
Breast Composition: Measurement and Clinical Use 

Ernest Usang Ekpoab, Peter Hoggc, Ralph Highnamd, Mark F. McEnteea  

Breast density is a measure of the extent of radiodense fibroglandular tissue in the breast. The risk of 

developing breast cancer and the risk of missing cancer at screening rise with higher breast density. In 

this paper, the historical background to breast density measurement is outlined and current evidence 

based practice is explained. The relevance of breast density knowledge to mammographic practice 

and image interpretation is considered in the light of clinical assessment and notification of 

mammographic breast density (MBD). The current work also discusses risk stratification for decision-

making regarding screening frequency and better modalities for earlier detection of breast cancer in 

the dense breast. Automated volumetric approaches are explained while ultrasound, digital breast 

tomosynthesis, molecular breast imaging, and magnetic resonance imaging are introduced as valuable 

adjuncts to digital mammography for imaging the dense breast. The work concludes on the important 

note that screened women should be notified of their breast density, and such notification should be 

accompanied with clear and adequate information about breast density and cancer risk, strategies 

associated with lower MBD, as well as best screening intervals and pathways for women with dense 

breasts. Adoption of these strategies may be crucial to early detection and treatment of cancer and 

improving survival from the disease. 

 

Introduction 

Breast density is a measure of the extent of radiodense fibroglandular tissue in the breast.
1
 A meta-

analysis of breast cancer risk factors indicates that the risk of breast cancer from high breast density is 

twice higher than other risk factors except family history of the disease in women 40 – 49 years.
1
 

However, it is still contentious whether density is an independent risk factor or merely stimulates 

other risk factors to cause cancer. Regardless of these contentions, studies have shown that high breast 

density is associated with a 4-6 fold increased risk of breast cancer,
2-5

 and that a 1% increase in breast 

density is associated with 2% increase in breast cancer risk.
4
 

Dense breast tissue has been shown to offer more opportunities for breast cancer to develop, 

especially in younger women.
3, 6-8

 Additionally, there is a genetic predisposition to breast density,
9, 10

 

and other established risk factors for breast cancer such as hormonal agents,
11, 12

 lifestyle, and 

reproductive characteristics are associated with high breast density.
13-16

 Importantly, breast density is a 

potentially modifiable risk factor for breast cancer,
17, 18

 and lower density has been shown to be a 

prognostic factor for the effect of interventions on breast cancer risk.
19

 Some lifestyle parameters 

responsible for high breast density and breast cancer are controllable,
20

 and consumption of food 



species such as vegetables, vitamin D, and calcium may have an ameliorative impact on the breast 

density and breast cancer risk.
21, 22

 

Breast density is also a significant factor in interval breast cancer (cancer detected within 12 months 

after a normal screening mammogram), accounting for about 50%.
3, 5

 Women with dense breasts are 

4.7 to 17.8 times at risk of interval breast cancer relative to those with non-dense breasts.
3, 23-25

 

Mammographic breast density also reduces mammographic sensitivity and limits earlier detection of 

breast cancer with 2-dimensional mammography through masking effects.
23, 26

 Therefore, it is 

increasingly important to assess breast density of women undergoing screening mammography and 

inform women of their density. Such breast density data can improve women’s awareness of their 

risks of breast cancer and interval cancer, and the potential of cancer being missed in their 

mammograms. This will allow for shared decision-making between screened women and their 

physicians concerning strategies to reduce the associated risks and facilitate better decisions regarding 

screening.
17, 19, 27

 

National level breast density information will enable breast cancer risk stratification,
27, 28

 leading to 

selection of appropriate imaging pathways such as ultrasound,
29, 30

 digital breast tomosynthesis 

(DBT),
31

 and magnetic resonance imaging (MRI)
30

 to improve cancer detection in the dense breast. 

Breast density data can also be used to select personalised and appropriate screening intervals for 

screened women, such as screening less often and with digital mammography only for lower risk, 

fatty breasts and more frequently with DBT and whole breast Ultrasound for the denser breast. Data 

on breast density will enable use of breast density as a marker for monitoring the effect of breast 

cancer prevention and control interventions.
17, 19

 

The relevance of breast density information in clinical decision-making for screened women 

underscores the need for methods of breast density assessment to be standardized, reliable, and 

reproducible, as this will support clinical decisions made from breast density assessment. In this paper 

we revisit breast morphological and radiographic anatomy. We also examine the link between breast 

density and breast cancer, and approaches that have been employed to categorize mammographic 

breast density before tackling clinical uses. 

 

Breast Composition and Radiographic appearances 

Breast consists of fibroglandular tissue and fat, and their relative concentration determines the 

radiographic appearance of the breast.
3
 X-ray attenuation is higher in fibroglandular tissue than fat; as 

a result, fibroglandular tissue appears radiopaque (white) and constitutes a dense area of the breast 

and fat appears radiolucent (black).
3
 The dense portion of the breast contains high concentration of 

epithelial and stromal cells and collagen.
3, 32, 33

  



Dense breasts are highly radiosensitive due to the high proliferation of epithelial and stromal cells in 

such breasts.
34

  To reduce the potential effect of radiation on the breast, there is a need to optimise the 

imaging procedure. Optimisation is aimed at producing good quality images at acceptable radiation 

dose.
35

 The key radiographic determinant of image quality and dose is the detective quantum 

efficiency of the detector and composition of the X-ray spectrum, which in turn depends on the target 

material, tube voltage (kVp), and filtration.
35

 These technical parameters impact not only on the 

diagnostic value of the image, but also the appearance of breast density to the human visual system. 
36, 

37
 This is worrisome in film-screen mammography where radiographers have to manually select these 

factors.
37

 With automatic exposure control (AEC), exposure parameters are selected according to the 

physical characteristics of the breast or compressed breast thickness.
38

 Therefore, the same 

target/filter/kVp is chosen for a given breast density. Spectral and breast thickness information also 

influence the accuracy of volumetric breast density assessment.
39, 40

 Studies have shown that higher 

atomic number target/filter combinations such as Tungsten/Rhodium (W/Rh) and Tungsten/Silver 

(W/Ag) produce the optimum spectrum for imaging the dense breast, and improve visualization of the 

dense breasts and features of cancer at lower doses.
41, 42

 Therefore, for systems that do not have 

functional AEC, manual selection of the filter that produces the optimum spectrum for a given breast 

density is encouraged. Alternatively, dense breasts could be imaged with digital breast tomosynthesis 

(DBT). The high detector quantum efficiency (DQE), fast read-out ability, and low noise levels of 

digital detectors used in DBT have enabled acquisition of good quality images at low doses in dense 

breasts.
43

 DBT produces pseudo-cross-sectional images that reduce tissue superimposition and 

synthetic (reconstructed) 2-dimensional (2D) images which can be used as substitute for standard 2D 

images of digital mammography. The combined use of 3D images of DBT and standard 2D images of 

digital mammography (DM) has been shown to improve diagnostic accuracy,
44, 45

 but is associated 

with increased radiation dose.
43

 However, use of reconstructed 2D images as substitute for standard 

2D images has been found to be associated with a 45% reduction in mean glandular dose.
43, 46

 

 

Mechanisms linking breast density to breast cancer 

Two theories have been postulated to explain the mechanisms linking breast density and breast 

cancer. The first mechanism involves mitogen (a chemical substance that encourages a cell to 

commence cell division, triggering mitosis),
47

 and mutagen effects (a physical or chemical agent that 

changes the genetic material of an organism and thus increases the frequency of mutations above the 

natural background level).
48

 The second mechanism involves biological interaction among epithelial 

and stromal cells, collagen and the breast microenvironment.
32, 33

  

 

It has been shown that mitogenic followed by mutagenic activity are at least in part, responsible for 

high breast density and breast cancer, where individuals with both high breast density and breast 

cancer demonstrate similar mitogen
47

 and mutagen characteristics.
48

 It is well known that mitogens 

http://en.wikipedia.org/wiki/Chemical_substance
http://en.wikipedia.org/wiki/Cell_division
http://en.wikipedia.org/wiki/Mitosis
http://en.wikipedia.org/wiki/Organism
http://en.wikipedia.org/wiki/Mutation


induce cell proliferation, primarily affecting epithelial and stromal cells leading to increased 

fibroglandular tissue and higher levels of breast density mostly in premenopausal women.
47, 49

 

Concomitantly, this increased presence of proliferating cells is very sensitive to mutagens resulting in 

changes and potential errors in DNA replication and strand recombination.
50

 Examples of specific 

mitogens that are responsible for both high breast density and breast cancer are insulin-like growth 

factor 1 and prolactin.
47, 49

 A mutagen of oxidative stress that has been shown to be associated with 

breast density and cancer is cytochrome P450 1A2 (CYP1A2).
48

 

 

It has also been shown that breasts with high density and those with cancer exhibit similar biological 

characteristics such as increased concentration of epithelial and stromal cells and collagen.
32, 33, 51

 

Epithelial cell proliferation is necessary for breast density increases,  however since breast cancer 

primarily evolve from epithelial cells, increased numbers of epithelial cells in the dense breast 

increase the possibility of cancer.
33

 Stromal cells induce cancer by modulating epithelial cells through 

epidermal growth factor receptor, IGF-1, and TGF-β.
52

 Stromal cells are also progenitors, of collagen 

and stromal matrix which promote mammary gland development and tumour invasion 
52-54

 and since 

collagen is linked to IGF-1 quantities and tumour reorganization,
53

 there are increased opportunities 

for cell proliferation and transformation to cancer. Also, the extracellular matrix expresses increased 

concentration of proteoglycans (lumican and decorin) in stroma associated with high breast density 

and cancer. These proteoglycans bind growth factors and increase breast tissue stiffness implicated in 

breast cancer.
51

 Together these intercellular interactions in the breast microenvironment result in each 

cell type becoming more tensile and more rigid, generating mechanical forces that can increase breast 

density and cancer risk.
51, 55

 

 

Breast density is associated with established risk factors for breast cancer except age and body mass 

index.
11, 12

 Genome-wide studies have shown that breast cancer susceptibility genetic variants such as 

8q (rs13281615), RAD51L1 (rs10483813), LSP1 (rs3817198), TOX3 (rs3803662) and MAP3K1 

(rs889312) and many more are associated with breast density measures.
56-59

 There is also evidence 

that hormone replacement therapy, 
11

 alcohol intake, 
16

 and reproductive factors such as early 

menarche, nulliparity, late first term birth, 
60

 and reduced breastfeeding (<12 months) are associated 

with higher breast density.
61, 62

 Anthropometric factors such as high birth weight and lower 

prepubertal weight are associated with higher breast density.
63

 The data produced shows that breast 

density information can be used in combination with other risk factors for stratification of breast 

cancer risk. Barlow et al.
27

 have shown an improvement in breast cancer risk prediction model with 

addition of breast density data. 

 



An important characteristic of breast density is that it is reducible,
64-69

 and preliminary studies have 

shown that breast density may serve as a biomarker for the effect of preventive interventions on breast 

cancer risk.
17

 The first International Breast Cancer Intervention Study (IBIS) trial of Tamoxifen
TM 

versus placebo showed that women in the Tamoxifen group who had a 10% or greater reduction in 

breast density demonstrated a 63% reduction in breast cancer risk but those who experienced less than 

10% breast density reduction showed no risk reduction.
17

 Li et al.
19

 showed that women treated with 

tamoxifen who experienced a relative density reduction of more than 20% had a 50% reduced risk of 

death from breast cancer. Randomized control trials demonstrated changes in breast density with 

intake of low-fat high carbohydrate diet.
70, 71

 Cross-sectional studies have shown calcium and vitamin 

D, 
72-76

 and vegetables
75, 77

 to be associated with lower breast density.  

 

Breast density assessment will enable monitoring of the effect of interventions that mitigate breast 

density and breast cancer risk. Therefore, it could become the responsibility of radiographers and 

radiologists to inform screened women of their breast density status, and to advise patients of the 

implications of high breast density including, informing them of their elevated risk of developing 

breast cancer, and the increased potential of cancer being concealed in their mammograms if they are 

dense. It may also be important that patients are provided with adequate information on how regularly 

they may need to be screened and other imaging modalities that may improve visualization of the 

dense areas for features of cancer. It is also increasingly important that screened women with dense 

breasts are advised to avoid lifestyles such as alcohol intake and exogenous hormone use that have 

been shown to increase cancer risk in women with dense breast. Also, consumption of food species 

associated with lower breast density
22, 72, 75, 77

  and physical activity
78

 is encouraged as these may 

mitigate their risk of developing breast cancer.     

 

The history of qualitative breast density classification  

Interest in breast density classification dates back to 1969 when Wolfe and colleagues observed that 

breast with prominent ducts was associated with breast cancer risk. They considered prominent ducts 

a desmoplastic reaction which precedes breast cancer development in most breasts.
79

 In 1976, they 

developed the Wolfe method of breast density classification based on the appearance of breast 

parenchyma and prominence of ducts
80

: N1, P1, P2, DY, and Qdy (Table 1). This system classifies 

N1, P1 as low-risk densities and P2, DY as high risk breast densities.
81

 More than 40 studies have 

assessed associations with Wolfe grade or percentage breast density and the majority reported 2- to 6-

fold increased risks for the highest compared with the lowest risk categories.
82

 

Table 1: Summary of Wolfe, Boyd, and Tabăr breast density classifications 

Wolfe patterns  Boyd SCC Tabăr patterns 



N1: Completely fatty with a few  

fibrous connective tissue 

 0% : No dense tissue I: Symmetry of all components  with 

slightly greater fibrous tissue 

P1: Fatty with prominent ducts 

≤4mm in diameter 

 <10% dense tissue II: Bulk of fat tissue 

P2: Higher concentration of 

prominent triangular ducts in 

the central portion  

 10-25% dense tissue III: More fat tissue with fibrous tissue 

in the retroareolar region 

DY: Homogenous density with 

few ductal prominence 

 26-50% dense tissue VI: Mainly nodular densities 

Qdy: Breast with spongy texture   51-75% dense tissue V: Predominantly fibroglandular  

  >75%: Extremely dense  

SCC: Six category classification 

In 1980, Boyd and colleagues proposed a six category classification system and subjectively classifies 

mammographic breast density as percentages based on the relative proportions of dense tissue and 

fat.
83

 Boyd’s categories range from absence of dense tissue to excess density (Table 1), and considers 

breast with density >75% at risk of cancer. The method has shown strong positive association 

between breast density and cancer risk.
84, 85

 The driver for Boyd’s work, although still subjective, was 

to try and introduce a more quantitative approach than offered by Wolfe. 

In 1997, Tabẚr and colleagues argued that the breast density classification by Wolfe has limited 

application in clinical practice and proposed a five scale mammographic breast density classification 

system based on histologic-mammographic correlations and on the relative proportions of four breast 

components.
86

 The method categorizes mammographic density into five parenchymal patterns (Table 

1), with I, II and III considered as low-risk and IV and V as high-risk patterns.
81, 86

 The method has 

shown strong positive association with breast cancer risk.
81

 

In 2000, the American College of Radiology (ACR) modified and simplified the Wolfe and Boyd 

methods and proposed the breast imaging reporting and data systems (BIRADS) scheme. In 2003, the 

ACR updated BIRADS to the 4
th
 edition using Boyd method to propose a quantitative breast density 

classification based on the percentage of fibroglandular tissue in the breast.  This scheme was last 

updated to the 5
th
 edition in 2013,

87
 and subjectively classifies mammographic breast density based on 

the relative appearance of dense tissue and fat into four categories (A – D) (Figures 1 and 2). In the 5
th
 

edition emphasis is on classification based on the potential for masking the risk of breast cancer. For 

example, breasts having >50% fatty tissue, but with very dense tissue posterior to the nipple may be 

classified as category C or D.
88

 BIRADS is almost universally accepted and widely used qualitative 

methodology, and encourages users to describe the implications of the assigned breast density 

category, and areas on the mammogram where cancer is likely to be missed.
87

 For example, it 

encourages users to inform patients that small lesions may be missed in BIRADS C and that 



mammography sensitivity is lower in category D.
89

 Previous editions of BIRADS have demonstrated 

consistent association between breast density and cancer risk particularly in postmenopausal 

women.
28, 82

 However, BIRADS suffers from reduced reproducibility and has shown wide inter-reader 

agreement (κ) ranging from 0.37 – 0.91.
90-92

 Therefore, an assessment of the extent of inter-reader 

agreement with the 5
th
 edition is increasingly relevant. 

 

Figure 1: Breast imaging reporting and data systems (5
th
 edition) categories A – D. Note higher 

amount of dense tissue (white areas) in C and D (Labelled for reuse) 

Table 2: Breast imaging reporting and data systems classification scheme in the 4
th
 and 5

th
 editions  

 4
th

 Edition     5
th

 Edition 

1  The breast is almost entirely fat (<25% 

glandular) 

 a  The breasts are almost entirely fatty 

2  There are scattered areas of fibroglandular 

densities (approximately 25-50% glandular) 

 

 

b  There are scattered areas of 

fibroglandular density 

3  The breast is heterogeneously dense, which 

could obscure detection of small masses 

(approximately 51-75% glandular) 

 

 

 

c  The breasts are heterogeneously dense, 

which may obscure small masses 

4  The breast is extremely dense. This may lower 

the sensitivity of mammography (>75% 

glandular) 

 

 

d  The breasts are extremely dense, which 

lowers the sensitivity of mammography 

 

 

Table 2: Description of BIRADS classification in the 4
th
 and 5

th
 edition scheme (Labelled for reuse) 

 



Visual approaches have shown strong positive association between mammographic breast density and 

breast cancer risk.
81, 84, 86

 However, variation in image acquisition parameters (kVp and mAs) may 

cause variations in image appearance, perception of radiographic features and therefore 

mammographic breast density.
93-96

 Consequently, the subjectivity of visual approaches and variation 

in image quality may cause inter-reader variability in mammographic breast density assessment. 

Subjective variability will consistently lead to variability in cancer risk stratification and unnecessary 

difference in clinical decision-making from mammographic breast density assessment. These 

deficiencies may limit the use of mammographic breast density information as biomarker for 

monitoring the effect of breast cancer preventive interventions.
97, 98

 Consequently, quantitative 

methodologies have been designed for mammographic breast density assessment in the clinical 

setting.  

Categorisation of Breast Composition Using “Quantitative Area-Based” Techniques 

Quantitative area-based techniques for mammographic breast density include semi-automated 

interactive thresholding techniques such as Cumulus (University of Toronto, Canada) and Madena 

(University of Southern California, US) and automated techniques such as AutoDensity (University of 

Melbourne, Australia), Image J (National Institute of Health), and MedDensity (University of 

Genova, Italy).
92

  

Interactive thresholding methods use segmentation and thresholding  techniques to select two grey 

levels for percentage mammographic density calculation.
99

 The first of these separates the image of 

the breast from the background, and aggregation of the pixels over the intensity range gives the 

maximum intensity and provides a measure of breast area (AB).  The second threshold outlines the 

dense tissue (excluding the pectorialis muscle), and sums the pixels in this area to calculate area of 

dense tissue (AD) (Figure 2). The software packages calculate percentage mammographic density 

(PMD) as the ratio of the dense tissue and the total breast area multiplied by 100.
100

  

    

    A B 



Figure 2: Example of Cumulus breast density assessment. (A) Cumulus interface, (B) thresholding 

taking place (Labelled for reuse).  

 

Cumulus has demonstrated good association between breast density and cancer risk in multiple global 

studies.
3, 101, 102

 AutoDensity has been shown to be comparable to Cumulus for risk assessment
24

. 

MedDensity has been shown to demonstrate moderate correlation with BIRADS for breast density 

assessment.
103-106

 Image J has demonstrated strong correlation with Cumulus and BIRADS 
107

 and 

positive association between breast density and cancer risk.
28, 108

 However, quantum and anatomical 

noise reduce the reliability of AutoDensity and MedDensity.
24, 109

 Image quality may limit accurate 

outlining of the dense area with semi-automated methods.
110

  Although semi-automated thresholding 

methods have better reproducibility than visual approaches, they are labour-intensive, time-

consuming, and still demonstrate intra- and inter-user variability.
3, 111-114

 Furthermore, area-based 

techniques measure percentage dense area and treat the breast as a two-dimensional structure, 

ignoring the three-dimensional features of the breast.
115

  

There are doubts that area measurement of breast density as percentage mammographic density 

(PMD) may not accurately reflect the quantity of dense tissue in the breast.
115

 This is because the 

quantity of dense tissue may vary in different breasts with the same dense area, and measured PMD of 

the same dense area may vary with variation in breast size (Figure 3). Therefore, area-based 

techniques may not be able to show change in breast density following intervention.
97, 98

 These 

limitations have necessitated the introduction of volumetric methodologies for mammographic breast 

density assessment. 

 

Figure 3: Illustration of how breast density can be under- or over-estimated by visual/area-based 

approaches. The second and third images show how dense area of different thicknesses given the 



same score by visual/area-based approaches and different scores by volumetric techniques 

(Reproduced with permission) 

Categorisation of Breast Composition Using Automated, Volumetric Techniques  

Volumetric techniques employ physics principles to volumetric breast density. Commercially 

available volumetric techniques include Quantra
TM

, Volpara
TM

, and academic versions include 

CumulusV and Dual-energy X-ray absorptiometry.
92, 110

 The commercial products come as 

networked/server-based software packages and are installed between the acquisition and display 

systems. They perform volumetric breast density assessment without any human intervention and 

send their output to the radiologist or technologist workstation where the results can be viewed 

immediately after image acquisition (Figure 4 A&B). 

 

Quantra
TM

 (Hologic Inc.) uses a physical physics principle to calculate volumetric breast density. 

Volumetric breast density assessment is based on data related to the physical composition of the 

breast, compressed breast thickness, and the X-ray spectra (tube potential (kVp), tube current (mAs), 

and filter type and thickness).
39, 40

 Quantra estimates the thickness of the dense tissue above each pixel 

in the mammographic image and combines these pixel values to compute the total volume of the 

dense tissue in the breast (Vfg(cm
3
)).

116
 It aggregates the pixel values over the whole breast to 

calculate the volume of the breast, and then calculates percentage volumetric breast density (Vbd%) 

as a percentage of the dense tissue volume and the total breast volume. The software calculates the 

breast density make-up of the patient by segmenting the Vbd% into a total Quantized breast density 

(Q_abd) value. These Q_abd values range from 1 – 4 and used to map the ACR BIRADS breast 

density categories (Figure 4B). Quantra has been shown to be an reliable
117, 118

 and reproducible
119, 120

 

for mammographic breast density assessment, and a strong predictor of breast cancer risk from breast 

density.
28

 Quantra has also been shown to accurately reproduce radiologists’ BIRADS assessment on 

a two-category scale. 
121, 122

 

 

Volpara
TM 

 (Matakina Technology Limited) is also based on relative physics principles, and measures 

mammographic breast density by finding a reference point of entirely fat (PFAT) in each image and 

then estimating X-ray attenuation relative to that point for all other points in the image.
123

 Volpara 

calculates volume of dense tissue by integrating the thickness of dense tissue at each pixel level 

values over the image; it then computes the volume of the breast by multiplying the area of the breast 

by the recorded breast thickness.
124

 It calculates percentage volumetric breast density as a percentage 

ratio of the volume of fibroglandular and the total volume of the breast. The software generates four 

volumetric density grades (VDGA – D) corresponding to the four ACR BIRADS breast density 

categories (Figure 4A).
123-125

 Volpara has demonstrated a strong positive correlation with BIRADS,
124, 



126
 and has been shown to be more reliable and reproducible,

39, 117, 118
 and a better risk predictor from 

breast density assessment 
28

  than other mammographic breast density assessment tools.  

 

  

 

Figure 4: Display of assessed volumetric breast density results: In A,the Volpara Density grade is 3, 

and in B, Quantra the breast density grade (total Q_abd) is 4.  

 

Currently, there is increased advocacy for breast density notification in the United States,
127

 and 22 

states have already passed laws mandating disclosure of breast density information to screened 

women.
128

 Given the increased advocacy and legislation for breast density notification, it is 

worthwhile to employ tools that are robust enough for clinical use and devoid of subjectivity for 

mammographic breast density assessment. Interestingly, Volpara
TM

 and Quantra
TM

 are robust and 

provide breast density score to the practitioner within 2 minutes after the mammographic procedure. 

Their reliability and reproducibility as well as the ready availability of their results will allow for 

consistency and timely utilization of breast density information in clinical decision-making. Where 

these software packages are available, radiologists and technologists only have to review the breast 

density information generated by the software and provide a statement on the patient report about her 

breast density. It should however be noted that Volpara
TM

 and Quantra
TM

 are used as adjuncts to 

radiologist assessment, and although shown now to correlate to sensitivity,
129

 they may not account 

for all the potential masking effects of breast density. Therefore, it is the responsibility of the image 

interpreter to accept or override the breast density report generated by the software based on their 

perceived masking effect. 

 

Radiographic Factors that can impact on Breast density measurement  

Volumetric methods rely on image acquisition parameters and compressed breast thickness to 

estimate volumetric breast density. It has been shown that when compression is applied with a flexible 

compression paddle, the upper plate may be tilted. Paddle tilt causes a variation in breast thickness 

from the thoracic wall to the breast edges,
130, 131

 and results in a smooth intensity inhomogeneity field 

A B 



that distorts the image, limiting computerized image analysis.
132, 133

 This is most often seen in fatty 

breasts where it creates a region of intensity inhomogeneity which is usually misinterpreted as a dense 

tissue component, leading to overestimation of a woman’s breast density.
134

 The effect of the paddle 

tilt in dense breasts may be indeterminate.
134

 Positioning has been shown to cause density variation in 

digital mammography and digital breast tomosynthesis,
109

 and implants can be  treated as a 

component of the breast by these volumetric techniques and cause errors in mammographic breast 

density estimation if the images are not tagged appropriately in the DICOM headers.
135

 Quantum 

noise influences the appearance of breast parenchyma in mammograms and determines that amount of 

fibroglandular tissues which can be quantified as volumetric breast density. This has been shown to 

reduce volumetric breast density estimated from mammograms. 
136

 The foregoing demonstrate that 

factors under the radiographer’s control may influence the accurate assessment of breast density with 

both visual and quantitative approaches, and  emphasizes the need for correct technical parameters 

and procedures to be used for breast imaging. Additionally, quality assurance is very important to 

produce mammograms with normalized breast density value scale in order to overcome errors which 

may arise from variation in the technical parameters used for different breast compositions.
137

 Failure 

of calibration may cause poor dose control and strange density reports for breast thicknesses which 

are 2cm greater than actual thickness. Mammograms with uncalibrated information may lead to errors 

in mammographic breast density assessment.
138

  

 

Imaging the dense breast 

The literature demonstrates that mammography suffers reduced sensitivity in dense breasts due to 

masking effect on high breast density,
139

 although it does appear to be very good for women with fatty 

breasts. Therefore, women with dense breasts who are elevated risk of breast cancer may benefit from 

adjunctive screening. Given that 31% – 43% of screened women have high breast density,
82

 it is 

increasingly important to image dense breasts with appropriate imaging modalities to enhance 

visualization of the breast for cancer features. Also, since 50% of interval breast cancer is attributed to 

high mammographic breast density,
3
 it is essential to assess breast density of screened women in order 

to identify women who may need to be screened more regularly. Existing evidence shows that 

ultrasound,
29, 30

 digital breast tomosynthesis,
31

 or MRI 
30

 improves cancer detection in dense breasts 

although it remains unclear which one suits which breasts best. 

 

Clinical trials have shown that supplemental screening breast ultrasound significantly improves 

detection of node-negative breast cancer in dense breasts. The reported diagnostic yield of 

supplemental breast ultrasound ranged from 3.5 – 14.6 per 1000 women.
29, 30, 140-145

 Ultrasound has 

been shown to be particularly useful for detection of non-palpable lesions,
145

 invasive cancer ranging 

from 5 – 40mm in size,
29, 30

 as well as mammographically occult cystic malignant lesions in dense 



parenchyma.
140, 146

 Therefore, ultrasound should be recommended as the first choice supplemental 

modality for dense patients. 

 

The ability of digital breast tomosynthesis (DBT) to produce cross-sectional images removes 

superimposed tissues that may conceal breast cancer.
147

 Increasingly, the synthesis of 3-dimensional 

(3D) images from DBT and the use of combined 2D and 3D improve detection of breast cancer in 

mammographically dense breasts.
148, 149

 Studies have reported 7.2% – 53% increase in cancer 

detection and 20% – 59% reduction in recall rates with supplemental DBT.
31, 44, 45, 150, 151

 Importantly, 

radiation dose to the dense tissue is lower for DBT than digital mammography (DM) for dense 

breasts;
43

 therefore DBT is preferable to DM in terms of performance and dose, albeit it appears 

women with fatty breasts get higher dose on DBT.
152

 

 

Another approach suitable for imaging the dense breast is molecular breast imaging (MBI) or Breast-

Specific Gamma Imaging (BSGI). This modality allows for use of probes as biomarkers to image 

particular targets or pathways. Studies have shown an improvement in breast cancer detection in 

dense breast, with cancer detection rate per 1000 women increasing from 3.2 for mammography alone 

to 12.0% with supplemental MBI.
153

 A review of the literature shows sensitivity ranging from 91% – 

96%, with specificity of 60% – 77% for MBI alone,
154

 and meta-analysis of published literature 

reported 95% sensitivity and 80% specificity.
155

 A major limitation of MBI is its high radiation dose 

which has the potential to cause mutation to the rapidly dividing cells in dense breasts.
156

 Work is 

underway to lower the dose. 

 

Magnetic resonance imaging (MRI) is used as an adjunct to mammography, and has demonstrated 

high sensitivity and specificity.
157

 In addition to slice-by-slice evaluation of the breast parenchyma, 

MRI offers high resolution required for lesion identification and characterization. Studies have shown 

that the sensitivity of MRI for breast cancer detection range from 91% – 100%.
158-161

 Supplemental 

MRI has been shown to improve diagnostic yield by 18.2% per 1000 women.
159

 Importantly, MRI is 

very accurate in excluding the risk of tumour recurrence, with enhancement indicating risk of tumour 

recurrence and vice-versa.
162-164

 MRI has been shown to be the most accurate imaging modality for 

examination of the dense breast.
161

 Therefore breast density assessment is important for radiographers 

and radiologists advise women with dense breasts of the most suitable imaging modality and 

screening interval so that cancer is detected early.
165

  

 

Conclusion 

High breast density is a significant determinant of breast cancer risk, mammographic sensitivity, and 

interval breast cancer. Breast density is associated with established risk factors for breast cancer 



related to genetics and lifestyle parameters. Importantly, breast density can be reduced by 

interventions such as Tamoxifene and low-fat high carbohydrate diet. Therefore, clinical assessment 

and notification of mammographic breast density (MBD) is relevant for the purpose of risk 

stratification, decision-making regarding screening frequency, and for tailoring women’s imaging 

pathways to facilitate earlier detection of breast cancer. Mammographic breast density assessment will 

also enable monitoring of the effect of interventions on breast density and therefore breast cancer risk. 

Automated volumetric approaches are more preferable for MBD assessment, and ultrasound, digital 

breast tomosynthesis, molecular breast imaging, and magnetic resonance imaging are valuable 

adjuncts to digital mammography for imaging the dense breast. It is therefore increasingly relevant 

that screened women are notified of their breast density, and such notification accompanied with clear 

and adequate information about breast density and cancer risk, strategies associated with lower MBD, 

as well as best screening intervals and pathways for women with dense breasts. Adoption of these 

strategies may be crucial to breast cancer risk reduction, early detection and treatment of cancer, and 

improving survival from the disease. 

Table 2: Breast imaging reporting and data systems classification scheme in the 4
th
 and 5

th
 editions  

 4
th

 Edition     5
th

 Edition 

1  The breast is almost entirely fat (<25% 

glandular) 

 a  The breasts are almost entirely fatty 

2  There are scattered areas of fibroglandular 

densities (approximately 25-50% glandular) 

 

 
b  There are scattered areas of 

fibroglandular density 

3  The breast is heterogeneously dense, which 

could obscure detection of small masses 

(approximately 51-75% glandular) 

 

 

 

c  The breasts are heterogeneously dense, 

which may obscure small masses 

4  The breast is extremely dense. This may lower 

the sensitivity of mammography (>75% 

glandular) 

 

 
d  The breasts are extremely dense, 

which lowers the sensitivity of 

mammography 

Table 1: Summary of Wolfe, Boyd, and Tabăr breast density classifications 

Wolfe patterns  Boyd SCC Tabăr patterns 

N1: Completely fatty with a few  

fibrous connective tissue 

 0% : No dense tissue I: Symmetry of all components  with 

slightly greater fibrous tissue 

P1: Fatty with prominent ducts 

≤4mm in diameter 

 <10% dense tissue II: Bulk of fat tissue 

P2: Higher concentration of 

prominent triangular ducts in 

the central portion  

 10-25% dense tissue III: More fat tissue with fibrous tissue 

in the retroareolar region 

DY: Homogenous density with 

few ductal prominence 

 26-50% dense tissue VI: Mainly nodular densities 

Qdy: Breast with spongy texture   51-75% dense tissue V: Predominantly fibroglandular  

  >75%: Extremely dense  
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