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 Abstract 

 

With the advent of miniaturised sensing technology, which can be body-worn, it is now possible to collect 

and store data on different aspects of human movement under the conditions of free-living. This technology 

has the potential to be used in automated activity profiling systems which produce a continuous record of 

activity patterns over extended periods of time. Such activity profiling systems are dependent on 

classification algorithms which can effectively interpret body-worn sensor data and identify different 

activities. This article reviews the different techniques which have been used to classify normal activities 

and/or identify falls from body-worn sensor data. The review is structured according to the different 

analytical techniques and illustrates the variety of approaches which have previously been applied in this 

field. Although significant progress has been made in this important area, there is still significant scope for 

further work, particularly in the application of advanced classification techniques to problems involving 

many different activities. 
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Activity identification using body-mounted sensors – a review of classification 

techniques 

1. Introduction 

  

Physical activity has been defined as “any bodily movement produced by skeletal muscles that results in 

energy expenditure above resting level” (Caspersen et al 1985). Activity classification is a recent concept 

involving the use of technology to automatically recognise different activities and, in some cases, to collate 

this information into a continuous record. The need for automated activity classification systems has been 

identified in a number of different fields, from health-related research to pervasive computing, as discussed 

below. 

 

With the shift towards more sedentary lifestyles in both developed and developing nations, there is a need for 

research investigating the links between common diseases and levels of physical activity. Conditions such as 

cardiovascular disease (Barengo et al 2004), hypertension (Blair et al 1984), diabetes mellitus (Manson et al 

1991) and depression (Yancey et al 2004) have all been linked to physical inactivity. Although some 

epidemiological studies have used self reporting (diaries) to quantify activity patterns, these methods have 

been shown to be unreliable (Ainsworth et al 1993; Washburn and Montoye 1986). Instead, fully automated 

activity classification offers a more objective approach to quantifying levels of physical activity. 

 

Activity classification systems can also be used to investigate the effectiveness of initiatives aimed at 

increasing physical activity (van Sluijs et al 2007). A better understanding of why people choose to exercise 

and how individuals can be motivated to increase their levels of physical activity is crucial if the current 

health epidemic resulting from physical inactivity is to be reversed (Dugdill et al 2009). Furthermore, 

activity classification systems could be used to provide feedback to motivate individuals to adhere to daily or 

weekly physical activity targets (Baker and Mutrie 2005). 

 

Accurate information on daily activity patterns has the potential to improve the treatment and differential 

diagnosis of neurological, degenerative and respiratory disorders. To date, automated activity classification 



systems have been used in patients with Parkinson’s disease (Dunnewold et al 1997; Moore et al 2008) and 

to validate the use of different motor subtypes in delirium (Leonard et al 2007). They have also been shown 

to be a valid in the assessment of physical activity levels in patients with multiple sclerosis (Ng and Kent-

Braun 1997), osteoarthritis (Brandes et al 2008) and chronic pulmonary disease (Pitta et al 2006).  

Furthermore, automated activity classification systems have considerable potential to be used to assess 

effectiveness of treatments. For example, in stroke, accelerometer-based systems can be used to recognise 

real-world upper extremity movement which could then be used to derive treatment outcomes (Uswatte et al 

2000). 

 
 
With an aging population the incidence of falls is increasing. As many elderly persons now live alone, falls 

can go undetected and injured individuals left unaided for lengthy periods of time (Gurley et al 1996). 

Research has shown that the earlier a fall is reported the lower the rate of morbidity and mortality (Gurley et 

al 1996; Wild et al 1981). Clearly, any system which can accurately detect a fall and automatically call for 

help could be of major benefit. A fall is not an intentional movement; however, within the context of activity 

classification, it can be considered a specific form of activity. As such, the analytical techniques used in 

activity classification are also applicable to fall detection systems. 

 

In addition to health-related applications, activity profiling systems could play a fundamental role in 

ubiquitous computing scenarios (Coutaz et al 2005; Streitz and Nixon 2005). In such applications 

information from a variety of sensors is used to determine the context of a situation, so that an appropriate 

service can be provided. For example, a mobile phone may detect when a person is driving or involved in 

vigorous physical activity and automatically divert a call. 

 

Body-worn sensors are well suited to collecting data on activity patterns over extended periods of time. In 

contrast to other approaches, such as laboratory-based systems or video analysis, they can be used under 

conditions of free living with minimal inconvenience to the user. With recent developments in sensor 

miniaturisation, it is now possible to collect data on many aspects of human motion, such as segmental 

acceleration, angular velocity and foot pressure. However, for such data to be of value, effective algorithms 

are required which can interpret the data in the context of a range of different activities. Body-worn sensor 



data can be used for estimating functional parameters, such as gait speed and energy expenditure, and for 

activity classification to produce a continuous activity record. The focus of this review is activity 

classification. Other methods for interpreting body-worn sensor data are reviewed elsewhere, for example 

Chen and Bassett (2005) and Kavanagh and Menz (2008). 

 

The automated identification of activities using body-worn sensor data is a challenging area of work. Apart 

from the obvious practical limitations on the number, location and nature of sensors that people will tolerate 

there are several issues that directly impact of the success of any given algorithm. Problems arise due to the 

variability in sensor characteristics for the same activity across different subjects and for the same individual. 

Errors can also arise due to variability in sensor signals caused by differences in sensor positioning and from 

environmental factors such as sensor temperature sensitivity. Any successful algorithm must overcome all 

these factors. The ideal activity classification scheme works off-the-shelf, using data from a range of 

previous subjects to identify activities from an unseen individual. However, sometimes this is not possible 

and an intra-subject classification scheme is currently all that can be achieved for some problems. With this 

approach, example data  is required for a given individual before classification can be performed. 

 

The aim of this review is to present a conceptual introduction to the different computational techniques that 

have been applied to activity classification. For this reason, the paper is organised by analytical technique 

rather than by classification problem. The wide variation in choice of activities between previously published 

studies means it is not possible to identify a single, optimal solution for any given classification problem.  

Nevertheless, where appropriate we have tried to provide the reader with a degree of guidance as to the 

advantages of each of the classification techniques.  

 

Most approaches to activity classification, using body-worn sensors, involve a multi-stage process. Firstly, 

the sensor signal is divided into a number of small time segments, referred to as windows, each of which is 

considered sequentially. For each window, one or more features are derived to characterise the signal. These 

features are then used as input to a classification algorithm which associates each window with an activity. 

This review article has been structured according to this multi-stage process. After body-worn sensors are 

briefly discussed, the different techniques used to define data windows are outlined in Section 3. In Section 4 



we present different approaches to generating features from sensor data and, in Section 5, the classification 

techniques are described.  

 

2. Body-Worn Sensors   

 

2.1 Inertial sensors 

 

The vast majority of activity classification systems have used inertial sensors, notably accelerometers and 

rate gyros. Most accelerometers respond to gravity as well as to their true acceleration and, therefore, if the 

acceleration of the body segment is small with respect to g (9.81m/s2), as is the case when measuring body 

sway or static posture, these devices can be used to estimate the inclination of a body segment from the 

vertical. When the acceleration component becomes large, more sophisticated approaches to separating the 

orientation component (g) from body segment acceleration are possible. For a detailed description of 

accelerometry the reader is directed to a comprehensive review by Mathie et al (2004b). 

 

Rate gyro based measurements of angular velocity are subject to significant calibration errors, electronic 

noise and temperature-effects (Woodman 2007).  This means that, if the output is simply integrated to 

estimate a change in orientation, then the gyro error will be integrated leading to a continuously increasing 

error. Therefore, integration of rate gyro outputs to estimate orientation changes can only be done over short 

time periods. A number of approaches have been proposed to overcome this problem including the use of a 

state estimator with input from a tri-axial gyroscope and a tri-axial accelerometer (Luinge and Veltink 2005) 

and  the use of wavelet analysis (Section 4.4) to remove both drift and high frequency noise from gyroscope 

signals (Najafi et al 2002) before integrating to obtain orientation. 

 

Inertial sensors can be complemented by a magnetic compass or magnetometer (Parkka et al 2006), which 

can enable more accurate orientation measurement about the vertical axis (Sabatini 2006) and by GPS 

(Murakami and Makikawa 1997) to enable location tracking. 

 

2.2 Other sensors 



 

Although inertial sensors have been used in the vast majority of activity classification studies, other sensors 

which may be considered include devices for measuring: segment angles, such as inclinometers (Dai et al 

1996) and goniometers (Kostov et al 1995); skin temperature (Krause et al 2003); galvanic skin resistance 

(Dolgov and Zane 2006), heart rate (Bussmann et al 1998b); humidity (Lester et al 2006); or respiratory rate 

(Parkka et al 2006).  

 

Recently the concept of ‘smart textiles’ has been proposed, in which miniature sensors are distributed and 

integrated into clothing (Wijesiriwardana et al 2003). The strict limitation on the size of such integrated 

sensors means it may not be currently possible to use accelerometers or rate gyroscopes. As an alternative 

smaller binary sensors, such as tilt switches, have been proposed (van Laerhoven and Cakmakci 2000; van 

Laerhoven et al 2006).  

 

Simple foot pressure switches can be used to identify gait events such as heel strike and toe off (Mansfield 

and Lyons 2003). However, as they do not give additional information on limb movement, it is not possible 

to classify different activities from these signals alone. More detailed information, such as net ground 

reaction force, can be obtained from pressure sensitive insoles which can assess the pressure distribution 

across the planter aspect of the foot (Veltink et al 2005; Zhang et al 2005). 

 

3 Windowing Techniques  

 

Most activity classification methods use windowing techniques to divide the sensor signal into smaller time 

segments (windows). Activity classification algorithms are then applied separately to each window. In real-

time applications, windows are defined concurrently with data collection and a continuous real-time activity 

profile is produced. When the sensor data is processed off-line, the windows are defined first and 

classification algorithms applied sequentially to each window. This information is then combined to give an 

activity profile along the entire signal. 

 



Three different windowing techniques have been used in activity monitoring, sliding windows, event-defined 

windows and activity-defined windows. With the sliding window method, the signal is divided into windows 

of fixed length with no inter-window gaps (Figure 1a). A range of window sizes have been used in previous 

studies from 0.25 secs (Huynh and Schiele 2005) to 6.7 secs (Bao and Intille 2004), with some studies 

including a degree of overlap between adjacent windows (Bao and Intille 2004; Preece et al 2008b). The 

sliding widow approach does not require pre-processing of the sensor signal and is therefore ideally suited to 

real-time applications. Due to its implementational simplicity, most activity classification studies have 

employed this approach 

 

In order to use event-defined windows, pre-processing is required to locate specific events, such as heel 

strike or toe-off. These events are then used to define successive windows (Figure 1b). Given that such 

events may not be uniformly spaced in time, the size of these windows is not fixed. A number of different 

approaches have been proposed for identifying heel strike and toe off from body-worn sensor signals. For 

example, it is possible to define search windows from either a low pass filtered version of the original signal 

(Aminian et al 1999a; Selles et al 2005)  or segmental angles (Jasiewicz et al 2006), within which maxima or 

minima correspond to gait events. Another approach is to identify the times at which the anterio-posterior 

component of the trunk acceleration changes sign. Heel strike is then located at a given time offset from 

these points (Mansfield and Lyons 2003; Zijlstra 2004; Zijlstra and Hof 2003).  

 

FIGURE 1 ABOUT HERE 

 

The use of activity-defined windows is dependent on determining the times at which the activity changes. 

These points are then used to define windows of sensor data, each of which correspond to a different activity 

(Figure 1c). A number of methods have been proposed to identify activity-transition points prior to explicitly 

identifying the specific activities. For example, wavelet analysis can be used to identify localised changes in 

frequency characteristics (Nyan et al 2006a; Sekine et al 2000a) which correspond to a change between 

activities. Once defined, classification is performed for each window, sometimes using only a subset of the 

data contained within the window (Nyan et al 2006a). 

 



 

4 Feature Generation 

 

Previous activity classification studies have used a wide range of approaches to generate features which 

characterise windows of body fixed sensor data. These features are then used as inputs to classification 

schemes (Section 5). In this section the different feature generation techniques are presented within a number 

of different sub-categories. Firstly, heuristic features, for both the recognition of everyday activities and falls, 

are discussed. In this article we use the term heuristic to refer to features which have been derived from a 

fundamental and often intuitive understanding of how a specific movement or posture will produce a 

characteristic body-worn sensor signal. In sections 4.2-4.4 time-domain, frequency-domain and time-

frequency (wavelet) features are described. In contrast to the heuristic approach, these features are not 

typically related to specific aspects of individual movements or postures. Instead they simply represent 

different ways of characterising the information within the time-varying signal. For a given classification 

problem it is often difficult to identify optimal time- and frequency-domain features. Therefore methods for 

selecting optimal features from a larger set and methods for reducing dimensionality of features can be used 

for pre-processing before advanced classification algorithms are applied. These two techniques are described 

in section 4.5 and 4.6. 

 

4.1 Heuristic features  

 

The signal measured by an accelerometer comprises two components. The first “static acceleration” is due to 

the effect of gravity and gives a measure of the inclination of the sensor to the vertical. The second “dynamic 

acceleration” results from the acceleration of the body segment to which the unit is attached. In the absence 

of motion, the measured acceleration (in units of g) is equal to the cosine of the sensor orientation angle 

relative to the vertical. This angle is often used as an input to classification algorithms, particularly those 

designed to differentiate between static postures (Aminian et al 1999b; Maxwell 2002) and identify postural 

transitions (Najafi et al 2003). 

 



Change in segmental orientation can be obtained by integrating a gyroscope signal, provided some method  

is used to eliminate drift. This feature can then be used to identify different postures and postural transitions 

(Najafi et al 2002; Najafi et al 2003). As explained earlier, a gyroscope utilises the Coriolois force to 

quantify segmental angular velocity. Activities which exhibit unique patterns of angular velocity can thus be 

identified using this feature with a simple classification algorithm, such as a threshold-based classifier. This 

idea was exploited by Coley et al (2005) who demonstrated that the peak shank angular velocity in the 

anterior-posterior direction at midstance was positive during stair ascent but negative during level walking 

and stair descent.  

 

All movement patterns result in time varying segmental accelerations. A number of different methods have 

been used to derive features which quantify the amplitude of these accelerations. Before these features are 

derived the signal is first high pass filtered (typically 0.2-0.5Hz) to remove any baseline offset. The range of 

different features includes signal magnitude area (the area under the high pass filtered acceleration curve) 

(Mathie et al 2003; Preece et al 2008c), peak-to-peak acceleration (Makikawa and Iizumi 1995), mean 

rectified value (Bussmann et al 1998a; Bussmann et al 1998b) and root mean square (Veltink et al 1996). 

This type of  feature is often used to differentiate between static and dynamic activity (Mathie et al 2003). 

 

As well as being used as input to classification algorithms, the signal magnitude area (SMA) can be used to 

quantify the level of intensity of physical activity. This measure is normally expressed in units known as 

activity counts. It is now well established that, for a given activity, a linear model can be used to relate 

metabolic energy expenditure to the number of activity counts (Bouten et al 1997; Hendelman et al 2000; 

Terrier et al 2001). For an excellent review of this area the reader is directed to Chen and Bassett (2005).  

 

The development of robust algorithms which can accurately differentiate between everyday activities and 

falls using body-worn sensor data is a rapidly growing area of study. The vast majority of previously 

developed algorithms have utilised heuristic features exploiting one or more intrinsic characteristics of a fall, 

such as velocity (Bourke et al 2008), acceleration (Bourke et al 2007), orientation (Hwang et al 2004) or 

even sound (Doukas and Maglogiannis 2008). During a fall, there is an initial period of free fall, during 

which velocity increases rapidly. This is then followed by a rapid deceleration, as contact is made with the 



ground. In addition there is also a measurable change in the orientation of a number of body segments. Using 

accelerometers or gyroscopes mounted at the wrist (Degen et al 2003), waist (Karantonis et al 2006), chest 

(Bourke and Lyons 2008; Bourke et al 2007) or head (Lindemann et al 2005), it is possible to characterise 

these different events. Typically, a threshold-based classifier (Section 5.1) is then applied to differentiate 

between falls and everyday activities.  

 

4.2 Time-domain features 

 

Time-domain features are derived directly from a window of sensor data and are typically statistical 

measures. Example time-domain features used in activity monitoring include the mean, median, variance, 

skewness, kurtosis (Baek et al 2004; Herren et al 1999) and inter-quartile range (Maurer et al 2006). Other 

studies have used high and low pass filters to separate accelerometer signals on a frequency basis. Separate 

means for the low frequency and rectified high frequency components are then used as inputs to the 

classification schemes (Fahrenberg et al 1997; Foerster and Fahrenberg 2000; Lee et al 2003). 

 

As an alternative to the above, Veltink et al (1996) developed a classification scheme based on measures of 

signal morphology. With this approach a cross-correlation coefficient was used to quantify the similarity of 

an event-defined window of data to a previously obtained template signal for each activity. In general, it has 

been suggested that measures of correlation between different accelerometer axes can improve activity 

recognition (Aminian et al 1995; Herren et al 1999). Following this idea Bao and Intille (2004) used cross-

correlation coefficients to quantify the similarity between acceleration signals from different axes on the 

same body segment and across different segments.  

 

4.3 Frequency-domain features 

 

In order to derive frequency-domain features the window of sensor data must first be transformed into the 

frequency domain-domain, normally using a Fast Fourier Transform (FFT). The output of a FFT typically 

gives a set of basis coefficients which represent the amplitudes of the frequency components of the signal 

and the distribution of the signal energy. Different methods can then be used to characterise the spectral 



distribution from these coefficients. For example, median frequency (Foerster and Fahrenberg 2000) or a 

subset of the different FFT coefficients can be used (Preece et al 2008a, b) (Preece et al., 2008b, a). 

Alternatively, information from a number of coefficients can be combined to give a single feature. Examples 

include, spectral energy, which is the sum of the squared FFT coefficients (Huynh and Schiele 2005; 

Sugimoto et al 1997) and frequency-domain entropy, which is the normalised information entropy of the 

FFT components (Bao and Intille 2004). This latter feature allows for differentiation between activities 

which have simple acceleration patterns and those with more complex patterns. For example, as cycling 

involves a uniform movement of the legs, a frequency-domain analysis of thigh acceleration shows a single 

dominant frequency. In contrast, running may result in more complex acceleration pattern and often displays 

many major FFT components. This differences leads to a much higher frequency-domain entropy for running 

in comparison to cycling (Bao and Intille, 2004). 

 

4.4 Wavelet analysis (Time-frequency features) 

 

Unlike Fourier analysis which can only be used to extract information on the frequency content of a signal, 

wavelet analysis can be used to investigate both time and frequency characteristics. Like Fourier analysis, 

wavelet analysis can be formulated via a continuous or discrete wavelet transform. Previous work on activity 

monitoring has employed the discrete wavelet transform (DWT), therefore our discussion will focus on this 

method. The discrete wavelet transform is normally implemented using the filter bank interpretation. In this 

approach the original signal is successively decomposed into separate low and high pass filtered signals, 

referred to as approximation and detail coefficients respectively. 

 

FIGURES 2 AND 3 ABOUT HERE 

 

If we consider the original signal (S) with maximum frequency fmax then the first approximation coefficient 

(cA1) is obtained by passing the original signal through a low pass filter with passband [0, fmax /2]. Similarly, 

to obtain the first detail coefficient (cD1), the original signal is filtered with a high pass filter with passband 

[fmax /2, fmax]. The wavelet coefficients cA1 and cD1 represent the first level of wavelet decomposition. 

Subsequent levels of decomposition are obtained by high and low pass filtering the approximation 



coefficient from the previous level. This process is illustrated schematically in Figure 2 and on an example 

signal in Figure 3. At each level of wavelet decomposition the filtered signal is downsampled by a factor of 

two in order to produce the approximation and detail coefficients. Thus, if the original signal contains N 

samples, then the first approximation and detail coefficients will be of length N/2. Similarly, the length of the 

approximation and detail coefficients at the second level of decomposition will be N/4. This process of 

subsampling reduces the number of time samples and effectively decreases time resolution. This successive 

halving of the frequency band with each level of wavelet decomposition increases frequency resolution. This 

compromise between time and frequency resolution allows the wavelet transform to provide good frequency 

resolution at low frequencies (higher levels of decomposition) but also better time resolution at higher 

frequencies (lower levels of decomposition). 

 

Wavelet analysis allows a body-worn sensor signal to be decomposed into a number of individual 

coefficients, each of which contains data on a specific frequency band. As these coefficients characterise the 

original signal along its entire length, they contain information on temporal changes in frequency content. 

Thus unlike, Fourier analysis, wavelet techniques can be used to analyse and characterise non-stationary 

signals (those in which frequency context changes over time). There are a number of different types of DWT, 

such as the Haar, Daubachies and Coiflets transform, the difference between these different transforms being 

in the filters used for decomposition. For more complete description of the fundamental principles 

underlying wavelets, the reader is directed to Rioul and Vetterli [62], walker [57] and Graps [63]. 

 

Wavelet analysis has been applied to three different types of problem within activity monitoring. These are 

signal enhancement, identification of activity transition points and generation of time-frequency features 

subsequently used for classification (Table 1). Each of these applications is now discussed in detail. For 

signal enhancement, multi-resolution analysis is used to reconstruct the original signal from the decomposed 

approximation and detail signals. By performing this reconstruction and omitting/modifying specific detail 

and approximation signals, it is possible to enhance and focus on the frequency band of interest. In activity 

monitoring applications, this has been used to remove both high frequency noise and low frequency offsets, 

such as drift, from the original signal (Najafi et al 2002). Specific parameters are then derived which 

characterise the reconstructed signal. This method has primarily been used in threshold-based classification 



schemes (Section 5.1) which use heuristic features to characterise some aspect of movement or posture 

(Najafi et al 2003; Paraschiv-Ionescu et al 2004). 

 

TABLE 1 ABOUT HERE 

 

Wavelet analysis can be used to identity the points in a body-worn sensor signal at which there is a change in 

the frequency content. Recent work by Sekine et al (2000a) and Nyan et al (2006a) demonstrated that, by 

identifying such points, it was possible to determine the transition times between three different types of gait. 

Sekine et al (2000a) used wavelet packet analysis to decompose the signal and then reconstructed a low 

frequency version of the original signal. With wavelet packet analysis, the detail coefficients (Figure 2) are 

also split into approximation and detail signals (Mallat 1999). Manually set thresholds were then applied to 

the original signal to identify changes in frequency content and thus walking pattern. Rather than 

reconstructing the original signal, Nyan et al (2006a) determined transitions from a correlation signal. This 

was obtained by multiplying the wavelet approximation signals at the two highest levels of decomposition. 

The technique of multiplying wavelet coefficients, known as direct spatial correlation, can be used to sharpen 

major signal edges while suppressing noise (Xu et al 1994). By comparing a rescaled version of the 

correlation signal with the approximation signal at the largest scale, they were able to determine the points at 

which the walking pattern changed. Both Sekine et al (2000a) and Nyan et al (2006a) specified activity-

defined windows from the previously determined transition points. Classification was then performed 

separately for each window. 

 

Several studies have compared time-frequency features between different activities (Sekine et al 2000a; 

Sekine et al 2000b; Tamura et al 1997) . These parameters are typically obtained by calculating one or more 

statistical measures from the approximation or detail coefficients at specific decomposition levels. For 

example, Tamura et al (1997) calculated the sum of the squares of the approximation coefficients at two 

different decomposition levels for accelerometer signals collected during level walking and 

ascending/descending stairs. Using the same activity set, Sekine et al (2002) derived a fractal dimension 

parameter, describing variance progression, from the detail coefficients of a 7-level wavelet decomposition. 



In both these studies the wavelet parameters were shown to be significantly different between the three 

activities. 

 

A number of studies have demonstrated the possibility of using wavelet analysis in activity classification. 

For example, Sekine et al (2000a; 2000b) and Nyan et al (2006a) used wavelet parameters based on the sum 

of the squares or RMS of specific detail coefficients as input to threshold-based classification algorithms.. In 

a similar spirit Wang et al (2007) derived wavelet parameters using simple statistical measures, such as SD 

and RMS, of specific approximation and detail coefficients which were subsequently used as input to a 

Neural Network. In a recent paper by Preece et al (2008b) the performance of a number of wavelet-based 

sets was compared to previously used time- and frequency-domain features for the classification of eight 

different activities. In general, the wavelet features tended to be outperformed by the time- and frequency-

domain features. This result suggest that, although wavelet analysis can be used to analyse non-stationary 

signals, it may not be the most effective method for characterising short windows of sensor data over which 

there is minimal variation in frequency content. 

 

4.5 Feature selection methods 

 

Different individuals may perform the same movement in a variety of different ways. This can lead to 

substantial variability in the features derived from body fixed sensor data (Heinz et al 2003). Hence, for 

effective classification, it is important to identify a set of features which have high discriminative ability 

(Kiani et al 1997). A good feature set should show little variation between repetitions of the same 

movements and across different subjects but should vary considerably between different activities. 

Furthermore, it is important to minimise any redundancy between features as this can result in unnecessarily 

increased computational demands and, also, reduced accuracy with some classification methods (Duda et al 

2001; Theodoridis and Koutroumbas 2006). 

 

A number of different techniques, of varying complexity, have been used to select appropriate features for 

activity classification. For example, Parkka et al (2006) used simple visual and statistical analysis to assess 

the distribution of a given feature for different activities. Features which changed markedly between 



activities and showed little overlap were selected for subsequent analysis. In their study of six daily 

activities, Maurer et al (2006) used correlation-based feature selection. With this approach optimal features 

are defined as those which exhibit high within-class but low between-class correlations. Another method for 

feature selection is a forward-backward search in which features are sequentially added and removed from a 

larger set. Optimal features are identified depending on the resulting classification accuracies for each feature 

subset. This approach was used by Pirttikangas et al (2006) to identify the best sensors/features for the 

classification 17 different activities  

 

Huynh and Schiele (2005) compared a range of different acceleration-derived features, including mean, 

variance, spectral energy and FFT coefficients. The acquired data patterns were subjected to k-means 

clustering in the feature space. Clustering is a method to locate concentrations of data points well separated 

from each other, and to extract the cluster centres that represent those patterns. Huynh and Schiele (2005) 

measured the cluster homogeneity to assess whether individual activities tended to cluster together. In order 

to automatically recognise activities, they labelled the centroid of each cluster with the dominating activity, 

and they used a nearest neighbour rule to assign a class to a new pattern (Section 5.4). Their analysis showed 

that, in general, FFT coefficients were best for differentiating between dynamic activities, but they were 

unable to identify single FFT coefficients which performed best for all activities. 

 

4.6  Dimensionality reduction methods 

 

As an alternative to selecting a subset of the existing features, it is often possible to combine the original 

features to define a new set of variables. There are two benefits associated with such a procedure. Firstly, the 

often unnecessarily large numbers of features, resulting from many sensors, can be reduced. Secondly, the 

new reduced variables frequently have better discriminative ability for classification problems. One of the 

most common techniques for reduction is Principal Component Analysis (PCA) (Chau 2001a; Duda et al 

2001; Webb 2002). PCA locates the directions of maximal variance and the data are projected onto those 

directions. This achieves decorrelation of the resulting variables and removal of likely statistical interactions. 

Additionally, all the directions of smaller variance can be ignored, so a dramatic reduction is often achieved, 

without sacrificing useful information content. Independent Component Analysis (ICA) (Duda et al 2001; 



Theodoridis and Koutroumbas 2006) extends PCA to non-Gaussian data, where the sought directions 

produce variables that are statistically independent from each other. The variables are still reduced as in 

PCA, but a general linear transformation, as opposed to the rotation of PCA, is performed and often 

enhances the classification ability of many algorithms. 

 

Previous authors have applied dimensionality reduction methods to different aspects of activity classification 

problems. For example, Mantyjarvi et al (2001) preprocessed data from two tri-axial accelerometers using 

PCA and ICA, and used this as input to a Wavelet-based feature generation technique. For a five-activity 

problem, high levels of classification accuracy (83-90%) were obtained using a neural network classifier. 

Following similar principles Krause et al (2003) used PCA to reduce the high dimensionality of a 128 FFT 

feature set (Section 5.11). Using a slightly different approach Huynh and Schiele (2006b) developed an 

algorithm based on multiple eigenspaces. This technique extends PCA in the sense that it uses multiple 

spaces spanned by subsets of the PCA eigenvectors. Using this method Huynh and Schiele (2006b) were able 

to decipher structure in accelerometer data without any user annotation or information on the activities 

involved. In subsequent work Huynh and Schiele (2006a) applied this approach to data collected by Kern et 

al (2003) using tri-axial accelerometers distributed across the body. The multiple eigenspaces algorithm 

provided a low-dimensional description of original sensor data which was then used as input to an SVM 

(Section 5.6) classification algorithm. 

 

5 Classification Schemes  

 

Once features have been derived to characterise a window of sensor data, they are used as input to a 

classification algorithm. The degree of complexity of these different classification schemes varies from 

simple threshold-based schemes to more advance algorithms, such as artificial neural networks or Hidden 

Markov Models. With these advanced classification algorithms, appropriately implemented software learns 

to recognise and associate patterns in the input features with each activity. As such, this field of study is 

often referred to as machine learning. Machine learning techniques are generally considered to fall within 

one of two categories, either supervised or unsupervised (Duda et al 2001; Theodoridis and Koutroumbas 

2006; Webb 2002). With supervised learning, a significant amount of fully labelled activity data is required 



in order to ‘train’ the classification algorithm. Once the training phase is complete the classifier is able to 

assign an activity label to an unknown window of sensor data. With unsupervised approaches no activity 

labels are required for the training dataset. Instead, all the sensor data is passed to the algorithm which 

automatically identifies a number of states or data clusters, each of which may correspond to a particular 

activity.  

 

Within the field of activity classification, the classical Cross-Validation (CV) (Duda et al 2001) can be 

adapted to evaluate the accuracy of the system in two ways: between-subject and within-subject evaluation. 

In the former case, the classifier is first trained with data from all subjects except a few and then tested with 

data from the excluded subjects. The accuracy is then calculated as the proportion of correctly classified 

windows of data across all activities. The process of excluding some subjects and performing a train-test 

cycle is repeated until all subjects have participated in the testing datasets. The finally overall accuracy is 

then calculated as the average accuracy across all train-test cycles. When one subject is used for the testing, 

for a number of cycles equal to the number of subjects, this is called leave-one-subject-out CV. For within-

subject evaluation, training is performed using a portion of windows for a specific subject, while testing 

takes place with the remaining samples of the same subject. This process is then repeated, each time using a 

different portion of the subject samples for testing. The overall accuracy is determined from the average of 

all the cycles for all available subjects. 

 

Although an overall accuracy is often provided, more detailed views of the classifier’s performance can be 

given through sensitivity and specificity. These are calculated separately for each activity by determining 

whether each data window in the test dataset has been identified as the correct activity or not. Sensitivity 

represents the ability of the classifier to select instances of a certain activity class, whereas specificity 

represents the true negative rates of an activity. These measures are based on the analysis of the confusion 

matrix, which summarises the predicted and actual instances for each class. 

 

This section begins with a brief discussion of threshold-based classification. Following this, in Sections 5.2-

5.10, the different supervised learning approaches are described. There has only been a very small amount of 

work applying unsupervised techniques to activity classification, therefore this work is reviewed in a single 



section, 5.11.Finally, in Section 5.12, we present an overview of the different classification techniques. Table 

2 lists the different classification methods along with corresponding published studies. 

 

TABLE 2 ABOUT HERE 

 

5.1 Threshold-based classification  

 

With threshold-based classification a derived feature is simply compared to a predetermined threshold to 

determine whether a particular activity is being performed. This approach has been used successfully to 

differentiate between static postures, such as standing, sitting and lying, using angles derived from 

accelerometers placed on combinations of the pelvis/trunk (Boyle et al 2006; Culhane et al 2004; Uiterwaal 

et al 1998), lower limb segments (Busser et al 1997; Bussmann et al 1998c; Culhane et al 2004; Makikawa 

and Iizumi 1995) and chest (Aminian et al 1999b; Najafi et al 2003). Threshold-based classification has also 

been used successfully to identify postural transitions using data on the change in segmental angles derived 

from either accelerometers (Najafi et al 2003) or gyroscopes (Najafi et al 2002; Najafi et al 2003). These 

algorithms are typically sensitive to the exact choice of threshold angle  (Najafi et al 2003). Therefore, as an 

alternative, Najafi (Najafi et al 2003) proposed a simple kinematic model in which vertical displacement of 

the chest sensor was estimated from double integration of the acceleration signal. 

 

It is common to differentiate between static postures and dynamic activity by using a feature which 

quantifies variation in the acceleration signal (Section 4.1) (Mathie et al 2003; Maxwell 2002; Veltink et al 

1996). Although advanced classification schemes are normally required to recognise different dynamic 

activities, a small number of researchers have successfully applied threshold-based algorithms to this 

problem. For example, Coley et al (2005) were able to differentiate stair ascent from level walking or stair 

descent using an algorithm based on the peak angular velocity of the shank. This feature was calculated after 

a wavelet-based algorithm had been used to identify stance phase (Aminian et al 2002). Similarly, using 

wavelet-based features (Section 4.4), both Sekine et al (2000a; 2000b) and Nyan et al (2006a) were able to 

differentiate between three different gaits. 

 



Threshold-based classification has been successfully applied to the detection of falls. A fall can be 

considered an extreme instance of a postural transition. As explained in Section 4.1 a range of different 

characteristics have been used to develop heuristic features which are then used in threshold-based 

classification schemes. This range of different characteristics has been summarised in Table 3. 

 

TABLE 3 ABOUT HERE 

 

Both Nyan et al (2006b) and Bourke and Lyons (2008) studied angular velocity and angular acceleration 

characteristics during a fall. They found significantly larger values during a fall than in everyday activities,, 

demonstrating the potential for accurate falls identification. Wu (2000) studied the horizontal and vertical 

velocity characteristics of falls using an optical motion capture system and showed that trunk vertical 

velocities associated with falls were 2-3 times those of everyday activities. More recently, Bourke et al 

(2008) used an inertial measurement unit (accelerometer and gyroscope) to measure vertical velocity and 

then applied a threshold of 1.3 ms-1 to identify falls with 100% accuracy. Other researchers have obtained an 

estimate of linear velocity by directly integrating the signal from an accelerometer (Degen et al 2003; 

Lindemann et al 2005) and again applied simple thresholds to identify falls.   

 

The most common characteristic used to identify the presence of a fall is the rapid deceleration which occurs 

as the faller contacts the ground (Chen et al 2005). Different thresholds have been reported for different 

accelerometer placements (Doughty et al 2000). Thresholds of 6g, 3.5g and 2.7g have been reported for 

accelerometers mounted at the ear, trunk and thigh, respectively (Lindemann et al 2005; Bourke et al 2007). 

Bourke et al (2007) further compared the accuracy of fall detection using two threshold rules, one applied to 

the impact deceleration and the other to the acceleration during free fall. Their results showed the impact 

deceleration to be a more effective means of identifying falls from everyday activities, with 100% specificity 

compared to 91% specificity for free fall acceleration. 

 

A number of studies have demonstrated improved fall detection accuracy when a number of different 

threshold rules are combined together. For example, Lindemann et al (2005) used a tri-axial accelerometer 

located in the ear and combined two acceleration-based and one velocity-based threshold . In a similar spirit 



Bourke and Lyons (2008) combined three threshold-based rules using angular velocity, angular acceleration 

and orientation and demonstrated that falls could be differentiated from everyday activities with an 100% 

accuracy. Other studies have combined acceleration thresholds with a measure of change in orientation 

(Chen et al 2005; Hwang et al 2004), again reporting high levels of accuracy. After detection using 

threshold-based methods, the occurrence of a fall is often confirmed by checking for a period of inactivity 

(Doughty et al 2000). For example Hwang et al (2004) suggested a period of 10 seconds and Karantonis 

(2006) a period of 60 seconds.  

 

 5.2 Hierarchical methods 

 

To implement a hierarchical classification scheme, a binary decision structure is constructed which consists 

of a number of consecutive nodes. At each node a binary decision is made depending on the input features. 

This decision results in either a definite classification being made or in a transition to another node, where 

further differentiation between activities is performed. The exact nature and parameters of the decision made 

at each node is obtained via manual inspection and analysis of the training data, which means that this 

approach is very time consuming. An example decision structure is illustrated in Figure 4. Although this 

example uses only simple threshold-based rules, it is possible to base the node decision on any mathematical 

operation.  

 

FIGURE 4 ABOUT HERE 

 

Fahrenberg et al (1997; 1996) classified four activities using a hierarchical approach. Their classification 

scheme used threshold rules which were applied to time-domain features obtained from accelerometers 

mounted on the chest, wrist, shank and thigh. For a within-subject design, they were able to identify every 

activity with almost 100% accuracy (Fahrenberg et al 1997). Although, similarly high accuracy (97%) was 

obtained for the between-subject design, they were unable to differentiate between level walking and stair 

walking. A similar approach was used by Lee et al (2003) to differentiate between five static and four 

dynamic activities using a single waist-mounted accelerometer. 

 



More recently, Parkka et al (2006) applied a threshold-based hierarchical classification scheme to 

differentiate between eight different dynamic activities (Table 4). In a follow-on study, Ermes et al (2008) 

investigated the same set of activities but also included football and compared the performance of the 

hierarchical approach to other standard classification schemes (Table 4). They also developed a hybrid 

classification scheme in which each node of the hierarchical structure consisted of an artificial neural 

network. When all data was used for evaluation purposes, this hybrid model was shown to outperform both 

an artificial neural network  and the hierarchical classifier. 

 

The hierarchical approach was also used by Mathie et al (2004a) in a study using a single tri-axial 

accelerometer. In addition to threshold-based rules they used probabilistic methods and signal morphology 

techniques to make the classification decision at each node. They demonstrated that this approach could be 

used to differentiate between a large range of postures, activities and postural transitions across 26 healthy 

subjects. Furthermore, by including an additional node which identified abnormal peaks in the accelerometer 

signal they could identify possible falls. A simplified and computationally efficient version of this algorithm 

was later developed by Karantonis et al (2006) which used only simple threshold-based decisions at each 

node and demonstrated the potential of their hierarchical approach for real-time fall detection. 

 

5.3 Decision trees 

 

The decision tree approach is similar to hierarchical classification. However, rather than the decision 

structure being constructed manually by the user, rigorous algorithms exist to automate the process and 

create a compact set of rules (Duda et al 2001; Webb 2002). These algorithms work by examining the 

discriminatory ability of the features one at a time to create a set of rules which ultimately leads to a 

complete classification system. For further details of the different types of decision tree algorithms the reader 

is directed to Godfrey et al (2008), Quinlan (1996) and Duda (2001). 

 

Decision trees have been applied to a wide range of classification problems (Ermes et al 2008; Parkka et al 

2006; Ravi et al 2005). One of the most comprehensive studies was carried out by Bao and Intille (2004) 

who used both time and frequency features to differentiate between 20 activities (Table 4). Using five 



sensors, they obtained an accuracy of 86%. However, additional analysis showed an accuracy reduction of 

only 3% if only data from a thigh and wrist sensor was used. Maurer et al (2006) investigated the 

performance of different features and classifiers in the recognition of six different activities (Table 4). The 

long term goal of their research was to develop a real-time classification algorithm using data from only one 

wrist-mounted sensor. Ultimately, they used time-domain features which can be calculated with less 

computational power than frequency-domain features, as input to their decision tree classifier.  

 

5.4 k-Nearest Neighbour 

 

With a k-Nearest Neighbour (kNN) classification scheme (Duda et al 2001; Theodoridis and Koutroumbas 

2006), a multi-dimensional feature space is constructed, in which each dimension corresponds to a different 

feature. The feature space is first populated with all training data points, each of which corresponds to a 

particular activity. Unknown windows of sensor data are represented in the features space and the k nearest 

points (or neighbours) of training data identified. Classification is then determined by the majority of the k 

nearest neighbours which correspond to a given activity. The value of k typically varies from 1 to a small 

percentage of the training data, and is selected using trial and error, or ideally using cross-validation 

procedures. Figure 5 illustrates the k-nearest neighbour approach, where a 2D feature space has been 

constructed. In general the kNN approach can be applied to any number of dimensions. 

 

FIGURE 5 ABOUT HERE 

 

Foerster et al (1999) were the first to apply the kNN approach to activity classification. They derived simple 

time-domain features from three uni-axial accelerometers. Using a within-subject design they were able to 

differentiate between nine common activities. In subsequent work Forester and Fahrenberg (2000) used a 

reduced sensor set but extended their original approach, combining a kNN classifier with a hierarchical 

decision structure and including a frequency-domain feature. At each node of their hierarchical decision 

structure they constructed an appropriate feature space using a subset of features. With this approach they 

were able to accurately classify a wider range of activities than in their previous work (Foerster et al 1999). 

 



A similar approach was used by Bussmann et al (2001) who defined a 21 dimensional feature space using 

data derived features from three different accelerometers,. Rather than applying the standard kNN approach, 

they used training data for each activity to specify a maximum and minimum value along each axis. This 

effectively defined a volume corresponding to each activity within the feature space. For an unknown 

window of activity data, classification was determined by the closest activity volume within the feature 

space. With this approach they were able to identify a wide range of movements and postures with good 

levels of accuracy (89-93%).  More recently the kNN approach has been compared to other classification 

schemes (Bao and Intille 2004; Maurer et al 2006) (Table 4) and used as part of an algorithm for comparing 

different features for activity classification (Huynh and Schiele 2005; Preece et al 2008b). 

 

Zhang et al (2006c) used the kNN approach to differentiate between falls and everyday activities. With their 

classification scheme, a window of accelerometer data was identified immediately before each period of 

motionless. Non-negative matrix factorisation was then used to extract features from the sensor data which 

were used as input to the classifier. This factorisation is used to decompose the data matrix into a vector 

basis matrix and a coefficient matrix, under certain constraints, so that new features can be obtained. The 

results showed that, in most scenarios, it was possible to differentiate between falls and common activities 

with >95% accuracy. 

 

5.5 Artificial neural networks 

 

An artificial neural network (ANN) can be likened to a flexible mathematical function configured to 

represent complex relationships between its inputs (independent variables) and outputs (dependent 

variables). The ANN is initially presented with a set of training data and some form of optimisation process 

is employed to enable known outputs to be predicted for a given set of inputs. Once trained the ANN can 

then be used to obtain the outputs for any set of inputs. In the field of activity classification the inputs are 

normally features derived from sensor data with the outputs being the different classes of activities. As well 

as being used for classification problems, ANNs can also be used to estimate continuously varying outputs 

from a set of input variables (Aminian et al 1995; Findlow et al 2008; Goulermas et al 2005; Herren et al 

1999). ANNs have been widely used within the field of human movement research (Chau 2001b; Ohno-



Machado and Rowland 1999). For further background information the reader is directed to Haykin (1999) 

and Bishop (1999). 

 

One of the most common ANNs is referred to as a multi-layer feedforward neural network or multilayer 

perceptron (MLP) (Bishop 1999; Haykin 1999). This consists of inputs and outputs which are interconnected 

via special nodes, distributed in so-called ‘hidden’ layers. The flow of information through the network is 

controlled by the weighting of the links between the nodes and the transfer function within each node. This 

type of network is trained by iteratively optimising the weights in order to accurately produce the desired 

training outputs from the corresponding inputs.  Zhang et al (2005) used this approach to classify a four-

activity problem using data from pressure sensitive insoles. By using features derived via parameterising the 

ground reaction force as input to the ANN, Zhang et al (2005) were able to accurately (>97%) identify the 

type of activity as well as predict the speed of walking and running. Other studies which have used an MLP 

include Baek et al (2004), Mantyjarvi et al (2001) and Wang  et al (2007) with a further three studies (Ermes 

et al 2008; Parkka et al 2006; Pirttikangas et al 2006) comparing the accuracies obtained using an MLP to 

those obtained with other classification approaches (Table 4) . 

 

An alterative to the feedforward ANN is the probabilistic neural network (Specht 1990). Unlike most ANNs 

which require an extensive training period, this type of network enables classification to be rapidly 

performed using example patterns stored in memory (Specht 1990). Kiani et al (1998) employed this 

approach, training their ANN using template waveform patterns for each activity, rather than using features 

derived from sensor signals. Although their classification scheme was straightforward to implement, an 

individually designed network was required for each subject.  

 

Spiking (Gerstner and Kistler 2002) or pulsed neural networks (PNN) (Maass and Bishop 2001) are another 

class of ANNs which have been applied to activity classification problems. Whereas most ANNs accept a 

relatively small number of continuously varying inputs, PNNs work with a much larger number of binary 

inputs and can be implemented very efficiently in hardware. Van Laerhoven and Gellersen (2004) compared 

the performance of a PNN, using inputs from tilt switches, with an approach which used standard 

accelerometer data and a self organising map (van Laerhoven and Cakmakci 2000) (Section 5.11). Although 



tilt switches did not perform as well as the accelerometer-based approach, relatively good classification 

accuracy was demonstrated for a range of daily activities, especially static postures. 

 

5.6 Support Vector Machines 

 

Support Vector Machines (SVMs) (Cristianini and Shawe-Taylor 2000; Vapink 1998) constitute a popular 

machine learning method which is based on finding optimal separating decision hyperplanes between classes 

with the maximum margin between patterns of each class. Additionally, by using the so-called kernel 

functions, they can project the data from the original feature space they lie in, to another higher dimensional 

space. In this way, a linear separation in the new space becomes equivalent to a non-linear classification in 

the original space. An optimisation technique is used to find the optimal separating hyperplanes that perform 

the required classifications. 

 

SVMs have only been applied in a small number of activity classification studies. Huynh and Schiele 

(2006a) combined a multiple eigenspaces approach (Section 4.6) with SVM and were able to consistently 

outperform a Naive Bayes approach even with very small amounts of training data. In another study, Krause 

et al (2005) used an SVM and showed better performance of frequency-domain over time-domain features 

for the recognition of eight daily activities.  

 

Three studies have used SVM techniques to differentiate between simulated falls and other activities. Doukas 

and Maglogiannis (2008) collected data from a microphone and tri-axial accelerometer and were able to 

accurately differentiate between falls and walking and running in two subjects . Zhang et al (2006b) also 

used features derived from a waist-mounted accelerometer and demonstrated a fall recognition accuracy of 

96% across 12 subjects. In another study Zhang et al (2006a) collected data from a tri-axial accelerometer 

embedded in a mobile phone which was either carried in the subject’s pocket or hung around their neck. 

Classification was performed by first identifying potential falls using a SVM algorithm. True falls were then 

confirmed by using features, extracted with a dimensionality reduction approach (Section 4.6), as input to a 

kNN classifier. With this approach they demonstrated high recognition accuracy (>92%), although this 



dropped to 84% when they attempted to identify falls from other high intensity activities, such as running 

and jumping. 

 

5.7 Naive Bayes and Gaussian mixture models 

 

The Bayesian classifier is based on the estimated conditional probabilities or likelihoods of the signal 

patterns available from each activity class. Given such likelihoods, the probability of a new unknown pattern 

having been generated by a specific activity can be estimated directly  With a Naive Bayes classifier the 

input features are assumed to be independent of each other. With this assumption it is possible to express the 

likelihood function for each activity, as the product of n simple probability density functions, where n is the 

number of features. These functions are typically expressed as one-dimensional Normal distributions. 

Although the assumption of feature independence is often violated, the Bayesian approach is popular due to 

its simplicity and ease of implementation. A more general version of the Naive Bayesian is Discriminant 

Analysis, where cross-correlations between features are taken into account. For further details the reader is 

directed to (Duda et al 2001; Theodoridis and Koutroumbas 2006). 

 

Mixed results have been reported when the Bayesian approach to activity classification has been compared to 

other methods (Table 4). For example, Maurer et al (2006) and Ravi et al (2005) found this approach to 

either outperform or match the classification accuracy of other methods, whereas Bao and Intille (2004) 

found low levels of classification accuracy. Bao and Intille (2004) suggested that the reason for this poor 

performance may have been the questionable assumptions that acceleration features can be considered 

conditionally independent and modelled by a normal distribution. Other studies which have used the 

Bayesian approach are Huynh and Schiele (2006a), Kern et al (2003) and Wu et al (2007). In this latter study 

Wu et al (2007) developed a generic classification method which could discern when to use available sensors 

to achieve a specified level of certainty. They demonstrated their approach through a case study in which 

they distinguished between different types of limp using accelerometers and knee-angle sensors. 

 

A Gaussian Mixture Model (GMM) (Haykin 1999) operates along similar principles to a Bayesian classifier. 

However, the likelihood function is not assumed to be a single Gaussian probability density. Instead, it is 



assumed to be of unknown shape and functional form and thus approximated by a weighted mixture of 

Gaussian functions. The weights and the parameters (centres and covariances) of the mixture components are 

calculated using the expectation-maximisation (EM) algorithm. Allen et al (2006) employed this approach 

using time-domain features to construct separate GMMs for a number of movements/postures. To train the 

GMMs and calculate the parameters they used an approach similar to EM but which employed a statistical 

estimate proposed in the field speech recognition. Classification of test data was achieved by selecting the 

GMM (activity) with the highest probability of having produced that particular set of features. Allen et al 

(2006) showed that, provided  subject-specific training was used, the GMM outperformed a hierarchical 

classifier (Table 4). 

 

5.8 Fuzzy Logic 

 

Fuzzy logic is derived from fuzzy set theory and uses reasoning which is approximate rather than precisely 

defined. It allows mapping from a set of inputs to one or more outputs via a set of if-then statements called 

rules. For an activity classification problem, features derived from body-worn sensor signals constitute the 

inputs, with the outputs being fuzzy truths corresponding to each class of activity. Information flows through 

a fuzzy system via a number of steps. Firstly, the inputs (or features) are assigned membership to fuzzy sets 

via appropriate membership functions. In contrast to classical set theory in which a data point’s membership 

is either in or out, by allowing the membership function to range between 0 and 1 fuzzy set theory permits 

partial membership in multiple sets,. Figure 6 illustrates example membership functions which could be used 

to describe the size of an impact deceleration in terms of three sets: low, medium or high impact. As an 

example, a dotted vertical line has been used to specify a deceleration value which has the membership 

function values of 0, 0.2 and 0.8 for high, medium and low respectively. Once each input has been assigned 

membership of a fuzzy class, the rules can be applied to produce a corresponding output. For an activity 

classification problem, this output is a membership value, or fuzzy truth, ranging from 0 to 1 for each class 

of activity. The classification result is then normally taken to be the activity with the maximum fuzzy truth. 

 

Using fuzzy logic, it is possible to reason with imprecise concepts. As such, fuzzy logic is sometimes better 

suited for dealing with real-world problems than conventional logic which is normally used in hierarchical or 



decision tree classification schemes. Despite this, fuzzy logic has only been applied to a limited number of 

activity classification problems. Lee and Mase (2002) applied this approach, first using simple heuristic 

features to identify different static postures, and then using the fuzzy classifier to differentiate between 

different movements. They defined membership functions in terms of the standard deviations of the sensor 

signals and the short-term change in orientations, calculated from the gyroscope signal. By using a set of 

rules based around the min operation (the fuzzy equivalent of AND), Lee and Mase (2002) were able 

distinguish between different gaits with good accuracy (>90%).  

 

The Mamdani fuzzy inference method is one of the most common techniques for developing a fuzzy logic 

classifier. With this approach it is possible to specify certain membership functions and then to develop a set 

of rules which allows the training inputs (features) to be mapped to the training outputs (activity classes). 

Salarian et al (2007) used this method as part of a three-stage activity classification scheme. This scheme 

first used a statistical classifier to identify sit-to-stand and stand-to-sit transitions and then employed a 

threshold-based approach to identify periods of walking and lying. Finally, a fuzzy classifier was used to 

identify periods of sitting and standing. This classifier was developed using membership functions 

constructed from a knowledge of activity states before and after period of interest. Classification accuracies 

obtained using this approach were shown to be better than those obtained using simple threshold rules 

(Najafi et al 2002). 

 

Boissy et al (2007) used Mamdani’s fuzzy inference to identify falls. Data from a tri-axial accelerometer 

were used as input to a fuzzy classifier and the amplitude of each acceleration component used to determine 

membership values for the classes: low, medium and high (Figure 6). A total of 27 rules were used to 

produce the output, which was expressed in terms of a three-class membership function (‘no’, ‘maybe’ and 

‘yes’) representing the occurrence of a fall. The value of this output function was then combined with 

knowledge of body orientation using conventional Boolean logic to determine whether a fall had occurred. 

By collecting a large dataset of fall and non-fall events from 10 subjects they were able to demonstrate 

average fall detection accuracies ranging between 86 and 93%, depending on sensor location. 

  

5.9 Markov Chains and Hidden Markov Models 



 

For certain classification problems, some transitions between activities are more likely to occur than others. 

For example, it is highly unlikely that an individual would sit down directly after descending stairs, but 

would be likely to start walking. A Markov chain is a discrete time stochastic process in which each activity 

is represented as a different state. Markov chains can be used to represent the likelihood of transitions 

between different activities.  

 

A HMM is similar to the Markov chain, but the state of the model at any given time is unknown (or hidden) 

and can only be determined from observable parameters which depend on the state. By contrast to the 

Markov chain, the HMM can be used directly for activity classification problems. The observable parameters 

are the features derived from body-worn sensor data, with the states corresponding to the different activities. 

Unlike a Markov Chain, states in a HMM can correspond to more than one activity. As with previous 

classification techniques, a HMM is first trained using example data. Once trained, it can then be used to 

determine the most likely sequence of state transitions (and thus activities) which could have resulted from 

an observed sequence of features. HMMs are trained by determining state transitions along with the 

probabilities that each possible set of observations (features) will be observed for a given state. These 

probabilities are obtained using the Baum-Welch algorithm (McLachilan and Peel 2000). In activity 

classification studies, HMMs have been used as a single classifier (Pober et al 2006) and as part of  a two-

stage classification scheme (Lester et al 2006; Lester et al 2005; Ward et al 2006). They have the advantage 

over other classifiers that they can be used to model any constraints that are imposed on the sequence in 

which activities can occur.  

 

Pober et al (2006) used a HMM to recognise four different activities using only one computationally simple 

input feature (Signal Magnitude Area (Section 4.1)). In their model they used three states per activity and 

achieved an overall classification accuracy of 80%, with most misclassifications arising due to confusion 

between level and uphill walking.  Lukowicz et al (2004) and Ward et al (2006) used HMMs to classify a 

range of workshop activities, such as using a saw or screw driver, from body-worn accelerometers and 

microphones. Features derived from the accelerometer data were used as input to an HMM and the output 

combined with that of a separate classifier for the sound data. Using this approach they were able to identify 



the different workshop activities with an accuracy of 74-78% with subject-specific training (Ward et al 

2006). 

 

Lester et al (2006; 2005) used the HMM formulation as part of a two-layer classification for differentiating 

between a range of daily activities. The output probabilities from a large number of static binary classifiers 

(Section 5.10) were used as input to the HMM. The addition of the HMM layer allowed the classifier to 

account for sequence constraints thereby increasing the accuracy of activity recognition by as much as 10-

15% (Lester et al 2006). It also had the effect of smoothing out sporadic errors which occurred when the 

simple static classifiers were used alone, ensuring temporal smoothness in the final activity profile. 

 

For applications in which the aim is not to determine a continuous activity profile from a set of observed 

features, but simply to know transition probabilities to subsequent activities a simple Markov chain can be 

used. Krause et al (2005) used Markov chains to determine the optimal strategy for selectively sampling 

sensor data, demonstrating the potential to reduce power consumption. Specifically, for activities which were 

known to have short duration, a short sampling interval was selected, whereas for longer duration activities, 

the sampling interval was increased. Markov chains have also been used as part of unsupervised learning 

algorithms (Krause et al 2003; van Laerhoven and Cakmakci 2000), for details see Section 5.11.  

 

5.10 Combining Different Classifiers 

 

Meta-level classification schemes have recently gained popularity within the biomedical community. They 

improve the performance of individual classifiers by combining their output using different techniques. 

These include majority voting (where the majority class is accepted), stacked generalisation (which trains the 

base classifiers and then uses their predictions as data to a new learning stage), or boosting (which assigns 

weights to the training patterns to combine the performance of weak classifiers) (Theodoridis and 

Koutroumbas 2006; Webb 2002). Ravi et al (2005) used a meta-level classification scheme in a pilot study 

with two subjects who performed eight common activities. Five base-level classifiers were used in their 

study, including SVMs, decision trees, kNN and Naive Bayes (Section 5.7). In general, when an inter-subject 

design was used, the boosted SVM was shown to outperform other meta-level classification schemes. 



 

AdaBoost is a type of adaptive boosting that incrementally trains classifiers by suitably increasing the pattern 

weights to favour the misclassified data. Thus, it combines multiple weak classifiers to create a single more 

powerful one and has been used by Lester et al (2006; 2005) and van Laerhoven and Gellersen (2004). 

Lester et al (2006; 2005) studied 10 common daily activities deriving a large number of statistical and 

frequency-domain features from a range of sensors. They then constructed a set of weak binary classifiers, 

each of which accepted only a single feature as input and obtained a classification result from a weighted 

combination of the weak classifiers. They compared the performance of two different weak classifiers: a 

discriminative decision-stump (a binary decision tree classifier constrained to the use of a single feature) and 

a generative Naive Bayes model (Section 5.7) and found the Bayesian approach to perform best. 

Classification accuracy was then improved by using the output from the weak classifiers as input to a HMM 

(Section 5.9). 

 

5.11 Unsupervised learning 

 

Unsupervised learning techniques (Duda et al 2001; Theodoridis and Koutroumbas 2006) can be used for the 

analysis and interpretation of body-worn sensor data without the need for activity labels for each data 

window. In contrast to supervised methods, where the classifier is trained to identify unseen windows of 

sensor data, unsupervised approaches are used to identify clusters of related patterns in the feature space. 

Ideally each of these clusters will correspond to a different activity or subclass. Such techniques have the 

advantage that they allow exploratory data analysis and investigation of the importance of individual 

features. Also, once the cluster structure has been determined a process of labelling of the clusters, followed 

by a supervised learning layer is often adopted. This can largely reduce the cost of labelling large datasets. 

By combining unsupervised with supervised approaches, it is possible to develop off-the-shelf systems 

which can be trained by the user with only occasional input. This allows for considerable flexibility and 

adaptation to new scenarios inevitably encountered by the real-world user. In addition, unsupervised learning 

has the potential to be used as the first stage of a system for detecting adverse events, such as falls, which 

may differ significantly from typical daily activity patterns. Despite their potential usefulness in the field of 

activity monitoring, their application has been limited to only a few studies. 



 

Van Laerhoven and Cakmakci (2000) were the first to demonstrate the potential of unsupervised learning 

techniques in activity monitoring. They defined a feature space from a number of simple time-domain 

features obtained from two thigh-mounted accelerometers. A Kohonen self-organising feature map (SOM) 

was then used to identify localised patterns within the feature space. A SOM can be considered an array of 

discrete nodes or neurons, used to store projections of the original data to a much lower dimensional feature 

space. It does so by recognising and maintaining the groupings and proximity characteristics of the data in 

the original space. During unsupervised learning, each original pattern is projected onto the network 

topology and the strongest pattern activation is used to update the weights in the corresponding 

neighbourhoods. Through this process, the clusters and patterns of points within the original high 

dimensional feature space are identified and mapped to well-defined regions of the two-dimensional SOM. 

Once the original data has been grouped in this way it can be labelled with minimal user input and then a 

supervised classification layer added to recognise unknown windows of sensor data. 

 

After associating specific regions of their SOM with one of seven activities Van Laerhoven and Cakmakci 

(2000) added a supervised layer which comprised of a kNN classifier and a Markov chain. Unknown 

windows of sensor data were assigned a potential label via projection onto the SOM after which the kNN 

method was used to locate the closest activity cluster. Finally the transition probabilities, modelled by the 

Markov chain, were used to determine whether a particular transition was likely and the classification result 

modified accordingly. 

 

Krause et al (2003) also used a SOM to develop an unsupervised learning algorithm for interpreting data 

collected from five different types of sensor located within a single arm-mounted unit. Due to the high 

dimensionality of their feature space, they employed an initial PCA stage (Section 4.6) to reduce the 

dimensionality of their data before applying the SOM. Once potential clusters had been identified within the 

SOM, a Markov Chain was used to represent transition probabilities between clusters and a graph reduction 

strategy used to eliminate transient states, ie those with low transition probabilities. With this approach 

Krause et al (2003) were able to automatically identify clusters corresponding a range of different activities. 

 



Unsupervised approaches can be used to identify unusual events from sensor data containing a range of 

repeated activities. This could be of value for a fall detection system, where there is typically no available 

training data (sensor outputs during a fall). Recently Nguyen et al (2007) presented a preliminary study 

demonstrating the potential of unsupervised clustering for the recognition of both usual and unusual events. 

For their study, they used data from a waist-mounted accelerometer as input to an algorithm which combined 

Hidden Markov Models and Gaussian Mixture Models to perform data segmentation and clustering without 

prior knowledge. Each particular activity was represented by a HMM whose density function was estimated 

using a Gaussian Mixture Model. They investigated the degree to which similar activities clustered together 

and showed that optimal results were obtained using ‘raw features’ in comparison to other time-domain 

features. Although their study was carried out on single subject, they demonstrated the potential for an 

unsupervised fall detection system. Future work is required to better understand the potential of this 

approach. 

 

5.12 Overview of machine learning classification techniques 

 

Almost all previously published activity classification studies differ in the type and number of activities and 

in the location, type and number of body fixed sensors. Furthermore, there is considerable variation in the 

number and type of features which are derived from the sensor signals. This is the case, both for studies 

investigating a range of normal activities and those concerned with the identification of falls from everyday 

activities. The variability in activities, sensors and features means that it is not possible to directly compare 

classification accuracies between different studies. However, a number of studies have compared the 

performance of two or more classifiers using exactly the same set of input features and therefore allow us to 

gain some insight into the relative performance of individual classifiers. These studies are summarised in 

Table 4.  

 

Initial inspection of Table 4 suggests that either decision trees or neural networks may give the highest levels 

of classification accuracy for a number of representative activity classification problems. However, in some 

studies differences in accuracy between classifiers are often as low as 1-4%, which may not be statistically 

significant. Furthermore, some studies report differing findings on the relative accuracy of different 



classifiers. For example, Parkka et al (2006) studied eight activities and found that maximal classification 

accuracy could be obtained with a decision tree classifier. In a subsequent study of a similar set of activities, 

performance of the decision tree classifier was considerably lower, with the best performance from an 

artificial neural network. Similarly, although two studies (Lester et al 2005; Ravi et al 2005) obtained 

relatively good performance with a Naive Bayesian classifier, Bao and Intille (2004) found poor performance 

using this approach. 

 

Taken together the studies summarised in Table 4 may suggest there is no one classifier which performs 

optimally for a given activity classification problem. However, many of the different techniques have been 

evaluated using small numbers of subjects. Therefore, there is a need for further studies investigating the 

relative performance of the range of different classifiers for different activities and sensor features and with 

large numbers of subjects. For example, techniques such as SVM and Gaussian mixture models show 

considerable promise but have not been applied to large data sets.. Fuzzy logic and Markov models also have 

the potential to be of value in future algorithms as they can be implemented as either a single classifier or as 

part of a hybrid classification algorithm. 

 

The choice of classifier for any given problem will be determined by a number of considerations. As well as 

accuracy, factors such as ease of development and speed of real-time execution will influence the final 

choice. The following paragraphs briefly summarise the different techniques, giving a simple overview of 

the potential advantages and disadvantages of each method.  

 

The hierarchical approach has been widely used as it is an intuitive approach which can be modified after 

development to include additional activities (Mathie et al 2004a). Although it can take a long time to 

develop, it is normally executed with minimal computational power and is therefore well suited to real-time 

applications. Unlike the hierarchical approach, decision trees use automated algorithms, and are thus faster to 

develop and considerably less user intervention is required. Again, once developed, this classifier can be 

used effectively in real-time (Maurer et al 2006). With both the hierarchical and decision tree approach, the 

classification scheme can be represented graphically and so the underlying rules are easy to understand and 

interpret. 



 

Classification schemes using the kNN approach can be developed rapidly, are highly versatile and can be 

used to classify a large range of different activities. However, on-line execution may be slower than decision 

trees due to the distance evaluation requirements. Similar to the kNN approach, artificial neural networks are 

a very flexible, powerful approach which have the potential to be used for a range of different classification 

problems as well as for predicting functional parameters. Although they have demonstrated high levels of 

accuracy for a number of classification problems (Table 4), they can be slow to train and some types of 

networks difficult to implement. SVMs are also a very powerful and popular method and, although they have 

shown significant potential, they have not been applied to many activity monitoring problems. With this 

approach it is possible to work reliably with difficult and noisy classification datasets, but they may be very 

slow to train with large datasets and difficult to set their kernel type and kernel parameters. 

 

Naive Bayes classifiers are simple to develop and can be executed rapidly. However, they are based on the 

weak assumption of feature independence. Although they have been shown to work well on studies with 

small numbers of subjects, they tend to be outperformed by other classifiers in large studies (Table 4). 

Gaussian Mixture Models are more powerful than the Naive Bayes method. However, it is often difficult to 

set the number of mixtures to obtain optimal density functions. Promising results have been obtained using 

this approach in one study (Allen et al 2006) and further work is required to establish whether it is applicable 

to other activity classification problems. 

 

Fuzzy logic holds considerable promise for activity classification problems as it enables reasoning with 

imprecise concepts. Potential disadvantages of this approach are the difficult construction of appropriate 

membership functions and uniquely interpreting and combining fuzzy rules. A small number of previous 

studies have demonstrated good classification accuracies using fuzzy logic, particularly in falls detection, but 

further work is required to determine the full potential of this approach. 

 

Markov chains are graphical models which contain information on the probability of transition between 

different activity states. Although a simple chain cannot be directly used for classification, it can often lead 

to improved accuracy when combined with other classification techniques. Hidden Markov Models are a 



development of the simple Markov chain and represent a powerful approach for identifying a sequence of 

activities from a sequence of measured features. With this technique, classification of a particular window of 

sensor data depends, not only the observed features, but also on the likelihood of a transition from a previous 

activity. Hidden Markov Models have been shown to be effective both as a single classifier and for 

improving the performance of other classifiers. 

 

Combining classifiers is another very promising approach. As multiple classifiers applied to the same dataset 

create different decision boundaries, they can exhibit different sensitivity to different patterns. Therefore, 

combining them can provide complementary decisions and improve the overall accuracy. Although the 

overall algorithm can be relatively complex, the advantage is that much simpler existing algorithms can be 

combined to create a strong classifier, and hence its application to activity monitoring seems very promising. 

 

Unsupervised learning operates along different principles to the previously discussed techniques. This 

approach can be used to explore the data and, hence, provide insight into the structure of activity data within 

the feature space. It can therefore play a valuable role in the development of supervised classification 

schemes. When unsupervised methods are combined with a supervised layer it is possible to rapidly develop 

individual specific classification algorithms which can be readily adapted to include new activities. However, 

this approach will always require some input from the user. With the limited number of studies utilising this 

approach, there is a considerable need for further work in this area. 

 

6 Conclusion 

 

This article has presented an overview of the different techniques which have been used for activity 

classification from body-worn sensor data. Information has been organised into two principal sections, the 

first dealing with feature generation and simple threshold based classification and the second dealing with 

more advanced classification techniques. Within this framework, features were categorised as heuristic, time-

domain, frequency-domain or time-frequency (wavelet). Heuristic features are derived from a fundamental 

understanding of how a specific movement or posture will produce a characteristic body-worn sensor signal. 

By using such features in simple threshold-based classification schemes, it is possible to accurately 



differentiate between static postures and dynamic activity and to identify falls with high levels of accuracy 

(Bourke and Lyons 2008; Bourke et al 2008).  In order to differentiate between large numbers of dynamic 

movements and postures, it is necessary to use advanced classification schemes which accept as input one or 

more features. In section 5, a range of different classification techniques has been reviewed. Although a 

small number of studies, comparing the performance of different classifiers, suggest that either decision trees 

or artificial neural networks may give the highest classification accuracy, differences are often small. 

Furthermore, there are many other methods such as support vector machines, fuzzy logic and Hidden 

Markov Models which have shown promise in small pilot studies, but have yet to be tested in larger-scale 

studies.  Therefore considerable further work is required to establish the suitability of the different 

techniques for a range of classification problems. 

 

Most previously published activity monitoring studies vary considerably in the choice of sensor placements 

and in the range of activities analysed, which means that comparisons of the results from different studies 

should be treated with caution. Future work in activity monitoring may therefore benefit from the use of a 

standard predefined set of activities and sensor placements (Ward et al 2005). In line with this idea, Noury et 

al (2007) recently proposed a standard set of potential fall scenarios which could be used as a common 

framework to evaluate fall detection algorithms. The identification of similar sets of activities for other 

problems, such as epidemiological studies, rehabilitation and ubiquitous computing may lead towards an 

improved understanding of the relative effectiveness of the different classification algorithms presented in 

this review. 
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Figure Captions: 

 

Figure 1: Defining (a) sliding windows, (b) event-based windows and (c) activity-defined windows along a 

continuous body-worn sensor signal 

 

Figure 2: Wavelet decomposition tree. S refers to the original signal and cA1 and cD1 to the approximation 

and detail coefficients at the first level of decomposition. These two coefficients are obtained by low pass 

and high pass filtering the original signal respectively. Subsequent levels of wavelet decomposition are 

obtained by filtering the approximation coefficient from the previous level. 

 

Figure 3: An example accelerometer signal along with the approximation and detail coefficients at the first 

and second levels of decomposition. It can be seen that the high pass filtering associated with the detail 

coefficient results in the removal of the non-zero offset present in the original signal. 

 

Figure 4: An example hierarchical decision structure. Classification is based on simple threshold rules for 

each of the 4 input parameters. These are 1) waist HP mean , 2) wrist HP mean, 3) Thigh HP mean AC, 4) 

Thigh median frequency. (HP refers to a high pass filtered signal) 

 

Figure 5:  A simple illustration of the k-nearest neighbour approach using a 2D feature space. Training data 

from three separate activities, level walking, walking upstairs and running, has been shown along with an 

unknown data point which is classified as walking upstairs. 

 

Figure 6: Three example membership functions used to specify the input to a fuzzy classification scheme. 

The vertical line represents a particular value of deceleration and corresponds to a separate fuzzy truth value 

for each of the three functions (0 for high impact, 0.2 for medium impact and 0.8 for low impact).   



Table 1: Different applications of wavelet analysis in activity classification 

 

Signal Enhancement 
Najafi et al (2002), Najafi et al (2003), Paraschiv-Ionescu et al 

(2004) 

Identification of Transition Points Nyan et al (2006a), Sekine et al (2000a) 

Generation of Time-Frequency Features 

Nyan et al (2006a), Sekine et al (2000a), Sekine et al (2002), 

Sekine et al (2000b), Tamura et al (1997), Wang et al (2007), 

Preece et al (2008b) 



 

Table 2: Different machine learning techniques used in activity classification 

 

Threshold-Based 

Classification1 

Culhane et al (2004), Uiterwaal et al (1998), Boyle et al (2006), Bussman 

et al (1998c), Makikawa and Iizumi (1995), Busser et al (1997), Najafi et 

al (Najafi et al 2002; 2003), Aminian et al (1999b), Coley et al (2005), 

Sekine et al (2000a; 2000b), Nyan et al (2006a) 

Hierarchical Methods 

Fahrenberg et al (1996), Fahrenberg et al (1997), Lee et al (2003), Mathie 

et al (2004a), Karantonis et al (2006), Parkka et al (2006), Ermes et al 

(2008) 

Decision Trees 
Bao and Intille (2004), Maurer (2006), Parkka et al (2006), Ravi et al 

(2005), Ermes et al (2008) 

K Nearest Neighbour 

Foerster et al (1999), Foerster and Fahrenberg (2000), Bao and Intille 

(2004), Maurer et al (2006), Bussmann et al (2001), Huynh and Schiele 

(2005), Preece et al (2008b), Zhang et al (2006c), Zhang et al (2006a) 

Artificial Neural Networks 

 

Zhang et al (2005), Parkka et al (2006), Pirttikangas et al (2006), Kiani et 

al (1998), van Laerhoven and Gellersen (2004), Mantyjarvi et al (2001), 

Ermes et al (2008), Baek et al (2004), Wang et al (2007) 

 

Support Vector Machines 
Doukas and Maglogiannis (2008), Krause et al (2005), Ravi et al (2005), 

Huynh and Schiele (2006a), Zhang et al (2006b), Zhang et al (2006a) 

Naive Bayes and Gaussian 

Mixture Models 

Bao and Intille (2004), Maurer et al (2006), Kern et al (2003), Ravi et al 

(2005), Huynh and Schiele (2006a), Wu et al (2007)Allen et al (2006) 

Fuzzy Logic Salarian et al (2007), Lee and Mase (2002), Boissy et al (2007) 

Markov Models 

Pober et al (2006), Krause et al (2003), Krause et al (2005), Lester et al 

(2005), Lester et al (2006), Lukowicz et al (2004), Ward et al (2006), Van 

Laerhoven and Cakmakci (2000) 

Combining Classifiers 
Lester et al (2005), Lester et al (2006), Ravi et al (2005), van Laerhoven 

and Gellersen (2004) 

Unsupervised Learning 
Nguyen et al (2007), Van Laerhoven and Cakmakci (2000), Krause et al 

(2003) 

1See Table 3 for studies using threshold-based classification for fall detection 

  



Table 3: Different falls characteristics used in threshold-based fall detection 

 

 

Angular velocity during free fall Nyan et al (2006b), Bourke and Lyons (2008) 

Angular acceleration during free 

fall 
Bourke and Lyons (2008) 

Linear velocity during free fall 
Wu (2000), Bourke et al (2008), Degen et al (2003), Lindemann 

(2005) 

Impact deceleration 

Hwang et al (2004), Lindemann (2005), Bourke et al (2007), Chen et 

al (2005), Karantonis et al (2006), Degen et al (2003), Doughty et al 

(2000) 

Linear acceleration during free 

fall 
Bourke et al (2007) 

Change in orientation 

 

Hwang et al (2004), Bourke and Lyons (2008), Chen et al (2005) 

 

 



 

Table 4: Studies comparing different classifiers 

 

Publication 

(Number of subjects) 

Activities 

 (Number of activities) 

Accelerometer 

Placements 

Inter-subject classification 

accuracy 

Bao and Intille (2004) 

(20 subjects) 

Walking, sitting, cycling, 

running, vacuuming, folding 

laundry & more (20)  

Shank, thigh, 

upper arm, wrist 

and hip  

Decision Tree (84%) 

kNN (83%) 

Naive Bayes (52%) 

Parkka et al (2006) 

(16 subjects) 

Lying, sitting, walking, Nordic 

walking, rowing, cycling & 

more (8) 

Chest and wrist 

Decision Tree (86%) 

Hierarchical (82%) 

Neural Network (82%) 

Maurer et al (2006) 

(6 subjects) 

Sitting, standing, walking, 

ascending/descending stairs & 

running (6) 

Wrist 

Decision Tree (87%) 

Naive Bayes1 (<87%) 

kNN1 (<87%) 

Pirttikangas et al (2006) 

(13 subjects) 

Typing, watching TV, 

drinking, walking upstairs, 

cycling & more (17) 

Both wrists, 

thigh and 

necklace 

Neural Network (93%) 

kNN (90%) 

Ermes et al (2008) 

(12 subjects) 

Lying, sitting, walking, Nordic 

walking, rowing, playing 

football & more (9) 

Hip and wrist 

Neural Network (87%) 

Hierarchical (83%) 

Decision Tree (60%) 

Ravi et al (2005) 

(2 subjects) 

Standing, running, sit-ups, 

vacuuming, brushing teeth, 

walking & more (8) 

Waist 

Naive Bayes (64%) 

SVM (63%)  

Decision Trees (57%) 

kNN (50%) 

Lester et al (2005) 

(2 subjects) 

Walking, driving, jogging, 

ascending/descending in an 

escalator & more (10) 

shoulder 

Naive Bayes (67%) 

HMM (47%)  

HMM & binary  

classifiers (95%) 

Allen et al (2006) 

(6 subjects) 

Sitting, standing, lying 

walking and four postural 

transitions (8) 

waist 

Gaussian Mixture Model2 

(91%) 

Hierarchical (71%) 

 
1 No data was presented on classification accuracy 
2 Some subject-specific training was used for this classifier 

  

 

 


