

One Scan is Enough: Optimising Association Rules Mining

Abstract

Data mining is as a new area of research has

taken its place as one of the most important

techniques in the decision making process.

Mining association rules is one of simple yet

powerful technique in the data mining process

The problem of mining association rules is

composed of finding the large itemsets and to

generate the association rules from these

itemsets. Usually the dataset must be scanned

many times in order to find the large itemsets.

Many algorithms have been developed to

increase the performance of mining association

rules through reducing the number of scans over

the dataset. This work aims to enhance and

optimise the process even further by developing

techniques to reduce the number of database

scans to just only one.

Keywords: Data mining, Association Rules

Mining, SimpleARM,

1. Introduction

The problem of mining association rules is

composed of fining the large itemsets and to

generate the association rules from these itemsets

[1]. The process of finding large itemsets is

complicated and computationally intensive task.

Different algorithms have been developed but so

far a practical and useful technique with

acceptable performance has not been

implemented. The algorithm presented here

would allows generating frequent itemsets and

accurate association rules with good

performance. In this proposed framework we are

presenting SimpleARM (Simple Association

Rules Miner) that counts items in the database of

transactions and accumulates information in
three arrays which can be used later to discover

large (frequent) itemsets. Association rules can

be generated from these large itemsets.

The first part of the problem requires many

passes over the dataset to find all large itemsets.

This process highly affects the overall

performance of the association rules mining

process. Multiple scans over the dataset are time

consuming because in most cases huge amount

of data are being mined. SimpleARM optimises

the association rules mining process by reducing

the number of passes over the database to just

one and thus increasing the performance. Only

one pass over the database generates both 2-

Itemsets and 3-itemsets with a minimum user

specified support. Information about the items

are registered in three arrays: General_Matrix

,Before_Matrix, After_Matrix, These arrays are

then used to generate the association rules in a

very simple and efficient way.

2. SimpleARM Approach

The process of finding large itemsets is

complicated and computationally intensive

task[]. Different algorithms have been developed

but so far a practical and useful technique with

acceptable performance has not been

implemented [2] [3] [4] [5]. The algorithm

presented here allows generating large itemsets

and accurate association rules with better

performance. In this paper we present

SimpleARM that counts the items and

accumulates information in three arrays which

can be used later to discover large (frequent)

itemsets. Association rules can then be generated

from these large itemsets. In addition

SimpleARM uses previously discovered rules to

incrementally update the matrices in order to

discard obsolete rules and to speedup the mining

operation.

The first step of the SimpleARM is to find all

items and insert them in a one dimensional array

ItemList. In only one scan over the database of

transactions, information is accumulated.

Transactions may have different length (number

Mohamad Saraee

 School of Computing, Science and Eng.

University of Salford,

Manchester M5 4WT, UK

Mohmoud Al-Mejrab

 School of Computing, Science and Eng.

University of Salford,

Manchester M5 4WT, UK

of items). For each single item its frequency,

position are recorded. In addition the order of

item in transaction is registered. Another array

contains the number of occurrences of each item

in dataset transactions and also occurrences of

the same item with another item in transactions

of length 2, 3, 4 and so on. At the same time the

transaction number which contains the current

item being processed is recorded in the array of

that item e.g. item A has an array contains all the

transaction number where attribute A is an entry

in that transaction. These arrays will be used to

find the actual support and confidence of the

discovered rules. For the rest of this paper we

use the database of transactions T shown in

figure 1 as a working example.

Transaction No. Itemsets

1 A C D

2 B C E

3 A B C E

4 B E

Figure 1: Database of Transactions T

Item_List_Array: As the transactions being

scanned new item is added to this Item_List.

GeneralMatrix: A general matrix (2 dimesional

array) with a size equal to (Item_List* Item_List)

e.g. (5*5) for dataset T is created to record

occurrences (frequency) of each item and the

same item occurrences with every other item in

the dataset. The resulted array shown in figure

(2):

 A C D B E

A 2 2 1 1 1

C 2 3 1 2 2

D 1 1 1 0 0

B 1 2 0 3 3

E 1 2 0 3 3

Figure 2: GeneralMatrix for dataset T

 For example, GeneralMatrix(1,1) = 2 represent

the frequency of the attribute A, while

Generalmatrix (2, 2) = 3 represent the frequency

of C. The row corresponds the item A represent

number of occurrences of A with each attribute

in the dataset e.g. Generalmatrix (1, 2) = 2

represent the number of occurrences of A with C

in the dataset transactions in any order A, C or C,

A. Before_Matrix: contains similar information

to the information contained in the

General_Matrix as shown in figure 3. The only

difference is that this array also includes the

order of the items in the transactions e.g. number

of times A was before B in the transactions.

 A C D B E

A 2 2 1 1 1

C 0 3 1 0 2

D 0 0 1 0 0

B 0 2 0 3 3

E 0 0 0 0 3

Figure 3: Before_Matrix of dataset T

After_Matrix contains a number which represents

the number of the occurrences of an item as a

postfix of another item in the dataset e.g.

After_Matrix (2, 1) =2 represent the number of

occurrences of C after A in the dataset T . There

is an exception of those such as (1, 1), (2,

2),…,which represent the frequency of the

dataset items. After_Matrix is shown in figure 4.

 A C D B E

A 2 0 0 0 0

C 2 3 0 2 0

D 1 1 1 0 0

B 1 0 0 3 0

E 1 2 0 3 3

Figure 4: After_Matrix of dataset T

Items_Occurrences: This array contains the

number of occurrences of each item in a specific

transaction length. The array column represent

the transaction length while the row represents

the number of item occurrences in each

transaction length, e.g. attribute A occurred only

two times in the dataset D one in a transaction of

length 3 (3 items) and another in a transaction of

length 4.

 1 2 3 4 5

A 0 0 1 1 0

C 0 0 2 1 0

D 0 0 1 0 0

B 0 1 1 1 0

E 0 1 1 1 0

Figure 5 : Items in Transactions T

Array shown in figure 6 includes the number of

transactions with length (number of items).

There is no transactions of length 1, and there is

only one with length 2. Also there are two

transactions of length 3 and one with length 4.

This array gives an idea about the distribution of

dataset transactions according to their length and

also which transactions with a specific length are

more frequent.

1 2 3 4 5

0 1 2 1 0

Figure 6: Transaction length array

Each item in the transactions has an array to hold

all transactions numbers and to rank the item in

that transaction. The number of entries in each

array depends on the number of occurrences of

the item in the dataset transactions. The

transaction arrays of items in dataset T are shown

in figure 7.

A C D B E

1 1 1 2 1 3 2 1 2 3

3 1 2 2 3 2 3 4

 3 3 4 1 4 2

Figure 6: Transaction length array

By using this information we can find the actual

support and confidence of the itemsets larger

than 2-itemsets.

2.2 Generating itemsets

Instead of making multiple passes over the

database to count the support of individual items

and then to discover the large itemsets,

SimpleARM uses the information collected in

only one pass over the database to perform this

task. Matrix in figure 5 and the one-dimensional

array in figure 6 both have an idea about the

density of the database (which transactions with

a specific length are more frequent than others)

in the example dataset T figure 1 it can be

noticed from figure 6 that transactions with

length of 3 items are more frequent than those

with one or four items.

2.2.1 Generating 2-Itemsets

All dataset items are found in the transactions of

three items length but from the general matrix

we know that item D is not frequent according to

a minimum support = equal to 40% and it will

not be in any frequent item set. The support 40%

is satisfied by the other items (A, B, C, E), these

frequent items will construct the frequent

itemset(s) but by checking up the Before matrix

for 2-itemsets can be constructed from these 1-

itemsets ({A}, {B}, {C}, {E}) which are ({A,

B}, {A, C}, {A, E}, {B, C}, {B, E}, {C, E}). It

is clear that the only 2-itemsets satisfy the

minimum support (40%) are ({A, C}, {B, C},

{B, E}, {C, E}). The resulted support equals

(50%, 75%, 75%, 50%) respectively which is

greater than the minimum support (40%).

All two items rules can be discovered from the

Before_Matrix, with a minimum confidence

equal to 40%. All 2-itemsets can be tested to

generate rules (AC, BC, BE and CE).

Confidence of these rules is (sup.(AC) / sup(A)),

(sup(BC) / (sup(B)), (sup(BE) / sup(B)) and

sup(CE) / sup(C)), which are equal to (100%,

66%, 100%, and 66%) respectively. It is clear

that all of them satisfy the minimum support and

confidence. From the 2-itemsets satisfying the

minimum support, the expected 3-itemsets

(candidate 3-itemsets C3 in Apriori algorithm)

can be constructed. The rule is that for any 3-

itemset to be a frequent, all its subsets must be

frequent. The 3-itemset ABC is not frequent

because its subset AB does not satisfy the

minimum support. Consequently the only

expected item set is BCE which all their subsets

satisfy the minimum support (40%), (BC 50%,

BE 75% and CE 50%).

2.2.2 Generating 3-Itemsets

SimpleARM starts with generating the expected

candidate 3-Itemsets including those with

support equal to 0 (zero) to generate rules such

as the rule AB=>C from the 2-Itemsets satisfying

the minimum support. The process is to get the

first attribute (prefix) of the first 2-Itemset. Then
check all other 2_itemsets to find out if there

is any start with the same attribute. If it does
find any then both 2-Itemsets will contribute to

build a new 3-Itemset with unknown support

which may be less than the minimum or equal to

0. From the 2-Itemsets {A, C}, {B, C}, {B, E},

{C, E}) attribute A will not be in any 3-Itemset

as first attribute, C as well, will not be a start

attribute of any 3-Itemset because there is no any

other 2-Itemset start with C. Only 2-Itemsets {B,

C} and {B, E} which both start with B will

together build the one 3-Itemset {B, C, E}. It is

 Transaction number

Transaction length

important to find the actual support of this 3-

Itemset and then to find its confidence if it is

satisfying the minimum support.

Two rules can be found from the 3-Itemset {B,

C, E}. The first is BC=>E and the second is

B=>CE. SimpleARM can find the confidence of

both rules, where all the frequencies of singles

and pairs of items are stored in Before_Matrix.

Then from the intersection of item transactions

arrays B, C and E it can find the actual support

of the 3-Itemset. The intersection of the three

arrays gave two transactions (transaction# 2 and

transaction# 3) that means the support of 3-

Itemset {BCE} is 2/4 = 50% > 4%. Then the

confidence of both rules = (sup. BCE / sup. BC)

= 50 / 50 = 100% and (sup. BCE / sup. B) = 50 /

75 = 66%. It can be seen that both rules are

holding and satisfying both minimum support

and confidence. At the same time when

SimpleARM discover the candidate 3-Itemsets it

calculate the possible confidence for both

possible rules can be found from one 3-Itemset

such as the confidence of the rule (AB=>C) and

(A=>BC) from the 3-Itemset {A, B, C}.

2.2.3 Generating itemsets of 4 and

more items

SimpleARM uses the (n-1)-itemset to discover n-

itemset in the same way of discovering 3-

Itemsets from the 2-Itemsets in the previous

section. To discover 4-Itemsets it uses 3-Itemsets

satisfying the minimum support. SimpleARM

will not find any 4-Itemsets from the 3-Itemset

{B, C, E} as it is the only 3-Itemset satisfying

the minimum support and it needs at least

another 3-itemset such as {B, C, D} and it must

satisfy the minimum support. SimpleARM in this

case will catch the first 3-itemset {BCE} and

will search for any other 3-Itemset with first two

attributes (prefix) matches the first two attributes

B and C in the first caught 3-Itemset {B, C, E}.

SimpleARM generate the expected 4-itemset {B,

C, E, D} (corresponding C4 in Apriori

algorithm). The next step is to find the actual

support of each item set by looking up item

transaction arrays to find their intersections and

then to discover rules and their actual confidence

in the same way when rules discovered in the

previous section.

SimpleARM is able to find the following rules

from the 4-Itemset {B, C, E, D}, (B=>CED,

BC=>ED, BCE=>D) with their actual support

and confidence using the Before_Matrix and the

previously discovered 3-Itemsets. In the same

way SimpleARM calculates the rules confidence

in the case of the 3-Itemsets. It also calculate the

confidence of the rules can be discovered from

4-Itemsets such as the rules produced from the 4-

Itemset {A, B, C, D} which are (A=>BCD),

(AB=>CD) and (ABC=>D).

3. Conclusion
In this short paper we have presented

SimpleARM data mining tool. It can be

concluded that SimpleARM has succeed in

collecting all information requires to generate

association rules in scanning the database

Discovery of the rules with more than one

attributes as consequent is also possible.

SimpleARM is simpler than many other

algorithms in its discovery of large itemsets and

generation of association rules on one hand but

on the other hand it collects enough information

from the dataset in only one scan. SimpleARM is

in the early stage of its development.

4. References
[1] R. Agrawal and R. Srikant, ™Fast

Algorithms for Mining Association Rules,º Proc.

1994 Int'l Conf. Very Large Data Bases, pp.

487±499, Santiago,Chile, Sept. 1994.

[2] T. Fukuda, Y. Morimoto, S. Morishita, and T.

Tokuyama, ™Data Mining Using Two-

Dimensional Optimized Association Rules:

Scheme, Algorithms, and Visualization,º Proc.

1996 ACM SIGMOD Int'l Conf. Management of

Data, pp. 13±23, Montreal, June 1996.

[3] H. Mannila, H. Toivonen, and A.I. Verkamo,

™Efficient Algorithms for Discovering

Association Rules,º Proc. AAAI '94 Workshop

Knowledge Discovery in Databases (KDD '94),

pp. 181±192, Seattle, July 1994.

 [4] J.S. Park M.S. Chen, and P.S. Yu, ™An

Effective Hash-Based Algorithm for Mining

Association Rules,º Proc. 1995 ACM SIGMOD

Int'l Conf. Management of Data, pp. 175±186,

San Jose, Calif., May 1995.

[5] A. Savasere, E. Omiecinski, and S. Navathe,

™An Efficient Algorithm for Mining

Association Rules in Large Databases,º Proc.

1995 Int'l Conf. Very Large Data Bases, pp.

432±443, Zurich, Sept. 1995.

