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For field recordings and user generated content recorded on phones, tablets, and other mobile
devices nonlinear distortions caused by clipping and limiting at pre-amplification stages, and
dynamic range control (DRC) are common causes of poor audio quality. A single-ended
method to detect these distortions and predict perceived degradation in speech, music, and
soundscapes has been developed. This was done by training an ensemble of decision trees.
During training, both clean and distorted audio was available and so the perceived quality
could be gauged using HASQI (Hearing Aid Sound Quality Index). The new single-ended
method can correctly predict HASQI from distorted samples to an accuracy of £0.19 (95%
confidence interval) using a quality range between 0.0 and 1.0. The method also has potential
for estimating HASQI when other types of degradations are present. Subsequent perceptual
tests validated the method for music and soundscapes. For the average mean opinion score
for perceived audio quality on a scale from O to 1, the single ended method could estimate it

within +0.33.

0 INTRODUCTION

Modern technologies have enabled handy recording de-
vices, large data storage, and diverse outlets of User Gen-
erated Content (UGC). Three hundred hours of video are
uploaded to YouTube every single minute, and along with
other online databases such as freesound.org and sound-
cloud.com, much user generated audio is widely available.
UGC is now used extensively in news broadcasting: on aver-
age, anews agency adopts 11 pieces of UGC daily [1]. This
necessitates a rapid assessment method to determine if the
UGC is broadcast-worthy and so media asset management
systems would benefit from automatically generated audio
quality metadata. Furthermore, if audio problems can be
detected while recording, feedback can be given to the op-
erator of the device and many disappointing end results can
be avoided. A survey of both amateur and expert recordists
[2] found that the four most commonly reported errors
were: background noise (59%), wind noise (46%), han-
dling noise (31%), and other distortions (19%). Wind noise
problems in recordings have been addressed recently by the
authors [3]. Motivated by the need to tackle other recording
errors, this paper develops a method that can predict the
perceived quality of audio contaminated by distortion. Dis-
tortion problems also arise with other audio systems such as
hearing aids, sound reinforcement, and public address sys-
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tems, and consequently the method developed has a wider
applicability than just UGC.

Three of the most common objective measures to quan-
tify non-linear distortions are Total Harmonic Distortion
(THD) [4], Inter-Modulation Distortion (IMD) [5], and
Total Difference-Frequency Distortion TDFD [6] [7]. Lee
and Geddes [8] [9] showed that there is a poor correla-
tion between the perceived amount of distortion and the
THD and IMD for a piece of music. They proposed an
alternative measure with improved correlation based on in-
tegrating the 2"¢ differential of the non-linear amplitude
transfer function. A number of perceptual measures have
been developed to better model the perceived quality af-
ter degradation. These include double-ended methods for
speech [10]-[13] that have been standardized such as Per-
ceptual Evaluation of Speech Quality (PESQ) [14] and the
updated version POLQA [15]. Perceptual Evaluation of
Audio Quality (PEAQ) [16] has also been developed to
assess audio quality. PEAQ and PESQ are primarily used
for assessing quality degradations caused by digital coding,
complex audio processing, or transmission chains [17]. The
Distortion Score (DS) [18], Ryoniin [17], and the Hearing
Aid Sound Quality Index (HASQI) [19] are double-ended
methods able to predict the degradation in quality caused by
overloading of transducers and preamplifiers. Recent stud-
ies have shown that HAQSI generalizes well for normal
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Fig. 1. A block diagram of the proposed method

hearing listeners [20] achieving good accuracy when pre-
dicting mean opinion scores. For music HASQI was found
to be able to predict the perceived degradation in audio qual-
ity due to clipping effectively [21]. HASQI can therefore
be used to assess distortion on transmission channels but
only if both the original and degraded signals are available.

There are many occasions where the undistorted sound
is unknown. UGC is a good example where a single-ended
method is needed working just from the corrupted audio. An
example of a single-ended method is ITU Recommendation
P.563 [22] but this is restricted to narrow band speech.
Maré [23] presented a method to detect clipping in audio
signals using a supervised artificial neural network. The
test set was not sufficiently distinct from the training set,
however, raising doubts about the capability of the method
to generalize to unknown sources.

The new method presented below exploits a different ma-
chine learning regime to map features extracted from the
corrupted audio to predict human perceived quality moni-
tored using HASQI. A broader database of samples is used,
demonstrating the need for more features to achieve gener-
alization.

1 METHOD

A machine learning regime is used to take features ex-
tracted from the distorted audio and predict human per-
ceived quality. Fig. 1 gives an overview of the proposed
method. Speech, music, and soundscape samples were ar-
tificially distorted in a controlled manner using a diverse
range of non-linear processes. The distortion of each sam-
ple was quantified using HASQI to form a teacher value
for the machine learning algorithm that is used during su-
pervised training. Before passing the audio to the machine
learning algorithm it is necessary to reduce the amount of
data, and this is done by extracting key features.
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1.1 Database Formation

The machine learning scheme will learn to map from
audio features to HASQI using a large database of training
examples. The inclusion of a sufficient number of cases in
the dataset is vital. The cases need to represent the wide
range of likely audio samples in terms of what might be
recorded and also the distortion likely to be encountered.

1.1.1 Audio Database

Speech, music, and soundscape samples were used to
represent all the most likely sources of recorded audio.
An audio database was collected from a large collection
of CDs, including speech, music of various genres, and
soundscapes counting a range of geophonic, biophonic, and
anthrophonic sound sources. The database contains 404
music files with an average length of 2 minutes 45 seconds,
182 speech files with an average length of 4 minutes 48
seconds, and 469 soundscape clips with an average duration
of 1 minute 48 seconds. At least one 10-second excerpt
was randomly taken from each of these files, resulting in
1500 10-second excerpts for each of speech, music, and
soundscape, with about 500 of each type.

1.1.2 Distorting Samples

To create distortion algorithms to degrade the samples,
it was necessary to better understand common recording
problems and technologies. In microphones and preampli-
fiers, overloading can occur when the signals go beyond a
device’s dynamic range. This causes the peaks in a wave-
form to be clipped generating harmonics of the original
signal. In addition, when the analogue signal exceeds the
dynamic range of an AD converter, aliased distortions may
also be introduced.

Many devices incorporate Dynamic Range Control
(DRC) to protect against overloading. The DRC reduces
the amplification gain when the peak or root mean square
(rms) of the signal is likely to overload the circuit. Instead of
reducing the gain instantaneously, the DRC often incorpo-
rates an integration period, characterized by an attack and
release time, and the gain reduction is usually characterized
by a compression ratio. Dynamic range control systems can
inadvertently degrade perceived quality, and careful choice
of parameters is important [24]: (i) Audible distortion may
occur if the release time is too short and the amplitude gain
is modulated too quickly. (ii) Dropouts are likely to hap-
pen if the release time is too long because the suppressed
gain does not recover quick enough to handle subsequent
weak signals. This produces a “pumping” effect that is ob-
vious to the listener. (iii) When the attack time is too short,
the transients are suppressed excessively resulting in a lack
of punch and clarity. The effectiveness of the compression
can also be compromised. In addition, the DRC system is
a dynamic compressor and so it may also introduce other
artifacts or nonlinear distortions and degrade the signal to
noise ratio [25].

Kendrick et al. examined the DRC systems for a number
of portable audio devices [26]. The devices tested included
mobile phones, portable audio recorders, cameras, and
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Table 1. The range of DRC parameters measured for 9 devices

Minimum Maximum
Attack time 1 ms 17 ms
Release time 0 ms 400 ms
Compression ratio 1.4 Inf.

sound cards (Cannon 550D, Edirol r44, Neumann U87ai
via Focusrite 2i4, Shure SM57 via Focusrite 2i4, Zoom H2,
Zoom H4, Google Nexus 4, iPhone, and a Sony vx2000
camcorder). Table 1 describes the ranges of the three key
parameters found in the devices that had DRC.

DRC may not completely eliminate overloading, in
which case when the signal level is high the compres-
sion ratio would be inadequate. Therefore, to detect non-
linear distortions in audio all three scenarios must be care-
fully considered in constructing the database of examples—
overloading at the preamplifier; distortions due to the DRC
system, and overloading during analogue to digital conver-
sion.

Distortion was emulated using the method developed by
De Man and Reiss [27] in which the following amplitude
transfer function was used to generate non-linear distortions
of different types,

KixP=T (21<% LK+ 21(%) Ix|? + T2 (21(2 12K} +41<) x| — T3 (21(% 4 1)
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not dependent on the attack time. This is simulated by,

peak; [n] = max (x;, [n], agpeak; [n — 1])
peaky [n] = aapeaky [n — 1]
+ (1 —as)agpeak; [n] 2)

where oy = ¢ V@) and ag = e~ /@ F9; ¢, is the attack
time; T, the release time; peaky [n] is the peak level at
sample n; x;, [n] is the absolute value of sample n; and F's
is sampling frequency. In this method the attack envelope is
imposed on the release envelope, and therefore a branching
simulation is also developed that ensures the attack and
release envelopes are also decoupled. If the signal does not
completely decay away after the compressor is released, the
release envelope will decay at the prescribed rate and will
meet a background plateau more quickly than expected.
To ensure that the release time is always the same, the
releaseenvelope can be smoothed so that it decays gently to
the background level rather than silencing abruptly.

peak[n]
aspeakyp[n — 1]
= +(1 — aa)xp[n]

xp[n] > peak[n — 1]

xp[n] < peaky[n — 1]

(€)

agpeakp[n — 1]

f(xp) =sgn(xp)

where x5 = x + B; xis the instantaneous value of the input
signal (ranging between —1 and 1); 7 is the threshold (value
between 0 and 1); K is the knee parameter (K = 1 forahard
knee, K > 1 for a soft knee) where a Hermite spline is used
to connect the linear part (that ends where |x| = 7'/ JVK)
and the non-linear part; and B is a bias parameter that adds
a small DC offset to the signal. Components in the signal
from 22050 to oo Hz, can be aliased. To simulate distortion
without significant aliasing, the signal was up-sampled four
times to 176.4 kHz prior to applying the amplitude transfer
function and then down-sampled to 44.1 kHz afterwards.
The oversampling rate was chosen by computing the sig-
nal power above 22050 Hz in the oversampled signal for
typical sources and parameters. As the oversampling rate
is increased the signal power above 22050 Hz in the digital
domain converges towards the power in the analogue signal
above 22050 Hz. This convergence indicates that above a
certain oversampling level aliasing becomes insignificant;
an oversampling rate of 4 was found to be sufficient.

The Dynamic Range Control was emulated using the
method by Giannoulis et al. [28]. Peak level detection was
chosen for its prevalence in DRC systems. Giannoulis et
al. modeled four peak detection methods in DRC systems
including branching, smoothed-branching, decoupled, and
smoothed-decoupled.

Decoupling is where the peak level is measured using a
separate circuit that ensures that the peak level measure is
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(1)

Smoothing can be applied to both methods; for the
branching method the peak detection becomes,

peaky [n]
o peaky [n — 1]
+ (1 —ag)xg [n]x [n] > peaky [n — 1]

agpeaky [n — 1]
+( —ag)xg [n]x; [n] < peaky [n — 1]
€]

and the decoupled peak detection,

peak; [n] = max (x;, [n], agpeak; [n — 1]
+ (I —agr)xy[n—1])
peaky, [n] = agpeaky [n — 1]+ (1 — ax) agpeak; [n]
(5)

These four methods introduce varying levels of harmonic
distortion [24].

A Monte Carlo simulation was carried out with each of
the 10-second audio samples being distorted or compressed
in six ways as shown in Table 2. As this is a system that
learns from data, care was taken to ensure that the distri-
bution of samples was well balanced in terms of the types
of non-linear processing that may be encountered. For the
clipping distortion, the parameters used for the simulation
are described in Table 3 and for the DRC the parameters in
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Table 2. Distortion types used to train detector

Distortion class Distortion type

DRC present with clipping afterwards
DRC present with aliasing clipping afterwards

1 No Distortion

2 Clipping with reduced aliasing
3 Clipping with aliasing

4 DRC present

5

6

Table 4. These parameters are randomly generated but with
rules applied to the generating functions to ensure balanced
distribution of examples. The reasons for each choice are
explained in more detail in Appendices 1 and 2.

1.1.3 Teacher Values

Supervised machine learning needs large quantities of
labeled data for training. The massive number of samples
due to the combination of distortion types, distortion lev-
els, and huge number of original sources make labeling
them by subjective testing impossible. Taking advantage
of having both the original and distorted audio during the
training phase, a double-ended method could be used to
estimate HASQI [19] as the teacher values. The original
and distorted audio samples were truncated using rectan-
gular windows of one second. Fifty-percent overlap was
used. Each window was normalized to the rms value of that
window before estimating HASQI.

HASQI is a continuous value from O to 1 but is based
on subjective tests that returned a five level quality score
from Bad to Excellent as suggested by ITU-R BS.1284-
1 [29]. As a supervised classifier was adopted to perform
the prediction, HASQI is first quantized back to the five
classes shown in Table 5. The class determined by HASQI
over one second using the double-ended method will be
referred to as ClassD, and the single-ended estimate of
that class is referred to as ClassS. The reason for the non-
uniform scale divisions is due to the definition of the ends

SINGLE-ENDED QUANTIFICATION OF PERCEIVED DISTORTION USING HASQI

of the HASQI scale, where Bad = 0 and Excellent = 1,
spacing the other descriptors equally over the scale and then
quantizing causes, Good, Fair, and Poor classes to have a
width of 0.25, while Excellent and Bad have a smaller width
of 0.125.

1.2 Machine Learning Algorithms

Support Vector Machines (SVMs), Artificial Neural Net-
works (ANNs), Hidden Markov Models (HMMs), and
Gaussian Mixture Models (GMMs) are well-known ma-
chine learning algorithms in audio classification and pat-
tern recognition. Decision trees have recently gained much
attention in related applications and the authors have ap-
plied them to wind noise assessment [3]. Consequently, the
random decision forest [30], also known as a random for-
est, was adopted. The Matlab class “TreeBagger” is used to
train the random forest [31].

Machine learning is often tested using k-fold cross vali-
dation to test how well the trained system deals with cases
that were not present in the training and is used in the
study. In addition, perceptual experiments were carried out
to more rigorously validate the method (see Sec. 3).

1.3 Audio Features

Features were extracted from the distorted audio to be
used as the input to the random decision forest. Features
were extracted within frames of 1024 samples (23 ms) and
50% overlap was used. Clipping and DRC are known to
cause sample values to be redistributed. This can be cap-
tured by the probability mass function (PMF), which is
the discrete form of the probability density function. Fig. 2
shows four example PMFs for the same one second of audio,
one with no clipping and the others with clipping applied.
Hard clipping (K = I), causes an increase in the probability
a sample will occur around a relative sample value of £1.
Amplitude transfer functions with a soft knee also show a
peak at £1 but with a smoother transition and a lower peak
value. A bias causes translation of the PMF in the direction

Table 3. Clipping parameters for Monte Carlo simulation

Parameter generating functions x is a random variable with a uniform probability density function

Parameter between 0 and 1
T (Threshold, linear) T =x'
K (Knee type) 50 % chance K =1 25 % chance K = 1 + 100x 25 % chance K =1 +x
(hard clipping) (soft clipping) (soft clipping)
B (Bias) 50 % chance B =0 50 % chance B = x — 0.5
Table 4. DRC parameters for Monte Carlo simulation

Parameter generating functions, x is a random variable with a uniform probability density function between 0
Parameter and 1
T (Threshold, dB) T = —40x
1, (attack time, s) 1, = 0.02x + 0.0001
1, (release time, s) T, = 0.5x

50 % chance R = oo
25 % chance branching
model

R (Compression ratio)
DRC model

50 % chance R = 40x
25 % chance smoothed
branching model

25 % chance smoothed
decoupled model

25 % chance decoupled
model
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Fig. 2. Probability Mass Functions (PMF) for an audio sample comparing the clean (a) with three different levels of distortion hard

clipping (b), soft clipping (c), and hard clipping with a DC bias (d).

Table 5. Quantization of HAQSI into five classes

ClassD HASQI range Quality
5 1 < HASQI < 0.875 Excellent
4 0.875 < HASQI < 0.625 Good

3 0.625 < HASQI < 0.375 Fair

2 0.375 < HASQI < 0.125 Poor

1 0 < HASQI <0.125 Bad

of the sign of the bias and reduces the peak at one extreme
while increasing it at the other.

To compute the PMF, each audio frame was normalized
to the maximum absolute sample value, the histogram was
then computed using 255 equally spaced sample levels from
—1to 1. The normalization in each window ensured that the
PMF was represented with an optimal resolution for that
window.

Maré [23] showed how the PMF could be used to iden-
tify distortions. To achieve generalization to audio not seen
in training, we found that more features are necessary to
represent a wide range of signal properties including tim-
bre, spectral features. These were calculated using the MIR
toolbox [32] and are listed in Table 6. The mean for each
feature was then computed over 1 second.

1.3.1 Feature Selection and Training

To identify which features should be presented to the ran-
dom decision forest, a sequential forward feature selection
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was carried out using 2-fold cross validation. Random de-
cision forests allow some integration of automatic feature
selection within the learning process. This is particularly
useful when handling empirical data with no explicit model
or clue for heuristic feature selection.

The random decision forest is an ensemble learning
method that uses bagging, whereby a number of classifica-
tion decision trees are each trained on a bootstrap sampled
(with replacement) subset of the data, and at each node
a randomized subset of features are selected and used for
classification. Brieman [30] suggested that an optimal size
of the feature subset would be /m (rounded to the nearest
integer), where m is the total number of features.

Using +/m features for each split, greedy forward fea-
ture selection [33] (FFS) was carried out using a wrapper
method, which means that the output error from the trained
classifier is used to gauge the quality of the algorithm. Two-
fold cross validation was carried out for every feature set,
each time ensuring that the same source of audio did not
appear in both training and validation tests.

The performance was quantified using the Matthews
Correlation Coefficient (MCC), which takes a value be-
tween 0 and 1, where 1 represents optimal performance.
The MCC is calculated from the confusion matrix [34].
The FFS was initialized by training a predictor using each
feature separately. The best performing feature was the one
that produced the highest MCC averaged over all folds.
Having determined the first feature to be used, the second,
third, fourth, etc., were then determined. The training was
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Table 6. Features and their rank order in the feature selection
process, definitions of the features are provided in [32]

Number of times
feature was
selected

Rank order MIR toolbox features

PMF 12
Spectral Flux 12
Spectral Kurtosis 10
Spectral Entropy
Spectral Roughness
Spectral Skewness
Zero crossing rate
Spectral Irregularity
Attack Slope
Spectral Spread
MFCCs
dMFCCs
13 Spectral Flatness

- rms level

- Tempo

- Spectral Centroid

- Spectral Brightness

- Spectral Rolloff 85%

- Spectral Rolloff 95%

- ddMFCCs

- Low energy

- Attack Time

- Spectrum

=l lio) e I A

—
N = O

eoNeoNeoNoNeNolo oo Ne N ol SNV e NN BEN e e ]

undertaken with every possible additional feature added to
the first feature with the best individual performance. If
the added feature increased the MCC, then the feature was
retained. This procedure was repeated until all the features
under investigation were exhausted or there was no further
improvement in performance. If a feature contained multi-
ple values, such as the 255 values in the PMF, these were
treated as a single feature, i.e., all 255 values were included
or removed in one block.

The random forest is a stochastic method and will yield
different results every training phase due to both the boot-
strap sampling and the random selection of features at each
node. By increasing the size of the forest the variance
between the outputs from the trees is decreased, there-
fore there is a trade-off between variance and speed of
processing. A rule of thumb, the number of trees in the
forest needs to be sufficient so that the ranking of the
features no longer changes as the number of trees is in-
creased [35]. To determine the optimal forest size, a sig-
nificance test of the performance improvement was car-
ried out between two forest sizes after feature selection.
The feature selection procedure was repeated for a number
of forest sizes, increasing the number of trees by a fac-
tor of 2 starting at 12 (multiples of 12 was a convenient
choice because the parallel code was running on a 12 core
machine).

McNemar’s hypothesis test was used to determine the
significance [36]. A hypothesis test is defined where the null
hypothesis is rejected (that there is no difference between
predictors), if x* > X%,o.os = 3.851 (significance level p <
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Table 7. Random forest size vs MCC

Trees MCC x?
12 0.56 N/A
24 0.58 18.20
48 0.60 47.76
96 0.61 10.72

192 0.61 0.03
384 0.61 0.92
768 0.61 0.18

1536 0.61 3.76

0.05) and if the MCC of the larger forest is greater than the
smaller one where,

2 (|Mab - Mbal - 1)2 ~ XZ
Mup + My, !

where M, is the number of misclassifications made by
the smaller forest, which were correctly classified by the
larger forest, and My, is the number of misclassifications
made by a larger forest, which were correctly classified
by the smaller forest, ~y ;> expresses that the function
has a chi-square distribution with 1 degree of freedom.
Table 7 presents the results from the forest size investigation
showing no significant improvement in performance above
a forest size of 96.

The feature selection algorithm produces a different per-
mutation of features every time. Therefore to select the best
set of features, the FFS was run repeatedly and the features
most frequently selected were used. The FFS was repeated
until the rank order of the top N features in the rank order
stabilized (no change after two FES repeats). On an aver-
age, 7 features were selected and stability occurred after 12
runs. The rank order and the frequency a feature was se-
lected is shown in Table 6. PMF being joint top supports the
work done by Maré [23]. Alongside this was spectral flux,
which is the mean Euclidian distance of the spectra between
successive frames. Other important features were Spectral
Kurtosis, Spectral Entropy, Spectral Roughness (average of
all the dissonance between all possible pairs of peaks [37]),
Spectral Skewness, and the Zero crossing rate.

Much of the information contained in the spectral and
timbral features is already available from the PMF. This
indicates that in a lower computational power environment
(e.g., a smart phone) where a compact algorithm may be
required, the PMF might be sufficient.

(6)

2 RESULTS

Table 8 shows a confusion matrix from a system av-
eraged over 2-folds using the 7 chosen features and 96
trees. The MCC was 0.616. Fig. 3 illustrates the perfor-
mance for different signal and distortion types. Aliasing
had little effect on performance of the algorithm, therefore
non-aliasing and aliasing cases were pooled for each dis-
tortion type. Fig. 3 shows that the performance is generally
similar for both soft and hard clipping, but there are small
differences between source types, with the estimation be-
ing best for music and worst for speech. The relatively poor
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Fig. 3. Mathews Correlation Coefficient (MCC) as a measure of
classification accuracy for different audio sources and distortion

types.

performance occurs when the degradation to quality is due
to DRC alone. The confusion matrix for DRC-only cases
in Table 9 shows 96% were rated good or excellent—DRC
is not degrading the audio as badly as the other types of
distortion. While there appears to be confusion between the
two highest quality classes, very rarely will a sample be
mislabeled more than two classes above or below its true
class.

2.1 Aggregation Over Longer Samples

Human judgments of audio quality are usually made over
periods longer than one second, therefore a method to ag-
gregated the results over a longer time period is needed.
A similar judgment of temporally varying phenomena has
been studied in soundscapes research and VoIP speech qual-
ity. Dittrich and Oberfeld [38] showed primacy (first sound
heard) and recency (last sound heard) effects for annoyance
from broadband noises. Vastfjall showed that listeners con-
sistently preferred in-flight soundscapes with a better end-
ing [39]. The peak-end rule hypotheses states that the most
recent and the most extreme affective event are most salient

PAPERS

for retrospective judgments. While in some studies this was
found to explain the variance of the judgments [40], other
researchers disagree [41]. It is suggested by Ariely and
Carmon [42] that this was due to the recent exposure to
affective peaks moderating the judgments. Recent work by
Steffens and Guastavino on soundscape pleasantness [41]
suggested that the best predictors might be a combination
of the average instantaneous rating and the trend over the
same judgments (modeled by a linear regression). The ra-
tionale is that the linear regression models the expectation
of how the soundscapes will evolve in the future.

In summary, there is no agreement about exactly how
best to model how humans aggregate sensory judgments
over longer periods of time, and consequently this study
simply averages the results from each one-second window
over the whole sample.

Comparing a HASQI value formed from the whole 10
second sample, with the average of the one-second HASQI
values reveals a 95% confidence limit of +0.16. By weight-
ing the one second HASQI values according to the rms over
the one second window reduces the error to £0.13. Con-
sequently, the weighting by frame rms is adopted to give
bHASQI 4, the aggregated single-ended HASQI estimate.
The formulation is:

1 2, (ClassS; - rms;
bHASQI, = 7 (Z:=1 (ClassS; - rms;) _ 1) A

S, (rmsi)

where M is the total number of windows, ClassS; is the
single-ended estimate of the HASQI class over window i
and rms; is the root mean square value over windowi.

Fig. 4 compares bHASQI 4 with HASQI integrated over
the whole 10-second clip. This dataset was computed us-
ing 10-fold cross validation and each of the 10 folds of the
cross-validation are overlaid in Fig. 4 (all types of audio
and distortion). The Pearson correlation coefficient is 0.97

Table 8. Confusion matrix for all results in one-second windows. Correct HASQI (ClassD) verses
single-ended estimation (ClassS).

Correct (Class D)
Bad Poor Fair Good Excellent
Single-ended estimate (ClassS) Bad 678 71 4 0 0
Poor 89 502 138 24 7
Fair 13 148 412 156 31
Good 2 5 103 427 222
Excellent 4 2 5 141 609

Table 9. Confusion matrix for DRC cases. One-second windows. Correct HASQI (ClassD) verses
single-ended estimation (ClassS).

Correct (Class D)
Bad Poor Fair Good Excellent
Single-ended Estimate (ClassS) Bad 0 0 0 0 0
Poor 0 0 0 0 1
Fair 1 1 1 10 10
Good 0 1 1 95 94
Excellent 1 2 3 65 386
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Table 10. Single-ended aggregated estimate of quality, (bHASQI ), verses correct, 10 second, value of
HASQI. Aggregation over ten-seconds (HASQI ;).

HASQI, 5

Bad Poor Fair Good Excellent

Bad

Poor
Fair
Good
Excellent

Single-ended Estimate (b HASQI »)

234 19 1 0 0
4 40 11 2 0
0 9 25 9 2
0 1 15 71 53
0 0 3 63 355

0.9

0.8

0.7

0.2

0.1

0 01 02 03 04 05 06 07 08 09 1
HASQI10s

Fig. 4. Estimate of single-ended aggregated HASQI (bHASQIA)
verses HASQI calculated using a double-ended method over 10
second (HASQI10s)

and 95% of the estimates are within +0.19 of HASQI, with
previous results indicating much of this error is due to the
aggregation. If bHASQI 4 is quantized into five classes, us-
ing the specifications in Table 5, the MCC is 0.7; Table
10 displays the averaged confusion matrix for this result.
Seventy-nine percent of HASQI classes are correctly iden-
tified by the single-ended method, and for those incorrectly
identified 95% of those are wrong by a single class. The
Pearson correlation coefficient is likely inflated due to the
presence of clusters of data near the origin and the top right
corner of Fig. 4. The MCC, however, is a balanced measure
of classifier performance and is immune to this inflation.
Fig. 4 exhibits some quantization of the bHASQI 4 results
around 0 0.25, 0.5 and 0.75 and 1, this is due to all windows
in a sample having the same estimated ClassS.

3 SUBJECTIVE VALIDATION

For the single-ended method, HASQI was an intermedi-
ate tool to generate a large number of training and testing
samples. How does this relate to perceived quality? Since
HASQI has been extensively validated on speech, the focus
of the subjective validations in this project has been mu-
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sic and soundscapes. Excerpts of music and soundscapes
were distorted by varying amounts of hard clipping and
then presented to subjects for subjective quality ratings.
The perceptual results were compared with correct HASQI
value and the single-ended estimate, bHASQI 4.

3.1 Music

A small number of music samples, which somehow had
to represent the diversity of all music, were needed. As
the primary effect of distortion is to change the timbre,
it was decided to select the test samples based on mu-
sic with contrasting timbre. First a large number of music
samples were gathered. Three-hundred-fifty-one music ex-
tracts were taken from an exemplar set of music samples
suggested by Rentfrow and Gosling [43]. For each of the
117 pieces for which high quality recordings could be ob-
tained, three 7-second excerpts representing key sections
such as an intro, verse, and chorus were extracted. Addi-
tionally, each of the three music samples used by Arehart
et al. [44] to develop HASQI were also included in the test
set.

Then a method was devised to extract contrasting timbre
examples from the hundreds of excerpts. The samples were
distorted by hard clipping, using a threshold set to give a
HASQI value of 0.5 for each sample. Each stereo exam-
ple was sampled at 44.1 kHz (all HASQI values averaged
over both channels). All samples, clean and distorted, were
clustered according to their timbre using the method by Au-
tocoutrier and Pachet [45]. Two samples were drawn from
each of the six clusters. They were drawn by selecting the
two with the shortest Euclidian distance to the cluster cen-
tres. Additionally, each of the three music samples used by
Arehart et al. [44] were also included, regardless of which
cluster they had grouped within. The 14 pieces from which
the test stimuli were taken are listed in Table 11.

3.1.1 Perceptual Test Design

A total of 30 participants (mean age: 23.7 years; SD: 4.7
years) completed the experiment. None reported any known
hearing impairments. Each participant was presented with
140 7-second clips that consisted of 9 different thresholds of
hard clipping distortion and 1 clean for each of the 14 music
pieces. All samples were presented in stereo at the same A-
weighted sound pressure level, integrated over 7 seconds
and both channels, over Sennheiser 650 HD headphones,
via a Focusrite Scarlett 2i4 audio interface (this having
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Table 11. The 14 music pieces the final test samples were taken from by cluster number ‘*’ denotes sample used to develop HASQI

Cluster Number Song Name Artist/Composer Publisher / product code
1 Riverboat Set: Denis Dillon’s Square John Whelan Narada Lotus — ND-61060
Dance Polka, Dancing on the Riverboat
Crazy Train Ozzy Osborne Sony Music - 88697738182
“Haydn” - Symphony in C Major, Hob. I: * Haydn Sony Music — SX10k89750

82, The Bear: III. Menuet — Trio *
2 Ave Maria
Packin’ Truck
“vocalise” * Ding Dong the witch is dead

3 Kalifornia

Brown Sugar
4 The Four Seasons: Spring
5 For What It’s Worth

The Girl From Ipanema
6 Spoonful

Nobody Loves Me But My Mother
“jazz” * Corcovado

Franz Schubert Phillips — 412 629-2

Leadbelly Saga — 982 076-7

Tierney Sutton Telarc Jazz — cd 83548

Fatboy Slim Skint — Brassic 11CD

The Rolling Stones Polydor —1c000309. 0602527015620
Antonio Vivaldi EMI — 7243 55625328

Buftalo Springfield Acto 7567 90389 2yg

Stan Getz Verve lc 00383

Howlin” Wolf Universal — 329 375-2

B.B. King Geffen records b0003854-02

* Verve 1c 00383

previously been calibrated using a dummy head). Playback
level was calibrated by setting the playback of the clean
Jazz excerpt to 72 dB (linear, average of both channels),
which meant samples were reproduced at an A-weighted
Leq of 62 dB, as this was the level used by Arehart et al.
[44].

To ensure that the distortion applied to each music sample
covered a wide range of quality degradations, nine thresh-
olds for each clip were computed by setting target HASQI
values between 0.1 and 1. A participant training session was
held before the actual testing with three pairs of samples not
included in the test. Participants were reminded that they
were judging overall quality not any musical preference.

Ratings were entered via a mouse using a continuous
slider labelled “Bad” and “Excellent” at each endpoint with
no other markers based on the ITU-R BS.1284-1 [29] rec-
ommendations adopted in the development of HASQI [29].
Participants were asked to make absolute quality judgments
on individual samples with no reference. The use of rela-
tive judgments of quality using a reference sample was not
adopted for the following of reasons;

1) HASQI was also developed using absolute category
ratings and a direct comparison was important.

2) One of the research questions in [21] from which some
of this data is based was: is there any link between the
underlying quality of a sample and the degradation
due to amplitude clipping?

3) A high priority was placed on maximizing the num-
ber of music pieces and soundscapes to increase the
validity of the resulting algorithm performance analy-
sis. The large number of samples made the use of an
impairment scale time prohibitive.

The slider’s initial position was at the “Bad” end of the
scale on each trial. Progression from one trial to the next
was conditional on listening to the sample in full and pro-
viding arating. There were no limits on the number of times
each sample could be repeated. There was no time limit for
completion of the test and participants were prompted to
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Table 12. The 12 examples of soundscapes [46] used along
with their crest factors.

Tag and ID Crest Factor
‘ambience_28252’ 4.39
‘beach_48412’ 13.9
‘car_50378’ 6.95
‘church_151381’ 5.84
‘crowd_160041’ 6.92
‘crowd_25522° 4.81
‘forest_184201° 18.3
‘machine_146211’ 14.7
‘nature_150888’ 19.1
‘rain_55512’ 8.62
‘thunder_169255’ 5.05
‘200_104483’ 5.75

take a short break at the half-way stage if required. Presen-
tation order of the samples was fully randomized. The test
session typically lasted around 40 minutes and participants
were financially reimbursed for their time.

3.2 Validations with Soundscapes

Twelve sound samples (field recorded soundscapes) were
selected from the freefield1010 database [46], which was
a selection of ten-second audio clips uploaded to the
freesound.com database and tagged as “field-recording.”
First, the 20 most popular tags were identified and all files
with those tags were used. Then, the crest factors were
computed. The crest factor is the ratio of the peak to the
rms level. A signal with a low crest factor will exhibit fairly
constant levels of clipping while a signal with a high crest
factor might have some highly distorted regions while other
regions may remain relatively clean. Four examples clos-
est to the 10", 50", and 90™ percentiles of the crest factor
distribution were selected and are listed in Table 12. The
perceptual test procedure was the same as that used for the
music clips—18 subjects participated in the test.
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# 'Ave Maria_clip2_CD'
B 'Brian_jazz_22050_CD'
A 'Brown Sugar_clip2_CD'
X 'Crazy Train_clip3_CD'
¥ 'For What It's Worth_clip2_CD'
® 'Haydn_mono_22050_CD'
+ 'Kalifornia_clip3_CD'
= 'Nobody Loves Me But My
Mother_clip2_CD'
'Packin' Truck_clip2_CD'
& 'Riverboat Set_clip3_CD'
'Spoonful_clip2_CD'

'Spring_clip2_CD'

0 0.2 0.4 0.6
HASQI

0.8

'The Girl From Ipanema_clip3_CD'

'Tierney Sutton_mono_22050_CD'

Fig. 5. Double-ended HASQI verses normalized MOS of quality for 14 pieces of music degraded by hard clipping at different thresholds

3.3 Results

For the music clips, Cox et al. [21] found that the MOS
(Mean Opinion Score) of even the clean samples varied
considerably because of different styles of audio produc-
tion for the originals. As the interest is in distortions that
degrade the quality, the MOS scores were normalized to the
averaged MOS calculated from all subjects for the clean
undistorted signals of a particular audio file. The standard
deviation of the opinion scores for each clip and distortion
condition provides a gauge of the intersubject variability of
opinion; the average standard deviation for all conditions
was 0.17.

Fig. 5 shows relationship between double-ended HASQI
(x-axis) and the normalized MOS (y-axis); the Pearson’s
correlation coefficient is 0.916. The results seem to be more
promising than Arehart et al. [44] report. Their correlation
between HASQI and the MOS for three pieces of music
was 0.838. The better correlation found in our experiments
might be attributed to the fact that only clipping and DRC
were considered. Ninety-five percent of the HASQI esti-
mates are within 0.24 of the normalized MOS.

A few samples showed relatively large prediction errors.
For example, “Packin’ Truck” has HASQI overestimating
the MOS by up to 40%. This track was recorded in 1935
and the recording quality is poor with noise and distortion
already present. There appears to be some leniency in qual-
ity ratings of degraded audio when the expected technical
quality of the original audio is already low.

For the soundscape samples there was an increase in the
variability of the opinion scores compared with music, the
standard deviation of the opinion scores was 0.29; this can
be seen in Fig. 6. This increase in variability may be due to
the smaller number of listeners (18 rather than 30). Despite
this increase in the variability of opinion, the correlation
of HASQI and the normalized MOS yields a correlation
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coefficient of 0.85 with 95% of HASQI estimates within
40.29 of the normalized MOS.

For soundscapes, HASQI over-estimated the level of
degradation for two clips in particular. These two clips
contained mainly high frequency bird and insect sounds.
There were also cases where HASQI under-estimated the
degradation, such as thunder, rain, and machinery sounds.
These clips differentiate themselves from the others as they
do not contain harmonic sounds. It is likely that the reason
for the lower performance with soundscapes is that HASQI
was primarily aimed at speech quality during development
and naturally performs better on such cases.

Next, the proposed single-ended algorithm was trained
using every sample from the audio library described in Sec.
1.1.1 excluding those used in the perceptual studies. Figs. 7
and 8 show the relationship between the normalized MOS
and the single-ended estimates, bHASQI 4, for music and
soundscapes. For music the correlation coefficient between
bHASQI 4 and the normalized MOS is 0.861 and 95% of
the single-ended estimates of bHASQI 4 are within +0.3 of
the MOS. For the soundscapes, similar results are found,
with the correlation coefficient between HASQI and the
normalized MOS being 0.802 and 95% of the estimates are
within £0.33 of the MOS.

As previously mentioned, the average standard deviation
of the opinion scores for each clip gives an estimation of
the intersubject variability. This was 0.17 for music and
0.29 for soundscapes. The intersubject variability and the
error in the single-ended estimation of quality can be com-
pared using the standard deviation of the error in the MOS
estimation using bHASQI 4 . This was 0.17 for both music
and soundscapes. This shows that on average the error in
the single-ended estimate of quality for a single clip is of
the same order, or lower than, the intersubject variability of
opinion.
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Fig. 6. Double-ended HASQI verses normalized MOS of quality for 12 soundscape clips degraded by hard clipping at different thresholds

4 CONCLUSION method estimates HASQI (Hearing Aid Sound Quality In-
dex). The model uses machine learning to learn from ex-
amples and generalize. Validations on a set of music and
soundscapes not seen during training, yield single-ended
estimates within £0.19 of HASQI, using a quality range

A single-ended method to quantify perceived audio qual-
ity in the presence of non-linear distortions has been de-
veloped and presented in this paper. This single-ended

@ 'Ave Maria_clip2_CD'

W 'Brian_jazz_22050_CD'

A 'Brown Sugar_clip2_CD'

X 'Crazy Train_clip3_CD'

X 'For What It's Worth_clip2_CD'

® 'Haydn_mono_22050_CD'

bHASQI

+ 'Kalifornia_clip3_CD'
= 'Nobody Loves Me But My
Mother_clip2_CD'
'Packin’ Truck_clip2_CD'

@ 'Riverboat Set_clip3_CD'

'Spoonful_clip2_CD'

0.1 'Spring_clip2_CD'
0 4 : : : . . 'The Girl From
0 0.2 0.4 06 08 1 _ Ipanema_clip3_CD'
. Tierney
Normalised MOS Sutton_mono_22050_CD'

Fig. 7. Single-ended quality estimate (bHASQIA) verses normalized MOS of quality for 14 pieces of music degraded by hard clipping
at different thresholds

708 J. Audio Eng. Soc., Vol. 63, No. 9, 2015 September



PAPERS

0.9 -

0.8 -

0.7

0.5

0.4 -

Blind estimate of HASQI

0.2

0.1 -

0 L ‘

SINGLE-ENDED QUANTIFICATION OF PERCEIVED DISTORTION USING HASQI

'ambience_28252'
'beach_48412'
‘car_50378'
‘church_151381'
‘crowd_160041'
‘crowd_25522"
‘forest_184201'
'machine_146211"
'nature_150888'
¢ 'rain_55512'
‘thunder_169255'
'z00_104483'

+ @ X X > H o

0 0.2 0.4 0.6
Normalised MOS

0.8 1

Fig. 8. Single-ended quality estimate (bHASQIA) verses normalized MOS of quality for 12 soundscapes degraded by hard clipping at

different thresholds

between 0.0 and 1.0. HASQI has also been shown to pre-
dict quality degradations for processes other than non-linear
distortions including additive noise, linear filtering, and
spectral changes. By including these other causes of qual-
ity degradations, the current model for non-linear distortion
assessment might be expanded, although additional features
and validation would be required.

A series of perceptual measurements on music and
soundscapes were undertaken. The subjective testing pro-
vided more data that shows that HASQI can be used to
quantify perceived non-linear distortion for normal hearing
listeners. The new single-ended method was used to esti-
mate quality and compared to the Mean Opinion Scores
(MOS) from the subjective tests. The standard deviation of
the error in the single-ended MOS estimations was 0.17.
This is of a similar order to the standard deviation of hu-
man subjects: the standard deviation of the MOS from the
perceptual tests was for music was 0.17 and 0.29 for music
and soundscapes respectively.

The code to estimate bHASQI is freely available for
download at [47] for non-commercial purposes under an
Attribution-NonCommercial 4.0 International (CC BY-NC)
license. The databases used to develop the algorithm are not
available due to copyright issues with the audio samples.
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APPENDIX 1 DESCRIPTION OF PARAMETER
DISTRIBUTIONS FOR CLIPPING FUNCTION

The parameters using in the clipping model described in
Eq. (1), T(Threshold), K(Knee type), and B (Bias) were
randomly generated for every example. To ensure that the
distribution of examples in the resulting database was repre-
sentative, a number of rules were applied to the generating
functions:

¢ A nonlinear distribution was chosen for the threshold T’
so that there was a roughly even distribution of samples
along the HASQI scale. T = x> was used where x is a
uniformly distributed random number between O and 1.
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e Half of all the examples were assigned a hard knee
(K = 1) and the other half a soft knee (K > 1) to simu-
late the different types of clipping that may occur.

e When a soft knee is selected, half of these were
generated using a modest smoothing parameter, where
K varies uniformly between 1 and 2, effectively this
smooths just the transition region in the amplitude trans-
fer function. For the other half Kwas varied uniformly
between 1 and 101, to ensure some extreme examples
were present.

¢ Biasis avoided in mobile devices but may occur in some
poorly designed devices; for this reason half of all exam-
ples had no bias (B = 0). To ensure some more extreme
examples were present, the other half was generated
so that B was uniformly distributed between —0.5 and
0.5.

APPENDIX 2 DESCRIPTION OF PARAMETER
DISTRIBUTIONS FOR DRC FUNCTION

The parameters using in the DRC models described in
Egs. (2)—(5) are: T'(Threshold dB), t, (attack time, s), T, (re-
lease time, s), R (Compression ratio), and the DRC model
type. These were randomly generated for every example.
To ensure that the distribution of examples in the resulting
database is representative, a number of rules are applied to
the generating functions.

o The threshold T was varied uniformly between 0 dB
and —40 dB; this represents a range of realistic cases as
well as some extreme examples.

e For the attack and release times, Table 1 describes the
range of parameters commonly found in mobile devices;
therefore the attack time (t,) is varied uniformly be-
tween 0.1 ms and 20.1 ms. The release time () is varied
uniformly between 0 and 500ms.

e For the Compression ratioR, half of examples used a
value of infinity to represent limiting, and the other half
used a finite value to represent compression, for com-
pression examples R was varied uniformly between 0
and 40.

o Finally, equal numbers of each of the four different
models of compression was ensured.
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