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Abstract: A mathematical model for nonlinear quadratic convection with non-Fourier heat 

flux in coating boundary layer flow of a Maxwell viscoelastic fluid is presented. Nonlinear 

quadratic thermal radiation and heat source/sink effects are also considered. The 

transformations of Lie symmetry are employed. The resultant nonlinear differential equations 

with defined boundary conditions are numerically solved using the spectral relaxation 

technique (SRM), a robust computational methodology. Graphical visualization of the 

velocity and temperature profiles is included for a range of different emerging parameters. 

For skin friction and the Nusselt number, numerical data is also provided. There is a very 

strong correlation between the outcomes of the current study and those published in the 

literature. Higher values of the nonlinear thermal radiation, mixed convection, thermal 

conductivity, nonlinear convection, and heat source/generation parameters increase 

temperature as well as the thickness of the thermal boundary layer. However, a higher Prandtl 

number, thermal relaxation parameter, and heat sink/absorption parameter all reduce 

temperature. Deborah number causes velocity to be raised (and momentum boundary layer 

thickness to be lowered), whereas raising nonlinear mixed convection parameter causes 

velocity to be decreased (and momentum boundary layer thickness to be increased), and a 

velocity overshoot is calculated. The models are applicable to simulations of high-

temperature polymeric coatings in material processing. 

Keywords: Maxwell fluid; nonlinear quadratic convection; non-Fourier heat flux; Lie 

symmetry transformation; computational spectral approach.  
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1. Introduction 

 Mixed convection, which occurs when there are both forced and free convection flows 

present, has a wide range of applications. These include heat exchangers, solar thermal 

systems, electronic systems and drying systems. The temperature differences arising in 

various practical applications can be excessive; consequently, the density in the buoyancy 

term (upward force) varies in a nonlinear fashion in response to changes in temperature. The 

nonlinear density temperature fluctuation has an essential impact on the flow field. Thus, the 

presence of quadratic density variation with temperature is important for determining the heat 

transfer rate in the boundary layer flow. This is referred as quadratic thermal convection. 

Goren [1] introduced this nonlinear convection term in the following form: 

( )
2

ambT T  = − − with  represents the thermal expansion coefficient with second order. 

With the nonlinear Boussinesq approximation, he observed a significant change in the heat 

transfer characteristics. Later, using various Newtonian and non-Newtonian fluid models, 

multiple authors investigated nonlinear quadratic convection in various geometrical 

configurations. Mahanthesh et al. [2] addressed quadratic convection in dusty Casson and 

Carreau flow from a stretched surface, taking into account nonlinear thermal radiation, non-

uniform heat source/sink, and convective wall condition effects. Hayat et al. [3] employed a 

non-Darcy model to examine nonlinear convection with heat and mass transport in porous 

media. Unsteady Casson nanofluid flow through a cylinder with quadratic convection was 

also explored by Reddy et al. [4]. Akolade [5] studied non-Newtonian squeezing flow with 

quadratic convection and velocity slip effects. Patil et al. [6] reported on quadratic convection 

in triple-diffusive nonlinear nanofluid convection flow external to a wedge. Shahid et al. [7] 

investigated bi-directional non-Newtonian convective flow along a stretched surface using a 

spectral technique.  

Thermal radiation is associated with high temperature phenomena and arises in many 

applications in engineering and science, including nuclear reactor cooling, combustion 

processes, space technology, power generation and materials fabrication. In the past years 

many authors used nonlinear and linear thermal radiation flux models to study radiative 

effects in various flows of both Newtonian and non-Newtonian fluent media. For instance, 

Shaw et al. [8] computed the nonlinear thermal radiation effects in hybrid Cross non-

Newtonian nanofluid and quadratic convection at different Prandtl numbers with a Runge-

Kutta method. The consequences of Brownian motion and thermophoresis on bioconvection 

nanofluid mobility with nonlinear thermal radiation, magnetic field, and quadratic chemical 

process effects were thoroughly studied by Makinde and Animasaun [9]. Sreedevi et al. [10] 

compared the hybrid nanofluid flow transport characteristics across a wedge with Al2O3 and 

TiO2 nanoparticles under nonlinear thermal radiation using a Galerkin finite element 

technique. The consequences of nonlinear thermal radiation and activation energy on 

viscoelastic second-grade convective flow were modelled by Khan et al. [11]. Khan et al. [12] 

explored the impact of thermal stratification and nonlinear thermal radiation on a Sutterby 

fluid’s convective flow. The numerical solutions were analyzed using the bvp4c method. 

Mahanthesh et al. [13] computed the effects of nonlinear thermal radiation and quadratic 

convection on multiphase flow from a vertical plate with a finite difference technique. 

Unsteady boundary layer flow including quadratic convection, multiple diffusions, and 

nonlinear thermal radiation was the focus of an entropy research by Patil and Goudar [14]. 

In order to model convective flows of Oldroyd-B and Casson non-Newtonian fluids in the 

presence of nonlinear thermal radiation and chemical reactivity, Algehyne et al. [15] 

employed the homotopy approach. All these investigations showed a strong modification in 

thermal characteristics with radiative flux and quadratic convection effects.  

The above studies were generally confined to the classical Fourier heat flux model [16] 

which neglects thermal relaxation effects and is parabolic in nature. Cattaneo [17] extended 



 3 of 22 

 

Fourier's [16] theory by including thermal relaxation time effects producing a hyperbolic 

model. Later, Christov [18] expanded on the Cattaneo model [17] by including the Oldroyd 

upper convected derivative. Later, the generalised Cattaneo-Christov heat-flow model was 

used in several experiments. For instance, Bissell [19] used the Cattaneo-Christov heat-flow 

model to study thermal convection in a magnetized fluid. Layek and Pati [20] investigated 

the behavior of the Fourier heat flow model with convection, chaos, and bifurcation 

phenomena. Mehmood et al. [21] used the non-Fourier heat flux model to explore oblique 

stagnation point flow of an Oldroyd-B fluid, taking into account chemical reaction and 

magnetic field implications. Shamshuddin et al. [22] evaluated swirling thermal convection 

between co-axial spinning disks using a non-Fourier heat flow model and a perturbation 

approach. They discovered a suppression in Nusselt number at the bottom disk with larger 

non-Fourier (thermal relaxation parameter) values, which is due to the delay in thermal 

diffusion in the fluid. Gangadhar et al. [23] used a Cattaneo-Christov heat flow model with 

linear thermal radiation and a Keller-box finite difference technique to investigate the 

hydromagnetic Maxwell viscoelastic nanofluid convection flow. They studied both single-

walled and multi-walled carbon nanotube-based nanofluids and discovered that thermal 

relaxation time and temperature are inversely related. Ibrahim et al. [24] used a Galerkin 

finite element approach to evaluate non-Fourier Oldroyd-B transport from a stretched surface 

in the presence of heat production and absorption. Khan et al. [25] investigated the effects of 

Cattaneo-Christov heat flux, nonlinear thermal radiation, and activation energy on the flow 

of a second grade viscoelastic nanofluid. Waqas et al. [26] used a non-Fourier heat flux model 

with activation energy effects to investigate the dynamics of third grade non-Newtonian 

bioconvection nanofluids. Turkyilmazoglu [27, 28] addressed the non-Fourier Cattaneo-

Christov heat flux model and exponential wall heating with natural convection via a square 

cavity. Bejawada et al. [29] investigated the impact of radiation on chemical reactions 

through a nonlinear surface using a non-Darcy model. To investigate the flow's rheology, 

they used the magnetized casson fluid model. Thermal radiation with viscous dissipation and 

natural convection via a stretched surface was explored by Nalivela et al. [30]. Khan et al. 

[31] investigated the heat transfer radiation influence on micropolar fluids with varying 

thermal applications using solutal boundary conditions.  

According to a review of the literature, the nonlinear quadratic convective boundary 

layer flow of a viscoelastic Maxwell fluid from a stretched surface with nonlinear quadratic 

convection and nonlinear quadratic heat radiation has not been studied. This is the present 

study’s emphasis and uniqueness, which also incorporates heat source/sink and temperature-

dependent thermal conductivity characteristics. Temperature is well known to cause 

significant changes in physical properties and thermal conductivity variation has been 

identified as an important aspect of modern polymer processing [32]. Radiative effects in 

non-Newtonian polymer coatings are also important in the development of emerging 

multilayer sol‐gel optical high reflector surfacing [33]. It is important also to address 

radiative heat transfer in designing more robust thermal barrier coatings (e. g. LPCVD 

ZrB2 coatings) for gas turbine blades using optically opaque materials under high convective 

flow conditions [34-38]. Motivated by these applications, a two-dimensional mathematical 

model is developed for steady non-Fourier non-Newtonian coating flow. A group of Lie 

transformations is deployed. The revised conservation boundary layer equations and 

accompanying boundary conditions are investigated numerically using the spectral relaxation 

technique. The spectral relaxation technique (SRM) solves nonlinear boundary value 

problems of multi-physical reactive magnetic rheological fluids on complicated surfaces with 

great accuracy and numerical stability. The graphical and numerical results for selected 

physical variables are presented, along with a comparison to previously published findings.  

 

2. Mathematical model for Maxwell non-Fourier boundary layer coating flow  
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An incompressible boundary layer coating convection flow of a Maxwell viscoelastic 

fluid over a vertically stretchy stretching surface with non-linear thermal radiation and heat 

source/sink effects is considered. In order to study the impacts of relaxation on the heat 

transfer characteristics, non-Fourier (Cattaneo-Christov) heat flux is also taken into 

consideration. The 𝑥 −axis and 𝑦 −axis of a cartesian coordinate system are oriented along 

the elastic (stretchy) surface and the normal direction, respectively. The assumed surface 

temperature is 𝑇𝑠, whereas the anticipated ambient temperature is 𝑇amb. Furthermore, 𝑢𝑤 =
𝑠𝑥 , where s stands for the stretching rate, provides the surface’s stretching (or elastic) 

velocity. In Fig. 1 below, the physical model is shown. 

 

 
 

Fig. 1 Non-Fourier viscoelastic convective coating flow 

 

Considering these assumptions, the conservation boundary layer equations, including the 

continuity, momentum, and energy equations, may be written as follows [39-40]:   

 

          (1) 

 

(2) 

  (3) 
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Here 𝑀 represents the rheological relaxation time, 𝜈 represents the kinematic viscosity, 

𝑔  represents the gravity, 𝛽, 𝛽1  represent the linear and nonlinear thermal expansion 

coefficients, 𝑁𝑓 represents the Cattaneo-Christov heat-flux relaxation time, 𝜌 the density, 

𝐶𝑝 the specific heat, 𝑄 the heat generation/absorption coefficient, 𝑞 the radiative heat flux, 

and 𝜅(𝑇) represents the variable thermal conductivity.  

It has been discovered that the thermal conductivity 𝜅 of liquid metals changes with 

temperature in an almost linear way in the region 0° to 400°F. (see Kays [41]). As in [42], 

we suppose that the thermal conductivity 𝜅 has the following form. 

 

𝜅(𝑇) = 𝜅amb (1 + 𝜖
𝑇 − 𝑇amb

𝑇𝑠 − 𝑇amb
), 

(4) 

The nonlinear radiative heat flux is defined as: 

 

𝑞 = −
4

3

𝜎⋇

𝑘⋇

𝜕(𝑇4)

𝜕𝑦
, 

(5) 

Where 𝜅amb represents the ambient thermal conductivity, 𝜖 represents the variable thermal 

conductivity parameter, 𝜎⋇ the Stefan-Boltzmann constant, 𝑘⋇ represents the coefficient of 

mean absorption. An optically thick viscoelastic fluid is assumed, and the radiative flux is 

unidirectional. The temperature in equation (5) may be examined in terms of ambient 

temperature using the Taylor series expansion procedure, as shown below [43-44]: 

 

𝑇4 = 𝑇amb
4 + 4(𝑇 − 𝑇amb)𝑇amb

3 + 6(𝑇 − 𝑇amb)
2𝑇amb

2 + ⋯, 

(6) 

The higher terms can be ignored after the quadratic terms in the above equation, giving: 

𝑇4 = 4𝑇amb
4 − 8𝑇𝑇amb

3 + 6𝑇2𝑇amb
2 . 

(7) 

The following are the specified boundary conditions for both the free stream and the surface: 

𝑢 = 𝑢𝑤(𝑥), 𝑣 = 0, 𝑇 = 𝑇𝑠    at    𝑦 = 0. 

(8) 

𝑢 → 0, 𝑇 → 𝑇amb    as    𝑦 → ∞. 

(9) 

Considering the non-dimensional quantities listed below: 

 �̃� =
𝑥𝑠

𝑢𝑤
, �̃� = 𝑦√

𝑠

𝜈
 , �̃� =

𝑢

𝑢𝑤
, �̃� = (𝜈𝑠)−1/2𝑣, 𝑇 = 𝑇amb[1 + �̃�(�̃�𝑠 − 1)], �̃�𝑠 =

𝑇𝑠

𝑇amb
. 

(10) 

Invoking Eqn. (10) in Eqns. (1)-(3), we get: 

 
𝜕�̃�

𝜕�̃�
+

𝜕�̃�

𝜕�̃�
= 0, 

(11) 

�̃�
𝜕�̃�

𝜕�̃�
+ �̃�

𝜕�̃�

𝜕�̃�
+ 𝛼 (�̃�2

𝜕2�̃�

𝜕�̃�2
+ �̃�2

𝜕2�̃�

𝜕�̃�2
+ 2�̃��̃�

𝜕2�̃�

𝜕�̃�𝜕�̃�
) =

𝜕2�̃�

𝜕�̃�2
+ Γ(�̃� + Γ𝑐�̃�

2), 

(12) 
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(13) 

Where 𝛼 represents the Deborah number, Γ indicates the mixed convection parameter, 𝐺𝑟 

indicates the thermal Grashof number, ℜ represents the Reynolds number, Γ𝑐 represents the 

nonlinear convection parameter, 𝛼1 indicates the non-Fourier Deborah number, 𝛾 indicates 

the Prandtl number, 𝜉  indicates the heat source/sink parameter, �̃�𝑠 > 1  indicates the 

temperature ratio parameter and 𝜂 indicates the thermal radiation parameter. The following 

are the definitions of the dimensionless variables: 

𝛼 = 𝑀𝑠, Γ =
𝐺𝑟

ℜ2
, 𝐺𝑟 =

𝑔𝛽(𝑇 − 𝑇amb)𝑥
3

𝜈2
, ℜ =

𝑠𝑥

𝜈
, Γ𝑐 =

𝛽1

𝛽
(𝑇 − 𝑇amb), 𝛼1 = 𝑁𝑓𝑠, 𝛾

=
(𝜌𝐶𝑝)𝜈

𝜅amb
, 𝜉 =

𝑄

𝜌𝑐1𝐶𝑝
, 𝜂 =

8

3

𝜎⋇𝑇amb
3

𝜅amb𝑘⋇
. 

(14) 

The boundary conditions in dimensionless form are defined as: 

 

�̃� = �̃�, 𝑣 = 0, �̃� = 1    at    �̃� = 0, 

(15) 

�̃� → 0, �̃� → 0    as    �̃� → ∞. 

(16) 

3. Implementation of Lie Symmetry transformations 

Defining a stream function  to satisfy the governing continuity equation for the 

dimensionless equations (12)-(16), as follows: 

�̃� =
𝜕Φ̃

𝜕�̃�
, �̃� = −

𝜕Φ̃

𝜕�̃�
. 

(17) 

By virtue of Eqn. (17), then Eqns. (12)-(16) emerge as:  

 

(18) 
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(19) 

The boundary conditions become: 

𝜕Φ̃

𝜕�̃�
= �̃�, −

𝜕Φ̃

𝜕�̃�
= 0, �̃� = 1    at    �̃� = 0, 

(20) 

𝜕Φ̃

𝜕�̃�
→ 0, �̃� → 0    as    �̃� → ∞. 

(21) 

3.1 Transformation of scaling group 

For the formulated equations, we assume the following form of Lie group transformations: 

 

𝜒: {𝑥 = �̃�𝑒𝜀𝑎, 𝑦 = �̃�𝑒𝜀𝑏 , 𝑇 = �̃�𝑒𝜀𝑐, Φ = Φ̃𝑒𝜀𝑑, 

(22) 

Where 𝜺  represents the group parameter, , , ,a b c d are the real numbers which will be 

determined later. The above equation (22) represents the point transformations , , ,x y T  to

, , ,x y T  . Assuming Eqns. (18) – (21) are invariant under the given transformation  . 

Therefore, Eqns. (18) and (19) become:  

 

(23) 
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(24) 

The boundary conditions (20) and (21) become: 

 

𝑒𝜀(𝑏−𝑑) 𝜕Φ

𝜕𝑦
= 𝑒−𝑎𝜀�̃�, 𝑒𝜀(𝑎−𝑑) 𝜕Φ

𝜕𝑥
= 0, 𝑒−𝑐𝜀𝑇 = 1    at    𝑦 = 0, 

(25) 

𝑒𝜀(𝑏−𝑑) 𝜕Φ

𝜕𝑦
→ 0, 𝑒−𝑐𝜀𝑇 → 0    as    𝑦 → ∞. 

(26) 

Using the invariance condition shows the following relationships between the parameters: 

   (27) 

Solving the above set of equations, leads to: 

 

𝑎 = 𝑑, 𝑏 = 𝑐 = 0. 

(28) 

Invoking the above equation (28) into equation (22), gives: 

 

𝜒: {𝑥 = �̃�𝑒𝜀𝑎, 𝑦 = �̃�, 𝑇 = �̃�,Φ = Φ̃𝑒𝜀𝑎, 

(29) 

The terms in the above equation can be expanded in terms of a Taylor series, and ignoring 

higher powers of 𝜺 we have: 

 

𝜒: {𝑥 = �̃�(1 + 𝜀𝑎), 𝑦 − �̃� = 0, 𝑇 − �̃� = 0,Φ = Φ̃(1 + 𝜀𝑎), 

(30) 

and 

𝑑�̃�

𝑎�̃�
=

𝑑�̃�

0
=

𝑑�̃�

0
=

𝑑Φ̃

𝑎Φ̃
, 

(31) 

After solving the above system, we obtained the following solutions: 

  

�̃� = 𝜁, Φ̃ = �̃�ℎ(𝜁), �̃� = 𝑇(𝜁), 
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(32) 

Invoking equation (32) into equation (18-21) yields the following self-similar ordinary 

differential equations for momentum and energy conservation:  

 

ℎ′′′ − 𝛼(ℎ2ℎ′′′ − 2ℎ′ℎℎ′′) + ℎℎ′′ − ℎ′2 + Γ(𝑇 + Γ𝑐𝑇
2) = 0, 

(33) 

(1 + 𝜖𝑇)𝑇′′ + 𝜖𝑇′2 + 𝜂[2𝑇′′ + 6{(�̃�𝑠 − 1)𝑇′2 + (�̃�𝑠 − 1)𝑇𝑇′′}] + 𝛾𝜉𝑇

− 𝛾𝛼1(ℎℎ′𝑇′ + ℎ2𝑇′′) + 𝛾ℎ𝑇′ = 0, 

(34) 

The wall and freestream boundary conditions now assume the following form: 

 

ℎ′ = 1, ℎ = 0, 𝑇 = 1    at    𝜁 = 0,         (35) 

 

ℎ′ → 0, 𝑇 → 0    as    𝜁 → ∞.          (36) 

 

Important wall characteristics in materials coating systems are the skin friction coefficient 

and the Nusselt number. These are defined as follows for the Maxwell fluid and quadratic 

thermal radiation, respectively: 

𝑆𝑥 = −
2𝜚

𝜌(𝑠𝑥)2
, 𝑁𝑥 = −(

𝑥Ξ

(𝑇𝑠 − 𝑇amb)
+ 𝑞)|

𝑦=0

,   

(37) 

In Eqn. (37), the following definitions apply:  

 

𝜚 = [𝜇
𝜕𝑢

𝜕𝑦
− 𝑀 (2𝑢𝑣

𝜕𝑢

𝜕𝑥
+ 𝑣2

𝜕𝑢

𝜕𝑦
)]

𝑦=0

, Ξ = 𝜅(𝑇)
𝜕𝑇

𝜕𝑦
,   

(38) 

Where ( )T  and q  have been defined earlier in Eqns. (4)-(5). The associated non-

dimensional version of Eqn. (37) can be expressed as: 

√ℜ𝑆𝑥

2
= −[ℎ′′(𝜁) − 𝛼(ℎ2(𝜁)ℎ′′(𝜁) − 2ℎ(𝜁)ℎ′2(𝜁))]

𝜁=0
, 

𝑁𝑥

√ℜ
= −[(1 + 𝜖𝑇(𝜁))𝑇′(𝜁) + 𝜂[2𝑇′(𝜁) + 6(�̃�𝑠 − 1)𝑇(𝜁)𝑇′(𝜁)]]

𝜁=0
.   

(39) 

The parameters , , , ,sT  𝝐 in the above equation have been defined in Eqn. (14).  

 

4. Numerical solution of nonlinear non-Fourier coating flow problem 

The spectral relaxation technique (SRM) is used to solve the nonlinear coupled 

differential equations (33)-(34) subjected to boundary conditions (35) and (36). 

 

4.1 The SRM Technique: 

 The SRM technique can be applied on the governing system of differential equations 

by reducing the order of Equation (33). We suppose h k = , then Equations (33)-(34) reduce 

to: 

   (37) 
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(1 + 𝜖𝑇)𝑇′′ + 𝜖𝑇′2 + 𝜂(2𝑇′′ + 6{(�̃�𝑠 − 1)𝑇′2 + (�̃�𝑠 − 1)𝑇𝑇′′}) + 𝛾𝜉𝑇

− 𝛾𝛼1(ℎ𝑘𝑇′ + ℎ2𝑇′′) + 𝛾ℎ𝑇′ = 0, 

(38) 

Now, we apply the Gauss–Seidel relaxation scheme to decouple the reduced system as 

follows: 

ℎ′
𝑡+1 = 𝑘𝑡 , 

(39) 

𝑘′′
𝑡+1 + ℎ𝑡𝑘

′
𝑡+1 = 𝑘𝑡

2 + 𝛼(ℎ𝑡
2𝑘𝑡

′′ − 2ℎ𝑡𝑘𝑡𝑘𝑡
′′) − Γ(𝑇𝑡 + Γ𝑐𝑇𝑡

2), 

(40) 

(1 + 2𝜂 − 𝛾𝛼1ℎ𝑡+1
2)𝑇′′

𝑡+1 + 𝛾ℎ𝑡+1𝑇
′
𝑡+1 − 𝛾𝛼1ℎ𝑡+1𝑘𝑡+1𝑇

′
𝑡+1 + 𝛾𝜉𝑇𝑡+1

= −𝜖𝑇𝑡𝑇
′′

𝑡 − 𝜖𝑇𝑡
′2 − 6𝜂(�̃�𝑠 − 1)𝑇𝑡

′2 − 6𝜂(�̃�𝑠 − 1)𝑇𝑡𝑇
′′

𝑡 , 

(41) 

The corresponding boundary conditions emerge as:   

 

𝑘𝑡+1(0) = 1, ℎ𝑡+1(0) = 0, 𝑇𝑡+1(0) = 1 , 

(42) 

𝑘𝑡+1(∞) → 0, 𝑇𝑡+1(∞) → 0. 

(43) 

Here the terms with subscripts “𝑡 + 1” indicate the current approximated numerics, and the 

terms with subscripts “𝑡” correspond to previous approximated numerics. 

The set of linearized Eqns. (39)-(41) dependent upon boundary conditions (42)-(43) are 

solved utilizing the Chebyshev pseudo-spectral method [45]. Accordingly, the actual area [0, 

∞] is converted to finite length [0, L], where L is elected to be sufficiently large. The 

converted domain is changed to [-1, 1] by utilizing the transformation, 𝜍 = 2𝜁/𝐿, and the 

nodal points among -1 up to 1 are characterized as 𝜍𝑗 = 𝐶𝑜𝑠(𝜋𝑗), 𝑗 = 0, 1, 2, … . , 𝑁, which 

are known as Gauss-Lobatto collocation points. This technique depends on [ 𝑫 ], the 

differentiation matrix which can be approximated in various ways. Here [𝑫] is processed 

following Trefethen [46]. Now, the system of Eqns. (39)-(43) becomes: 

 

𝑫ℎ𝑡+1 = 𝑘𝑡 , (44) 

{𝑫2 + 𝑑𝑖𝑎𝑔[𝑎0,𝑡]𝑫}𝑘𝑡+1 = 𝐶1,𝑡, (45) 

[(1 + 𝜂 − 𝛾𝛼1𝑑𝑖𝑎𝑔[ℎ𝑡+1
2])𝑫2 + 𝛾𝑑𝑖𝑎𝑔[ℎ𝑡+1]𝑫

− (𝛾𝛼1𝑑𝑖𝑎𝑔[ℎ𝑡+1]𝑑𝑖𝑎𝑔[𝑘𝑡+1]𝑫 − 𝛾𝜉𝑰)]𝑇𝑡+1 = 𝐶2,𝑡, 
(46) 

 

The related boundary conditions have the form:  

 

𝑘𝑡+1(𝜁𝑁) = 1, ℎ𝑡+1(𝜁𝑁) = 0, 𝑇𝑡+1(𝜁𝑁) = 1 , 
(47) 

𝑘𝑡+1(𝜁0) → 0, 𝑇𝑡+1(𝜁0) → 0, 
(48) 

Now, construct the compressed form for Eqs. (44)-(46) as follows: 
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Ä11ℎ𝑡+1 = Ë11, (49) 

Ä22𝑘𝑡+1 = Ë22, (50) 

Ä33𝑇𝑡+1 = Ë33, (51) 

Where 

Ä11 = 𝑫, Ë11 = 𝑘𝑡 , (52) 

Ä22 = 𝑫2 + 𝑑𝑖𝑎𝑔[𝑎0,𝑡]𝑫, Ë2 = 𝐶1,𝑡 , (53) 

Ä33 = (1 + 𝜂 − 𝛾𝛼1𝑑𝑖𝑎𝑔[ℎ𝑡+1
2])𝑫2 + 𝛾𝑑𝑖𝑎𝑔[ℎ𝑡+1]𝑫

− (𝛾𝛼1𝑑𝑖𝑎𝑔[ℎ𝑡+1]𝑑𝑖𝑎𝑔[𝑘𝑡+1]𝑫 − 𝛾𝜉𝑰), Ë33 = 𝐶2,𝑡. 
(54) 

 

Here the following notation applies:  

 
𝑎0,𝑠 = ℎ𝑡 ,

𝐶1,𝑡 = −𝑘𝑡
2 + 𝛼(𝑘𝑡

2𝑘𝑡
′′ − 2ℎ𝑡𝑘𝑡𝑘𝑡

′′) + Γ(𝑇𝑡 + Γ𝑐𝑇𝑡
2),

𝐶2,𝑡 = −𝜖𝑇𝑡𝑇
′′

𝑡 − 𝜖𝑇𝑡
′2 − 6𝜂(�̃�𝑠 − 1)𝑇𝑡

′2 − 6𝜂(�̃�𝑠 − 1)𝑇𝑡𝑇
′′

𝑡

},    

(55) 

And 

𝑑𝑖𝑎𝑔[𝑎0,𝑠] = [
𝑎0,𝑡(𝜁0

) ⋯

⋮ ⋱ ⋮

⋯ 𝑎0,𝑡(𝜁𝑁
)
] , 𝑑𝑖𝑎𝑔[ℎ𝑡+1

2] = [
ℎ𝑡+1

2(𝜁
0
) ⋯

⋮ ⋱ ⋮

⋯ ℎ𝑡+1
2(𝜁

𝑁
)
]

𝑑𝑖𝑎𝑔[ℎ𝑡+1] = [
ℎ𝑡+1(𝜁0

) ⋯

⋮ ⋱ ⋮

⋯ ℎ𝑡+1(𝜁𝑁
)
] , 𝑑𝑖𝑎𝑔[𝑘𝑡+1] = [

𝑘𝑡+1(𝜁0
) ⋯

⋮ ⋱ ⋮

⋯ 𝑘𝑡+1(𝜁𝑁
)
]

)

 
 
 
 

,   

(56) 

ℎ𝑡+1 = [ℎ(𝜁0), ℎ(𝜁1), .  .  .  , ℎ(𝜁𝑁)  ]𝑇 , 𝑘𝑡+1 = [𝑘(𝜁0), 𝑘(𝜁1), .  .  .  , 𝑘(𝜁𝑁)  ]𝑇 , 𝑇𝑡+1 =

[𝑇(𝜁0), 𝑇(𝜁1), .  .  .  , 𝑇(𝜁𝑁)  ]𝑇  are vectors of dimensions (𝑁 + 1) × 1 . 𝟎  the vector of 

dimension (𝑁 + 1) × 1  and 𝑰  describes the identity matrices of dimension (𝑁 + 1) ×

(𝑁 + 1). 

The enforcement of boundary conditions on Eqns. (49)-(51) are as below: 

 

Ä11 = [
Ä11

0 … 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

] , ℎ𝑡+1 = [

ℎ𝑡+1(𝜁0)

ℎ𝑡+1(𝜁1)
⋮

ℎ𝑡+1(𝜁𝑁)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

] , Ë11 = [
Ë11

0̅

] , Ä22 = [

1 … 0

Ä22

0 … 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

] , 𝑘𝑡+1 =

[
 
 
 
𝑘𝑡+1(𝜁0)

𝑘𝑡+1(𝜁1)
⋮

𝑘𝑡+1(𝜁𝑁)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]
 
 
 

,

Ë22 = [

0

Ë22

1̅

] , Ä33 = [

1 … 0

Ä33

0 … 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

] , 𝑇𝑡+1 =

[
 
 
 
𝑇𝑡+1(𝜁0)

𝑇𝑡+1(𝜁1)
⋮

𝑇𝑡+1(𝜁𝑁)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]
 
 
 

, Ë3 = [

0

Ë3

1̅

] .

)

 
 
 
 
 
 

 

(57) 

 

The pertinent initial approximations are chosen as below: 
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ℎ0(𝜁) = (1 − 𝑒−𝜁), 𝑘0(𝜁) = 𝑒−𝜁 , 𝑇0(𝜁) = 𝑒−𝜁 . (58) 

The above assumptions obey the boundary conditions (42)-(43) and subsequently the 

approximated values of ℎ𝑡, 𝑘𝑡, 𝑇𝑡 for each 𝑡 = 1, 2, …… are computed by applying the SRM 

scheme. 

 

5. Numerical results and discussion    

This section discusses the graphical and SRM numerical results for various physical 

parameters. We selected the following parametric values in Matlab to execute the numerical 

simulations: 𝛼1 = Γ = Γ𝑐 = 0.5, 𝜖 = 0.3, 𝜉 = 0.1, 𝜂 = 1, �̃�𝑠 = 1.2, 𝛼 = 0.4, 𝛾 = 5 . This 

data corresponds to physically viable non-Newtonian coating materials with appropriate 

thermal characteristics [28-30]. The graphical results are presented for velocity and thermal 

profile against numerous values of Deborah number 𝛼 , mixed convection parameter Γ, 

nonlinear convection parameter Γ𝑐 , non-Fourier Deborah number 𝛼1 , Prandtl number 𝛾, 

heat source/sink parameter 𝜉, and nonlinear thermal radiation 𝜂. 

 

5.1 Tabular results:   

Tables 1–3 show the numerical computations of skin friction and Nusselt number versus 

various physical factors. Table 1 compares numerical findings derived by Sadeghy et al. [47] 

and Abel et al. [48] for various values of Deborah number 𝛼 and the exclusion of convection 

(mixed and nonlinear) Γ = Γ𝑐 = 0. Table 2 compares the Nusselt number to prior results 

obtained by Khan and Pop [49] for different values of Prandtl number 𝛾 , whereas the 

remaining parameters are absent. such as Γ = Γ𝑐 = 0, 𝜉 = 0, 𝛼1 = 0, 𝜂 = 0. Tables 1 and 2 

show that the current SRM solutions correlate very closely with previous studies. Confidence 

in the accuracy of the SRM results is therefore justified. Table 3 shows the skin friction and 

Nusselt number for each physical parameter. With increment in mixed convection parameter 

Γ and the nonlinear convection parameter, Γ𝑐 we can observe that the Nusselt number and 

skin friction coefficient diminish. However, skin friction and Nusselt number are conversely 

greatly elevated with increment in Deborah number (). Increasing nonlinear thermal 

radiation parameter suppresses Nusselt number whereas the reverse tendency has been found 

for larger values of Prandtl number and non-Fourier Deborah number (𝛼1). It is important to 

mention that when the heat flux is reversed, the Nusselt number can become negative. It is 

also associated with negative (convective) heat transfer coefficient, and it arises in non-

Fourier transport phenomena problems. Negative friction factor implies that flow reversal 

has occurred in the boundary layer and the shear stress is reversed. 

 

Table 1: Numerical comparison of Skin friction with previous results by assuming Γ = Γ𝑐 =
0. 

𝛼 
√ℜ𝑆𝑥/2 

Sadeghy et al. [47] Abel et al. [48] Present results 

0.0 1.0000 0.9999 1.0000 

0.2 1.0549 1.0519 1.0561 

0.4 1.1008 1.1018 1.1018 

0.8 1.1987 1.1966 1.1966 
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Table 2: Numerical comparison of Nusselt number with previous results by assuming Γ =
Γ𝑐 = 0, 𝜉 = 0, 𝛼1 = 0, 𝜂 = 0. 

 

𝛾 
𝑁𝑥/√ℜ 

Khan and Pop [49] Present results 

0.07 0.0663 0.0663 

0.70 0.4539 0.4539 

2.0 0.9113 0.9113 

 

 

Table 3: Numerical values computed from SRM for Skin friction and Nusselt number.  

 

Γ Γ𝑐 𝛼 𝛼1 𝜖 𝜂 𝛾 𝜉 √ℜ𝑆𝑥/2 𝑁𝑥/√ℜ 

0        1.261798 1.667957 

0.5        0.495087 1.281993 

1        -0.271623 0.860913 
 0       0.418114 1.144413 
 0.5       0.188201 1.051177 
 1       -0.04171 0.956676 
  1      -0.009825 1.101789 
  1.4      0.199613 1.283379 
  2      0.513771 1.539202 
   0      0.965805 
   0.2      1.088774 
   0.4      1.216068 
    0     1.580577 
    0.5     1.052457 
    1     0.371936 
     1    1.281993 
     1.7    0.182247 
     2    -0.37462 
      3.5   0.323143 
      4   0.663405 
      5   1.281993 
       -0.6  4.37814 
       0  1.83739 
       0.3  -0.04534 

 

5.2 Velocity profile: 

Figure 2 shows the effects of Deborah number on velocity profile. This figure indicates 

that higher values of Deborah number significantly oppose the fluid motion. Deborah number 

represents the elastic effects relative to viscous effects i.e., greater elastic impact decelerates 

the flow and enhances the thickness of momentum boundary layer. We can see from equation 

(14) that 𝛼 is directly proportional to the relaxation time of the viscoelastic parameter. The 

elastic-viscous material, i.e., the Maxwell fluid model, has a fading memory, which means it 

preserves the most recent deformation. The greater the impact of relaxation time, the more 
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dominating the behavior of elastic effects over viscous effects. With larger levels of 𝛼, this 

produces a slowing of the flow. Flow reversal is never triggered; hence velocity magnitudes 

stay positive at all Deborah number values. For 𝛼 = 0, the results maybe recovered for 

viscous fluid flow. Figure 3 is plotted to see the variation of mixed convection parameter on 

velocity profile. We observe that higher values of mixed convection parameter boost the 

velocity profile. It is clear that thermal buoyancy force is enhanced due to the strong influence 

of Γ which causes an acceleration in the coating boundary layer flow but a reduction in the 

thickness of the momentum boundary layer. Figure 4 depicts the effect of the nonlinear 

convection parameter on the velocity profile. We discovered that the nonlinear convection 

parameter increases the velocity profile (i.e. accelerates the flow) and decreases the 

momentum boundary layer thickness. For the strongest case of mixed convection (Γ = 0), 

a velocity overshoot is also estimated near the stretching sheet, but it is missing for lesser 

values of this parameter. 

 

Figure 2: Consequences of Deborah number on velocity profile. 

 

Figure 3: Consequences of mixed convection parameter on velocity profile. 
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Figure 4: Consequences of nonlinear mixed convection parameter on velocity profile. 

5.3 Temperature profile:  

Figure 5 shows the behavior of temperature profile for various values of non-Fourier 

Deborah number. It is noted that increasing values non-Fourier Deborah number remarkably 

reduces the temperature profile and thermal boundary layer thickness. Furthermore, 1 0 =

corresponds to the classical Fourier case or absence of the effects of non-Fourier Deborah 

number. A greater heat flux is associated with a lower temperature, while a slower heat flux 

relaxation time is associated with a higher temperature. With increasing Deborah number 

values, a greater quantity of heat flux is achieved, resulting in a greater heat transfer rate 

between the fluid and the wall, and therefore a lower temperature inside the working fluid, 

i.e., heat is drained from the viscoelastic fluid. Figure 6 shows the behavior 𝝐 on temperature 

profile. This parameter describes the attributes of thermal conductivity. We can see in Figure 

6 that temperature magnitudes increase significantly, and thermal boundary layer thickness 

is elevated due to the strong influence of 𝝐. Figure 7 shows that the nonlinear thermal 

radiation parameter increases the thickness of the thermal boundary layer and the temperature 

profile. As the thermal radiation parameter increases, the radiative flux energizes the 

polymeric flow, increasing the thermal energy in the regime. Higher thermal radiation levels 

result in higher temperatures and thicker thermal boundary layers. This effect is maintained 

at all transverse distances from the stretched sheet. Figure 8 depicts how the mixed 

convection parameter affects the temperature profile. The mixed convection parameter 

increases the temperature profile and the thickness of the thermal boundary layer in this 

image. Figure 9 indicates, however, that the nonlinear mixed convection effects on the 

temperature profile are comparable to the mixed convection parameter, although a 

comparatively small temperature boost is generated. Figure 10 shows that a greater Prandtl 

number lowers temperature values and thermal boundary layer thickness. The Prandtl 

number defines the rate of momentum diffusion in relation to the rate of heat diffusion in the 

flow. When the Prandtl number is less than one, the rate of energy diffusion exceeds the rate 

of momentum diffusion. However, for polymeric non-Newtonian flows, a Prandtl number 

larger than one is more suitable [50]. Higher values of Prandtl number indicates less impact 

of thermal conductivity, and therefore, this surpasses the thermal convection and as a result 

the temperature profile rises. In Figure 11, we can see that when the heat generation 

parameter increases ( )0  , the temperature profile significantly increases, and the 

thickness of the thermal boundary layer rises. However, when heat absorption ( )0   is 

increased, the thermal boundary layer becomes thinner, and the temperature profile 

diminishes. Physically, the influence of heat generation causes an increment in the fluid 
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temperature i. e. a heating effect, and heat absorption parameter shows the converse impact 

i. e. a cooling effect.  

It is also worth noting that in all of the plots, asymptotically smooth profiles are estimated 

in the free stream, showing that the SRM solution prescribes a sufficiently big infinity 

boundary condition. 

 

 

Figure 5: Consequences of thermal relaxation parameter on temperature profile. 

 

Figure 6: Consequences of attributes of the thermal conductivity on temperature profile. 
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Figure 7: Consequences of thermal radiation on temperature profile. 

 

Figure 8: Consequences of mixed convection parameter on temperature profile. 

 

Figure 9: Consequences of nonlinear convection parameter on temperature profile. 
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Figure 10: Consequences of Prandtl number on temperature profile. 

 

Figure 11: Consequences of heat source/sink on temperature profile. 

 

 

6. Conclusions 

A novel mathematical model for nonlinear quadratic convection and non-Fourier heat 

flux in incompressible, steady state coating boundary layer flow of a Maxwell elastico-

viscous fluid has been devised as a simulation of high-temperature polymer coating 

manufacturing. Nonlinear quadratic thermal radiation and heat source/sink effects have been 

considered. Transformations of Lie symmetry have been accomplished. The spectral 

relaxation approach was used to solve the transformed, dimensionless, nonlinear ordinary 

differential boundary value problem. Validation with previous studies in the literature has 

been conducted. The important results are listed below:  

i. Increasing the Deborah number (a Maxwell non-Newtonian parameter) delays 

the flow but increases the thickness of the momentum boundary layer.  

ii. Elevation in mixed convection and nonlinear convection parameter enhances 

velocities but reduces momentum boundary layer thickness.  
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iii. Increasing the non-Fourier Deborah number, i.e., greater thermal relaxation, 

causes temperature to fall and the thickness of the thermal boundary layer to 

decrease.  

iv. Temperature and thermal boundary layer thickness increase when nonlinear 

thermal radiation, mixed convection, and nonlinear convection parameters are 

increased.  

v. Temperature is reduced as the Prandtl number and heat sink (absorption) 

increase, whereas it is increased as the heat source (production) and thermal 

conductivity parameter increase. 

vi. We found that the present solutions are in close agreement with prior findings for 

skin friction and Nusselt number, which also validates the published results using 

SRM. 

The present simulations have revealed some interesting features of non-Newtonian high-

temperature polymeric coating materials processing. However, attention has been restricted 

to steady state flows without mass diffusion. Future studies may consider these aspects.  
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