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Room acoustic diffusers can be used to treat critical listening environments to improve sound
quality. One popular class is Schroeder diffusers, which comprise wells of varying depth separated
by thin fins. This paper concerns a new approach to enable the modeling of these complex surfaces
in the time domain. Mostly, diffuser scattering is predicted using steady-state single frequency
methods. A popular approach is to use a frequency domain boundary element method �BEM� model
of a box containing the diffuser, where the mouth of each well is replaced by a compliant surface
with appropriate surface impedance. The best way of representing compliant surfaces in time
domain prediction models, such as the transient BEM is, however, currently unresolved. A
representation based on surface impedance yields convolution kernels which involve future sound,
so is not compatible with the current generation of time-marching transient BEM solvers.
Consequently, this paper proposes the use of a surface reflection kernel for modeling well behavior
and this is tested in a time domain BEM implementation. The new algorithm is verified on two
surfaces including a Schroeder diffuser model and accurate results are obtained. It is hoped that this
representation may be extended to arbitrary compliant locally reacting materials.
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I. INTRODUCTION AND OVERVIEW

Room acoustic diffusers can be used to treat critical lis-
tening environments to improve speech intelligibility and to
make music sound better.1 Such devices are characterized by
the uniformity of their scattering which may be measured
under anechoic conditions,2 a time consuming and expensive
process. An alternative is to predict this dispersion using a
numerical model, and the boundary element method �BEM�
is well suited to this task.3 The speed and low cost of this
approach aid prototyping of new designs and even allow
automated optimization of treatments to be performed.4 In a
BEM model only the boundaries between obstacles and air
are modeled as it is known how sound travels unobstructed.
This produces smaller simpler meshes compared to volumet-
ric methods such as finite element and finite difference time
domain �FDTD�. It also permits an unbounded volume of air
to be modeled, making it ideal for free-field scattering sce-
narios.

Most BEMs assume harmonic excitation so the un-
knowns are time invariant and complex. While this fre-
quency domain analyses is a useful tool, the transient behav-
ior witnessed in the real world may only be recovered by
solving many frequency domain models and then applying
an inverse discrete Fourier transform �DFT�. An alternative
is to drop the time-invariant assumption and formulate the
BEM in the time domain as is presented herein. This ap-
proach was first published by Friedman and Shaw in 1962,5

however, its implementation is problematic and consequently
the method is still not in widespread use in acoustics. Some
of the key issues are outlined below.
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A. Time domain BEM stability

The discretized boundary integral equations �BIEs�
forming the time domain BEM are typically solved by
marching a solution on in time from known initial condi-
tions, usually silence. However, being iterative this process
has the potential for instability, a major impediment to the
algorithm’s widespread use. Rynne6 observed that similar in-
stabilities affect all time domain BEM models regardless of
the application, implying that this behavior is fundamental to
the method rather than the problem considered.

The dominant analysis of this phenomenon is by the
singularity expansion method.7 This expresses the system’s
response to excitation as a sum of resonant poles, each with
its own natural frequency and damping. In discrete time,
each pole is a complex scalar describing the magnitude and
phase change the corresponding mode undergoes in a time-
step; hence a mode with a pole of magnitude greater than
unity will grow and cause the solver to diverge. These dis-
crete poles are closely related to the eigenvalues of the state-
transition process which may be found numerically.8–10 Such
modes should be prohibited by the initial conditions, but in
practice they can be seeded by numerical error in the solver;
hence the onset of instability can appear highly random and
implementation dependent. In addition, Rynne and Smith7

suggested that pole locations are perturbed by discretization
error, so a pole of the BIE which is just stable may lead to a
pole of the discretized system which is unstable.

When the problem of sound scattering from a body is
stated as a BIE, the restriction that sound cannot travel
through the body is lost and a continuation of the exterior
medium, in this case, an air-filled cavity, is effectively cre-

ated inside the body’s bounding surface. At certain frequen-
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cies, this cavity may resonate, storing energy so the time-
invariant frequency domain BEM has a nonunique solution.
In the time domain problem, these resonances correspond to
oscillatory poles, borderline stable and likely candidates for
corruption into divergence by numerical error. Such poles are
not physically relevant so their removal is acceptable and
improves solver performance. One method that achieves this
in the frequency domain is the Burton and Miller
formulation,11 and has been transferred to the time domain as
the combined field integral equation �CFIE�.12

The BEM is a wave based method and its computational
cost increases rapidly with frequency. Acceleration
algorithms13,14 have been published to address this issue but,
as these are derived from the time-marching solvers for
which instability issues remain, the focus herein remains on
modeling smaller problems in a nonaccelerated fashion. In
addition, some interesting work has been done on alternative
solvers15–19 that may be less sensitive to divergent poles than
the current time-marching generation.

B. Modeling Schroeder diffusers

The class of diffuser considered in this paper is the
phase grating diffuser, whose development can be traced
back to the pioneering work of Schroeder.20,21 These com-
prise a series of wells of differing depths according to a
number theoretic sequence, separated by thin fins. Sound
waves entering each well emerge following the time taken
for them to travel to the bottom of the well, reflect, and travel
back to the mouth. These delays are optimally decorrelated
so the cumulative scattered sound is widely dispersed. Be-
cause the wells store sound energy and then reradiate it, the
scattered sound is diffused in both space and time; recently,
this transient behavior has begun to attract research
interest.22,23 In this paper, a one-dimensional diffuser based
on the quadratic residue sequence will be considered; these
are designed to diffuse in one plane only and take the form of
an extruded cross section as depicted in Fig. 1�a�, where the
fins are shown partially transparent.

Modeling the two sides of a thin fin aggravates an issue
in the BEM known as thin shape breakdown.24 This may be
circumvented by using an open surface BEM which consid-
ers the surface to be comprised of thin rigid plates. This
formulation has previously been implemented in the time
domain;25 however, it is unsuitable for modeling the solid
part of the diffuser as it supports cavity resonances so is
prone to instability.

Another modeling approach used in the frequency do-
main, which avoids these issues, is to model the mouth of
each well as a compliant surface; thus the mesh is simplified
and becomes a box enclosing the device �Fig. 1�b��. A well’s
behavior is described by the surface impedance of its mouth,
a quantity ideal for use with BEM, which may be found by
assuming that all propagation in the well is axial with negli-
gible losses, so every point at the well mouth reacts locally.
At first, this may seem unrealistic, but it has been numeri-
cally shown to produce good results,26 and Schroeder’s phase
grating model makes these assumptions too. An equivalent

time domain model is sought.
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Differential boundary conditions may be used to model
simple compliant materials such as broadband absorbers27,28

and limp membranes.29 However, finding such from arbitrary
surface impedance data is more complicated,30 although
Drumm and Lam31 successfully fitted infinite impulse re-
sponse filters to surface absorption data. It has been
suggested32 that a convolution between waves traveling per-
pendicularly into and out of the body may be a more robust
approach; this is adopted for the application herein and found
to be effective.

This paper is structured as follows: Sec. II introduces the
boundary integral formulation of the scattering problem and
the CFIE. Section III introduces the new time domain well
mouth model and describes its substitution into the BEM.
The discretization process and time-marching solver are
specified in Sec. IV. Verification results are shown and dis-
cussed in Sec. V followed by the conclusions in Sec. VI.
Finally, details of the numerical integration procedure are
outlined in the Appendix.

II. BOUNDARY INTEGRAL EQUATION FORMULATIONS

Figure 2 depicts a scattering problem, comprising an ob-
stacle submerged in a connected medium �+ with equilib-
rium density �0 which obeys the linear acoustic wave equa-
tion with speed of sound c. S is a surface conformal to the
obstacle and sufficiently close that the obstacle’s surface
properties may be ascribed to it; thus the obstacle resides in
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FIG. 1. �Color online� QRD �a� thin plate model, and �b� well mouth im-
pedance model.
the interior domain �−. S� is the extent of the medium. x and

s and T. J. Cox: Schroeder diffuser transient well impedance 2943



y are the three-dimensional Cartesian vectors defining the
observation and radiation points respectively, R= �x−y� is the
distance between them, and n̂y is the surface normal unit
vector at y.

Sound is represented by the velocity potential � which,
while not a physical quantity, has the convenient property
that both pressure p and particle velocity v may be derived
from it:

p�x,t� = − �0�̇�x,t� , �1�

v�x,t� = ���x,t� , �2�

where t is the time and a dot above a quantity indicates
temporal differentiation. An incident disturbance �i�x , t� ex-
ists in �+ but does not reach the obstacle while t�0. When
�i�x , t� does reach the obstacle, a wave �s�x , t� is scattered
such that the total disturbance �t�x , t�=�i�x , t�+�s�x , t�
matches the surface properties of the obstacle; thus this is an
initial-boundary-value problem. Application of Green’s
theorem33 allows the propagation of �s�x , t� in �+ to be
stated as the Kirchhoff integral equation �KIE� over its
boundary S�S�. In practice, S� is chosen so distant that its
contribution does not arrive within the modeling duration, so
the integration domain may be reduced to S. This statement
describes scattered velocity potential in a manner equivalent
to the classical Huygens principle, being the propagation of
the wavefront at each point on the boundary summed to-
gether:

�s�x,t� =��
S

��t�y,t�*n̂y · �yg�R,t�

− g�R,t�*n̂y · �y�t�y,t�dy� . �3�

The term n̂y ·�y�t�y , t� is the surface normal component of
the particle velocity and is termed “normal velocity” for
brevity. Despite the relation given in Eq. �2�, normal velocity
and velocity potential are independent fields on S since sur-
face normal derivatives cannot be found from quantities only
known on a surface. * denotes temporal convolution and
g�R , t� is the time domain Green’s function, which describes
how sound travels from an instantaneous point source at t
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FIG. 2. �Color online� A scattering problem comprising an obstacle sub-
merged in a connected medium. S is a surface conformal to the obstacle;
hence the medium is said to be external to S.
=0 to a point observer at distance R, given by
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g�R,t� =
��t − R/c�

4�R
, �4�

where ��¯� is a Dirac delta function. This delay term in the
numerator encapsulates the finite propagation speed of
sound, thereby dictating the domain of dependence of the
scattered wave in Eq. �3� and ensuring causality in the result-
ing algorithm.

Consideration of the obstacle’s boundary condition at x
allows solution for the total surface sound, from which scat-
tered sound at any desired off-surface point may be evalu-
ated.

Specifically the CFIE is equivalent to the boundary con-
dition �1−��pt�x , t�=��0cn̂x ·vt�x , t� when the limit is taken
as x approaches S from the inside. The corresponding inte-
gral operator may be expressed as

Lc��t�x,t�� = �1 − ���̇i�x,t� + �cn̂x · ��i�x,t�

= − 	�1 − ��
�

�t
+ �cn̂x · �x


	��
S

��t�y,t�*n̂y · �yg�R,t�

− g�R,t�*n̂y · �y�t�y,t��dy if x � S−. �5�

This formulation is stated12 to be the time domain equivalent
to the Burton and Miller formulation11 commonly used in
frequency domain acoustic BEMs. It differs slightly from the
latter, in particular, with regard to the range of values taken
by the real scalar blend parameter �, and matches more
closely its namesake in the electromagnetic BEM
formulation.34

When �= 1
2 the boundary condition which founds the

CFIE simplifies to pt�x , t� / n̂x ·vt�x , t�=�0c, a condition satis-
fied by any plane wave propagating in the direction of n̂x,
that is out of the cavity. More generally, it has been shown
that when 0
�
1 energy flows out of the cavity and it
cannot support resonant modes.35 Consequentially, Lc has
been shown to grant stability superior to alternate operators
for a variety of test geometries. Therefore, it is desirable to
derive the BEM algorithm from the CFIE for all compatible
scattering obstacles.

III. WELL MOUTH SURFACE MODEL

Consider a well of constant cross section and depth d, as
depicted in Fig. 3. It is assumed that the width of the well is
small with respect to wavelength so that only axial plane
wave propagation is supported. Accordingly, the sound in the
well may be expressed as the superposition of two plane
waves traveling into and out of the well, designated �in and
�out. The rigid boundary condition at the base of the well
dictates that the incoming wave is reflected, such that the
outgoing wave is the incoming wave with a fixed time delay.

Under the assumption of time-harmonic oscillation
��z , t�=Re�e−i�t��z ,���, the mouth of the well may be char-
acterized by this well known expression for surface imped-

ance at the well mouth �z=0�:
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Z��� =
Pt�0,��

Vt,in�0,��
= i�0c cot�kd� , �6�

where k=�c−1 is the wavenumber, Pt�z ,�� is the total pres-
sure, and Vt,in�z ,�� is the inward component of total particle
velocity. It is an ideal means of characterizing materials
within a frequency domain BEM as it relates the two surface
unknowns, pressure and normal velocity, by a complex scalar
allowing the problem to be simplified to having only one
surface unknown.

The same relationship may be stated in the time domain
as pt�0, t�=vt,in�0, t�*z�t�. However, a z�t� found by inverse
DFT of Z��� is typically noncompact in time and requires
future values of vt,in�0, t�. This is due to the aggregation of
cause and effect in the quantities pt�0, t� and vt,in�0, t�, and
means that this form cannot be used with a time-marching
solver. Further to this, the inverse Fourier transform of Eq.
�6� appears to be a nontrivial operation.

Another approach is to relate the incoming and outgoing
waves at the mouth of the well as �out�0,��
=�in�0,��W���, where W���=ei2kd is the surface reflection
coefficient. This too may be stated in the time domain:

�out�0,t� = �in�0,t�*w�t� , �7�

where the time-invariant surface reflection kernel w�t� is
typically compact in time and expresses �out using only past
values of �in, hence is suitable for use with a time-marching
solver. For the well model above,

w�t� = ��t − 2dc−1� . �8�

Equations �7� and �8� will be used as the basis for the devel-
opment of a time domain well mouth surface model.

A. Surface reflection boundary condition

Surface impedance is considered to vary spatially so
n̂x ·��t�x ,��=−i��0�t�x ,��Z�x ,��−1 holds for every point
on S. Implicit in this is the assumption that the obstacle re-
acts locally. An equivalent time domain boundary condition
may be written using the surface reflection kernel form of

0�z

dz ��

�
in
( , )z t �

out
( , )z t

FIG. 3. A simple well with constant cross section, depth d, and mouth at
z=0.
Eq. �7�:

J. Acoust. Soc. Am., Vol. 124, No. 5, November 2008 J. A. Hargreave
�out�x,t� = �in�x,t�*w�x,t� . �9�

The total velocity potential used in Sec. II is the sum of the
incoming and outgoing waves:

�t�x,t� = �in�x,t� + �out�x,t� = �in�x,t�*���t� + w�x,t�� .

�10�

This form suggests that �in�x , t� should be discretized as it is
the fundamental surface unknown and �out�x , t� and �t�x , t�
are the secondary effects of its impingement on the obstacle.
Similar statements may be found for total pressure and total
normal velocity:

pt�x,t� = − �0�̇t�x,t� = − �0
�

�t
��in�x,t�*���t� + w�x,t��� ,

�11�

n̂x · ��t�x,t� = n̂x · ���in�x,t� + �out�x,t���
=

�

�z
��in�x,t + zc−1� + �out�x,t − zc−1���

z=0

=
1

c

�

�t
��in�x,t�*���t� − w�x,t��� . �12�

The above statements have been written without specifying
w�x , t� in anticipation that they may be capable of describing
a broader class of scattering obstacle. For the welled rigid
surface model discussed w�x , t�=��t−2c−1d�x��, where
d�x�=0 for rigid nonwell surfaces sections. The sifting prop-
erty of the delta function is exploited to simplify the above:

�t�x,t� = �in�x,t� + �in�x,t − 2c−1d�x�� , �13�

pt�x,t� = − �0��̇in�x,t� + �̇in�x,t − 2c−1d�x��� , �14�

n̂x · ��t�x,t� =
1

c
��̇in�x,t� − �̇in�x,t − 2c−1d�x��� . �15�

These statements do not enforce that quantities are invariant
over the cross section of the well as should be the case for
plane waves; that restriction is left to the discretization
scheme. Instead they state that the waves in the well are one
dimensional, and that each point on the mouth of the well
reacts locally. Radiation impedance of the well is accounted
for in the boundary integral description of the problem. Sub-
stitution into Eq. �5� creates an operator that can calculate the
sound scattered by an obstacle comprising rigid and welled
sections while not supporting cavity resonances:

�1 − ���̇i�x,t� + �cn̂x · ��i�x,t�

= Lc��in�x,t� + �in�x,t − 2c−1d�x��� if x � S−. �16�

In the following section, this new operator will be discretized
to form a time-marching BEM.

IV. THE MARCHING-ON-IN-TIME METHOD

The surface quantities must be discretized in order for a
solution to the boundary conditions on S to be found numeri-

cally. As suggested by Eq. �10�, to ensure compatibility with
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the new surface reflection boundary condition, �in�x , t� will
be discretized in preference to the usual �t�x , t�. Otherwise
the discretization scheme follows that used in Ref. 12.

The surface S is partitioned into Ns flat elements denoted
Sn, all small with respect to the anticipated spatial variation
of the sound field, and time is discretized into Nt regular
time-steps with duration t. Discretization of the incoming
wave is achieved by approximating it by a weighted summa-
tion of basis functions:

�in�x,t� = �
n=1

Ns

�
i=1

Nt

wn,i fn�x�Ti�t� , �17�

where wn,i are the discretization weights,

fn�x� = 1 if x � Sn

0 otherwise
� �18�

are the spatial basis functions, and

Ti�t� = T�t − it� �19�

are the temporal basis functions, the latter being regularly
delayed copies of the mother basis function T�t�. Currently
T�t� is chosen to be the piecewise polynomial used in Ref.
12.

This discretization scheme is substituted into Eq. �16�
and the summations and weights are brought outside Lc. Col-
location is performed in space and time to form a matrix
equation; evaluation at xm �the center of element Sm� and tj

= jt contributes a row to

Z0w j = e j − �
l=1

�

Zlw j−l, �20�

where l= j− i is the retardation index and the weights wi;n

=wn,i. The interaction matrices are defined as follows:

Zl;m,n = Lc�fn�x��Tj−l�tj� + Tj−l�tj − 2c−1dn���, x = xm−,

�21�

where dn is the well depth of element Sn and equals zero for
rigid nonwell elements. These are evaluated efficiently and
accurately by regularization to contour integrals and adaptive
numerical integration; details are included in the Appendix.
The excitation vectors are evaluated as

e j;m = �1 − ���̇i�xm,tj� + �cn̂x · ��i�xm,tj� . �22�

This algorithm is commonly referred to as the marching on
in time �MOT� or “retarded potential” algorithm and intu-
itively possesses an iterative structure with sound traveling
from element to element with a finite speed. It may more
generally be considered to be a matrix solver between exci-
tation coefficients and discretization weights, which exploits
a pattern in the interaction matrices due to the regular tem-
poral basis functions.

Discretization accuracy may be quantified spatially and
temporally by considering the maximum frequency �max

present in the incident wave. The maximum phase variation
over an element with largest dimension x in a time-step is
�max�t+xc

−1�. The logical assumption that spatial and

temporal discretization error should be of similar magnitudes
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suggests the choice x�ct, as favored by Bluck and
Walker.8 This leads to nonzero off diagonals in the matrix
Z0, necessitating a matrix solution at each time step. Z0 will
in practice be very sparse and an iterative matrix solver
seeded with the previous time-step’s weights provides an ef-
ficient implementation.

In the following section, the new time domain well
mouth surface model will be verified against frequency do-
main BEM implementations.

V. RESULTS

The new algorithm implements a time domain BEM
model of a welled obstacle characterized by the new surface
reflection boundary condition. This has required develop-
ment of the integration scheme but the numerical machinery
is otherwise as previously published. Verifying this algo-
rithm’s results will demonstrate that the new surface reflec-
tion boundary condition is performing correctly.

Verification is achieved by comparison with frequency
domain BEM implementations which have previously been
shown to accurately match experimental data.36 Two scatter-
ing problems are considered, both of which involve obstacles
possessing wells, the first being an object with uniform depth
wells covering one face and the second being a Schroeder
diffuser. A harmonic point source illuminates the surface for
sufficient duration that the system reaches steady state and
any instability has the opportunity to appear. The DFT is
applied to the time domain data and the error versus the
frequency domain BEM is quantified at the frequency of
excitation. Using single frequency excitation is clearly an
uninspiring application of the time domain BEM but is being
done purely to achieve rigorous verification.

Two frequency domain BEM implementations are used.
The closed body version models the well mouths as surface
impedances according to Eq. �6�. The open body version is
capable of modeling the thin fins separating the wells so that
the wells are modeled explicitly.

One mesh is used for each surface, and the time domain
BEM is verified for a wide range of time-step durations de-
fined by their relationship to spatial resolution, denoted im-
plicitness ctx

−1. This is done because time-step duration
has been associated with stability in many publications; evi-
dently different values affect whether poles are perturbed
into divergence. For each of these, a far-field harmonic point
source, located 100 m distant normal to the obstacle, excites
the system at a frequency such that the number of time-steps
per excitation period �=2��t��−1 assumes a range of pre-
determined values. For each combination, the error e be-
tween the time and frequency domain BEMs is calculated
from the normalized mean complex difference between the
respective source-to-collocation-point transfer functions at
the excitation frequency:

e��� =
�m=1

Ns �HTD�xm,�� − HFD�xm,���
�m=1

Ns �HFD�xm,���
. �23�

In the frequency domain, the transfer function HFD is simply

the total pressure divided by the source monopole pressure:

rgreaves and T. J. Cox: Schroeder diffuser transient well impedance



HFD�x,�� =
Pt�x,��
Psource

. �24�

In the time domain HTD is found by division of the DFT of
the total velocity potential by the DFT of the source mono-
pole potential:

HTD�x,�� =
F��t�x,t�����

F��source�t�����
. �25�

The first 50� �defined below� iterations are omitted from the
DFT to allow the time domain solution to reach steady state.
The next 100� iterations are chosen for DFT; this length
maintains periodicity and eliminates windowing error. This
error ratio is displayed for each integration type as a percent-
age contour plot between time-step implicitness and tempo-
ral resolution �.

A. Uniform welled body

This body is a box 1.0 m2 by 0.5 m deep and its front
face is covered by a lattice of wells all 0.1 m deep. Figure
4�a� shows the open surface mesh comprising 580 thin plate
elements, and Fig. 4�b� shows the equivalent surface imped-
ance mesh comprising 400 elements; the thin elements are
partially transparent and the well mouth elements are colored
darker. x=0.1 m for both meshes. The surface impedance
model requires roughly half the memory and computation
time required by the thin plate model.

Figure 5 shows the error between the time domain and
frequency domain models of the mesh in Fig. 4�b� versus
time-step implicitness and temporal resolution. To the left of
the figure where the time-step duration is explicit, spatial
resolution is poor with respect to excitation wavelength so
the accuracy of all BEM suffers. Toward the bottom of the
figure, temporal resolution of the excitation frequency is
poor; error here primarily originates from the time domain
BEM. However, in the middle to upper right quadrant of the
figure, discretization error is low and good agreement occurs.
No instability is witnessed for any time-step duration indi-
cating that the CFIE operator has successfully avoided sup-
porting any cavity resonances even when combined with the
new well mouth surface model.

Figure 6 shows the interference patterns that occur be-
tween incident and scattered sound as further evidence that
the well mouth surface model is behaving as expected. The
receivers are arranged in a vertical line that starts behind the
obstacle �left of the figure�, passes through its center, and
emerges at the front �right of the figure�. They are spaced
such that none touches the surface. The magnitude of the
source to receiver transfer function H is plotted in decibel
versus the receiver z coordinate. Data series are shown for
the surface impedance mesh �Fig. 4�b�� modeled by the time
domain BEM �TD impedance� and the frequency domain
BEM for closed surfaces �FD impedance�, and for the thin
plate mesh �Fig. 4�a�� modeled by the frequency domain
BEM for open surfaces �FD thin plate�. The vertical lines at
z=0.0 and z=−0.5 indicate the front and back of the ob-
stacle and the shaded area indicates the wells of the mixed

mesh. Time-step duration was chosen such that x=ct.
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Interference effects between the incident and scattered
waves are evident in front of the surface and in this region
there is excellent agreement between the time and frequency
domain algorithms. The BEM for open surfaces is seen to
extend the interference patterns into the welled region and its
surface normal gradient approaches zero as expected from
the rigid well floors. Inside the surface, the frequency do-
main BEM for closed surfaces achieves the best cancellation,
but the results still confirm that the time domain surface
reflection response boundary condition does not permit
sound to flow into the cavity. In the shadow region behind
the obstacle, all models, roughly agree but there is no appar-
ent interference behavior.

This modeling problem has shown excellent stability
and agreement with a verified frequency domain BEM on a
simple surface with welled sections. A more complex real-
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FIG. 4. �Color online� Meshes of a body with uniform depth wells on its
front face: �a� thin plate model and �b� surface impedance model.
world device will now be modeled.
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B. Quadratic residue diffuser

This device modeled has a design wavelength of 1.4 m,
a well width of 0.3 m, a height of 1.0 m and follows the
quadratic residue depth sequence �2 4 1 0 1 4 2�. A diagram
of the real device and the equivalent surface impedance
model were shown in Figs. 1�a� and 1�b�, respectively. x

=0.1 m for both meshes giving them 972 and 792 elements,
respectively; consequentially, the surface impedance model
requires roughly two-thirds of the memory and computation
time of the thin plate model.

The relationship between the quadratic residue diffuser
�QRD� meshes does not exactly mirror that between the uni-
form welled body meshes. Specifically, the well mouths of
the surface impedance model mesh have been discretized
into elements with the same spatial resolution as the rigid
parts of the surface; this is a standard technique used to mesh
compliant surfaces in the frequency domain. Each element
reacts locally which is equivalent to having the wells parti-
tioned by a lattice structure similar to that present on the
front face of Fig. 4. This is not quite equivalent to either the
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FIG. 6. �Color online� Total receiver sound though the uniform welled sur-
face at 202 Hz��=12. The vertical lines indicate the front and back of the

obstacle and shading the wells on its front face.
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real device, the model in Fig. 1�a�, or Schroeder’s plane
wave model, but it has been shown to produce reasonable
results.3

Figure 7 shows the error between the time and frequency
domain implementations of the surface impedance model of
the QRD depicted in Fig. 1�b�. It is plotted versus time-step
implicitness and temporal resolution. The trends are the same
as observed for the uniform welled surface, with universal
stability and good agreement in the upper right quadrant,
indicating that the new algorithm is functioning correctly.
The first modal frequency along the wells of the QRD
�171.5 Hz, �=2 m� is indicated by a dashed line and in-
creased error can be observed close to it. This was an unex-
pected result since the well mouth impedance model effec-
tively partitions the well, and its significance is an ongoing
research question.

Figure 8 shows the magnitude of the source to receiver
scattered sound transfer function in decibel versus receiver
angle relative to the surface normal. This is calculated ac-
cording to Eqs. �24� and �25� with the modification that scat-
tered pressure and velocity potential are used in place of their
total sound counterparts. The 91 receivers are uniformly
spaced in a 5 m radius arc located in the primary scattering
plane of the QRD. Data series are shown for the surface
impedance mesh �Fig. 1�b�� modeled by the time domain
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FIG. 7. �Color online� Error between the time and frequency domain BEM
for closed surfaces on the surface impedance model of the QRD. The dashed
line indicates the first modal frequency along the wells of the QRD.
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BEM �TD impedance� and the frequency domain BEM for
closed surfaces �FD impedance�, and for the thin plate mesh
�Fig. 1�a�� modeled by the frequency domain BEM for open
surfaces �FD thin plate�. Time-step duration and excitation
frequency were chosen such that x=ct and �=12.

Agreement between the models is good, though it is rec-
ognized that the figure has a broad range of scale and unlike
Fig. 7 does not consider phase agreements. Despite the fact
that this frequency is slightly below the design frequency of
the diffuser �245 Hz� some grating lobe behavior is visible
and predicted by all models. Cancellation of incident and
scattered waves at the scattering nulls ���70° � is more
complete for the frequency domain results, mirroring the
trend inside the body of the uniform welled surface �Fig. 6�,
suggesting that the frequency domain algorithms are more
accurate for time-harmonic problems.

This modeling problem has shown excellent stability
and agreement with verified frequency domain BEMs for a
geometrically complex real-world acoustic device. In the ap-
plication of welled surfaces, the surface reflection boundary
condition is achieving in the time domain what surface im-
pedance achieves in the frequency domain.

VI. CONCLUSIONS

The investigation sought to transfer the technique of
modeling the well mouths of a Schroeder diffuser as compli-
ant surfaces from the frequency to the time domain. A direct
inverse Fourier transform of surface impedance is unsuitable
as its convolution kernels are typically noncompact in time
and requires future data not available to a time-marching
solver. Instead the response of the well to an incoming wave
was described by its convolution with a time-invariant kernel
denoted surface reflection response, which for a well is ex-
tremely compact in time and only requires past data. Pres-
sure and normal velocity at the mouth of the well are readily
found from the incoming velocity potential so this was dis-
cretized in preference to the more usual choice of total ve-
locity potential. The new surface model was implemented
and the algorithm verified on two welled surfaces, one of
which was a Schroeder diffuser. Agreement with previously
verified frequency domain BEM implementations was good.

It is hoped that with further research this surface model
may be generalized to include other classes of compliant
obstacle currently modeled as locally reacting surface imped-
ances in the frequency domain. One obstacle is the absence
of data for the surface reflection response model when the
obstacle is too complex to be considered analytically. Third
octave averaged absorption coefficients are usually measured
and quoted for most materials, and do not contain enough
data to directly reconstruct the surface reflection kernel; in-
stead some form of estimation is required. Drumm and
Lam31 and Fung et al.32 have both suggested approaches to
replacing the convolutions appearing in FDTD surface mod-
els with simple filters fitted to the absorption data, and their
approaches may also be effective for time domain BEM.
Further potential lies in the application of modeling materials
with nonlinear and time-variant properties, for which time-

harmonic models do not exist.
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APPENDIX: NUMERICAL EVALUATION OF
INTERACTION COEFFICIENTS

Accurate evaluation of the interaction coefficients de-
fined in Eq. �21� is fundamental to the accuracy and stability
of the algorithm. The temporal basis function chosen has
discontinuous derivatives which cause discontinuities and
delta functions in the surface integrands, making them un-
suitable for solution by Gaussian integration. In addition, the
integrand is singular so element self-interaction need often
be considered as a special case.

The implementation herein exploits the flat elements and
piecewise-constant spatial basis functions to permit regular-
ization of all integrands by coordinate transformation,25,37

such that the collocation point is no longer a special case.
The radial component of integration is performed analyti-
cally, leaving the remaining numerical integration a one-
dimensional contour integral. This allows an adaptive nu-
merical integration scheme to be used, specifically Simpson
integration with Romberg extrapolation. An absolute termi-
nation criterion was used, meaning that larger more signifi-
cant interaction coefficients were evaluated with higher pre-
cision than smaller less significant ones. This process is
arbitrarily accurate, has better computational cost scaling
than two-dimensional integration, and allows the same inte-
gration routine to be used for all element pairs as effort is
automatically concentrated where necessary.

In order to clarify the conversion of the surface integral
over Sn into nested integrals two new coordinate systems will
be used; one is a Cartesian system �v ,w ,z� and one a cylin-
drical polar system �r ,� ,z�, both shown in Fig. 9. The origin
and positive z direction are the same in both coordinate sys-
tems. The origin is defined as the projection of the colloca-
tion point x into the plane of Sn and the positive z direction is
specified by n̂y. The positive v direction is defined as the
projection of n̂x into the plane of Sn, such that ŵ · n̂x=0. The
positive theta direction is defined such that v=r cos��� and
w=r sin��� in the conventional way. The variable z refers for
the z coordinate of the collocation point x and any reference
to v, w, r, or � implies the integration point y.

The interaction coefficients are now evaluated according
to the following expression, being the sum of integrals over

ŵ v̂

r
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xn̂
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� �
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FIG. 9. �Color online� Contour integration geometry and coordinate sys-
tems.
the edges of Sn and a contribution from the origin:
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Numerical integration is with respect to �, a dimensionless
edge position coefficient varying from zero at the start vertex
to one at the end vertex. For an edge e the partial differen-
tials between this and the geometric integration variables are
found as follows, where r� is the minimum �perpendicular�
distance from the origin to the line of edge e:

d�

d�
=

�e�r�

r2 sign�ê · �̂� , �A2�

dw

d�
= ŵ · e , �A3�

�origin is the angle the edges of Sn make around the origin.
This is zero if the origin is outside Sn and 2� if Sn contains
the origin. If the origin lies on an edge, �origin will equal the
enclosed angle, intersection of one edge implies �origin=�,
and intersection of a corner implies �origin will equal the
acute angle between the adjoining edges.
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