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Abstract 

 

An inverse dynamics multi-segment model of the body was combined with 

optimisation techniques to simulate normal walking in the sagittal plane on level 

ground. Walking is formulated as an optimal motor task subject to multiple 

constraints with minimisation of mechanical energy expenditure over a complete gait 

cycle being the performance criterion. All segmental motions and ground reactions 

were predicted from only three simple gait descriptors (inputs): walking velocity, 

cycle period and double stance duration. Quantitative comparisons of the model 

predictions with gait measurements show that the model reproduced the significant 

characteristics of normal gait in the sagittal plane. The simulation results suggest that 

minimising energy expenditure is a primary control objective in normal walking. 

However, there is also some evidence for the existence of multiple concurrent 

performance objectives. 

 

 

Nomenclature 

 

anx , any  coordinates of ankle joint centre in global reference frame 

anx&& , any&&  linear accelerations of ankle joint centre in global reference frame 

anx∆  relative displacement of ankle joint along x-axis in stance phase 

)(hs
anx  x coordinate of ankle joint at heel strike 

ftθ , ftω , ftα  angular displacement, velocity and acceleration of foot segment 
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ix , iy  coordinates of the ith  joint centre in global reference frame 

ix&& , iy&&  linear accelerations of the ith  joint centre in global reference frame 

jl  length of jth  body segment 

jθ , jω , jα  angular displacement, velocity and acceleration of body segment 

im  mass of ith segment 

ia
v

 translational acceleration vector for the ith segment’s mass centre 

jiF
v

 j th resultant joint force acting on the ith segment 

eiF
v

 resultant external force acting on the ith segment 

g
v

 gravitational vector 

iI  moment of inertia of the ith segment 

iθ , iα  angular displacement and acceleration of body segment  

jiM  net muscle moment acting on the ith segment at the jth joint 

eiM  resultant external moment acting on the ith segment 

kiM  moment of the resultant joint force at the kth joint acting on the ith 

segment 

giF
v

, giM  ground reaction force and moment acting on left or right foot 

iT  net muscle torque acting at ith joint 

)(
0
ia , )(i

ka , )(i
kb  coefficients in Fourier series representing ith segment angle trajectory 

ω  walking frequency 

cT  walking cycle period 

)(i
pω , )(i

dω  angular velocity of proximal and distal segment at i th joint 

mE  mechanical energy expenditure over a walking cycle 
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aV  average walking velocity over a walking cycle 

L  ankle joint displacement over a walking cycle 

xµ  friction coefficient between the foot and the ground surface 

 

 

Introduction 

 

Although the biomechanics of walking is well understood (McMahon, 1984; Zajac et 

al., 2003a, 2003b), little is known about the neural control strategies involved. Much 

of the research has been empirical, and few have focused on gait simulation (Chow 

and Jacobson, 1971, Davy and Audu, 1987; Marshall et al., 1989; Yamaguchi, 1990; 

Koopman, 1995; Anderson and Pandy, 2001). In predictive gait simulation, 

optimisation techniques have often been employed, where muscle forces and 

movements are determined by minimising a cost function.  

 

The most popular approach to gait prediction has been to combine optimisation with 

forward dynamics, probably because this coincides with the natural sequence of 

neuromuscular control (Zajac and Winters, 1990; Yamaguchi, 1990, Pandy, 2001). 

However, since the system differential equations must be numerically integrated, the 

forward dynamics method leads to very long simulation times. In addition, realistic 

initial guesses for all control inputs (e.g. muscle activations) and initial values for all 

state variables (e.g. joint angular positions and velocities) are required to ensure that 

reasonable gait patterns can be obtained (Pandy, 2001). This depends on the 

availability of measurement data (Marshall et al., 1989; Anderson and Pandy, 2001) 

and compromises the capability of this approach as a predictive modelling tool. 
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In contrast, the inverse dynamics method is very efficient computationally as it does 

not require numerical integration of the system differential equations. In addition, 

initial values for optimisation parameters can be set without the need for measurement 

data and initial values for the state variables are unnecessary. When inverse dynamics 

is applied in gait prediction, simple mathematical functions are used to represent the 

trajectories of the generalized coordinates (Yen and Nagurka, 1987; Koopman, 1995), 

where the function coefficients are the optimisation variables. 

 

Only a few gait predication studies have employed inverse dynamics and optimisation 

(Yen and Nagurka, 1987; Channon, 1992; Koopman, 1995; Chevallereau and 

Aoustin, 2001). Most of these have considered only the single support phase or 

assume an instantaneous double support phase (zero duration). In addition, the foot 

segment was often neglected or assumed to be flat on the floor during stance. 

Moreover, additional trajectory constraints were often imposed on the segmental 

motions to simplify the optimisation problem. For example, Yen and Nagurka (1987) 

modelled the human skeletal system as a five-segment linkage. However, the 

trajectories of the body segments were only predicted for the single stance phase, the 

trunk was assumed to be upright throughout the cycle, and the model was forced to 

move at a constant forward speed. Koopman (1995) employed an eight-segment 

three-dimensional model to simulate normal walking over the whole gait cycle. 

However, all of the motions at the hip, knee and ankle were constrained to follow 

measured data or set to zero, the aim being to predict the unmeasured trunk and pelvic 

rotations, which were represented by Fourier series. 
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In this paper, we present a combined inverse dynamics and optimisation method to 

predict normal human walking. In contrast to previous studies, the model predicts a 

complete gait cycle, including a normal double support phase. The foot segment is 

allowed to rotate freely during stance, rather than remaining flat on the floor. In 

addition, no predefined or measured trajectory constraints are imposed on segmental 

motions. The gait motions and joint torques are predicted from only three simple gait 

descriptors, average walking speed, cycle period and double stance duration, which 

minimizes the requirements for experimental data. 

 

Methods 

 

The multi-segment model 

 

The human body was modelled as a planar (sagittal plane) seven-segment system 

(Figure 1). The interaction between the foot and the floor was modelled as a rigid 

contact, where the contact point is determined by the shape of the foot’s plantar 

surface and the foot orientation. 

 

Referring to Figure 1, the segmental angles 1θ , 2θ , …, 7θ  were used to describe the 

orientation of each body segment with respect to the global reference frame. In the 

double support phase, these segmental angles are not all independent because the 

model becomes a closed loop mechanism. The torques 1T , 2T , …, 6T  are the net 

muscle moments acting on each joint to drive the multi-segment model. 
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Anthropometric data, including segment masses, centre of mass positions and 

moments of inertia, are based on the data of de Leva (1996), which were modified for 

the HAT segment.  

 

Kinematics 

 

In this study, the stance foot was modelled as a rigid body with a curved surface 

rolling on the ground without slipping (Figure 2), such that the foot kinematics during 

the stance phase are described by 

 

 




=

=∆

)(

)(

ftan

ftan

gy

fx

θ
θ

  (1) 

 

where )(hs
ananan xxx −=∆ , where anx  is the current x coordinate of the ankle joint, and 

)(hs
anx  is the x coordinate of the ankle joint at heel strike. 

 

Equations (1) were determined using kinematic data captured in the gait laboratory 

using a six camera Qualisys motion analysis system, where the ankle joint was 

considered to be the mid-point between lateral and medial malleolus (Ren et al, 2005). 

Figure 3 shows the output of the foot model when the roll over shape is described by a 

best fit third order Fourier series. The relative timings of heel-strike and toe-off were 

also based on measurement data. 

 

 

Differentiating Equations (1) twice, the accelerations of the ankle joint centre are, 
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During walking there is at least one foot in contact with the ground throughout the 

gait cycle. Thus, the positions of the other joint centres in the multi-segment model 

were derived from the location of the stance ankle joint.  
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where m is the number of segments in the chain connecting the stance ankle joint to 

the ith  joint  and )( jI  is a sign function, which is equal to 1 when the segment 

belongs to the stance limb, or equal to -1 if the segment is in the contralateral limb. 

 

Differentiating Equation (3) twice, the accelerations of the joint centres are, 
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Thus, given the segment angles, Equations (1) to (4) were used to calculate the 

coordinates of the joint centres and their accelerations. Thereafter, the positions and 
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accelerations of each body segment mass centre were derived using anthropometric 

data. 

 

Kinetics 

 

The inverse dynamics method was employed to calculate joint kinetics and 

mechanical energy expenditure during walking. Since, in predictive modelling, the 

ground reactions are initially unknown, the inverse dynamics method must be based 

only on segmental motions. This differs from the conventional implementation of 

inverse dynamics used in gait laboratory studies (Winter, 1990; Siegler and Liu, 1997), 

where the calculations start from the measured ground reactions.  

 

The equations of motion of the ith body segment can be written as follows, 
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where the segment has in  joints connecting it to other segments. 

 

By combining the equations of motion of all body segments, the sums of the external 

forces and moments can be derived. Since, during walking, the only external forces 

and moments acting on the human body, other than gravity, are the ground reactions, 

these expressions can be written as, 
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where n  is the number of body segments in the model. 

 

Therefore, during the swing phase, the ground reaction force acting on the single 

supporting foot can be obtained directly from Equation (6a). However, in double 

support phase, the ground reaction forces and moment (COP) are indeterminate. In 

order to solve this problem, the linear transfer assumptions shown in Figure 4, and 

introduced in Ren et al, 2005, have been used to model the transfer of the ground 

reactions from one foot to the other during the double support phase. As Figure 4 

shows, these linear transfer assumptions are in good agreement with published ground 

reaction measurements (Winter, 1990). 

 

During gait simulation, firstly, the ground reaction forces on each foot are calculated 

from Equation (6a) and the linear transfer relationships. Starting from the supporting 

feet and working up, segment by segment, the resultant force at each joint is 

calculated using Equation (5a). Then, the ground reaction moments on each foot are 

obtained from Equation (6b) and the linear transfer relationship for the centres of 

pressure. Starting from the feet and working up segment by segment again, the net 

muscle moments at each joint are calculated using Equation (5b). A detailed 

description of this inverse dynamics calculation process has been given elsewhere 

(Ren et al, 2005). 

 

Optimisation and the constraints associated with gait 

 

It has been observed in experimental studies that people’s self-selected walking speed 

normally corresponds to minimum metabolic energy expenditure (Ralston, 1976; 
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Cavagna and Kaneko, 1977). Therefore, in this study, the optimisation problem was 

described as: find segment trajectories that achieve the specified gait parameters, 

whilst minimizing energy cost, and satisfying the constraints associated with a 

walking gait. 

 

The segment trajectories were represented by a set of Fourier series, 
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where n  is the order of the Fourier series and ω = cTπ2  is the walking frequency, 

where cT  is the period of the gait cycle. One of the advantages of using a set of 

Fourier series is that they provide a representation of the gait motions that is implicitly 

cyclic, avoiding the need to introduce explicit constraints. 

 

Power spectrum analysis of reflective marker data, during normal walking, has shown 

that most of the signal power (99.7%) is contained in frequencies below 6Hz (Winter, 

1990). Therefore, a set of 5th order Fourier series were employed to represent the 

segmental rotations, resulting in a total of 11 Fourier coefficients for each segment, 

which were used as the optimisation parameters. 

 

In normal walking, bilateral symmetry can be assumed, that is, movements of the left 

limb mirror movements of the right limb with a half cycle phase difference. Thus, the 

number of DOF representing the 7-segment model is reduced to 4, resulting in 44 

Fourier coefficients being used as optimisation parameters. However, it should be 
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noted that doing this does not impose any symmetry constraint on trunk motion. In 

fact, the optimiser can choose whichever pattern of trunk motion is most energy 

efficient. 

 

 

As suggested by experimental observations of walking energetics (Ralston, 1976; 

Cavagna and Kaneke, 1977; Inman et al, 1994), a minimal energy criterion was 

employed as the objective function. In particular, the total joint work over the gait 

cycle was minimised. 

 

Task constraints, biomechanical constraints and environmental constraints were 

implemented in the optimisation scheme. The task constraints (input gait descriptors) 

were average walking velocity aV , cycle period cT , and double stance duration. The 

biomechanical constraints prevent joint hyperextensions or other unrealistic 

movements. The environmental constraints represent the rules of ground interaction 

during walking. 

 

All of the above leads to the following mathematical definition of the optimisation 

problem. Minimise mechanical energy expenditure over a complete gait cycle, which 

is defined as follows, 

  ∫ ∑
=

−⋅= cT n

i

i
d

i
pim dtTEMinimise

0
1

)()(  )( ωω  

where iT  is the net muscle moment at the ith joint, )(i
pω  and )(i

dω  are the angular 

velocities of the proximal and distal segments respectively. The optimisation 

parameters are )(
0
ia , )(i

ka , )(i
kb  (i=1,2,3,4, k=1,2,3,4,5), which are the coefficients of the 



 13 

5th order Fourier series representing the rotations of trunk, thigh, shank and foot. 

Furthermore, the optimisation is subject to the following constraints: 

(1) Segment motion constraints: 

],0[  ,)(0 ci Ttt ∈≤≤ πθ  (i=1,2,3,4) 

(2) Joint motion constraints: 

],0[  ,)()(  ,)()( )2(
max34

)2(
min

)1(
max32

)1(
min cTttttt ∈≤−≤≤−≤ θθθθθθθθ  

(3) Kinematic constraints: 

0)( >tytip  for a swing foot and 0)( =tytip  for a stance foot, where tipy  is the vertical 

position of the foot’s lowest point. 

(4) Kinetic constraints: 

0)( >tFy  and x
y

x
x tF

tF µµ <<−
)(

)(
 for a stance foot, where xµ  is the friction coefficient 

between the foot and the ground surface 

(5) Stride length constraint: 

caancan TVxTx ⋅=− )0()(  

 

For the purposes of calculating the energy cost from the inverse dynamics calculations, 

200 discrete calculation points were used over the gait cycle. The constraints defined 

above, and the representation of the segmental rotations by a set of finite Fourier 

series, ensure that solutions for this optimisation problem are valid cyclic walking 

gaits. However, this does not guarantee that they will be realistic.  

 

The optimisation scheme was implemented in MATLAB using a Sequential Quadratic 

Programming (SQP) algorithm (Gill et al., 1981) from the optimisation toolbox. The 

three input gait descriptors (average walking velocity aV  = 1.5 m/s, gait cycle period 
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cT = 1.0 s and double stance duration = 0.18 s) were obtained from the gait 

measurement data of one male subject (age: 38years, weight: 101.7kg, height: 178cm). 

A detailed description of the experimental procedures has been given elsewhere (Ren 

et al, 2005). The initial values of the optimisation parameters (Fourier coefficients) 

were set such that the model stands upright and stationary. In other words, except for 

the constant offset terms ()(
0
ia ), all of the Fourier coefficients were set to zero. In 

order to avoid finding a single local minimum, different initial values were randomly 

selected. These all represented stationary postures close to the upright position, as 

these were found to have a very good chance of converging to a solution. Due to the 

highly non-linear nature of the gait model, there appeared to be many local minima. 

 

 

Results 

Although many optimisation solutions were found, based on the major features of the 

gait patterns, they appeared to fall into 4 distinct families of solutions, with only small 

differences between members of the same family. We believe that these four families 

represent just four local minima and that the small differences are related to the 

precision of the optimisation process and the sensitivity of the objective function close 

to the true minima.  The four gait patterns (families) are illustrated in Figure 5. Each 

family of gait patterns is represented by the member with the lowest energy cost. The 

gait patterns in Figures 5(a), 5(b) and 5(c) differ from normal walking in certain 

respects, which results in higher mechanical energy expenditure. The solution with 

the lowest energy consumption (Figure 5(d)) also yields the most realistic gait pattern. 

This suggests that deviations from a normal gait pattern lead to increased energy cost, 
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which provides further evidence that minimisation of energy consumption is a feature 

of normal walking. 

 

The predicted torso and lower limb joint rotations for the minimum energy solution 

are depicted in Figure 6 and compared with gait measurement data. Over most of the 

gait cycle, the majority of the predicted motions are in good agreement with the 

measurement data. The largest differences occur in the trunk segment. Although the 

overall trend agrees with the gait measurements and the reported data in the literature 

(Inman et al., 1994), the amplitude of fluctuation is noticeably larger. This difference 

could be due to the arms and pelvis not being considered, which probably moderate 

the trunk’s angular fluctuations during normal walking. Another notable discrepancy 

is thigh rotation, which is much lower than the measured data shortly after opposite 

heel strike, thereby resulting in an increased range of thigh rotation. This is probably 

because the model does not include pelvic transverse rotation, which increases stride 

length, and the model compensates by increasing the thigh’s angular displacement to 

achieve the specified stride length. 

 

In Figure 7, the predicted ground reaction forces are compared with force plate data. 

Although agreement is reasonable where trends are concerned, there are unexpected 

fluctuations in the predicted forces. This probably arises from model simplifications, 

for example, because rotations of the pelvis are neglected. 

 

 

Discussion 
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In this study, all segmental motions and ground reactions were predicted from only 

three simple gait descriptors: average forward velocity, gait cycle period and double 

stance duration, which minimizes the requirements for measurement data. No 

prescribed motion patterns or measured trajectories were imposed on the model. This 

is in contrast to previous work using a forward dynamics approach to gait prediction, 

where the initial and final kinematic states where taken to be as measured and 

imposed as optimisation constraints (Anderson and Pandy, 2001). 

 

The predicted motions agree well with the measurement data over most of the gait 

cycle. The agreement with measured ground reaction forces is reasonable, but there 

are unexpected fluctuations. Moreover, among the local minima found, the solutions 

with the lowest energy consumption produced the most realistic gait patterns. This 

implies that minimizing energy cost is a primary motor control objective in normal 

walking. This seems a reasonable inference for the lower limbs, since it has been 

found that the cyclic movement of the legs accounts for the majority of the energy 

cost of walking (Pierrynowski et al, 1980). This is supported by the fact that the 

predicted motions of the lower limbs showed better agreement with the measured data 

than those of the trunk segment. 

 

The large predicted trunk motions are partly explained by the fact that the arms and 

pelvis are not modelled.  However, it has been shown in experimental studies that 

head motion is smoother than that of the pelvis and the shoulder (Cappozzo et al., 

1978; Cappozzo, 1981), which may be due to the requirement to protect the visual and 

vestibular systems from excessive mechanical disturbance. If so, minimisation of head 

excursions, rather than energy cost, may be the primary control criterion for trunk 
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motions. This suggests that multiple performance objectives are employed in human 

walking (Marshall et al, 1989). 

 

The differences between the model predictions and experimental data are probably a 

result of the limitations of the seven-segment model. Many of the discrepancies may 

be due to the model being limited to the sagittal plane and the fact that the pelvis and 

arms have been omitted. Pelvic transverse rotation increases stride length and 

decreases the angular thigh excursion. Moreover, pelvic tilt can help to decrease and 

smooth the trajectory of the body mass centre (Inman et al, 1994). 

 

The use of inverse dynamics, instead of forward dynamics, has several advantages 

including its computational efficiency, which is very important for predictive models 

that are based on optimisation techniques. Since no numerical integration of the 

differential equations is involved, the execution time for each optimisation iteration is 

greatly reduced. For example, the prediction model proposed in this paper required 

only 20 minutes of CPU time to converge to a minimal energy solution (Intel Pentium 

4, 3.2 GHz). Another advantage of inverse dynamics is simpler implementation of the 

kinematic and kinetic constraints associated with walking. 

 

The authors plan to extend this work by creating a full three dimensional gait 

prediction model. In addition, some of the variables that are currently fixed (gait cycle 

duration, stride length etc) could be free to vary during optimisation, allowing further 

investigation of the velocity-stride length relationship during human walking. 
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Figures and Captions 

 

 

 

Figure 1  The seven-segment model including 6 joints and the following segments: 

the right and left thighs, shanks, and feet together with a HAT segment (head, arms 

and trunk). Segmental angles 1θ , 2θ , …, 7θ  are defined with respect to the X-axis of 

the global reference frame, counter-clockwise being positive. 1T , 2T , …, 6T  are the 

net muscle moments acting at each joint, counter-clockwise being positive. 

 



 23 

 

 

Figure 2  The ankle-foot kinematic relationships during foot rollover in the stance 

phase. The foot angular displacement is defined by the line connecting the ankle joint 

centre and the 2nd metatarsal, and the x-axis. The displacement of the ankle joint along 

the x-axis is measured from the position at heel strike. 
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Figure 3  Mathematical representation of ankle-foot kinematics during stance phase, 

(a) x coordinate of ankle joint and (b) y coordinate of ankle joint, using 3rd order 

Fourier series (black lines) compared with measurement data (circles). The subject 

(age: 38years, weight: 101.7kg, height: 178cm) walked at 1.52 m/s, and the cycle 

period was 0.98 s. Inset is the time trajectory of stance foot rotation angle in the 

sagittal plane from heel strike to toe off, i.e. from 32% to 100% of the gait cycle. 
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Figure 4  Calculated transfer ratios (solid line), based on linear assumptions, 

compared with measurement data from Winter (1990). xrF , yrF , xlF  and ylF  are the 

horizontal and vertical ground forces at the right and left foot. rCoP  and lCoP  are 

centres of pressure for right and left foot. CoP  is defined as ground reaction moment 

about the ankle joint divided by vertical ground force yz FM . In the double support 

phase from right heel contact (HCR) to left toe off (TOL), the vertical force transfer 

ratio fytr _  increases from 0 to 1, the horizontal force transfer ratio fxtr _  increases from 

)(
_
HC

fxtr  to )(
_
TO

fxtr , while the CoP  transfer ratio coptr _  increases from 0 to 1. 
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Figure 5  Some typical gait patterns (local minima) found during the random 

optimisation runs. The model (weight 101.7 kg) walked at 1.50 m/s, with a cycle 

period of 1.0 s. The right limb swing phase is from 0 to 32%, and the stance phase is 

from 32% to 100%. The double support phase is from 32 to 50% and from 82 to 

100%. (a) stiff-knee gait with limited knee flexion during swing phase, mechanical 

energy expenditure 510.50J. (b) inadequate knee extension in stance phase, energy 

cost 419.39J. (c) excessive ankle plantar flexion and consequently inadequate knee 

extension at opposite heel strike, energy cost 383.17J. (d) gait pattern which best 

reproduced natural human walking, lowest energy cost 285.22J. 
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Figure 6  Predicted rotations of the trunk (a), right hip (b), right knee (c) and right 

ankle (d) in the sagittal plane (black lines), compared with measured data (grey lines) 

from 4 repeated trials for one subject (age: 38years, weight: 101.7kg, height: 178cm). 

The average walking speed was 1.50 m/s, and the average cycle period was 1.0 s. The 

swing phase for the right limb is from 0 to 32%, and the stance phase is from 32% to 

100%. The double support phase is from 32 to 50% and from 82 to 100%. 
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Figure 7  Predicted anterior-posterior ground reaction force (a) and vertical ground 

reaction force (b) (black lines), compared with recorded force plate data (grey lines) 

from 4 repeated trials for one subject (age: 38years, weight: 101.7kg, height: 178cm). 

The average walking speed was 1.50 m/s, and the average cycle period was 1.0 s. The 

swing phase for the right limb is from 0 to 32%, and the stance phase is from 32% to 

100%. The double support phase is from 32 to 50% and from 82 to 100%. 


