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Granular materials have been conventionally used for acoustic treatment due to their sound absorp-

tive and sound insulating properties. An emerging field is the study of the acoustical properties of

multiscale porous materials. An example of these is a granular material in which the particles are

porous. In this paper, analytical and hybrid analytical-numerical models describing the acoustical

properties of these materials are introduced. Image processing techniques have been employed to

estimate characteristic dimensions of the materials. The model predictions are compared with meas-

urements on expanded perlite and activated carbon showing satisfactory agreement. It is concluded

that a double porosity granular material exhibits greater low-frequency sound absorption at reduced

weight compared to a solid-grain granular material with similar mesoscopic characteristics.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3644915]

PACS number(s): 43.55.Ev, 43.20.Bi, 43.20.Gp [KVH] Pages: 2765–2776

I. INTRODUCTION

Properties of granular materials are of great importance

in many areas of acoustics and noise control. This paper is

focused on the acoustical properties of double porosity granu-

lar materials, i.e., packings of porous particles. The study of

the long-wavelength sound propagation in porous media has

mainly been focused on estimating two intrinsic quantities,

i.e., the characteristic impedance and the wave number.1 Biot2

investigated the problem of elastic wave propagation in a stat-

istically isotropic porous elastic solid saturated by a viscous

fluid and found that two dilatational waves, a slow and a fast

wave, and one rotational wave can propagate in the medium.

In this paper, only the slow wave is considered as the solid

frame is assumed to be motionless. A widely accepted semi-

phenomenological model for the acoustical properties of

materials with a single pore size or narrow pore/grain size dis-

tribution, i.e., single porosity materials, has been proposed by

Johnson et al.3 and Lafarge et al.,4 and improved by Pride et
al.5 and Lafarge.6 These models make use of scaling functions

that correctly match the low- and high frequency limits of the

dynamic viscous7 and thermal4 permeabilities, and rely on in-

dependently measurable macroscopic parameters; namely, po-

rosity, static viscous and thermal permeabilities, static viscous

and thermal tortuosities, tortuosity, and viscous and thermal

characteristic lengths. Allard et al.8 have measured most of

these macroscopic parameters for a random packing of beads

and found good agreement between the model prediction and

measured data. Asdrubali and Horoshenkov9 have used a

rational Padé approximation to model sound propagation

through expanded clay granulate. This modeling approach

assumes that the material possesses capillary pores whose size

distribution is log-normal. However, the pore size distribution

of expanded clay may be better described as multimodal. The

main drawback of these approaches is the difficulty in

measuring the model parameters. Moreover, they provide

little information about the microstructure influence on the

acoustical properties. In an attempt to overcome these difficul-

ties and provide practical expressions to work with, empirical

models have been proposed by Voronina and Horoshenkov.10

They have measured flow resistivity, porosity, and tortuosity

and fitted the so-called structural characteristic to predict

sound propagation in granular materials such as perlite, ver-

miculite, and granulate nitrile. An empirical model has, how-

ever, limited predictive power and does not provide an

understanding of the material morphology influence on the

acoustical properties. A microstructure-based approach over-

comes these problems. It requires information about the mate-

rial structure such as particle shapes, sizes, and arrangement

and relies on solving the oscillatory fluid flow and heat con-

duction problems in a representative geometry. Chapman and

Higdon11 have calculated dynamic viscous permeability of

monodisperse arrays of spheres arranged in periodic lattices.

Umnova et al.12 have extended the “cell model” approach to

calculating the drag parameters of packing of spheres consid-

ering a geometrically justified outer cell radius. These authors

have also provided expressions for dynamic bulk modulus

based on a mathematical similarity between the oscillatory

fluid flow and heat conduction problems.13

The homogenization of periodic media theory14,15

(HPM) has been applied by Gasser et al.16 to numerically

solve the boundary value problems at different scales and

calculate both the macroscopic material parameters and the

acoustical properties of a face-centered cubic (fcc) packing

of spheres. A similar work, based on numerical HPM, has

been published by Lee et al.17 for simple cubic, body-

centered cubic (bcc), fcc, and hexagonal close-packed

arrays. Boutin and Geindreau18 have proposed analytical esti-

mates of dynamic viscous permeabilities for granular media

using a combined HPM and self-consistent approach. The

description of the acoustical properties of granular materials is

completed with an analytical expression for dynamic thermal

permeability also derived by these authors.19

An emerging field is the study of the acoustical properties

of double porosity materials which are efficient at absorbing
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low frequency sound. In these materials, two fluid networks

with well-separated characteristic pore or inclusion sizes can

be identified. The equations for sound propagation in double

porosity materials have been derived by Auriault and Boutin20

and Boutin et al.21 using HPM. It has been pointed out in a

later work22 that the material properties strongly depend on

the ratio e0 between the characteristic size of the microscopic

scale lm and that of mesoscopic scale lp. At moderate inter-

scale ratio values, e.g., e0 ¼ lm=lp � 10�1, the two fluid net-

works strongly interact and influence both the macroscopic

fluid flow and heat conduction. This case is usually referred to

as low-permeability contrast. Materials with this property

have been experimentally and theoretically investigated by

Pispola et al.23 For small interscale ratio values, e.g.,

e0 � 10�3, the macroscopic flow is determined by the meso-

scopic fluid network. The dynamic bulk modulus is modified

due to pressure diffusion effects in the microdomain. This

leads to an additional dissipation term which depends on the

mesoscale geometry and the microdomain characteristics.

This effect is specific to double porosity materials and has

been experimentally confirmed for perforated porous panels24

and for porous materials with porous inclusions.25

In this paper, the acoustical properties of double poros-

ity granular materials, i.e., packings of porous particles, are

investigated both theoretically and experimentally. The pa-

per is organized as follows. In Sec. I, the wave equation

describing sound propagation in double porosity materials of

arbitrary geometry is presented. The calculations of the

dynamic density and bulk modulus are outlined. In Sec. II

the general theory is applied to packings of identical porous

spheres. Experimental validation of the models and discus-

sion are presented in Sec. III. Measurements on both low-

and high-permeability contrast granular materials (expanded

perlite and activated carbon, respectively) are reported as

well as the methods used to estimate their structural charac-

teristics. The main findings are summarized in Sec. IV.

II. THEORY

A. Sound propagation in double porosity
materials—Overview

Following Refs. 20–22, three scales can be identified

and used to describe sound propagation in a rigid-frame dou-

ble porosity granular material saturated by a Newtonian

fluid, e.g., air. They are schematically shown in Fig. 1. The

macroscopic characteristic size L is associated with the

sound wavelength k in the material as22 L ¼ O k=2pj jð Þ. The

characteristic size lp is determined by the size of the mesohe-

terogenities, which in the case under study corresponds to

the particle size. The characteristic size lm is determined by

the size of the pores within the particle. This characteristic

size is assumed large enough so that the saturating fluid is

continuously distributed throughout the space it occupies.

Rarefaction effects are therefore neglected. However, it has

been shown that these effects do not change the form of the

macroscopic isothermal acoustic description in single26 and

double27 porosity materials but the way the effective quanti-

ties are calculated. To model the material as a homogenous

equivalent fluid, the separation of scales assumption should

be satisfied, e.g., e ¼ lp=L� 1 and e0 ¼ lm=lp � 1. The ex-

istence of the representative elementary volumes REVm Xm

and REVp Xp can then be ensured provided that the condi-

tions on the interscale ratios are fulfilled. The mesoscale and

microscale porosities are /p ¼ Xfp=Xp and /m ¼ Xfm=Xm,

respectively, where Xfi is the open voids/pore volume and Xi

is the volume of the REVs. Here and in the following

i ¼ p;m. The overall porosity of the material is given by

/db ¼ /p þ 1� /p

� �
/m. The subscript db denotes a double

porosity quantity from now on.

The wave equation for acoustic pressure p in a rigid-

frame double porosity material is given by22

jxp

Kdb xð Þ � r �
kdb xð Þ

g
rp

� �
¼ 0: (1)

Time dependence in the form ejxt is assumed. Here, g is the

dynamic viscosity and Kdb and kdb are the dynamic bulk

modulus and dynamic permeability of the double porosity

material. The latter becomes a scalar quantity for isotropic

media, i.e., kdb ¼ kdbI, where I is the unitary second-rank

tensor. The way of calculating Kdb and kdb depends on the

value of the interscale ratio e0. When e0 � 10�3 a high-

permeability contrast is achieved and the pores in the par-

ticles have negligible contribution to the macroscopic fluid

flow. In this case, the dynamic permeability kdb coincides22

with that of a packing of solid particles, i.e.,

kdb xð Þ ¼ kp xð Þ þ 1� /p

� �
km xð Þ � kp xð Þ; (2)

where kp and km are the dynamic permeability tensors of the

mesoscopic and the microscopic domains, respectively.

The dynamic bulk modulus for a material with high-

permeability contrast is given by22

Kdb xð Þ ¼ 1

Kp xð Þ þ
1� /p

� �
Km xð Þ Fd

P0

/m

x
Km xð Þ

� � !�1

; (3)

FIG. 1. Three scales of the double porosity material (adapted from Ref. 22).
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where Kp and Km are the dynamic bulk moduli of the meso-

scopic and microscopic domain, respectively. These can be

expressed in terms of the dynamic thermal permeabilities k0p
and k0m as4

Ki ¼
cP0

/i

c� jxq0 c� 1ð ÞCp
k0i xð Þ
j/i

� ��1

; (4)

where q0 is the gas density, Cp is the specific heat at constant

pressure, j is the thermal conductivity, and c is the adiabatic

constant.

In the case of low-permeability contrast, e.g., e0 � 10�1,

the dynamic permeability of the double porosity material is

given, in a first approximation, by a parallel flow model.22

Hence, the dynamic permeability of the microscopic domain

km xð Þ in Eq. (2) cannot be neglected. This expression holds

for mesoscopic geometries with straight pores or slits.22 The

dynamic bulk modulus under low-permeability contrast con-

dition is obtained by replacing the function Fd by 1 in

Eq. (3). The way of calculating the dynamic viscous and

thermal permeabilities and the function Fd is now detailed.

The fluid flow at the microscopic and mesoscopic levels

is described by an oscillatory Stokes forced problem with

no-slip boundary condition on Csi. This problem is linear

and can be written in terms of the Xi�periodic dynamic per-

meability field k
_

i and the zero mean value pressure p_i as7

jx
q0

g
k
_

i þrp_i � Dk
_

i ¼ I in Xfi; (5)

r � k
_

i ¼ 0 in Xfi; and k
_

i ¼ 0 on Csi: (6)

The dynamic permeability is then calculated by averaging

the solution over the REVi as ki xð Þ ¼ k
_

i

D E
i

with

�h ii¼ 1=Xið Þ
Ð
Xfi
� dX. For isotropic microscopic media it

becomes ki ¼ kiI.

The thermal exchanges between the saturating fluid and

the solid matrix are described by an oscillatory heat conduc-

tion problem with isothermal condition applied on Csi. This

linear problem can be written in terms of the Xi�periodic

dynamic thermal permeability distribution k
_

i as follows:4

jx
q0Cp

j
k0i
_

� Dk0i
_

¼ I in Xfi; and k0i
_

¼ 0 on Csi: (7)

The dynamic thermal permeabilities of the microdomains

and mesodomains are then calculated by averaging the solu-

tion of Eq. (8) over the REVi as k0i xð Þ ¼ hk0i
_

ii.
The function Fd in Eq. (3) is defined as the ratio of the

average pressure in the microscopic domain to that in the

mesoscopic domain.22 It is related to the dynamic pressure

diffusion function D xð Þ as22

Fd xð Þ ¼ 1� jxg
/m

P0

k�1
0m

D xð Þ
1� /p

� � ; (8)

where k0m is static viscous permeability of the microdomain

and is calculated from the solution of Eqs. (5), (6) for x ¼ 0.

In this expression, the material has been assumed isotropic

or just the preferential flow direction is taken into account.

In addition, the sound propagation in the microscopic do-

main has been assumed isothermal [this also implies replac-

ing Km xð Þ by P0=/m in Eq. (3)], and in a viscous regime.

The pressure in the microscopic domain is not uniform and

governed by a diffusion equation with boundary condition

imposed by pressure in the mesoscopic domain.22 This prob-

lem can be also formulated in terms of the Xp�periodic

dynamic pressure diffusion distribution D
_

as22

DD
_

� jxg
/m

P0

k�1
0m D

_

¼�1 in Xsp and D
_

¼ 0 on Csp: (9)

Pressure diffusion function D xð Þ is then calculated by aver-

aging the solution over the solid phase of the REVp as

D xð Þ ¼ D
_
D E

¼ 1

Xp

ð
Xsp

D
_

dX (10)

This completes the direct approach. All the quantities can be

calculated from their definitions for every frequency of inter-

est. This could, however, require a significant amount of

computation time when dealing with realistic geometries. To

overcome this problem, one can use scaling functions that

correctly match the low- and high-frequency asymptotics of

the dynamic permeabilities,5 bulk moduli,6 and pressure dif-

fusion function.28 In this way, the acoustic description is

reduced to solving three static problems per scale and one

for the pressure diffusion function. The form of the scaling

functions is the same for all of the abovementioned quanti-

ties and is the following:

Hi xð Þ¼H0i
jx
x!i
þ1�P!iþP!i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jx

x!i

M!i

2P2
!i

� �s !�1

:

(11)

The symbol H is used to represent viscous, thermal or pres-

sure diffusion quantities and the subscript ! indexes the

characteristic frequencies x!i and shape factors M!i and P!i

accordingly. For viscosity related quantities Hi ¼ ki and

! ¼ v with Pvi ¼ Mvi=4 a0i=a1i � 1ð Þ, Mvi ¼ 8k0ia1i=/iK
2
i ,

and the viscous characteristic frequency defined as

xvi ¼ g/i=k0ia1iq0. For temperature related quantities

Hi ¼ k0i and ! ¼ t with Pti ¼ Mti=4 a00i � 1
� �

,

Mti ¼ 8k00i=/iK
0
i2 , and the thermal characteristic frequency

defined as xti ¼ j/i=Cpq0k00i. In these expressions, k0i and

k00i are the static viscous and thermal permeabilities.

The static viscous and thermal tortuosities are calculated

as a0i ¼ /ihk2
_

0i
iihk

_

0ii�2
i and a00i ¼ /ihk02

_

0i
iihk0

_

0ii�2
i . High

frequency tortuosities and viscous characteristic lengths for

isotropic materials are obtained from3,29 /ia
�1
1i ¼ Ei � eh ii

and Ki ¼ 2
Ð
Xfi

Ei � EidX=
Ð
Csi

Ei � EidC, where the scaled

electric field (local electrical field divided by the applied

macroscopic potential gradient) is given by Ei ¼ e�r#i

and #i is the Xi�periodic deviatoric part of an electric poten-

tial. This can be calculated from the solution of29
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D#i¼ 0 in Xfi and n �r#i¼n � e on Csi: (12)

The thermal characteristic length is a geometrical parameter-

defined as twice the volume-to-pore-surface ratio,30 i.e.,

K0i ¼ 2Xfi=Csi. For pressure diffusion related quantities

Hi ¼ D and !i ¼ d with Pd ¼ Md=4 ad � 1ð Þ, Md ¼ 8D0=
1� /p

� �
K2

d, and the pressure diffusion characteristic fre-

quency defined as xd ¼ 1� /p

� �
P0k0m=g/mD0. The static

pressure diffusion parameter D0 is calculated from the

solution of Eq. (9) for x ¼ 0. The static pressure diffusion

tortuosity is defined as28 ad ¼ 1�/p

� �
hD2

_

0
ihD

_

0i�2
and the

pressure diffusion characteristic length as22 Kd ¼ 2Xsp=Csp.

The characteristic impedance and the wave number

are related to the dynamic density, qdb xð Þ ¼ gk�1
db xð Þ=jx,

and dynamic bulk modulus as1

Zc
db xð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qdbKdb
p

and qc
db xð Þ ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qdbK�1

db

q
: Surface

impedance of a rigidly-backed material layer of thickness d
is then calculated as1 Zw

db xð Þ ¼ �jZc
db cot qc

dbd
� �

: Pressure

reflection coefficient Rdb and normal incidence sound

absorption coefficient adb are given by1

Rdb xð Þ ¼ Zw
db � Z0

Zw
db þ Z0

and adb xð Þ ¼ 1� Rdbj j2; (13)

where Z0 is the characteristic impedance of air.

In summary, dynamic viscous and thermal permeabil-

ities of the microdomain and mesodomain are needed to

model the acoustical properties of a double porosity low-

permeability contrast material. To model materials with

high-permeability contrast dynamic viscous and thermal per-

meabilities for the mesodomain, the static values of the bulk

modulus and viscous permeability of the microdomain and

the pressure diffusion function are required. The analytical

expressions used for modeling double porosity granular

materials are presented in the next section.

B. Analytical model for double porosity granular
materials

In a first approximation, an unconsolidated double poros-

ity granular material can be modeled as an array of identical

porous spheres. The pores in the spheres can be assumed cy-

lindrical. The mesoscopic domain is characterized by the par-

ticle radius rp and the intergranular porosity /p ¼ Xfp=Xp,

while the pore radius rm and the microporosity

/m ¼ Xfm=Xm characterize the microscopic domain.

First, dynamic viscous and thermal permeabilities of the

mesodomain are calculated. Different estimates for dynamic

viscous permeability of single porosity granular materials

have been deduced using HPM combined with a self-

consistent approach.18 The inclusion composed of a concen-

trically arranged solid particle in a fluid shell is assumed to

be surrounded by a Darcy medium. The oscillatory flow in

the fluid shell is described by a Stokes forced problem. A

boundary condition of zero velocity is applied on the particle

surface. At the inclusion boundary, the normal velocity com-

ponents in the fluid and in the equivalent Darcy medium are

assumed equal. Following energy consistency arguments,

two possible conditions can be imposed on the stress on the

inclusion boundary. For “pressure” or static approach

(P-estimate) the normal stress component in the fluid

matches the pressure in the equivalent Darcy medium. In

this case, the tangential velocity component does not match

that in the Darcy medium, as is the case for the “velocity” or

kinematic approach (V-estimate). The P-estimate is consid-

ered here because it is energy consistent, correct up to the

first order (in terms of the expansion parameter e) compared

to the macroscopic description obtained using HPM, and

provides closer agreement with numerical results for regular

packing of spheres.18 It results in the following expression

for dynamic viscous permeability:

kp xð Þ ¼ d2
v

1� 3C
x2

� � ; (14)

where

C ¼ Axþ B tanh x b� 1ð Þð Þ
axþ b tanh x b� 1ð Þð Þ ; (15)

A ¼ 3þ bxð Þ2
� �

1þ x2

6

� �
� 3b 1þ x2

2

� �
; (16)

B ¼ 3þ bxð Þ2
� �

1þ x2

2

� �
� 3bx2 1þ x2

6

� �
; (17)

a¼1

3
3þ bxð Þ2
� �

�3b�2

b
1þx2

6

� �
þ 4

cosh xðb�1Þð Þ ;

(18)

b ¼ 3þ b b� 1ð Þx2 � 2

b
1þ x2

2

� �
; (19)

dv ¼
ffiffiffiffiffiffiffiffiffiffi

g
jq0x

r
; b¼ 1�/p

� �1=3
; and x¼ rp

bdv
: (20)

The static viscous permeability is recovered from Eq. (14)

assuming that frequency tends to zero:18

k0p ¼
r2

p

3b2

 !
2þ 3b5
� �
b 3þ 2b5
� �� 1

 !
: (21)

The corresponding dynamic thermal permeability is calcu-

lated from the solution of an oscillatory heat conduction

problem with isothermal boundary condition on the particle

surface and zero temperature gradient on the inclusion

boundary.19 It is given by

k0pðxÞ¼d2
t 1�b3þ3b

x2
t

bxt
1þxt tanh xt b�1ð Þð Þ
xtþ tanh xt b�1ð Þð Þ �1

� �� �
;

(22)

where dt ¼
ffiffiffiffiffiffiffi
Npr

p
dv and xt ¼ x=

ffiffiffiffiffiffiffi
Npr

p
. The Prandlt number

is defined as Npr ¼ Cpg=j.

The expressions for dynamic viscous and thermal perme-

abilities of a cylindrical pore network for the microdomain
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are calculated from the solution of Eqs. (5)–(7). These are

given by1

kmðxÞ ¼ /md2
v 1� G sð Þð Þ; and

k0m ¼ /md2
t 1� G

ffiffiffiffiffiffiffi
Npr

p
s

� �� �
: (23)

where

G sð Þ ¼ 2

s

J1 sð Þ
J0 sð Þ and s ¼

ffiffiffiffiffiffi
�j

p rm

dvj j
: (24)

Here J0;1 are Bessel functions of the first kind. The static vis-

cous permeability is1 k0m ¼ /mr2
m

8
: The pressure diffusion

function D xð Þ has been analytically calculated for a packing

of identical spherical porous particles as follows. Allowing

only for radial diffusion, Eq. (9) is written in spherical coor-

dinates as

2

r

@D
_

@r
þ @

2D
_

@r2
� jd�2

d D
_

¼ �1 and D
_

r ¼ rp

� �
¼ 0; (25)

where the pressure diffusion skin depth is defined as

dd ¼
ffiffiffiffiffiffiffiffiffi
P0k0m

/mgx

q
: Multiplying Eq. (25) by r2 and making the

change of variable f ¼
ffiffiffiffiffiffi
�j
p

d�1
d r, one can obtain a nonhomo-

genous spherical Bessel equation f2@ffD
_

þ 2f@fD
_

þ f2D
_

¼ �jd2
df

2; with D
_

f ¼
ffiffiffiffiffiffi
�j
p

rpd
�1
p

� �
¼ 0: The general solu-

tion of this equation is31 D
_

h ¼ Aj0ðfÞ þ By0ðfÞ � jd2
d; where

j0; y0 are spherical Bessel functions of first and second kind

of order 0. The constant B is set to zero as the solution

cannot be infinite at the particle center. The coefficient A is

calculated from the boundary condition as A ¼ jd2
d

z
sin zð Þ ;

where z ¼
ffiffiffiffiffiffi
�j
p

rpd
�1
d . Here, the identity31 j0ðfÞ ¼ sinðfÞ=f

was used to derive this expression. The pressure

diffusion function is then obtained by integrating D
_

over the volume of the porous sphere as

D xð Þ ¼ 1� /p

� �
r2

p 3� 3z cot zð Þ � z2ð Þ=z4: The function

Fd is related to D xð Þ through Eq. (8) as

FdðxÞ ¼
3

z2
1� z cot zð Þð Þ: (26)

Sound propagation in the microdomain has been assumed

isothermal and in a viscous regime. In a more general case of

non-isothermal and visco-inertial sound propagation, z
should be replaced by z ¼ rpx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/m=P0ð Þ g=jxk0mð Þ

p
¼ rp

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qmK�1

m

p
¼ rpqc

m xð Þ. However, this generalization does

not seem to be necessary for common acoustic materials in

the audible range of frequencies.

III. MODEL VALIDATION AND DISCUSSIONS

To validate the models, measurements of sound absorp-

tion coefficient of double porosity materials have been con-

ducted in a vertically installed B&K 4206 impedance tube.

The two-microphone method described in the standard32

ISO 10534-2:2001 has been used. The analytical model for

single porosity granular materials is validated first by con-

ducting measurements on a packing of lead shots. Valida-

tions for both low and high permeability contrast double

porosity materials are performed after that. Expanded perlite

serves to compare predictions given by a hybrid model for

low-permeability contrast granular materials. The term

“hybrid model” is used in this paper if at least one of the

quantities is numerically calculated using scaling functions

[Eq. (11)]. Two activated carbon samples are used to vali-

date the model for double porosity high-permeability con-

trast granular materials. For every case, a detailed

description of the methods used to estimate the characteristic

sizes and porosities is presented.

A. Single porosity granular material

1. Characterization

The particle radius distribution of lead shots has been

measured using optical granulometry. The image processing

consists of adjusting the contrast, converting to black and

white, and performing morphological operations to fill the

holes.33 The processed image is then analyzed to obtain the

equivalent radius of each particle. This has been done by fit-

ting a circle with the same area as the pixel region. Figure 2

shows the complementary cumulative distribution function

of the equivalent particle radius obtained using 108 particles.

The particle radius distribution is close to normal, with a

mean value of �rp ¼ 0:5507 mm and a standard deviation of

0.0209 mm. Considering the non-perfect nature of the lead

shots and that the nominal radius is 0.5 mm the agreement

between this value and the expected value of the fitted distri-

bution can be considered satisfactory. The bulk density of

the packing has been measured by weighting a small cubic

container of a known volume filled with the shots. Using the

tabulated value of lead density (qls ¼ 11:34 g/cm3)

the porosity of the packing has been estimated as

/p ¼ 1� qb=qls ¼ 0:3905, where qb ¼ 6:9117 g/cm3 is the

bulk density of the packing.

2. Comparison with data

The sound absorption coefficient of a lead shot layer is

calculated using Eq. (13) with dynamic viscous and thermal

permeabilities given by Eqs. (14) and (22). The subscript db
in Eq. (13) should be replaced by p to reflect the single po-

rosity nature of the packing. Measured and predicted values

of pressure reflection coefficient are shown in Figs. 3(a) and

3(b) for frequencies between 150 to 6 400 Hz. The inset plot

[Fig. 3(c)] shows the sound absorption coefficient. The slight

disagreement between the data and the predictions could be

due to limited applicability of the analytical model for low

porosity materials (/p < 0:6) as suggested in Ref. 19. The

inaccuracy, due to finite particle size, in defining the layer

thickness could also contribute to the disagreement. If the

layer thickness is set to d ¼ 3:1652 cm, a better agreement is

obtained as is also shown in Figs. 3(a)–3(c). The model for

the acoustical properties of single porosity granular materials

has been therefore validated and will be further used in mod-

eling double porosity granular materials.
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B. Double porosity granular material with
low-permeability contrast

1. Characterization

Expanded perlite is a chemically-inert industrial mineral

made out of naturally occurring siliceous volcanic rock. This

material is commonly used in ceiling tiles and roof insulation

products. The sample used in this work is a commercial

product called Expanded Perlite P3 (P3 from now on). The

estimated density of the frame is 2.774 g/cm3. The bulk den-

sity has been measured using the procedure described in the

previous section and is equal to 0.062 g/cm3. The overall po-

rosity is therefore /db ¼ 0:9776. This value does not neces-

sarily correlate with the “open” porosity commonly used in

acoustics but includes “closed” pores as well. The fact that

this value is used in calculations inevitably affects the accu-

racy of the predictions.

The P3 grains are fairly ellipsoidal with a nominal

80%-band grain size of 0.75–1.2 mm. This means that

10% of the grain sizes fall below or above this range. It

has not been possible to apply optical granulometry to this

sample due to its extremely light-weight nature. In the ab-

sence of the actual particle size distribution, the equivalent

particle radius has been calculated as half of the average

between the upper and lower limit of the 80%-band grain

size, i.e., rp ¼ 0:4875 mm. It is known that identical non-

spherical particles can pack better than spherical par-

ticles.34 Therefore, the mesoporosity can be smaller than

that for a random close packing of identical spheres, which

is given by35 /p � 0:36. On the other hand, the effect of

polydispersity is manifested through a decrease in porosity

as small particles can fit in between the voids formed by

larger particles. An arrangement that reflects this phenom-

enon is the bcc packing. The mesoporosity is therefore set

equal to that of the bcc close packing, i.e., /p ¼ 0:32. It is,

however, recognized this value is somewhat arbitrary.

Scanning electron microscope (SEM) images, shown in

Fig. 4, have been taken in order to obtain information about

the inner structure of P3. Figure 4(b) shows the wall junc-

tions, which resemble Plateau borders36 (three and four junc-

tions meet at angles close to 120� and 109.47�, respectively).

From this image, the average wall thickness has been esti-

mated as hw ¼ 0:47460:088 mm. The poly-disperse semi-

closed foam-like microstructure of P3 can be identified in

Fig. 4(c). A cell size Cs is defined as the largest distance

between opposite walls in each cell. The mean cell size has

been calculated using manual image segmentation and is

Cs ¼ 47:58269:659 mm. The interscale ratio is therefore

given by e0 ¼ Cs=rp ¼ 0:0976. This confirms the low-

permeability contrast assumption.

2. Microstructure modeling of expanded perlite

One can notice from Fig. 4(c) that each cell can be

approximated by a polyhedron. The inner geometry of P3

must therefore obey the rules of space-filling packing of

polyhedra.37 A geometry that satisfies this condition, and

FIG. 2. Complementary cumulative distribution function for lead shot parti-

cle radius. Circles—data. Continuous line—fitted normal distribution.

Dashed lines—95% confidence interval. The inset plots show the original

(a) and the processed (b) images.

FIG. 3. Real (a) and imaginary (b) parts of the reflection coefficient of a

3-cm hard-backed layer of lead shots. Circles—data. Continuous line—

predictions. Dashed line—model predictions for a layer thickness of

3.1652 cm. The inset plot (c) shows the sound absorption coefficient.
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that related to the Plateau borders law, is the Kelvin

foam.38 Other possible geometries for modelling foams are

the Weaire–Phelan foam,38 array of cylinders arranged in a

hexagonal lattice,39 and array of spherical voids connected

by cylindrical pores.40 The Weaire–Phelan foam has eight

cells in the REV. This low symmetry limits its use.

Although an array of cylinders can represent open-cell

foams with thin struts, it does not appear to appropriately

represent semi-closed foams. Meanwhile, an array of spher-

ical voids connected by cylindrical pores does not obey

space-filling rules. The inner geometry of the P3 granules is

therefore modeled as a monodisperse array of perforated

truncated octahedra. The perforations have been included

in an attempt to represent the holes observed in the P3 gran-

ules [see Fig. 4(a)]. This implicitly assumes that the fluid

phase is connected. The truncated octahedron is an Archi-

median solid that has eight regular hexagons and six

squares faces (N ¼ 14). It corresponds to a flat-faced ver-

sion of the Kelvin foam. It is generated by subtracting six

square pyramids of side a and height
ffiffiffi
2
p

a=2 from a regular

octahedron of side 3a and half height 3
ffiffiffi
2
p

a=2. A cell size is

defined as the distance between the square faces and is given

by Cs ¼ 2
ffiffiffi
2
p

a. The volume and the area of the truncated

octahedron are V ¼ C3
s=2 and A ¼ 3=4ð Þ 1þ 2

ffiffiffi
3
p� �

C2
s . The

elementary fluid cell has been built as follows. A truncated

octahedron with cell size Cs is generated. Then, fourteen cyl-

inders of radius rper ¼ nCs=4
ffiffiffi
2
p

and height hw=2 are located

at the center of each face [see Fig. 5(d)]. The parameter

n 2 ½0; 1� controls the perforation size with respect to half of

the smallest face (square of side a). The microporosity

and thermal characteristic length can be calculated as

/m ¼ C3
s þ Npr2

perhw

� �
= Cs þ hw=2ð Þ3 and 3K0m=4Cs ¼ 1þð

n2pNhw=32CsÞ=w, with w ¼ 1þ 2
ffiffiffi
3
p
þ pNn=3

ffiffiffi
2
p� �

hw=Csð
�n=4

ffiffiffi
2
p
Þ. The viscous and thermal permeabilities of the mi-

croscopic domain have been calculated using the semi-phe-

nomenological models given by Eq. (11). To obtain the

values of the model parameters the numerical solution of the

static fluid flow [Eq. (5),(6) for x ¼ 0], the heat transfer [Eq.

(7) for x ¼ 0], and the high-frequency oscillatory fluid flow

(electrical conduction) [Eq. (12)] problems have been per-

formed using the finite element method software COMSOL

MULTIPHYSICS. Second-order Lagrangian elements have been

used to model the velocity components, whereas the linear

elements approximated the pressure field (P2-P1 velocity-

pressure formulation), as suggested in Ref. 41. An arbitrary

reference pressure has been set in one of the vertices of the

fluid cell to ensure uniqueness of the solution for the fluid

flow problem.42 Second-order Lagrangian elements have

been used for the temperature and the electric potential for

the heat and electrical conduction problems, respectively. In

all these problems, periodic boundary conditions were pre-

scribed on the boundaries corresponding to the perforation

faces. The convergence of the numerical method has been

tested by a careful mesh refining analysis. The microporosity

has been set to /m ¼ 0:967 in order to match the measured

overall porosity. The diameter of the perforations has been

set to half of the smallest face of the truncated octahedron

(q ¼ 0:5) while the wall thickness to hw ¼ 1:3883 mm. This

value is about three times larger than the one estimated by

image processing and has been chosen to match the overall

porosity value. The cell size has been, however, set to the

measured value. Table I shows the parameters utilized to

model the acoustical properties of the array of perforated

truncated octahedra. Only results for which the pressure gra-

dient has been applied in the negative z-direction are pre-

sented here and in the following. These do not differ more

than 2.534% from those obtained when the pressure gradient

was applied in the negative x- or y-direction. This reflects the

quasi-isotropic nature of the microscopic domain.

3. Comparison with data

Figure 5 shows the real and imaginary parts of pressure

reflection coefficient for a 3-cm hard backed layer of P3.

The single porosity model is not capable of reproducing the

FIG. 4. Scanning electron microscope images of expanded perlite P3: P3

grain (a), wall junctions (b), and the inner structure (c).
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data over the whole range of frequency. A reasonably good

agreement is found between the data and the hybrid model.

The following simplifications used in the modeling could

explain the observed differences between data and the pre-

dictions. The analytical model for the mesodomain assumes

that the particles are spherical and monodisperse while P3 is

clearly a polydisperse granular material with nonspherical

grains. The same argument applies to the microscopic

domain as it has been modeled as a monodisperse array of

perforated truncated octahedra. On the other hand, the paral-

lel fluid flow model used to calculate the viscous permeabil-

ity might not be a realistic assumption as this expression

only holds for mesoscopic geometry with straight parallel

cylindrical or slit pores.22 A more general approach may be

based on solving the set of equations A1 in Ref. 22. A better

agreement can be obtained by fitting the analytical double

porosity model to the data. This procedure has been imple-

mented by using the differential evolution algorithm.43 The

fitted values for the micropore and particle radii and the

porosities are rm ¼ 28:055 mm, /m ¼ 0:999, rp ¼ 0:599 mm,

and /p ¼ 0:2871. This results in an overall porosity of

/db ¼ 0:997, which is 2.26% larger than the measured value.

The fitted micropore diameter appears to be comparable to

the measured average cell size plus its standard deviation

while the fitted particle diameter corresponds to the upper

limit of the nominal 80%-band grain size. Although a much

closer agreement is obtained, it is recognized that a stag-

gered array of circular pores does not correspond to the

actual microdomain geometry of P3. The disagreement

between the data and the predictions is not very pronounced

for sound absorption coefficient as is shown in Fig. 5(d). The

general trend is that a double porosity low-permeability con-

trast granular material presents larger sound absorption at

low frequencies compared to a solid-grain material with the

same mesoscopic characteristics at reduced weight.

C. Double porosity granular materials with
high-permeability contrast

1. Characterization

Two samples of granular activated carbon made of coal

have been used as examples of double porosity granular

FIG. 5. Real (a) and imaginary (b) parts of the reflection coefficient and

sound absorption coefficient (c) of a 3-cm hard-backed layer of expanded

perlite P3. Circles—data. Continuous black line—analytical single porosity

model. Dashed black line—hybrid double porosity model. Dashed gray

line—fitted analytical double porosity model. (d) geometry and mesh of the

elementary fluid cell.

TABLE I. Parameters for the microdomain of expanded perlite P3.

103k0m=C2
s 103k00m=C2

s a0m a00m a1m Km=Cs K0m=Cs

0.7051 14.844 2.3519 1.45 2.0431 0.1066 0.3239

FIG. 6. Complementary cumulative distributions of the equivalent particle

radius for the activated carbon samples. Gray circles: data for SRD71. Black

circles: data for SRD75. Dashed dotted lines—fitted distributions. The inset

plots show the processed images. (a) SRD75 and (b) SRD71.
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materials with high permeability contrast. Activated carbon

is normally manufactured by carbonizing raw material fol-

lowed by an activation process by either oxidization of CO2

or steam. This process creates a hierarchical porosity ranging

from nanometer to micrometer size pores within the gran-

ules. Activated carbon is commonly used in filtration and pu-

rification processes due to its remarkably large surface area

and sorption capacity. The samples will be referred to as

SRD71 and SRD75 in the following. Optical granulometry

has been applied to these two samples. The image processing

is the same as the one implemented for the lead shot sample.

Figure 6 shows the complementary cumulative distribution

of the equivalent particle radius for SRD71 and SRD75. The

inset plots show the processed images. The number of par-

ticles considered for SRD71 is 2439 and the average mass

per particle is 0.8319 mg. In the case of SRD75, these corre-

spond to 2208 and 0.4792 mg, respectively. For both sam-

ples, the equivalent particle radius follows a lognormal

distribution, f t l;hjð Þ ¼ 1=th
ffiffiffiffiffiffi
2p
p� �

exp � ln tð Þ�lð Þ2=2h2
� �

.

The parameters of the fitted distribution for SRD71 are

l¼�7:2129 and h¼ 0:2112 while those for SRD75 are

l¼�7:2513 and h¼ 0:2741. These two samples are very

similar in terms of mesoscopic characteristics. The differ-

ence in their inner structure is significant as the sample

SRD75 is more porous than SRD71. This can be deduced

from the average mass per particle and more explicitly from

Table II where the bulk density, pore surface area, nanopore

volume, and the estimated overall porosity are presented

along with the expected value and standard deviations (in pa-

renthesis) of the equivalent particle radius for SRD71 and

SRD75. The tabulated density of carbon black qc ¼ 2:2g/

cm3 has been used to estimate the overall porosity.

In double porosity materials with high-permeability

contrast the fluid flow is not affected by the micropores. To

justify the applicability of this approximation, flow resistiv-

ities of the two activated carbon samples have been meas-

ured. The procedure is detailed in the standard44 BS EN

29053:1993. Table III presents the flow resistivity for

SRD71 and SR75 for a layer of 4 cm and two samples

with layer thicknesses of 2 cm. The other columns show a

theoretical estimation of mesoporosity that matches the

measured flow resistivity assuming identical spheres with

their radii given by the expected values of the equivalent

particle radius distribution (last column of Table II). The

flow resistivity was calculated as r0p ¼ g=k0p, where the

static viscous permeability of the spheres packing is given

by Eq. (21). The observed variability in flow resistivity is

6.85% for SRD71 and 6.14% for SRD75. This can be

explained with an average variability in mesoporosity of

1.77 and 1.62%, respectively. The average flow resistivity of

SRD75 is slightly larger than that of SRD71 due to its higher

dust content. Consequently, its mesoporosity is smaller. The

flow resistivity and the mesoporosity can be considered

thickness independent and not significantly affected by the

activated carbon packing conditions. The fact that the two

samples with very similar mesoscopic characteristics and

different microscopic characteristics have close flow resistiv-

ity values justifies the high-permeability contrast assump-

tion. These results also allow estimating the microporosity

as /m ¼ /db � /p

� �
= 1� /p

� �
.

2. Comparison with data

The data of pressure reflection coefficient for a rigidly-

backed 2-cm layer of SRD71 along with the model predic-

tions is presented in Figs. 7(a) and 7(b). The particle radius

and the mesoporosity values are given in Tables II and III.

The microporosity /m ¼ 0:628 has been calculated using

mesoporosity and overall porosity values. The micropore ra-

dius has been set to rm ¼ 0:7125 mm. This has been calcu-

lated through a best fitting routine using the differential

evolution algorithm.43 This value correlates well with the

mean size of the macropores (or transport pores) commonly

found in activated carbon45 and provides an interscale ratio

of e0 ¼ rm=rp ¼ 0:9455� 10�3, which is in line with the

high-permeability contrast assumption. On the other hand,

the static viscous permeability including rarefaction effects

is given by46 k0m Knð Þ ¼ /mr2
m 1þ 4Knð Þ=8, where the Knud-

sen number is defined as46 Kn ¼ lmean=rm. Considering that

the molecular mean free path lmean is approximately 60 nm

at normal conditions,47 the calculation of the static viscous

TABLE II. Properties of activated carbon samples.

Sample Bulk density

qb (g/cm3)

N2 surface

area (m2/g)

CO2 surface

Area (m2/g)

Nanopore volume

Vn (0–2 nm) (cm3/g)

Overall

porosity /db

Equivalent

particle radius (mm)

SRD71 0.566 665 371 0.283 0.7427 0.7536 (0.1609)

SRD75 0.335 1274 847 0.774 0.8477 0.7364 (0.2056)

TABLE III. Flow resistivity data and mesoporosity estimation for activated carbon.

Flow resistivity (kPa s/m2) Mesoporosity /p

SRD71 SRD75 SRD71 SRD75

A (d¼ 4 cm) 20.041 23.0667 0.312 0.305

B (d¼ 2 cm) 20.4436 24.6232 0.302 0.299

C (d¼ 2 cm) 22.7196 26.0870 0.311 0.295

Average 21.068 6 1.444 24.5923 6 1.5104 0.3083 6 0.0055 0.2997 6 0.005
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permeability would differ by 33.6%. This seemingly large

difference does not significantly modify the predictions of

the acoustical quantities in the audible frequency range [see,

for example, Eq. (64) in Ref. 47]. The double porosity model

provides much closer agreement with the data than the single

porosity model. However, its accuracy is affected by the fact

that only a limited amount of information about the material

microstructure was available. Figures 7(c) and 7(d) present

the same information as Figs. 7(a) and 7(b) but for the sam-

ple SRD75. The calculated microporosity value is

/m ¼ 0:7825 while the fitted micropore radius is

rm ¼ 0:9881 mm. This value gives an interscale ratio of

e0 ¼ 1:3419� 10�3. The agreement between the double po-

rosity model and the data is better than that for the single po-

rosity model. This is emphasized in Fig. 8 where absorption

coefficient data for both samples is presented along with pre-

dictions of the single porosity and double porosity models.

The single porosity model predictions are close due to simi-

lar mesoscopic characteristics of the two samples. The dou-

ble porosity models predictions of absorption coefficient are

also close at low frequencies. This is expected since the

static flow resistivity values of the samples are close.

To provide an insight into the low-frequency behavior, the

dynamic bulk moduli for both activated carbon samples and

the lead shots have been deduced from the low-frequency char-

acteristic impedance and wave number measured using the

two-thickness method48 as Kdb ¼ xZc
db=qc

db. It is shown in

Fig. 9 that the normalized static value of the dynamic bulk

modulus of the lead shots is accurately predicted and given

by 1=/p � 1/0.3905¼ 2.5608. For SRD71 the predicted value

is 1/0.7427¼ 1.3464 while for SRD75 is 1/0.8477¼ 1.1797.

By extrapolating the real part of the dynamic bulk modulus

to zero frequency one can conclude that the static limit is

0.5777 for SRD71 and 0.4274 for SRD75. These values cannot

be explained by the proposed model and suggest that the theory

may need to be extended to account for physical processes that

modify the static bulk modulus. This quantity is modified when

the finite heat capacity of the solid is taken into account.4

According to Eq. (B10) in Ref. 4, the static bulk modulus

is given by /K x! 0ð Þ=P0 ¼ 1þ hð Þ= 1þ h=cð Þ, where h
is the ratio of the heat capacity of air to that of the solid.

For the activated carbon samples h ¼ O 10�3ð Þ and the experi-

mental trend cannot therefore be explained. Thermal slip

effects modify the dynamic bulk modulus but not its static

value46,47 Mass transfer processes also alter the dynamic bulk

modulus. For example, Raspet et al.49 have studied the sound

attenuation in rigid cylindrical pores filled with air and satu-

rated water vapor accounting for the mass transfer of vapor

from the wet tube wall. According to Eq. (47) in Ref. 49 and

equation of state, the static bulk modulus for an array of cylin-

drical pores with wet walls can be written in terms of the ratio

between the partial pressure of air p1 and that of water vapor p2

as /K x! 0ð Þ=P0 ¼ 1= 1þ p2=p1ð Þ. However, this ratio is

small at normal conditions49 and might not be able to explain

the measured activated carbon static bulk modulus value.

The presence of adsorbed films of water at the contact

point of the granules has been identified as the main cause of

both dampening structure-borne sound and shifting the

resonant frequency of a bar filled with tungsten particles

towards lower frequencies.50 A similar shift has been docu-

mented in loudspeakers51 partially filled and resonators52

fully filled with activated carbon. This effect has been how-

ever attributed to sorption processes that occur in the small

pores within the grains. The effect of sorption on sound

FIG. 7. Real (a) and imaginary (b) parts of the reflection coefficient of a

2-cm hard-backed layer of SRD71. Circles—data. Continuous gray line—

double porosity model. Continuous black line—single porosity model for a

packing of solid particles [Eqs. (14) and (22)]. Dashed black line—single

porosity model for the microscopic domain alone [Eqs. (23)]. The same in-

formation but for SRD75 is shown in (c) and (d).
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attenuation in straight cylindrical pores has been studied by

Mellow et al.,53 who approximated the sorption dynamics by

a Langmuir isotherm model. From Eq. (39) in Ref. 53, the

static bulk modulus can be deduced as

/K x! 0ð Þ=P0 ¼ 1= 1þP0kakdqN= kaP0þ kdð Þ2q0

� �
, where

ka and kd are the adsorption and desorption constants and

qN ¼ 2rs=rn is the maximum adsorbed density. Here, the

surface mass density that can be accommodated is denoted

as rs while the pore radius as rn. This expression might be

able to explain the general trends in the behaviour of the

bulk modulus of activated carbon. However, the Langmuir

model is a poor approximation to the sorption characteristics

of activated carbon. A more comprehensive approach based

for instance on the Freundlich adsorption isotherm model45

might be necessary. It should also be noted that the friction

caused by the particle vibration has been suggested to

increase the low-frequency sound absorption in granular

materials.54 Particle motion, mass transfer and sorption proc-

esses are likely to be occurring during sound propagation in

activated carbon and need to be included into a more general

theory. This theory could also include an additional porosity

scale at the nanometre level, which seems to be the case that

would better describe the acoustical properties of activated

carbon. This idea is motivated by the larger nanoporosity of

SRD75 (/n ¼ qbVn ¼ 0:2593) compared to that of SRD71

(/n ¼ 0:1602) (see Table II).

IV. CONCLUSIONS

Double porosity materials have been intensively studied in

the past decade. It has been proven that they can achieve larger

low frequency sound absorption compared to single porosity

materials. However, granular materials with porous particles,

which are commonly used in building and chemical industries,

have received relatively little attention. These materials come

with a large variety of particle and pore sizes which allows low

as well as high permeability contrast. In this paper, the acousti-

cal properties of double porosity granular materials have been

studied both theoretically and experimentally. The existing

self-consistent model for a packing of identical solid spheres

has been extended to allow for particle porosity. Expanded per-

lite has been used as an example of a granular material with

low permeability contrast. High permeability contrast has been

achieved in samples of activated carbon. It has been demon-

strated that packings of porous particles provide much

improved low frequency sound absorption compared to that of

solid particles with the same mesoscopic characteristics at

reduced weight. This makes these materials potentially attrac-

tive for acoustic applications. It has also been found that the

low frequency properties of activated carbon cannot be com-

pletely explained by their double porosity structure as the meas-

ured static values of the bulk moduli are lower than those

predicted by the theory of sound propagation in double porosity

materials. This might be an indication of mass transfer and

sorption processes happening in smaller pores. The investiga-

tion of these effects and their use in designing new acoustic

materials are interesting topics for future research.
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Seules Forces Moléculaires (Gauthier, Paris, 1873), Vol. 1, Chap. 5.
37N.J. Mills, Polymer Foams Handbook: Engineering and Biomechanics,

Applications and Design Guide (Butterworth-Heinemann, London, 2007),

Chap. 1.
38D. L. Weaire, The Kelvin Problem: Foam Structures of Minimal Surface

Area (Taylor and Francis, London, 2000).
39C. Perrot, F. Chevillotte, and R. Panneton, “Dynamic viscous permeability

of an open-cell aluminum foam: Computations versus experiments,”

J. Appl. Phys. 103, 024909 (2008).
40F. Chevillotte, C. Perrot, and R. Panneton,“Microstructure based model

for sound absorption predictions of perforated closed-cell metallic foams,”

J. Acoust. Soc. Am.128(4), 1766–1776 (2010).
41T. J. Chung, Computational Fluid Dynamics (Cambridge University Press,

Cambridge, 2002), Chaps. 10 and 12.
42W. Zimmerman, Process Modelling and Simulation with Finite Element

Methods, Series on Stability (World Scientific, Singapore, 2004), p. 182.
43K. Price, R. Storn, and J. Lampinen, Differential Evolution: A Practical

Approach to Global Optimization (Springer-Verlag, Berlin, 2005); see

also http://www.icsi.berkeley.edu/~storn/code.html (Last viewed March 31,

2011).
44EN 29053:1993, “Acoustics. Materials for acoustical applications. Deter-

mination of airflow resistance,” 1993.
45D. D. Do, Adsorption Analysis: Equilibria and Kinetics (Imperial College

Press, London, 1998), pp. 5 and 50.
46V. F. Kozlov, A. V. Fedorov, and N. D. Malmuth, “Acoustic properties of

rarefied gases inside pores of simple geometries,” J. Acoust. Soc. Am.

117, 3402–3411 (2005).
47O. Umnova, D. Tsiklauri, and R. Venegas, “Effect of boundary slip on the

acoustical properties of microfibrous materials,” J. Acoust. Soc. Am.

126(4), 1850–1861 (2009).
48C. D. Smith and T. L. Parrott, “Comparison of three methods for meas-

uring acoustic properties of bulk materials,” J. Acoust. Soc. Am. 74(5),

1577–1582 (1983).
49R. Raspet, C. J. Hickey, and J. M. Sabatier, “The effect of evaporation-

condensation on sound propagation in cylindrical tubes using the low reduced

frequency approximation,” J. Acoust. Soc. Am. 105(1), 65–73 (1999).
50J. Valenza, C.-J. Hsu, R. Ingale, N. Gland, H. A. Makse, and D. L. John-

son, “Dynamic effective mass of granular media and the attenuation of

structure-borne sound,” Phys. Rev. E 80, 051304 (2009).
51J.R. Wright, “The virtual loudspeaker cabinet,” J. Audio Eng. Soc. 51(4),

244–247 (2003).
52F. Bechwati, Acoustics of activated carbon, Ph.D. thesis, University of

Salford, Salford, UK, 2008.
53T. J. Mellow, O. Umnova, K. Drossos, K. Holland, A. Flewitt, and L. Kärk-
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