b) 0.3t  , (c) 0.6t  , (d) 0.9t  . Black lines 

show the single wave propagation.  
 

 
 

            

 

 

Fig.5. Maximum time averaged flow rate flow vs. Hartmann number at 0.5,  and (a) U 1Hs  for 

different Debye length (b) 5m   for different external electric field. 
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Fig.6. Stream lines at 0.6, 0.6Q   , 1, 5HSU m   (a) 0.001Ha  , (b) 1Ha  , 

(c) 2Ha  , (d) 3Ha   
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Figs. 2a-b depict the variation in initial axial velocity (uo) computed against Hartmann number 

(Ha) for respectively: a) electro-osmotic parameter (m) which itself is inversely proportional 

to Debye length (m=a/d) and  b) HSU  i.e. maximum electro-osmotic velocity (which follows 

a direct proportionality with external applied electrical field, E , since
c

E
U HS




  ). Axial 

velocity is significantly increased with greater Hartmann number, as testified to by the decrease 

in negative values of uo with higher Ha. Since ,0



aBHa   which defines the relative 

influence of magnetic body force to viscous hydrodynamic force, therefore the implication is 

that greater transverse magnetic field (B0) and therefore Lorentzian body force (-Ha2u in 

eqn.(7)) induces a strong acceleration in the axial flow. Conversely with increasing electro-

osmotic parameter, m, (i.e. smaller Debye length) there is a substantial deceleration in the axial 

flow i.e. the axial velocity values become increasingly negative. The electrostatic body force, 

HSUm2 , therefore inhibits flow in this regime whereas the magnetic body force has the 

opposite influence. It is also worth emphasizing that the magnitudes of velocity in fig. 2a are 

evidently an order of magnitude greater than those in fig. 2a. However, effectively the electro-

kinetic effect (linked to electrostatic axial body force) achieves better hydrodynamic control 

than the magneto-hydrodynamic body force and this is of great relevance to precision design 

in micro-pumps [34, 35]. 

Figs. 3a-d present the evolution in pressure difference (p) with axial coordinate (), time (t) 

and also for various Hartmann numbers (Ha).  The peristaltic wave propagation profile is 

visualized in black dotted lines and clearly corresponds to a single wave. It is evident that the 

pressure distribution does not follow the predictable sinusoidal variation (characteristic of 

conventional peristaltic fluid mechanics) and that some degree of damping is introduced, 

probably owing to the interaction of electro-kinetic and magnetic body force. Smooth and sharp 

peaks and troughs are found to arise in an alternating fashion. The periodic nature of the flow 

is however clearly captured which is associated with peristaltic wave dynamics owing to the 

deformable channel walls. With increasing Hartmann number there is a significant elevation in 

the pressure difference (figs 3a, b) at t=0 (initiation of flow and t = 0.3, respectively. However 

with further progression in time the reverse effect is computed i.e. pressure differences are 

suppressed with greater Hartmann number. Therefore with regard to real-time electro-magnetic 

micro-pumps, Hartmann number while initially achieving a boost in hydrodynamic pressure, 
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with further time elapse causes the contrary effect. Pressure differences are also found to be 

reduced with greater axial distance (), i.e. further from the inlet of the channel.  

Figs. 4a-d illustrate the profiles for local wall shear stress (w) again with axial coordinate (), 

time (t) and Hartmann number (Ha). Again the peristaltic wave propagation profile is 

visualized in black dotted lines and a single wave is captured. At t= 0, as shown in figure 4a, 

following an initial decay in wall shear stress with small change in axial coordinate, there 

ensues an equally rapid ascent and after this a very steep plummet (almost vertical drop) at 

intermediate distance from the channel inlet. Thereafter a step change in wall shear stress is 

observed for greater subsequent values of the axial coordinate. A peak in wall shear stress 

therefore only arises once at a single location from the inlet. However with subsequent elapse 

in time (figs 4b, c, d) a dual peak is witnessed with a double step change. The initial peak is 

further displaced from the inlet with increasing time. Evidently the time-dependent nature of 

the peristaltic wave is reflected in the step-changes in wall stress and these have also been 

computed by other researchers including Smits [34]. With increasing Hartmann number the 

wall shear stress is invariably suppressed and at least once in each plot momentarily becomes 

negative implying flow reversal.  

Figs 5a,b depict the distribution in maximum averaged volumetric flow rate (
0Q ) with different 

Hartmann number (Ha) and also Debye length parameter (m) and external electrical field 

parameter (UHS). Flow rate (fig. 5a) is clearly significantly reduced with greater Hartmann 

number i.e. a decrease in fluid transported per unit time is caused by greater magnetic field, 

which concurs with the decrease in wall shear stress computed earlier (fig. 4a, b). The converse 

response is sustained with greater electro-osmotic parameter (smaller Debye length) i.e. 

electro-kinetic effect and evidently a marked elevation in flow rate is observed at any Hartmann 

number. Similarly in fig. 5b an increase in electrical field parameter (i.e. maximum electro-

osmotic velocity), (UHS) is also found to substantially enhance maximum time-averaged flow 

rates. The magnitudes of flow rates achieved in both figs 5a, b are similar. The graphs confirm 

experimental findings e.g. [32] that axial electrical field and electro-kinetic effects are 

beneficial to the peristaltic pumping process and may be exploited to this effect in micro-pump 

designs. 

Finally figs 6a-d illustrate the streamline distributions with Hartmann number. In all cases 

strong electrical field effects are present (UHS = 1, m =5). This visualization allows a better 

examination of the so-called trapping phenomenon, wherein an internally circulating bolus of 

the fluid is formed by closed streamlines. For Ha << 1 (Ha = 0.001), i.e. fig. 6a, the magnetic 
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body force is significantly weaker than viscous force. The dominant viscosity results in the 

manifestation of a dual system of distinct boluses encapsulated with other regions of trapped 

flow. The streamlines immediately adjacent and parallel to the = 0 line are largely undistorted 

and this line delineates the two bolus zones. When Ha = 1 (fig. 6b), the magnetic force is 

increased a thousand-fold (it is now of the same magnitude as the viscous force) and this serves 

to significantly distort the dual bolus zones. With further increase in Hartmann number to 2 

(fig. 6c) the dual zones lose the strong concentration of streamlines surrounding each of them, 

and a partial bolus is observed in each zone. However with further increase in Hartmann 

number (Ha = 3) in fig. 6d, there is a re-appearance of the streamlines around each bolus and 

the formation of distinct zones becomes intensified again. Evidently therefore a critical 

Hartmann number exists somewhere between Ha = 2 and 3 in which the initially assistive and 

stabilizing nature of magnetic field is replaced with a disturbing nature. This has also been 

noted by several researchers including  

 

4. CONCLUSIONS  

Analytical solutions have been derived for the unsteady peristaltic transport of Newtonian 

electrically-conducting fluid in a microchannel under mutually perpendicular applied external 

magnetic and electric fields, under low Reynolds number and long wavelength approximations. 

The electro-kinetics has been simplified via the Debye linearization. The study has been 

motivated by exploring the combined use of magnetohydrodynamics and electrokinetics in 

biomimetic micro-pumps for possible medical applications. The present computations have 

shown that: 

 With increasing Hartmann number, the formation of bolus in the regime is inhibited up to 

a critical value of magnetic field. Flow rate is however reduced with greater Hartmann 

number as is the local wall shear stress and the magnitude of axial velocity. Pressure 

difference is also found to be increased with greater Hartmann number at low time values 

whereas it is reduced with greater elapse in time. Furthermore increasing Hartmann number 

decreases local wall shear stress values.  

 With greater electro-osmotic parameter (i.e. smaller Debye length), maximum time-

averaged flow rate is enhanced, whereas there is a strong deceleration in the axial flow. 

  With an increase in electrical field parameter (i.e. maximum electro-osmotic velocity), 

maximum time-averaged flow rate is significantly elevated. 

 With greater axial distance, pressure differences are markedly decreased.  
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The present work has ignored rheological working fluids. These will be addressed in the near 

future using different non-Newtonian approaches.  
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