
 

 

One Scan is Enough: Optimising Association Rules Mining 

 

Abstract 

Data mining is as a new area of research has 

taken its place as one of the most important 

techniques in the decision making process. 

Mining association rules is one of simple yet 

powerful technique in the data mining process 

The problem of mining association rules is 

composed of finding the large itemsets and to 

generate the association rules from these 

itemsets.  Usually the dataset must be scanned 

many times in order to find the large itemsets. 

Many algorithms have been developed to 

increase the performance of mining association 

rules through reducing the number of scans over 

the dataset. This work aims to enhance and 

optimise the process even further by developing 

techniques to reduce the number of database 

scans to just only one.  
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1. Introduction 

 

The problem of mining association rules is 

composed of fining the large itemsets and to 

generate the association rules from these itemsets 

[1]. The process of finding large itemsets is 

complicated and computationally intensive task. 

Different algorithms have been developed but so 

far a practical and useful technique with 

acceptable performance has not been 

implemented. The algorithm presented here 

would allows generating frequent itemsets and 

accurate association rules with good 

performance.  In this proposed framework we are 

presenting SimpleARM (Simple Association 

Rules Miner) that counts items in the database of 

transactions and accumulates information in 
three arrays which can be used later to discover 

large (frequent) itemsets. Association rules can 

be generated from these large itemsets. 

The first part of the problem requires many 

passes over the dataset to find all large itemsets. 

This process highly affects the overall 

performance of the association rules mining 

process. Multiple scans over the dataset are time 

consuming because in most cases huge amount 

of data are being mined. SimpleARM optimises 

the association rules mining process by reducing 

the number of passes over the database to just 

one and thus increasing the performance. Only 

one pass over the database generates both 2-

Itemsets and 3-itemsets with a minimum user 

specified support.  Information about the items 

are registered in three arrays: General_Matrix 

,Before_Matrix, After_Matrix, These arrays are 

then used to generate the association rules in a 

very simple and efficient way. 
 

2. SimpleARM Approach 
 

The process of finding large itemsets is 

complicated and computationally intensive 

task[]. Different algorithms have been developed 

but so far a practical and useful technique with 

acceptable performance has not been 

implemented [2] [3] [4] [5]. The algorithm 

presented here allows generating large itemsets 

and accurate association rules with better 

performance. In this paper we present 

SimpleARM that counts the items and 

accumulates information in three arrays which 

can be used later to discover large (frequent) 

itemsets. Association rules can then be generated 

from these large itemsets. In addition 

SimpleARM uses previously discovered rules to 

incrementally update the matrices in order to 

discard obsolete rules and to speedup the mining 

operation.  

 

The first step of the SimpleARM is to find all 

items and insert them in a one dimensional array 

ItemList. In only one scan over the database of 

transactions, information is accumulated. 

Transactions may have different length (number 
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of items). For each single item its frequency, 

position are recorded.  In addition the order of 

item in transaction is registered. Another array 

contains the number of occurrences of each item 

in dataset transactions and also occurrences of 

the same item with another item in transactions 

of length 2, 3, 4 and so on. At the same time the 

transaction number which contains the current 

item being processed is recorded in the array of 

that item e.g. item A has an array contains all the 

transaction number where attribute A is an entry 

in that transaction. These arrays will be used to 

find the actual support and confidence of the 

discovered rules.  For the rest of this paper we 

use the database of transactions T shown in 

figure 1 as a working example.    

  
Transaction No. Itemsets 

1 A  C   D 

2 B   C   E 

3 A   B   C   E 

4 B   E 

Figure 1: Database of Transactions T 

 

Item_List_Array: As the transactions being 

scanned  new item is added to this Item_List. 

 

GeneralMatrix: A general matrix (2 dimesional 

array) with a size equal to (Item_List* Item_List) 

e.g. (5*5) for dataset T is created to record 

occurrences (frequency) of each item and the 

same item occurrences with every other item in 

the dataset. The resulted array shown in figure 

(2):   

 

 A C D B E 

A 2 2 1 1 1 

C 2 3 1 2 2 

D 1 1 1 0 0 

B 1 2 0 3 3 

E 1 2 0 3 3 

 

Figure 2: GeneralMatrix for dataset T 

 For example, GeneralMatrix(1,1) = 2 represent 

the frequency of the attribute A, while 

Generalmatrix (2, 2) = 3 represent the frequency 

of C. The row corresponds the item A represent 

number of occurrences of A with each attribute 

in the dataset e.g. Generalmatrix (1, 2) = 2 

represent the number of occurrences of A with C 

in the dataset transactions in any order A, C or C, 

A. Before_Matrix: contains similar information 

to the information contained in the 

General_Matrix as shown in figure 3. The only 

difference is that this array also includes the 

order of the items in the transactions e.g. number 

of times A was before B in the transactions.  

      
 A C D B E 

A 2 2 1 1 1 

C 0 3 1 0 2 

D 0 0 1 0 0 

B 0 2 0 3 3 

E 0 0 0 0 3 

Figure 3: Before_Matrix of dataset T 

 

After_Matrix contains a number which represents 

the number of the occurrences of an item as a 

postfix of another item in the dataset e.g.   

After_Matrix (2, 1) =2 represent the number of 

occurrences of C after A in the dataset T . There 

is an exception of those such as (1, 1), (2, 

2),…,which represent the frequency of the 

dataset items. After_Matrix is shown in  figure 4. 

 

 A C D B E 

A 2 0 0 0 0 

C 2 3 0 2 0 

D 1 1 1 0 0 

B 1 0 0 3 0 

E 1 2 0 3 3 

Figure 4: After_Matrix of dataset  T 

 
Items_Occurrences: This array contains the 

number of occurrences of each item in a specific 

transaction length. The array column represent 

the transaction length while the row represents 

the number of  item occurrences in each 

transaction length, e.g. attribute A occurred only 

two times in the dataset D one in a transaction of 

length 3 (3 items) and another in a transaction of 

length 4.      

 

 1 2 3 4 5 

A 0 0 1 1 0 

C 0 0 2 1 0 

D 0 0 1 0 0 

B   0 1 1 1 0 

E 0 1 1 1 0 

Figure 5 : Items in Transactions T 

 

Array shown in figure 6 includes the number of 

transactions with length (number of items). 

There is no transactions of length 1, and there is 

only one with length 2. Also there are two 

transactions of length 3 and one with length 4. 



 

 

This array gives an idea about the distribution of 

dataset transactions according to their length and 

also which transactions with a specific length are 

more frequent. 

       

1 2 3 4 5 

 

 

0 1 2 1 0 

            

 

Figure 6: Transaction length array 

 

Each item in the transactions has an array to hold 

all transactions numbers and to rank the item in 

that transaction. The number of entries in each 

array depends on the number of occurrences of 

the item in the dataset transactions. The 

transaction arrays of items in dataset T are shown 

in figure 7.  

 

A C D B E 

1 1 1 2 1 3 2 1 2 3 

3 1 2 2   3 2 3 4 

  3 3   4 1 4 2 

 

Figure 6: Transaction length array 
 

By using this information we can find the actual 

support and confidence of the itemsets larger 

than 2-itemsets.  
 

2.2 Generating itemsets 
 

Instead of making multiple passes over the 

database to count the support of individual items 

and then to discover the large itemsets, 

SimpleARM uses the information collected in 

only one pass over the database to perform this 

task. Matrix in figure 5 and the one-dimensional 

array in figure 6 both have an idea about the 

density of the database (which transactions with 

a specific length are more frequent than others) 

in the example dataset T figure 1 it can be 

noticed from figure 6 that transactions with 

length of 3 items are more frequent than those 

with one or four items.  
 

2.2.1 Generating 2-Itemsets 
 

All dataset items are found in the transactions of 

three items length but from the general matrix 

we know that item D is not frequent according to 

a minimum support = equal to 40% and it will 

not be in any frequent item set.  The support 40% 

is satisfied by the other items (A, B, C, E), these 

frequent items will construct the frequent 

itemset(s) but by checking up the Before matrix 

for 2-itemsets can be constructed from these 1-

itemsets ({A}, {B}, {C}, {E}) which are ({A, 

B}, {A, C}, {A, E}, {B, C}, {B, E}, {C, E}). It 

is clear that the only 2-itemsets satisfy the 

minimum support (40%) are ({A, C}, {B, C}, 

{B, E}, {C, E}). The resulted support equals 

(50%, 75%, 75%, 50%) respectively which is 

greater than the minimum support (40%).  

 

All two items rules can be discovered from the 

Before_Matrix, with a minimum confidence 

equal to 40%. All 2-itemsets can be tested to 

generate rules (AC, BC, BE and CE). 

Confidence of these rules is (sup.(AC) / sup(A)), 

(sup(BC) / (sup(B)), (sup(BE) / sup(B)) and 

sup(CE) / sup(C)), which are equal to (100%, 

66%, 100%, and 66%) respectively.  It is clear 

that all of them satisfy the minimum support and 

confidence. From the 2-itemsets satisfying the 

minimum support, the expected 3-itemsets 

(candidate 3-itemsets C3 in Apriori algorithm) 

can be constructed. The rule is that for any 3-

itemset to be a frequent, all its subsets must be 

frequent. The 3-itemset ABC is not frequent 

because its subset AB does not satisfy the 

minimum support. Consequently the only 

expected item set is BCE which all their subsets 

satisfy the minimum support (40%), (BC 50%, 

BE 75% and CE 50%). 
 

2.2.2 Generating 3-Itemsets 
 

SimpleARM starts with generating the expected 

candidate 3-Itemsets including those with 

support equal to 0 (zero) to generate rules such 

as the rule AB=>C from the 2-Itemsets satisfying 

the minimum support. The process is to get the 

first attribute (prefix) of the first 2-Itemset. Then 
check all other 2_itemsets to find out if there 

is any start with the same attribute. If it does 
find any then both 2-Itemsets will contribute to 

build a new 3-Itemset with unknown support 

which may be less than the minimum or equal to 

0. From the 2-Itemsets {A, C}, {B, C}, {B, E}, 

{C, E}) attribute A will not be in any 3-Itemset 

as first attribute, C as well, will not be a start 

attribute of any 3-Itemset because there is no any 

other 2-Itemset start with C. Only 2-Itemsets {B, 

C} and {B, E} which both start with B will 

together build the one 3-Itemset {B, C, E}. It is 

   Transaction number 

Transaction length 



 

 

important to find the actual support of this 3-

Itemset and then to find its confidence if it is 

satisfying the minimum support. 

 

Two rules can be found from the 3-Itemset {B, 

C, E}. The first is BC=>E and the second is 

B=>CE. SimpleARM can find the confidence of 

both rules, where all the frequencies of singles 

and pairs of items are stored in Before_Matrix. 

Then from the intersection of item transactions 

arrays B, C and E it can find the actual support 

of the 3-Itemset. The intersection of the three 

arrays gave two transactions (transaction# 2 and 

transaction# 3) that means the support of 3-

Itemset {BCE} is 2/4 = 50% > 4%. Then the 

confidence of both rules = (sup. BCE / sup. BC) 

= 50 / 50 = 100% and (sup. BCE / sup. B)  = 50 / 

75 = 66%. It can be seen that both rules are 

holding and satisfying both minimum support 

and confidence. At the same time when 

SimpleARM discover the candidate 3-Itemsets it 

calculate the possible confidence for both 

possible rules can be found from one 3-Itemset 

such as the confidence of the rule (AB=>C) and 

(A=>BC) from the 3-Itemset {A, B, C}. 
 

2.2.3 Generating  itemsets of 4 and 

more items 
 

SimpleARM uses the (n-1)-itemset to discover n-

itemset in the same way of discovering 3-

Itemsets from the 2-Itemsets in the previous 

section. To discover 4-Itemsets it uses 3-Itemsets 

satisfying the minimum support. SimpleARM 

will not find any 4-Itemsets from the 3-Itemset 

{B,  C, E} as it is the only 3-Itemset satisfying 

the minimum support and it needs at least 

another 3-itemset such as {B, C, D} and it must 

satisfy the minimum support. SimpleARM in this 

case will catch the first 3-itemset {BCE} and 

will search for any other 3-Itemset with first two 

attributes (prefix) matches the first two attributes 

B and C in the first caught 3-Itemset {B, C, E}. 

SimpleARM generate the expected 4-itemset {B, 

C, E, D} (corresponding C4 in Apriori 

algorithm). The next step is to find the actual 

support of each item set by looking up item 

transaction arrays to find their intersections and 

then to discover rules and their actual confidence 

in the same way when rules discovered in the 

previous section.    

 

SimpleARM is able to find the following rules 

from the 4-Itemset {B, C, E, D}, (B=>CED, 

BC=>ED, BCE=>D) with their actual support 

and confidence using the Before_Matrix and the 

previously discovered 3-Itemsets. In the same 

way SimpleARM calculates the rules confidence 

in the case of the 3-Itemsets. It also calculate the 

confidence of the rules can be discovered from 

4-Itemsets such as the rules produced from the 4-

Itemset {A, B, C, D} which are (A=>BCD), 

(AB=>CD) and (ABC=>D).   
 

3. Conclusion 
In this short paper we have presented 

SimpleARM data mining tool. It can be 

concluded that SimpleARM has succeed in 

collecting all information requires to generate 

association rules in scanning the database 

Discovery of  the rules with more than one 

attributes as consequent is also possible. 

SimpleARM is simpler than many other 

algorithms in its discovery of large itemsets and 

generation of association rules on one hand but 

on the other hand it collects enough information 

from the dataset in only one scan. SimpleARM is 

in the early stage of its development.  
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