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Abstract 
 
As a significant and growing source of the world’s energy, wind turbine reliability is 
becoming a major concern. At least two fault detection techniques for condition 
monitoring of wind turbine blades have been reported in early literature, i.e. acoustic 
emissions and optical strain sensors. These require off-site measurement. The work 
presented here offers an alternative non-contact fault detection method based on the 
noise emission from the turbine during operation. An investigation has been carried out 
on a micro wind turbine under laboratory conditions. 4 severity levels for a fault have 
been planted in the form of added weight at the tip of one blade to simulate 
inhomogeneous debris or ice build up. Acoustic data is obtained at a single microphone 
placed in front of the rotor. Two prediction methods have been developed and tested on 
real data: one based on a single feature – rotational frequency spectral magnitude; and 
another based on a fuzzy logic interference using two inputs - spectral peak and 
rotational peak variation with time. Results show that the single spectral peak feature 
can be used to determine fault severity in ranges. The implementation of the fuzzy logic 
using a further input feature is shown to significantly improve the detection accuracy. 
 
1.  Introduction 
 
As one of the worlds fastest growing renewable energy sources it is important to reduce 
costs of wind energy. In this way it can compete with already established energy 
sources (1). Since wind turbines are commonly placed in remote areas and their structure 
is hard to access, the elevated cost of operation and maintenance has become a major 
issue. Furthermore, the wind turbine downtime tends to be long, which affects the 
availability of wind power directly because of its poor reliability (2). Condition 
monitoring and fault diagnosis of wind turbines is therefore essential for wind energy’s 
further development. 
 
The work presented here explores an alternative method for the detection of wind 
turbine blade faults. In contrast to existing condition monitoring techniques for blades, 
such as Acoustic Emission, the proposed approach is a non-contact technique that aims 
to detect differences in the wind turbine noise. Measuring and predicting wind turbine 
noise is already a significant area of study in environmental impact (3). 
 
The method proposed uses the acoustic signal emitted by the operating turbine to extract 
signal features that indicate the presence and progress of a blade fault. It is known that 
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blades are primarily responsible for noise generation in wind turbines (4). For instance, 
when ice builds up at the tip of a turbine blade, it not only adds extra weight to that 
particular blade (potentially creating imbalance), but also alters the way in which the 
aerodynamic interaction with the tower happens. As a fault develops, differences in this 
signal indicate its progress through the various severity stages. The extraction and 
classification of acoustic signal features has already been shown as a powerful method 
to detect turbine condition in recent work presented by the authors (5). 
 
This paper presents details of the measurement system and test methodology in the use 
of acoustic condition monitoring. Two simple features are extracted from the signal, 
namely the spectral amplitude of the rotational frequency and its variation in time. 
These are shown to be correlated with fault progression. Feature mapping of a single 
feature and the use of fuzzy logic to aggregate both features in the analysis of an 
unknown signal are shown to be successful in the detection and classification of blade 
faults. 
 
2.  Background 
 
A wind turbine system can be divided into at least four subsystems. Given the 
difference in the mechanical nature of each subsystem, different condition monitoring 
and fault detection methods may apply for each case. The subsystems that compose the 
entire wind turbine can be classified as: gearbox and bearing; generators; power 
electronics and electric controls; rotors, blades and hydraulic controls (6). 
 
2.2 Condition Monitoring of Wind Turbine blades 
 
Composite blades often suffer delamination and cracks as a result of creep fatigue and 
corrosion fatigue of wind turbine rotors (6). Another common type of fault is the non-
uniform accumulation of dirt, ice, moisture, etc. on the blades. Commonly, this can 
result in rotor imbalance and loss of energy capture efficiency due to blade’s increased 
roughness. Imbalance can also occur as a result of manufacturing defects or 
accumulated damage to the rotor blades (7). 
 
Two main techniques have been used in the past for blade fault diagnostics, namely 
acoustic emission (AE) and optical strain sensors. AE focuses on measuring the rate and 
properties of sound waves that materials release when subject to strain or stress. 
Measurements can be taken using piezo-ceramic receivers placed strategically on the 
blade’s surface (8). Optical strain sensors detect blade loading, thus strain, by measuring 
the slight bending of the blade. As the fibre bends with the blade, an alteration occurs in 
regards to reflection and refraction of light inside the optic-fibre. These alterations can 
be detected and quantified by measuring the light that arrives at the end of the fibre. 
Measurements can be done by either fiber-optic Bragg grating (FBG) or extrinsic Fabry- 
Perot interferometric (EFPI). FBG is most common (6, 9). Yuji and Bouno reported 
experiments where, for a small wind turbine, a piezoelectric impact sensor was used (10); 
in another report an AE sensor was used for detection of damaged blades in a small 
wind turbine (11). 
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2.2 Fuzzy Logic 
 
Although the use of fuzzy logic in condition monitoring is scare in the literature, fuzzy 
logic has been widely considered particularly useful for process control (12, 13). Most of 
the early implementation of fuzzy-based control processes has taken place in Asia, 
particularly in Japan. Applications include automatic train operation (Hitachi), vehicle 
control (Sugeno Laboratory at Tokyo Institute of Technology), robot control (Hirota 
Laboratory at Hosei University), speech recognition (Ricoh), universal controller (Fuji), 
stabilization control (Yamakawa Laboratory at Kumamoto University) (12) and others. 
Although applications of fuzzy logic are wide and are still growing (14, 15), poor literature 
exists on its applications on the engineering asset management aspects (16). Yet, works 
exist (mainly in the conference realm) where fuzzy logic has been successfully applied 
for condition monitoring of machinery (16-28). These references also suggest that fuzzy 
logic is particularly useful for fault detection purposes because of its ability to make 
‘human-like’ decisions, based on vague information. When performing fault diagnosis, 
individual symptoms do not immediately suggest if an object is in ‘good’ or ‘bad’ 
condition. However, the combination of a number of them is able to give a clearer 
picture of the state of a particular fault.  Additionally, examples of motor fault detection 
using neural networks and fuzzy-logic techniques can be found in (29) and (30). All in all, 
fuzzy logic offers attractive advantages on applications such as automatic control, 
supervision, and fault diagnosis (31, 32). 
 
3.  Measurements 
 
As mentioned before, a common fault in wind turbines is the non-uniform accumulation 
of dirt, ice, moisture, etc. at the tip of the blades. The present investigation simulates 
this fault in a small wind turbine. Sound pressure is captured at a single microphone 
placed in front of the turbine and analysed as described below. 
 
3.1 Experimental Methodology 
 
Measurements were carried out in a laboratory environment. The method uses the signal 
captured at a single, pressure sensitive, microphone. The turbine is driven a FHP-
Motors electric motor (serial No UOZ 112 G 70 084159 3P 08159 390 FR 2053) 
controlled via software to allow accurate control of the drive speed. Driving the turbine 
with a motor enables a controlled constant speed of rotation while suppressing wind 
effects. The noise emitted by the rotating turbine is captured with a B&K 40AF Free 
Field Microphone (serial 15679) placed 1.1m straight ahead and upwind from the 
turbine. Power is supplied to the microphone with a B&K Type 2804 Power Supply 
(serial, 1848096). The corresponding audio signal is digitalized in an M-Audio 
MobilePre audio interface (PIN 9310-65011—00 Rev A), which is connected to the PC 
via USB. In the PC, Win-MLS software is used to gather the data. Data is collected for 
approximately 10 seconds per measurement and a wave file is created for later analysis 
in Matlab.  
 
A fault has been planted on the tip of one blade in increasing amounts to simulate fault 
severity at different levels. The fault is introduced in the form of weighted (to a 
precision of 0.01g) pieces of 5gram bluetac. Measurements were taken starting from no 
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added weights (baseline) to a total weight of 20g in 5g increments. For each fault 
severity, three 10-second length measurements were performed at 48kHz and 16 bit 
resolution, to a total amount of 15 measurement runs. Two measurement runs per fault 
severity are used to develop the classification model and one run is reserved to test the 
model. This will be referred to as the ‘unknown’ test data. The turbine’s rotational speed 
is maintained at a relatively constant value of 367 rpm, which is equivalent to a 
rotational frequency (RF) of 6.12 Hz. Measurements where taken during quiet lab times 
to minimize background noise. 
 
3.2  Data Analysis 
 
Feature extraction and classification has been performed in two of the three data series 
gathered. In order to extract features from the data, each data series has been segmented 
into 8 segments. Adequate low frequency information has been ensured by maintaining 
each segment long enough (about 2.7 seconds). Frequency resolution was maintained by 
zero padding each segment to its original length. Finally, to avoid the undesirable 
effects of spectral leakage, the segment was windowed using a Hanning window with 
50% overlap between segments (33). The process is represented in Figure 1. The signal 
features were determined using a Fourier Transform for each segment. Statistical 
indicators for each feature can then be determined and further analysis is possible on the 
data. Measurement data has been analysed according to two extracted features: the 
spectral magnitude of the rotational frequency – notated herewith as |RF| – and; the 
frequency variation of the RF – herewith named ΔRF. 

 
Figure 1: Segmentation process. a) One segment is cut from the main wave file 
information. b) Zeros are added before and after. c) Finally, the corresponding 

segment is windowed using a Hanning shape. 
 
 
4.  Feature Extraction and Simple Classification Model 
 
Feature extraction and classification has been performed in two of the three data series 
gathered. In order to extract features from the data, each data series has been segmented 
into 8 segments. Adequate low frequency information has been ensured by maintaining 
each segment long enough (about 2.7 seconds). Frequency resolution was maintained by 
zero padding each segment to its original length. Finally, to avoid the undesirable 
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effects of spectral leakage, the segment was windowed using a Hanning window with 
50% overlap between segments (33). The process is represented in Figure 1. The signal 
features were determined using a Fourier Transform for each segment. Statistical 
indicators for each feature can then be determined and further analysis is possible on the 
data. Measurement data has been analysed according to two extracted features: the 
spectral magnitude of the rotational frequency – notated herewith as |RF| – and; the 
frequency variation of the RF – herewith named ΔRF. 
 
4.1 Condition Feature 1 – Spectral Amplitude of Rotational Frequency (|RF|) 
 
The rotational frequency of the turbine is controlled from the driving motor and is thus 
prescriptive. Due to the aerodynamic interaction between the blades and the tower, 
impulsive noise is generated at the rotational and blade pass frequencies (34). When the 
physical properties of one of the blades are changed, this interaction changes, which 
leads to a change in the spectral component of the RF (4). As the severity of the fault is 
increased the magnitude of this peak should change accordingly. Figure 2 shows the 
obtained spectra for different fault severities. It is apparent that an increase in fault 
severity results in an increase on the amplitude of the rotational frequency (6.1Hz). 

 
Figure 2: Spectral magnitude for different fault severities. The rotational 

frequency component in the spectrum increases consistently with the increase of 
the fault amount. 

 
An ANOVA has been performed within each repeated measurement to check for 
significant differences on this feature between sets. No significant differences have been 
found between the data sets (p>0.05), hence data from both data sets has been grouped 
in order to define the feature levels for each fault severity. A further ANOVA has been 
carried out to test for significant differences between each fault severity level. The 
ANOVA results are shown in Table 1.  
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Table 1: Results from ANOVA analysis 
 
 
 
 
 

 
Figure 3: Multiple comparison from ANOVA analysis. Results show that while no 
significant difference can be found between neighbouring groups, a significant and 

consistent difference is found as the fault severity increases. 
 
Clearly there is a highly significant effect of fault severity on the data (p<<0.01). 
Significant differences can be found among fault severity groups, although not among 
neighbouring faults. A multiple comparison between all fault cases is shown in Figure 3 
to help visualise this. Faults 0g and 5g are not significantly different from each other but 
0g is significantly different from faults at 10g, 15g and 20g; Fault 5g is significantly 
different from 15g and 20g, and so on. Thus, it becomes clear that the added weight 
fault significantly causes |RF| to increase. This feature may thus be used to detect the 
fault.  
 
The acquired data was used to develop a classification model for the detection of the 
fault. Feature mapping was obtained by defining a range within the variance values for 
each fault severity level. A 3rd order polynomial regression has been fitted at these 
extremes defining the fault area shown in Figure 4. A data series containing an 
unknown fault can now be examined and its feature level (i.e. the mean |RF|) mapped in 
the classification model. Clearly this will result in a predicted fault range defined at the 
points where the measured |RF| intersects the fault area. 
 
To test the classification model the third independent data series obtained from our 
measurements has been used. The determination of |RF| is carried out in the same way 
as has been discussed in Section 4. A single mean value obtained by segmenting the 
unknown data is used. The individual values for |RF| according to the unknown cases 
are shown in Table 2.  
 

Source SS df MS F Prob>F 
Columns 0.0027422 4 0.00068555 21.8255 5.6677e-12 
Error 0.0023558 75 3.141e-05   
Total 0.005098 79    
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Figure 4: |RF| peak magnitude mean and variance of individual fault groups. Two 
polynomials are fitted at the extremes of the variance of each group. This gives an 

area in which the peak magnitude can be evaluated for fault detection. 
 

Table 2: Third measurement |RF| peak magnitude data, used for testing 
 

 Baseline 5 gram 10 gram 15 gram 20 gram 
1. 0.0122 0.0240 0.0290 0.0404 0.0378 
2. 0.0117 0.0105 0.0146 0.0225 0.0266 
3. 0.0065 0.0073 0.0288 0.0221 0.0265 
4. 0.0065 0.0119 0.0256 0.0179 0.0250 
5. 0.0068 0.0066 0.0326 0.0220 0.0271 
6. 0.0136 0.0127 0.0235 0.0065 0.0269 
7. 0.0053 0.0051 0.0080 0.0166 0.0274 
8. 0.0051 0.0103 0.0262 0.0135 0.0198 
Mean 0.0085 0.0110 0.0236 0.0202 0.0271 

 
Table 3 shows the results for each ‘unknown’ data set presented in terms of fault 
severity. 
 

Table 3: Comparison between actual and predicted results 
 

Fault Severity (g) Output (g) 
0 0 - 5 
5 4 - 8 

10 17 - 24 
15 14 - 18 
20 >20 

It can be seen that fault mapping is fairly accurate with most unknown faults matching 
to the correct range of fault prediction values. The 10-gram fault however is 
overestimated and, apart from contamination of a transient noise existent in the data 
series at about 3 seconds from the start, we could not find a reason for this discrepancy. 
Further work is being carried out to investigate this.  
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4.2 Condition Feature 2 – Variation of Rotational Frequency (ΔRF) 
 
Large scale wind turbines have a fixed rotational speed, whilst in micro turbines the 
rotational speed varies with wind speed. In our case, it is desirable that the rotational 
speed is kept fixed in order to extract fault detection features such as |RF| described in 
section 4.1. This is also in keeping with the principle of operation of large scale 
turbines. In our tested system, the drive from the electric motor replaces wind energy, 
constantly injecting energy into the system and overcoming damping forces that would 
eventually bring it to a stop. The turbine is driven at a constant speed, nevertheless, 
small variations in the rotational speed of the turbine are expected, depending on a 
number of complex phenomena (i.e. electrical, electronic, mechanical, external, etc.) 
among which the moment of inertia is significant. This aspect may be easily understood 
when considering the example of an engine’s flywheel, a heavy circular disk which 
helps to maintain uniformity in the rotational motion generated by piston strokes in the 
engine (35, 36). In a similar way, as mass is added to a turbine blade the rotational inertia 
is increased. This tends to stabilize fluctuations in the rotational speed and one can 
expect fewer variations over time, as long as the added mass does not create significant 
imbalance.  
 
For our condition monitoring problem, a second feature has been extracted from the 
data in order to detect and classify fault severity. This feature is related to the variation 
of the rotational frequency (ΔRF) which was found to vary up to 4Hz when extracted 
over various segments of a measurement data series. The classification data for ΔRF 
was quantified from the variance of 16 data segments (8 segments for each 10 second 
measurement) for each fault severity. ΔRF is shown to decrease significantly with fault 
severity as shown in Figure 5.  
 
Since the feature itself is related to the spread (variance) of a data series, the derivation 
of confidence intervals that allow more robust statistical analysis of the data is not 
trivial. Furthermore the necessity of defining membership functions for the fuzzyfication 
stage in a Fuzzy Logic Interference (described in more detail in section 5) requires an 
estimation of the spread of the data – i.e. the variance of the variance. To estimate this 
parameter, one can use a maximum likelihood approach. This thus provides us with an 
unbiased estimation of the variance. 
 
Given the above, the estimated variance of ΔRF may be defined according to the 
standard error of the sample variance. This can be estimated using 
 

σ
!!"

! = σ! 2/k  ……………………………...... (1) 
 

where σ! is the variance and k is the number of samples (in this case 16) (37). The sub-
index σ!" ! denotes the maximum likelihood estimator of the variance. This approach 
assumes that errors are distributed as a gaussian function, which are reasonable 
assumptions in the present case. Figure 5 shows the calculated ΔRF and its 
corresponding (estimated) variances, plotted for each fault severity.  
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Figure 5: ΔRF and estimated variance. This is useful for defining the spread of the 

corresponding gaussian membership functions in the FIS. 
 
5.  Fuzzy Logic Classification Model 
 
A detection algorithm has been built based on a fuzzy logic interference system (FIS). 
Fuzzy logic has been widely employed in control systems because it is able to deal with 
data features that have no clearly defined boundaries. Analysis systems based on fuzzy 
logic are fundamentally dependent on the definition of fuzzy sets (38), which represent 
data sets with no clearly defined boundaries, containing elements whose membership 
might be only partial. The degree to which data elements belong to a set is measured by 
membership functions ranging between 1 (full belongingness) and 0 (non- 
belongingness). Fuzzy logic is therefore effective at dealing with imprecision taking 
imprecise (fuzzy) observations for inputs and delivering precise and clear values for 
outputs (39, 40). Three main components govern the FIS structure: input variables, 
decision making logic (rules) and output variables. The identification and definition of 
input variables and their ranges is often called fuzzyfication which leads to the 
definition of the MFs. The decision making logic is guided by a knowledge database 
often guided by experience. The output decision, commonly termed deffuzyfication, is 
the process of defining a single figure, crisp output. The most popular method is the 
calculation of the centroid returning the centre of gravity of the area under the curve 
identified by the FIS. Our FIS uses two inputs, namely |RF| and ΔRF, and outputs a 
prediction of fault severity from an unknown data series.  
 
5.1 Defining Membership Functions (MF) from classification data 
 
In our condition monitoring problem the MFs for input and output variable have as 
many membership functions as the number of fault severity levels measured. The first 
input variable to the FIS is |RF|, and its feature map has been defined in section 4.1. The 
membership functions (MF) for this variable have been modelled as Gaussian functions. 
The highest MF value for each fault is located at the mean value of |RF| and the spread 
of each Gaussian function is defined according to the corresponding variance of each 
fault level. The 0g and 20g membership functions are modelled as sigmoids since they 
model the boundaries of the data sets. The generated MFs for |RF| are shown in Figure 
6.  
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Figure 6: |RF| membership functions (first input variable) 

 
The definition of MFs for the second input variable follows the same principle. That is, 
they are defined as maximum at the value of mean ΔRF extracted from each fault level 
in the classification data and their Gaussian spread is determined by the estimated 
variance of the variance (as described in section 4.2). 
 
The output of our FIS is also based on 5 Gaussian membership functions with maximum 
values corresponding to each fault severity level [0g, 5g, 10g, 15g, 20g].  This is shown 
in Figure 7. 
 

 
Figure 7: FIS output membership functions. 

 
5.2 Defining decision making logic 
 
The decision making logic in this case is fairly simple and could in, future iterations of 
the system, be improved. The fuzzy set of decision rules has been constructed as 
follows. 

• 1. If (|RF| is 0g) or (ΔRF is 0g) then (FaultSeverity is 0g) (1)  
• 2. If (|RF| is 5g) or (ΔRF is 5g) then (FaultSeverity is 5g) (1)  
• 3. If (|RF| is 10g) or (ΔRF is 10g) then (FaultSeverity is 10g) (1)  
• 4. If (|RF| is 15g) or (ΔRF is 15g) then (FaultSeverity is 15g) (1)  
• 5. If (|RF| is 20g) or (ΔRF is 20g) then (FaultSeverity is 20g) (1)  

Each defined rule may be associated with a weight or relative importance. In this case 
all rules have full weight, indicated as a (1) at the end of each line. 
 
5.2 Testing the Fuzzy Interference System 
 
The following plot shows the mapping between the two input functions and the output. 
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Figure 8: Surface plot of the FIS model. The two input functions (|RF| and ΔRF) 

are plotted in the horizontal plane and the output (predicted fault severity) on the 
vertical axis. 

 
The process of testing the FIS model is similar to that reported in section 4.1. The third 
independent measurement (containing ‘unknown’ data) is segmented enabling 8 |RF| 
and ΔRF values to be extracted. The mean |RF| is averaged (see Table 3) and ΔRF is 
calculated as described in section 4.2. A summary of the unknown fault input data is 
shown in table 4. 
 

Table 4: Summary of input data for the FIS per fault severity 
 

Fault Severity (g) Magnitude Variance 
0 0.0085 0.3160 
5 0.0110 0.0142 

10 0.0236 0.2006 
15 0.0202 0.5770 
20 0.0271 0.0066 

 
The output of the FIS model, rounded to the nearest integer, is shown below. 
 

Table 5: FIS model output 
 

Fault Severity (g) Output (g) Err Error or 
0 1 1 
5 5 0 

10 19 9 
15 15 0 
20 19 1 

 
Most faults levels have been predicted with accuracy, except the 10g fault, which again 
is erroneous. It is nevertheless important to note a few important points: 

1. The predicted values for an FIS are, by definition, single valued and based on a 
centroid calculation of the resultant output universe of discourse. 

2. The output MFs for the FIS system have been defined to match the 5 fault levels 
planted in the turbine.  
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It is therefore expected that a decision making system (the FIS) will naturally converge 
to values where its MFs are maximum thus matching almost exactly the planted fault. 
We expect that where unknown data with faults planted at levels other than the 
classification data (i.e. 0,5,10,15 and 20 grams) the prediction errors will be larger. 

 
5.  Conclusions 
 
A study has been conducted on the use of acoustic monitoring for fault prediction on the 
tip of a wind turbine blade. Fault detection and classification is based on two simple 
signal features, namely the spectral magnitude of the rotational frequency and its 
variation in the data series. The feature mapping has been obtained from ‘training’ data 
measured with a single acoustic probe positioned upwind from the turbine in a 
controlled environment. The ‘test’ data was obtained in the same circumstances. 
 
It has been shown that, as a single feature, the spectral magnitude of rotational 
frequency is indicative of the condition of the blade and is able to distinguish between 
fault severities. Detected faults are output in ranges rather than single figures 
predictions. 
 
A further classification model has been developed based on a fuzzy logic interference 
system using the two features as inputs. The membership functions have been modelled 
using the variance obtained from the classification data. Although we have used rather 
simple features for the fuzzy logic model, it has been demonstrated that its use affords a 
reasonable prediction of fault level. It allows the aggregation of the various input 
features to improve on classification accuracy over simple single features.  
 
Our interest in this initial investigation on the use of fuzzy logic for condition 
monitoring is that it is intuitive to implement in such condition monitoring problems 
and may easily be altered to include different input features and other decision making 
logic routines. 
 
Authors are now working on the extraction of other signal features for a more robust 
model. Other methods being investigated include empirical mode decomposition, 
wavelet analysis, cepstrum analysis (5, 6, 41). 
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