
A New Strategy for Case-Based Reasoning Retrieval
Using Classification Based on Association

Ahmed Aljuboori, Farid Meziane and David Parsons

University Of Salford, School of Computing Science and Engineering, M5 4WT, UK
a.s.aljuboori@edu.salford.ac.uk; f.meziane@salford.ac.uk; d.j.pa

rsons@salford.ac.uk

Abstract. This paper proposes a novel strategy, Case-Based Reasoning Us-
ing Association Rules (CBRAR) to improve the performance of the Similarity
base Retrieval SBR, classed frequent pattern trees FP-CAR algorithm, in order
to disambiguate wrongly retrieved cases in Case-Based Reasoning (CBR).
CBRAR use class association rules (CARs) to generate an optimum FP-tree
which holds a value of each node. The possible advantage offered is that more
efficient results can be gained when SBR returns uncertain answers. We com-
pare the CBR Query as a pattern with FP-CAR patterns to identify the longest
length of the voted class. If the patterns are matched, the proposed strategy can
select not just the most similar case but the correct one. Our experimental eval-
uation on real data from the UCI repository indicates that the proposed CBRAR
is a better approach when compared to the accuracy of the CBR systems used in
our experiments.

Keywords: class association rules, frequent pattern trees, case-based reasoning, retriev-
al, P-trees.

1 Introduction

The basic premise of case-based reasoning (CBR) is that experience in the form of
previous cases can be influenced to solve new problems [1]. An individual experience
is named a case, and its collection is stored in a case base [2]. Basically, each case is
defined by a problem description and its corresponding solution description. Among
the four main phases, retrieval is a key stage, with success being heavily reliant on its
performance [3]. Its aim is to retrieve similar or useful cases that can be successfully
used to solve a target problem. This is of particular importance because if the re-
trieved cases are not useful, CBR systems may not ultimately produce a suitable solu-
tion to the problem [2].
Fundamentally, retrieval is performed through a specific strategy of leveraging simi-
larity knowledge (SK) referred to as ‘similarity-based retrieval.’ (SBR) [3]. In SBR,
SK is utilized to determine the benefit of stored cases with regards to a target prob-
lem. SK is typically encoded via similarity measures between the problem and stored
cases. In SBR, the measures are used to identify cases ranked by their similarities to
the problem. Their solutions are then used to solve the problem.

mailto:a.s.aljuboori@edu.salford.ac.uk
mailto:f.meziane@salford.ac.uk

Association rules mining (ARM) is an important technique in the field of data min-
ing (DM). ARM is used to extract interesting correlations, associations or casual
structures among a set of items in a transaction database or other data repositories. It
is used in various application areas, such as banking, products relationships and fre-
quent patterns. The class association rule (CAR) technique was first proposed by [4].
It generates classification rules based on association rules (ARs). Other techniques for
mining CARs have been suggested in recent years. They include GARC [5], ECR-
CARM [6], CBC [7], CAR-Miner [8], CHISC-AC [9] and developed d2O [10]. The
methods of classification based on CARs were demonstrated to be more accurate than
the classic methods e.g. C4.5 [11]and ILA [12, 13] in their practical results [4].

Frequent pattern mining (FPM) plays a major role in ARM. On its own FPM is
concerned with finding frequent patterns (frequently co-occurring sub-sets of attrib-
utes) in data. A number of FPM algorithms have been proposed for instance Apriori
[14]. With respect to pattern matching the majority of these have been integrated with
ARM algorithms. Of these, the best known, and most frequently cited, is the FP-
Growth algorithm [15]. FP-growth is constructed on a set enumeration tree structure
called the FP-tree. It takes a totally different approach to discovering frequent item-
sets. Unlike Apriori, it does not generate and test the paradigm. Instead, FP-growth
compacts the data set structure using FP-tree and extracts the frequent pattern directly
from this structure [16]. FP-tree is a compressed representation of the input data. It is
built by reading the dataset transaction and allocating each transaction to a path in the
FP-tree. As various transactions can have many items in common, their paths might
overlap. The more the paths overlap with one another, the more can be achieved by
using the FP-tree structure. The performance of this process will depend on the
amount of memory available on the system being used. If the FP-tree can be held
entirely within the available memory, the extraction of frequent itemsets will be faster
as it will be possible to avoid repeated passes over stored data.

In this paper, we propose CBRAR a new strategy for enhancing the performance of
CBR by using a new more efficient algorithm (FP-CAR) for mining all CARs with
FP-tree values for a CBR query Q. The proposed algorithm uses an optimum tree
derived from the FP-tree and optimized by P-tree concepts to produce a super-pattern
that matches the new CBR case. Our initial experimental results show that the
CBRAR strategy is able to disambiguate the answers of the retrieval phase compared
to those obtained when using Jcolibri [17] and FreeCBR [18] systems for example.

2 Literature Review of CBR and other Types of Knowledge

CBR is a well-studied area in machine learning. In the past decades several research-
ers have studied CBR methods in real world applications, such as medical diagnosis
[19], [20], product recommendation [21] and personal rostering decisions [22]. CBR
is a cyclic and integrated process of solving a problem and learning from the experi-
ence of experts, which is used to build a knowledge domain which is then recorded to
be used to help solve future problems. It can be defined as “to solve a problem, re-
member a similar problem you have solved in the past and adopt the old solution to

solve the new problem” [23]. CBR methods are composed of four steps: retrieve-find
the best matching of previous cases, reuse-find what can be reused from old cases,
revise-check if the proposed solution may be correct, and retain-learn from the prob-
lem solving experience. This decomposition of CBR phases is based on [1] and illus-
trated in Fig. 1.

Fig. 1. CBR Cycle [1]

2.1 Machine Learning and Retrieval

The development of machine learning has resulted in retrieval approaches that SBR
merges with rule-induction (RI) approaches to enhance SBR. RI systems often learn
domain-particular knowledge and represent it as IF–THEN rules. It is suggested that
such rules can be utilized for determining the weights of case features in SBR [24].
[25] shows that decision tree algorithms can be used to discover domain-specific rules
from a specific case base. From such rules, users select useful rules according to the
thresholds set up by experts. The extracted rules are then used to point a target prob-
lem to its most similar case set and to calculate the weights of the case features. Such
knowledge is finally used to retrieve the most similar case from the case base. A re-
trieval paradigm in [26] chooses between SBR or a RI method (using decision trees)
for the target problem, considering the similarities of cases in a case base.
The CBRAR approach is different from these approaches in that Association
Knowledge (AK) is not used to measure the weights of case features, but to refine the
cases retrieved by SBR and guide more specific rules to the target problem.

Retrieved Case

Learned Case

Solved Case

New Case

REVISE REUSE

RETRIEVE

Tested Case

RETAIN

Previous
Cases

2.2 Data Mining and CBR

Over time, techniques of integrating data mining (DM) and K nearest neighbor
(KNN) have often been implemented in CBR research to improve KNN through three
main platforms. First, to integrate feature weighting (FW) and feature selection (FS)
into KNN. In this framework, FW is used to estimate the optimal weights of the origi-
nal features of cases [27], [28] , and FS is employed when choosing relevant features
of cases [20], [22], or their aggregation is used to leverage their usefulness [19]. Sec-
ond, to merge data clustering with KNN, where the structure of clustered cases is
leveraged to lead to more relevant cases [29], [30]. For case retrieval, the similarity
between a target problem and each case is combined with the relevance of the clus-
tered group containing the case considered [31]. Third, to apply both DM and SBR
techniques together to discover cases related to the target problem. For instance, [32]
displays how to integrate DM with SBR to improve liver diagnosis. Given a target
problem, once a DM method (a back-propagation neural network) is applied on the
case base, some cases thought to be relevant to the problem are retrieved. These cases
are then tested to verify whether these are adequately similar to the target problem
through SBR. Similar cases are merely used as a retrieval result for the problem. Un-
like this scheme, our approach is based mainly on the use of AK built via CARs.

2.3 Retrieval and CAR

Basically, retrieval is achieved by employing two methods: (AK) and (SK). The re-
trieval is normally achieved utilizing SBR which is a technique based on SK. In SBR,
SK is utilized for estimating the retrieval of similar cases to the target problem. The
similarity measure is used between the various cases available and the problem to find
those cases that can be selected to solve the target. Nevertheless, defining the SK can
be considered as a main disadvantage of SBR because it is reliant on domain experts
and is a time consuming process [33]. The similarity standard defined for one domain
differs for numerous domains that are helpful for some problems and not for others.
Therefore, the performance of SBR varies from problem to problem even within the
same domain [26].

Association rules (ARs) aim to find interesting relationships (associations) in a
transaction database [14]. The focus is usually on discovering a set of highly co-
occurring features shared by a large number of transactions in a database. It is an
implication of the form X→Y, where X and Y are nonintersecting sets of items. For
example, {milk, eggs}→{bread} is an association rule that says that when milk and
eggs are purchased, bread is likely to be purchased. In the context of CBR, ARs can
be employed to determine interesting relationships from a given case base. Further-
more, the transaction of the item can be considered as a case and an attribute as a
value pair, respectively. The most traditional algorithm is Apriori [34] which has been
used to evaluate and rank a large number of extracted ARs that have support and con-
fidence which is not less than that specified by a user [35]. CAR is a specific subset of
ARs whose consequents are restricted to one target class. In the context of CBR, a
CAR is considered as an AR whose consequent holds the item formed as a pair of a

solution attributes and its value [36]. In a given case base library, AK is encoded to
show how a specific problem’s features are associated with a certain solution.

3 Related Work

3.1 Soft Matching of ARM (SARM)

A limitation of traditional ARM algorithms for rule X→Y e.g. Apriori [34] is that
items X and Y are discovered based on the relation of equality. Basically, these algo-
rithms perform poorly when dealing with similar items. For instance, Apriori cannot
find rules like 70% of the customers who buy products similar to yogurt (e.g. milk)
and products similar to mayonnaise (e.g. egg) also buy baguettes. Soft matching was
suggested to address this [37], where the consequents and antecedent of ARs are dis-
covered by similarity valuation. The SARM standard is used to find all rules from
X→Y, where minimum support and minimum confidence of each rule are not less than
soft support and soft confidence, respectively. Support and confidence are used to
generalize the definition of soft support and soft confidence.

This generalization is performed by allowing elements to match, so long as their
similarity exceeds minimum similarity (minsim) as specified by the user. The soft-
matching criteria can be employed to model better relationships among features of
cases instead of the equality relation, by using the concept of similarity.

3.2 Soft - CAR Algorithm

This algorithm calculates the soft support and finds the frequency of each item soft
matching CARs. It also discovers the seed set of rules found in every pass in the cor-
responding class. For every rule item, the seed set of rules are utilized to generate new
rule items known as candidate rule items. The soft support is computed through the
set of different cases.

It produces SCARs rules in the last pass after it finds the candidate rule items
which are frequent from those frequent items [38]. However, experts are required for
calculating and defining the SK domain, making this a time consuming and difficult
process.

3.3 USIMCAR Algorithm

This algorithm is an expansion of the retrieval phase to improve the performance of
the SBR. It encodes the AK in Soft-CARs together with SK to improve the perfor-
mance of CBR [38]. USIMCAR is used to enhance the usefulness of cases, retrieved
through the SK [36], with regard to a new case Q in addition to including the SCAR,
thus meaningfully utilizing the cases with their usefulness [36]. In addition, it lever-
ages the AK by searching and finding those SCARs whose usefulness is greater than
others concerning Q, therefore valuably using them with their usefulness. Patel [39]
also developed the USIMCAR strategy for hierarchical cases which combines the

support-count bit from multilevel and soft-matching criteria (SC-BF) algorithm for
the SCARs. Patel also applied the unified knowledge of the AK and similarity to en-
hance the performance of the SBR. Both strategies [38] and [39] are a simulation of
the retrieval phase by providing a percentage value but do not involve providing a
CBR system with feedback inputs as part of the original cycle.

In this paper, we propose the FP-CAR algorithm to generate an optimum tree using
CARs and FP-tree. The tree is optimized by utilizing various types of association
knowledge i.e. P-trees and an equivalence table of implications. FP-CAR is also a part
of the suggested CBRAR technique which is an expansion to the SBR. The novel
CBRAR is used to disambiguate the wrong retrieved answers as feedback to the CBR.

4 Proposed Algorithm FP-CAR

The FP-CAR (frequent pattern class association rules algorithm) is based on two
steps. First, it generates a FP-tree from a set of CARs [40]. Second, the tree is opti-
mized by utilizing the P-tree [41] concepts and equivalence table of implication.
These two steps are combined to gain an optimum tree that can be compared with a
new case Q of the CBR as a super-pattern to improve the performance of the SBR.
The start of the observation is where the options of CARs have been selected as fol-
lows (lower support ξ = 0.1 and confidence = 0.9, delta = 0.05, number of rules =
Maximum), then the existence of rule X → c is a subset should make it necessary to
consider it as an antecedent of a superset X,Y → c. Practically, however, we may still
find a rule Y → c, say, where Y is another subset of the same class, where both X and
Y form a Superset-Pattern X,Y → c. In the first case scenario, logical equivalences
concepts are utilized to prove the theory behind gaining the equivalence of ((X→c) ∨
(Y→c)) ≡ (X∧Y) → c. In other words if X implies c or Y implies c, it is equivalent to
X and Y both implying c.

The second case scenario uses the acute inflammation dataset from UCI (see Table
1, Table 2, Fig. 2 and Fig. 3). In this case, as in Coenen [42] we take advantage of the
P-tree to gain a superset. We consider the partial total accumulated at ABCD which
makes a contribution for all the subsets of ABCD. In other words, the contribution in
respect of the subsets of ABC is already included in the interim total for ABCD, there-
fore, when considering the superset ABCD, we need to examine only those subsets
which include the attribute D [43].

In this paper we suggest an alternative explanatory method: If we can identify a
generic rule X → c which meets the required support and confidence thresholds, then
it is necessary to look for other rules whose antecedent is a superset combined with
(X^Y) and whose consequent is c which distinguishes our algorithm compared to [40].
The objective of the FP-CAR algorithm is to continue to look for rules that select
other classes in order to reduce the risk of overfitting and the number of the consid-
ered candidate rules.

FP-CAR uses the concepts of classification based on association and the Total
From Partial Classification (TFPC) algorithm [40]. It builds a set-enumeration tree
structure of the CARs, where the FP-tree contains an incomplete summation of sup-

port-counts for relevant sets and patterns. Using the FP-tree structure to represent all
patterns of the CARs, the T-tree [41] concept is used to build an optimum tree that
finally contains all the frequent patterns sets (i.e. those that can be compared to the
pattern of the CBR query). The FP-CAR is built level by level, the first level compris-
ing all the subsets that contain a value of the attribute under consideration. It com-
presses the subsets into a prefix tree, where the root c holds all frequent items accord-
ing to their frequency. In the second pass, the unnecessary subsets are removed, from
the tree. Candidate-subsets then form a superset from the remaining sets considering
the pattern of the CBR. The process continues, with the voting of a length in each
class label, until no more candidate sets can be generated. The patterns of subsets will
contain a value of each node which can be compared with a CBR query Q.

Fig. 2 shows the form of a FP-CAR, for the subsets {{A,B,C,D},{A,E,F},L,c1}},
{{A,B,C},L,c2} where L is a length identifier, c1 and c2 are class identifiers, each node
of a subset holds a value i.e. A={yes ,no}. This tree includes all possible related super-
sets that are not resolved by SBR, except for those including both c1 and c2 which we
will assume were pruned. The target of FP-CAR is to find a CBR case problem that
caused uncertain answers i.e. {{A=yes, B=yes, C=yes, D=yes, E=no, F=40, L=6}.
FP-CAR nodes include a value of each node for a superset Q i.e. A= {yes, no}. Practi-
cally, an actual FP-tree would contain all those nodes representing the frequent sub-
sets where FP-CAR includes the voting length and values. For instance, if the set
{A,B,C},L} fails to reach the required support threshold, and length identifier e.g. 4 to
conform to the case problem pattern, then the class of the subset {A,B,C} would be
ignored, and the superset would not be created. All the candidates that contain the
class-identifier c1 with required length can be found in the subtree rooted at c1 ,starts
with A node descended by {B,C,D,E,F} frequency as shown in Table 1. FP-Tree
Hash Table Therefore, all the rules that classify to c1 can be derived from the root A
(and also for c2) whereas those subsets which start with other roots will be removed to
gain a super-pattern.

Table 1. FP-Tree Hash Table

The algorithm used to build the FP-CAR tree in Fig. 2 is a modification of the

original FP-Tree approach using TFPC concepts. As each pass is concluded, we ig-
nore from the tree all those subsets that fail to meet the target pattern to form a super-
set. The remaining (frequent) sets that are included within the class-identifier subtrees
of (c1), define a possible partial superset if one matches the voted length and other
one is a complement. For example, the set {ABCDc1} is a partial one where X → c1

Item Frequency Priority
B 58 2
A 62 1
C 50 3
D 49 4
E 44 5
F 26 6

Ordered-Subsets Length Class
A,B,C 3 c1
A,C 2 c1
A,B 2 c2

A,B,C 3 c2
A 1 c2

A,B,C,D 4 c1

of L=4 and AEFc1 is a complement that corresponds to rule Y → c1. We now build
the supersets of all such sets that match the new case Q = {yes, yes, yes, yes, no and
40.0}. If the threshold of L of the subsets is greater than or equal to the voted class c1,
we add the subset to our target set considering the nodes values, and ignore the corre-
sponding subset from the tree that occurs in c2. The complement of the superset will
then be completed from the same cluster of c1 i.e. {X ^ Y} → c1≡ Q → c1 as shown in
Fig. 2. Connecting the tree below to the results in Table 2, proves the theory behind
the proposed algorithm.

Fig. 2. FP-CAR Algorithm Tree

5 New Strategy CBRAR to Enhance the Performance of SBR

This section presents the proposed new technique CBRAR of integrating CARs into
CBR. Basically, there is a possible problem in CBR which is retrieving unrelated
cases that cause an incorrect solution. To overcome this problem, CAR is utilized to
find the relationship between the case library and a target case. Normally, to achieve
the retrieval phase, CBR systems execute similarity SBR. However, SBR tends to
depend on similarity knowledge, ignoring other types of knowledge that can benefit
and improve retrieval performance. In this research, the challenge is how to retrieve
not just the most similar case in CBR but the correct one. Some studies which apply
ARs into CBR, for example [38], are much dependent on the experts domain for find-
ing SK. [39] focused on the case representation hierarchically by combining SK and
AK depending on the Apriori algorithm when a number of passes are needed to gen-
erate new candidates. Both strategies [38], [39] are a simulation of the retrieval phase
by providing a percentage value of related cases but do not involve providing a CBR
system with feedback, which is part of the original cycle. The new approach CBRAR
produces a correct case pattern not just a similar one. It also enables a correct case to
be returned back into the retrieval phase to disambiguate any wrong answer produced
by CBR.

As shown in Fig. 3, we start to remove one case from the case based library of the
CBR until the system retrieves two different classes with the same similarity. The
new method adapts the CARs to produce the FP-tree considering a class label, length
of subsets and support. This is because in mining association rule algorithms, any

A B D C E

ABCDc1

ACc2 ABCc2 ABCc1 AEFc1

 yes, no

A=yes A=no
c1 F

A=yes A=no
c2

B=yes C=yes

D=yes E=no

C=no B=yes C=no B=yes C=no

D=yes

ACDc2 AEFc1

ABCDEc2 AFc2

F=40
F=40,
F=44 D=yes E=no

associated method does not consider class clusters and length in the process of pro-
ducing frequent patterns of a specific class. Thus, in experiments to date an attempt
has been made to develop a FP-tree to make the frequent rules more effective to one
class by using a parent root of each class label. As a consequence of that, every fre-
quent rule will belong to its class. In the experiments, the first step of the FP-tree
algorithm is changed to classify subsets according to its frequency before the rules are
produced. Hence, considering the new case as a pattern to be compared with the con-
structed FP-tree will provide a correct match based on the new case built from the
new tree. In other words, if a new case arrives to CBR, SBR may retrieve unrelated
cases from the case library with same similarity measures as shown Fig. 3 in the re-
trieved cases field. This ambiguous result can make it difficult for the CBR user to
take the right decision. Following that, we produce CARs from the same case library
in order to gain the FP-CAR tree. The new case will then be compared to the formed
tree to find a match which may belong to class root.

Fig. 3. CBRAR Model

The proposed strategy is compared to existing CBR tools in the following steps:

• Splitting: the new algorithm splits rules into different classes, where each rule rep-
resents a subset which belongs to a particular class.

• Comparing: the new algorithm compares a CBR query as a pattern which actually
represents a new case; it should match exactly a frequent path FP-tree.

Class Yes

Class Yes

 A,B,C,D c1
A,B,C c2
A,E,Fc1

Retrieved cases
Class No

Case
Library

CARs

FP-CAR

c1 c2 A

C
B

c1

D

E

F

SBR

Q=A,B,C,D,E,F

Solved Case

New Case
Class Yes

• Voting: the process of voting is performed by considering the longest length of the
nodes considering values of the modified FP-tree in terms of finding a partial
match.

• P-trees: a P-trees procedure is invoked to complete any missing nodes in the tree if
needed to form an equivalent pattern to the CBR query.

In the final step, the result obtained by our new model is compared with the outcomes
of the retrieval phase to select a correct answer. We compare the solved case with the
result of the retrieved cases to remove unrelated answers as shown in Fig. 3. It can be
seen that two different labels i.e. class (yes and no) are retrieved by CBR in the re-
trieved cases field. By returning the solved case into the retrieved cases phase, the
ambiguity of the SBR outcomes was removed.

6 Experimental Results

To investigate the accuracy of CBRAR, we conducted experiments using a dataset
taken from the UCI Machine Learning Repository. The implementation of CBRAR
used a Java platform Eclipse (4.5.0), and for comparison purposes we have used the
Jcolibri framework [17] and FreeCBR [18] as powerful CBR tools. WEKA 3.6 is used
as an open source in order to generate the CARs. In the set of experiments, we have
removed one case from the CBR case library to be considered as a new case in each
run of both Jcolibri and FreeCBR. We used the acute inflammations dataset as the
same source to measure the CBR and CBRAR accuracy. By default, SBR returns the
5 most similar answers when using Jcolibri when a new case is applied. However, the
pre-determined cases 73,76,85,88 have registered an ambiguity that misleads the deci-
sion maker as all retrieved cases have the same percentage of similarity with different
labels i.e. (yes, no). When using FreeCBR, more potential cases were identified in
addition to those found by Jcolibri.

The results are shown in Table 2; vertically, the first column refers to the new case
Q followed by the cases retrieved by the CBR tools i.e. NewCase73 followed by cases
(71, 72, 76, 77 and 79, for Jcolibri) and cases (71, 72, 77 until 107 for FreeCBR). The
“Attributes” columns start with a temperature attribute F followed by 5 additional
attributes A,B,C,D and E. The class label column indicates a diagnosis of Inflamma-
tion of the urinary bladder with values (yes and no). The “Accuracy” columns show
the comparison between Jcolibri, FreeCBR and CBRAR. In the table, we use symbols
TP, TN, FP and FN as follows True Positive, True Negative, False Positive and False
Negative. The assumption is made to indicate the four probabilities on the confusion
matrix. Table 2 shows that, for each new case applied to CBR, 5 different cases are
retrieved by Jcolibri with the same similarity ratio i.e. 0.912. In the first experiment, a
NewCase73 applied to the CBR, Jcolibri retrieved 3 TP and 2 FP cases with the same
similarity ratio, and this is equal to 60% of accuracy, whereas FreeCBR retrieved 9
TP and 2 FP, and this is equal to 81% of accuracy. CBRAR retrieved 1 TP case from
new model. In the second experiment, a NewCase76 applied to the CBR, Jcolibri
retrieved 4 TN and 1 FN with same similarity and this is equal to 80% of accuracy,
whereas FreeCBR retrieved 6 TN and 1 FN and this is equal to 86% of accuracy.

Table 2. Results of Wrong Retrieved Cases

Cases
Attributes Accuracy

F A B C D E Class Jcolibri FreeCBR CBRAR

NewCase73 40.0 yes yes yes yes no yes 0.912 59.1751 TP

Case71 40.0 yes yes yes yes yes yes TP TP

Case72 40.0 yes yes yes yes yes yes TP TP

Case76 40.0 yes yes no yes no no FP FP

Case77 40.0 yes yes no yes no no FP FP

Case79 40.1 yes yes yes yes no yes TP TP

Case85 40.4 yes yes yes yes no yes

TP

Case86 40.4 yes yes yes yes no yes TP

Case89 40.5 yes yes yes yes no yes TP

Case94 40.7 yes yes yes yes no yes TP

Case100 40.9 yes yes yes yes no yes TP

Case107 41.1 yes yes yes yes no yes TP

NewCase76 40.0 yes yes no yes no no 0.912 59.1751 TN

Case73 40.0 yes yes yes yes no yes FN FN

Case82 40.2 yes yes no yes no no TN TN

Case88 40.4 yes yes no yes no no TN TN

Case92 40.6 yes yes no yes no no TN TN

Case96 40.7 yes yes no yes no no TN TN

Case104 41.0 yes yes no yes no no

TN

Case109 41.1 yes yes no yes no no TN

NewCase85 40.4 yes yes yes yes no yes 0.912 55.278 TP

Case73 40.0 yes yes yes yes no yes TP TP

Case79 40.1 yes yes yes yes no yes TP TP

Case84 40.4 yes yes yes yes yes yes TP TP

Case88 40.4 yes yes no yes no no FP FP

Case89 40.5 yes yes yes yes no yes TP TP

Case94 40.7 yes yes yes yes no yes

TP

Case100 40.9 yes yes yes yes no yes TP

Case107 41.1 yes yes yes yes no yes TP

NewCase88 40.4 yes yes no yes no no 0.912 55.276 FN

Case76 40.0 yes yes no yes no no TN TN

Case77 40.0 yes yes no yes no no TN TN

Case82 40.2 yes yes no yes no no TN TN

Case85 40.4 yes yes yes yes no yes FN FN

Case86 40.4 yes yes yes yes no yes FN FN

Case92 40.6 yes yes yes yes no yes

TN

Case96 40.7 yes yes yes yes no yes TN

Case104 41.0 yes yes yes yes no yes TN

Case109 41.1 yes yes yes yes no yes TN

Average 70 83 75

0

20

40

60

80

100

120

Jc
ol

ib
ri

Fr
ee

CB
R

CB
RA

R

Jc
ol

ib
ri

Fr
ee

CB
R

CB
RA

R

Jc
ol

ib
ri

Fr
ee

CB
R

CB
RA

R

Jc
ol

ib
ri

Fr
ee

CB
R

CB
RA

R

Case73 Case76 Case85 Case88

Error Rate

Accuracy

CBRAR retrieved 1 TN case from the suggested algorithm. When NewCase85 is
applied to the CBR in the third experiment, Jcolibri retrieved 4 TP and 1 FP cases
with the same similarity percentage, and this is equal to 80% accuracy whilst
FreeCBR retrieved 7 TP and 1 FP and this is equal to 88% of accuracy. CBRAR re-
trieved 1 TP case from FP-CAR tree. In the fourth experiment, a NewCase88 applied
using Jcolibri again retrieved 5 cases with 3 TN and 2 FN with same similarity and
this is equal to 60% accuracy. FreeCBR retrieved 9 cases with 7 TN and 2 FN.
CBRAR incorrectly retrieved 1 FN as a wrong case.

The results show that 14 out of the 20 Jcolibri retrieved cases are classified as TP
and TN giving 70% accuracy. By comparison, 29 of the 35 cases retrieved by
FreeCBR are classified as TP and TN giving 83% accuracy. However, both Jcolibri
and FreeCBR deliver “confusing” results. Our CBRAR strategy demonstrates ad-
vantages over both Jcolibri and FreeCBR by resolving 3 out of 4 cases with 75% ac-
curacy and no confusion. The accuracy of CBRAR was better compared to Jcolibri
and FreeCBR. CBRAR resolved the ambiguity of the FP and FN cases without confu-
sion. Cases 73, 76 and 85 in Table 2 can be reworked in Fig. 2 to prove that CBRAR
identifies a correct case using a frequent classed tree.

Fig. 4. Error Rate and Accuracy

The bar chart in Fig. 4 illustrates the error rate and accuracy of Jcolibri, FreeCBR and
CBRAR. From the chart, it is clear that in Case73, CBRAR registered 0 error rate,
which is the lowest among the rates (40, 19) when compared to Jcolibri and FreeCBR.
The results also show that the error rate of CBRAR is the lowest on Case76 and
Case85 thus giving the highest accuracy, when compared to the other CBR tools used.
CBRAR also correctly resolved 3 out of 4 cases. In Case88, it noticeable that the (40,
19) % error rate of Jcolibri and FreeCBR was considerably lower than CBRAR.

However, whilst CBRAR did not resolve Case88 neither of the other CBR tools of-
fered any advantage when compared to the new model. In conclusion, we have shown
that the other CBR tools used inherit the same problem of error rates, whereas
CBRAR has shown a better performance in overall error rate.

7 Conclusion

This paper has presented a new approach, CBRAR, to improve the performance of
SBR. The CBRAR approach includes a new algorithm FP-CAR which produces far
fewer frequent classed subsets than would be produced from a generic FP-tree. It uses
a new method of length voting compared to the TFPC algorithm where a value of
nodes is considered whilst building the tree. Moreover, the subsets left on the tree that
meet the support, confidence and longest length of pattern can be used to classify
subsets when sorted in a hash table. A superset could be derived; to be compared with
other new CBR cases when compared with the CBR tools Jcolibri and FreeCBR, the
CBRAR strategy achieves a better accuracy level with the lowest error rate. Moreo-
ver, the experimental results have shown the advantages of CBRAR over Jcolibri and
FreeCBR in terms of uncertain answers which are retrieved with same similarity. The
next phase of our work will extend our experimental results by implementing CBRAR
on different datasets and comparing the results with the other CBR tools used for our
experiments to date.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues,
methodological variations, and system approaches. AI Commun. 7, 39–59
(1994).

2. Perner, P.: Introduction to Case-Based Reasoning for Signals and Images. In
Perner, P. (Ed). Case-Based Reasoning on Signals and Images, 1-24 (2008).

3. Lopez De Mantaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B.,
Craw, S., Faltings, B., Maher, M.L., Cox, M.T., Forbus, K., Keane, M.,
Aamodt, A., Watson, I.: Retrieval, reuse, revision and retention in case-based
reasoning. Knowl. Eng. Rev. 20, 215–240 (2005).

4. Ma, B., Liu, W., Hsu, Y.: Integrating classification and association rule
mining. In: Proceedings of the 4th Knowledge Discovery and Data Mining
(1998).

5. Chen, G., Liu, H., Yu, L., Wei, Q., Zhang, X.: A new approach to
classification based on association rule mining. Decis. Support Syst. 42, 674–
689 (2006).

6. Vo, B., Le, B.: A novel classification algorithm based on association rules
mining. In: Richards, D. and Kang, B.-H. (eds.) Knowledge Acquisition:
Approaches, Algorithms and Applications. pp. 61–75. Springer (2009).

7. Deng, H., Runger, G., Tuv, E., Bannister, W.: CBC: An associative classifier
with a small number of rules. Decis. Support Syst. 59, 163–170 (2014).

8. Nguyen, L.T.T., Vo, B., Hong, T.-P., Thanh, H.C.: CAR-Miner: An efficient
algorithm for mining class-association rules. Expert Syst. Appl. 40, 2305–
2311 (2013).

9. Ibrahim, S.P.S., Chandran, K.R., Kanthasamy, C.J.K.: CHISC-AC: Compact
Highest Subset Confidence-Based Associative Classification1. Data Sci. J. 13,
127–137 (2014).

10. Nguyen, L.T.T., Nguyen, N.T.: An improved algorithm for mining class
association rules using the difference of Obidsets. Expert Syst. Appl. 42,
4361–4369 (2015).

11. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann, San
Mateo, Calif (1993).

12. Tolun, M.R., Abu-Soud, S.M.: ILA: an inductive learning algorithm for rule
extraction. Expert Syst. Appl. 14, 361–370 (1998).

13. Tolun, M.R., Sever, H., Uludag, M., Abu-Soud, S.M.: ILA-2: An inductive
learning algorithm for knowledge discovery. Cybern. Syst. 30, 609–628
(1999).

14. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In:
Proc. 20th int. conf. very large data bases, VLDB. pp. 487–499 (1994).

15. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate
generation. In: ACM SIGMOD Record. pp. 1–12. ACM (2000).

16. Cagliero, L., Garza, P.: Infrequent weighted itemset mining using frequent
pattern growth. Knowl. Data Eng. IEEE Trans. 26, 903–915 (2014).

17. jCOLIBRI | GAIA – Group of Artificial Intelligence Applications,
http://gaia.fdi.ucm.es/research/colibri/jcolibri.

18. FreeCBR, http://freecbr.sourceforge.net/index.shtml.
19. Ahn, H., Kim, K.: Global optimization of case-based reasoning for breast

cytology diagnosis. Expert Syst. Appl. 36, 724–734 (2009).
20. Pandey, B., Mishra, R.B.: Case-based reasoning and data mining integrated

method for the diagnosis of some neuromuscular disease. Int. J. Med. Eng.
Inform. 3, 1–15 (2011).

21. Lorenzi, F., Ricci, F.: Case-based recommender systems: a unifying view. In:
Mobasher, B. and Anand, S.S. (eds.) Intelligent Techniques for Web
Personalization. pp. 89–113. Springer, Berlin (2005).

22. Beddoe, G.R., Petrovic, S.: Selecting and weighting features using a genetic
algorithm in a case-based reasoning approach to personnel rostering. Eur. J.
Oper. Res. 175, 649–671 (2006).

23. Althof, K.-D., Auriol, E., Barlette, R., Manago, M.: A Review of Industrial
Case Based Reasoning. AI Intelligence, Oxford (1995).

24. Cercone, N., An, A., Chan, C.: Rule-induction and case-based reasoning:
hybrid architectures appear advantageous. IEEE Trans. Knowl. Data Eng. 11,
166–174 (1999).

25. Huang, M.-J., Chen, M.-Y., Lee, S.-C.: Integrating data mining with case-
based reasoning for chronic diseases prognosis and diagnosis. Expert Syst.
Appl. 32, 856–867 (2007).

26. Park, Y.-J., Choi, E., Park, S.-H.: Two-step filtering datamining method

integrating case-based reasoning and rule induction. Expert Syst. Appl. 36,
861–871 (2009).

27. Bradley, K., Smyth, B.: Personalized information ordering: a case study in
online recruitment. Knowledge-Based Syst. 16, 269–275 (2003).

28. Vong, C.M., Wong, P.K., Ip, W.F.: Case-based classification system with
clustering for automotive engine spark ignition diagnosis. In: Computer and
Information Science (ICIS), 2010 IEEE/ACIS 9th International Conference
on. pp. 17–22. IEEE (2010).

29. Azuaje, F., Dubitzky, W., Black, N., Adamson, K.: Discovering relevance
knowledge in data: a growing cell structures approach. Syst. Man, Cybern.
Part B Cybern. IEEE Trans. 30, 448–460 (2000).

30. Zhuang, Z.Y., Churilov, L., Burstein, F., Sikaris, K.: Combining data mining
and case-based reasoning for intelligent decision support for pathology
ordering by general practitioners. Eur. J. Oper. Res. 195, 662–675 (2009).

31. P. Perner, Prototype-based classification, App. Intell., 28(3), pp. 238–246,
(2008).

32. Chuang, C.-L.: Case-based reasoning support for liver disease diagnosis.
Artif. Intell. Med. 53, 15–23 (2011).

33. Guo, Y., Hu, J., Peng, Y.: Research on CBR system based on data mining.
Appl. Soft Comput. 11, 5006–5014 (2011).

34. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets
of items in large databases. In: ACM SIGMOD Record. pp. 207–216. ACM
(1993).

35. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A survey.
ACM Comput. Surv. 38, 9 (2006).

36. Aparna, V./, Ingle, M.: Enriching Retrieval Process for Case Based Reasoning
by using Vertical Association Knowledge with Correlation. Int. J. Recent
Innov. Trends Comput. Commun. 2, 4114 – 4117 (2014).

37. Nahm, U.Y., Mooney, R.J.: Using soft-matching mined rules to improve
information extraction. Language (Baltim). 11, 50 (2004).

38. Kang, Y.-B., Krishnaswamy, S., Zaslavsky, A.: A Retrieval Strategy for
Case-Based Reasoning Using Similarity and Association Knowledge. IEEE
Trans. Cybern. 44, 473–487 (2014).

39. Patel, D.: A Retrieval Strategy for Case-Based Reasoning using USIMSCAR
for Hierarchical Case. Int. J. Adv. Eng. Res. Technol. 2, 65–69 (2014).

40. TFPC Classification Association Rule Mining (CARM) Software,
https://cgi.csc.liv.ac.uk/~frans/KDD/Software/Apriori-TFPC/Version2/apriori
TFPC.html.

41. Coenen, F., Leng, P., Ahmed, S.: Data structure for association rule mining:
T-trees and P-trees. IEEE Trans. Knowl. Data Eng. 774–778 (2004).

42. Goulbourne, G., Coenen, F., Leng, P.: Algorithms for computing association
rules using a partial-support tree. Knowledge-Based Syst. 13, 141–149
(2000).

43. Coenen, F., Goulbourne, G., Leng, P.: Tree structures for mining association
rules. Data Min. Knowl. Discov. 8, 25–51 (2004).

	1 Introduction
	2 Literature Review of CBR and other Types of Knowledge
	2.1 Machine Learning and Retrieval
	2.2 Data Mining and CBR
	2.3 Retrieval and CAR

	3 Related Work
	3.1 Soft Matching of ARM (SARM)
	3.2 Soft - CAR Algorithm
	3.3 USIMCAR Algorithm

	4 Proposed Algorithm FP-CAR
	5 New Strategy CBRAR to Enhance the Performance of SBR
	6 Experimental Results
	7 Conclusion
	References

