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Abstract: The present article describes a detailed mathematical investigation of electro-magneto-

hydrodynamic dispersion in the pulsatile flow of a Casson viscoplastic fluid in a tube packed with a 

porous medium. Using appropriate transformations, the model is rendered non-dimensional. Via the 

generalized dispersion method and finite Hankel transforms, analytical solutions for the solute 

concentration dispersion and convection coefficients have been obtained. The impact of the Hartmann 

(magnetic) number, Debye–Hückel (electrokinetic) parameter, Darcy number, and chemical reaction 

parameter with regard to dispersion phenomena has been studied. The evolution in velocity and 

concentration profiles are investigated graphically for realistic ranges of the various physical 

parameters. The present investigation, highlights the dual nature of the Debye–Hückel parameter in the 

dispersion process. Increment in the lower or higher magnitudes of Debye–Hückel parameter induces 

or decreases the magnitudes of effective dispersion coefficient, whereas it induces a reverse dual 

mechanism in the zenith of the average concentration profile. The present simulations are relevant to 

enhancing the performance of diagnostic tools in biochemical engineering, pumping of intelligent 

rheological working fluids in biomedicine, and also soft robotics. 

Keywords:  Dispersion, Casson non-Newtonian fluid, bulk-flow reaction, Hartmann number, Debye–

Hückel parameter, Darcy number. 

1. Introduction 

The dispersion mechanism of soluble materials in fluid motion is one of the most interesting research 

areas in modern biomedical and industrial engineering. Taylor [1] pioneered the study of the 

hydrodynamics of the solute diffusion process in a tube and found that both effects of axial convection 

and radial molecular diffusion are significant. Aris [2] reaffirmed Taylor's methodology and 
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furthermore identified that the efficiency of solute diffusion in a tube is proportional to the accumulation 

of Taylor's dispersion coefficient and the impact of the axial molecular diffusion coefficient. Gill and 

Sankarasubramanian [3] proposed the generalized dispersion technique in modelling fluid flows with 

solute dispersion in tubes and postulated that solute dispersion characteristics could be obtained at every 

available point in the post-injected fluid flow regime. This method is however limited to linear and 

second-order differential equations. Aris's method of moment dispersion [2] was improved by Barton 

[4] and is known as the Aris-Barton moment method; this method guarantees a higher-order moment 

equation, and it is validated at every point after the injection in the dispersion mechanism. Roy et al. [5] 

used the Aris-Barton moment technique and finite difference implicit method to study the  dispersion 

process in a tube. 

In dispersion transport phenomena, chemical reactions may also feature which are relevant to chemical 

reactor systems, coagulating blood flows and hazardous waste transport. Katz [6] initiated mathematical 

studies of dispersion in a tube in the presence of catalytic wall chemical reactions. Subsequently, many 

interesting studies on reactive hydrodynamic dispersion in solute transport have been communicated, 

including Walker [7], Gupta and Gupta [8], Shukla et al. [9] and Kumar et al. [10], who examined the 

dispersion phenomenon in the channel and tubular flows with homogeneous and heterogeneous 

chemical reactions. These studies also addressed regular and irregular fluid motion by applying either 

Newtonian and non-Newtonian fluid models. Roy et al. [11] used the Aris-Barton moment technique 

and Hermite polynomials to study Taylor dispersion of reactive species in pulsatile viscoplastic flow in 

a channel with boundary absorption and bulk chemical reactions. They `noted that both chemical 

reactions reduce the negative exchange coefficient and the apparent dispersion coefficient, whereas they 

elevate the negative convection coefficient. Further,  Roy and Shaw [12] analyzed the shear augmented 

dispersion of a solute in the microvascular mechanism by using two fluid model. They noted that 

increment in the yield stress and absorption parameters enhance the mean concentration profile. Das et 

al. [13] have investigated the solute dispersion process and influence of wall absorption parameter on a 

stenosed artery flow by considering Casson fluid.   

Solute dispersion in non-Newtonian fluids has received increasing attention in recent years due to 

growing applications in bio-microfluidics. Rana and Murthy [14, 15] have applied the generalized 

dispersion model in pulsatile non-Newtonian (Casson [14] and Herschel-Bulkley [15]) transport in a 

tube with a wall reaction, motivated by computing more precisely the spreading of solute in 

hemodynamics. Debnath et al. [16] have investigated the solute dispersion process in three-layered 

pulsatile fluid motion in a tube by the Aris-Barton method. Further, Debnath et al. [17] have analyzed 

the solute dispersion in the Hagen-Poiseuille flow of three layer fluid in a circular tube. They observed 

that the convection and dispersion coefficient both decrease as the peripheral layer thickness decrease.  

Furthermore, Debnath et al. [18] have investigated the transport of species through an annular tube and, 

they pointed out that transport coefficients are linearly increased with the rate of the associated reactions 

but decrease with the wall absorption rate. Subsequently, Debnath et al. [19]  discussed the solute 
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dispersion mechanism of a cylindrical pipe by considering two fluid model. They found that yield stress 

increases the value of dispersion coefficient decrease for all time. Recently, Chauhan and Tiwari [20] 

studied the combined effects of the Jeffrey fluid parameter and variable viscosity parameter on the 

solute dispersion process in a small blood vessels by applying generalized dispersion method. Biswas 

et al. [21] developed a mathematical model to endovascular drug delivery by using an image 

segmentation technique. 

The above studies have been confined to electrically non-conducting regimes. Blood, however, is 

known to exhibit bioelectromagnetic characteristics owing to the presence of iron in the hemoglobin 

molecule in addition to the many ionic species suspended in plasma. Both electric and magnetic fields 

feature in many extracorporeal treatments used in physiological biomedical engineering, including drug 

targeting, tissue repair, relaxation therapies, etc. As such magneto-hydrodynamic flows and 

electrokinetic flows arise in blood flows, and indeed combined electro-magnetic flows are also present. 

These phenomena are accompanied by the rheological characteristics (e.g.,viscoplasticity, 

viscoelasticity, shear-thinning/thickening, erythrocyte microstructural spin, etc.) of streaming blood, in 

particular in narrow vessels and capillaries. The study of tissue electrical properties with the aid of 

different impedance diagnostic methods helps to scrutinize several diseases in the human body, such as 

cardiac dysfunction, hematological degeneration, blood coagulation mechanisms, etc. [22]. Zhao et al. 

[23] investigated theoretically the unsteady electro-osmotic transport in a circular tube with integral 

transforms and a non-Newtonian viscoelastic model. They observed that the oscillatorynature of the 

velocity distribution is amplifiedwith an increment in the viscoelastic fluid relaxation time parameter. 

Wang et al. [24] studied the electro-osmotic transport in a channel by applying Fourier transforms, 

noting that the electrolyte of greater level concentration slows down the electro-osmotic velocity of the 

microchannel. Bandopadhyay et al. [25] have examined the electrokinetic flow in the capillaries and 

circular pores with radial variation in viscosity due to charge-induced thickening (viscoelastic 

rheological behaviour), and reported that very small diameter channels along with heavy zeta potentials 

and constant steric effects induce the mechanism of effective viscosity. Misra et al. [26] have discussed 

the effects of the electro-osmotic mechanism under unsteady flow conditions in a channel using the 

Eringen micropolar fluid model, observing that micropolar fluid velocity, as well as microrotation 

gradient (wall couple stress), are elevated with greater electro-osmotic (Debye–Hückel) parameter. 

As noted earlier, magnetohydrodynamics (MHD) which involves the interaction of magnetic fields and 

viscous or inviscid flows, arises in many clinical applications. An external applied magnetic field can 

be used to control human blood circulation and pressure drop. For instance, cell separation reduces the 

bleeding level of blood since the acting magnetic field retards blood flow. Tzirtzilakis and Loukopoulos 

[27] analyzed the biomagnetic flow mechanism in a channel by applying low, uniform, and high-level 

magnetic fields in the channel flow and obtained a numerical solution velocity field and skin friction 

with a finite difference method. Sarojamma and Ramana [28] observed the transport coefficients 

obtained by involving the generalized dispersion technique in the magnetic field on the dispersion of 
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Newtonian fluid through a conduit, noting that the convection coefficient is dependent on the magnetic 

field, whereas the exchange coefficient is acting independent of the magnetic field. Mazumdar et al. 

[29] have scrutinized the Newtonian fluid flow with magnetic effects in a circular tube and reported 

that the external applied magnetic field effectively damps the flow. Sud et al. [30] have investigated the 

impact of magnetic fields on blood pumping devices, noting the excellent retardation achieved.  

Solute dispersion mechanisms in porous media also play a vital role in tissue engineering, especially 

drug fate and nutrienttransport in the lungs, brain, and kidneys, among other vessels. Porous media 

inhibit flow, and a relevant pathological example is blood flow impedance owing to the deposition of 

fatty plaques of cholesterol and artery-clogging blood clots formed in the lumen of the coronary artery. 

Dash et al. [31] have evaluated the velocity distribution and flow rate behaviour of Casson fluids in a 

tube containing a Darcianporous medium for both constant permeability and radially-varying 

permeability. Mehmood et al. [32] have investigated the transient axisymmetric blood transport a 

diseased porous arterial segment with elastic walls. They found that the pressure drop diminishes by 

enhancing the permeability. Hydrodynamic dispersion in porous media has also received considerable 

interest. Dentz et al. [33] used both asymptotic analysis and open-source finite-volume code (Open 

FOAM 4) to compute the dispersion in laminar flow through a 3–dimensional porous medium, defining 

fluid transport properties due to the pore-size distribution based on the Eulerian velocity. Shah et al. 

[34] studied the combined influence of heat and mass transfer on the solute dispersion mechanism in a 

tube with porous medium by applying the generalized dispersion method and considering two fluid 

model. 

Inspired by these developments, the current study presents an integrated mathematical model for 

collective electric field and magnetic field effects on the Taylor dispersion process in pulsatile non-

Newtonian blood flow (as arterial blood flow is pulsatile) through a cylindrical tube containing a porous 

medium with chemical reaction. Fatty plugs of cholesterol are simulated as a porous medium with 

Darcy’s model. The novelty of the present work is, therefore, the simultaneous consideration of 

chemical reaction, electro-osmotic, magnetohydrodynamics, and viscoplastic pulsatile blood flow with 

porous medium drag. The analytical solutions of the solute concentration convection and dispersion 

coefficients are obtained using a generalized dispersion technique. Extensive visualization of the impact 

of Hartmann (magnetic) number, Debye–Hückel (electrokinetic) parameter, Darcy number and 

chemical reaction parameter on hydrodynamic dispersion characteristics, velocity and concentration 

profiles is included. The present investigation, also highlights the dual nature of the Debye–Hückel 

electro-osmotic parameter in the dispersion process. The current analysis may also prove beneficial in 

providing deeper insight into electromagnetically actuated bio-microfluidic systems as efficient solutal 

carriers. 
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2. Mathematical Formulation 

 

 

Fig.1. The geometry of the physical problem 

 

The electro-magneto-hydrodynamic pulsatile flow of an incompressible non-Newtonian (Casson) fluid 

in a microtube of radius a , filled with a homogenous, isotropic, Darcian porous medium is considered. 

A cylindrical polar coordinate system is chosen, which is represented in Fig. 1. The variables z  and 

r  denotes the axial and radial coordinates of the system. (  over a letter denotes dimensional quantity). 

A radial magnetic field and axial electrical field are applied. The rheological equation for the Casson 

fluid (electroconductive blood) is given as (Nakamura and Sawada [35], Eldabe et al. [36]): 

( )2 / 2 ,ij c y ij cP e         = + 
 

(1) 

( )2 / 2 ,ij c y c ij cP e         = + 
 

(2) 

Where ij ije e   =  and 2 /y cP    = . Further, ( ),ij i j  =
th

 is the component of the stress tensor, 

( ),ije i j =
th

 represents the component of deformation rate,    denotes the product of the component of 

deformation rate with itself,  c
  indicates the critical value of this product depends on the non-

Newtonian fluid, c
  is the plastic dynamic viscosity of Casson fluid,   is the Casson parameter and 
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yP  represents the yield stress of Casson fluid. To formulate the appropriate mathematical model, the 

following assumptions are invoked:  

1. The micro tube is filled with isotropic porous media saturated with ionic fluid (blood). 

2. The boundary surface of the microtube is impermeable. 

3. The fluid is ionic, electroconductive incompressible, viscoplastic blood (Casson model). 

4. Fluid density (  ) and kinematic viscosity (  ) of the Casson fluid are constant. 

5. The flow mechanism is induced by periodic axial pressure gradient given as  (Roy et al. [37, 38]). 

6. Magnetic induction effects are negated (sufficiently low magnetic Reynolds number such that 

magnetic field lines are undistorted), and Hall current is omitted. 

( )1
1 Re ,i tp

P e
z




 




 

  − = +
    

(3) 

Here P  indicates the pressure, P   denotes amplitude and   represents the pressure pulsation 

frequency. Bugliarello and Sevilla [39] have emphasized that the radial velocity is vanishingly small 

and can be neglected for low Reynolds number hemodynamicsin microvessels (e.g.,narrow arteries). 

This type of flow condition is valid in small-diameter blood vessels (arterioles) and capillaries. Based 

on the assumptions mentioned above, the momentum equation governing the flow of electro-magnetic 

(ionic) Casson blood may be obtained as: 

22
0

2

1 1 1
1 ,e zB u Eu p u u u

t z r r r K

 


  

         


        

     
= − + + + − − +  

         

(4) 

Here u  represents the axial velocity,    signifies the electrical conductivity, 0B  means the applied 

uniform magnetic field, K  is the permeability of the porous medium, e
  designates the net charge 

density, zE  represents the component of uniform external electric field in the axial direction and ( )   

denotes the Casson viscoplastic parameter. 

Based on the Poisson-Boltzmann equation [40,  41], e
  is expressed as: 

2 2

2 2 2

1 1
e

r r r r r
 

  


    

     
= − + + 

    

 (5) 

Here   is the dielectric constant and   represents the electrical potential distribution.  

By adopting the Debye–Hückel approximation (see - Masliyah and Bhattacharjee [15]), the linearized 
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form of Eq. (5) is expressed as: 

2 * *
2

2

1

r r r
  

  

  
 = +

   
(6) 

where    denotes the Debye–Hückel parameter, which allows for a characterization of ionic strength 

dependence of the activity coefficients of species in dilute aqueous solutions. The model also allows 

for the effect of long-range electrostatic forces among dissolved ions in the ionic blood flow. A 

completely miscible solute is injected into the regime and the transport equation for this solute (e.g. 

oxygen) in a phase averaged scale can be formulated following Zeng and Chen [42] as: 

2

2
( , ) ,r

z

C C C CD
u r t D r C

t z z r r r

   
      

     

    
+ = + − 

      

eff
effsolute solute solute solute

solute

 

(7) 

with ( / )z zD k D   = +eff ,  ( / )r rD k D   = +eff , where zD  and rD  are the axial and transverse 

diffusion coefficients, respectively.  ,k  and   are the concentration diffusivity, tortuosity, and 

porosity. The initial and boundary condition for the solute transport Eq. (7) are prescribed as follows: 

1. Initial condition: 

2

( )
(0, , ) 0

m z
C r z r a

a






    


=  solute

 
(8) 

Where m  is the total mass of the injected species at the time 0t = . 

2. Due to the impermeable boundary of the circular tube, the solute cannot penetrate the tube wall, 

i.e., 

0 .
C

r a
r


 




= =



solute at
 

(9) 

3. Symmetry is assumed and thus 

0 0.
C

r
r







= =



solute at
 

(10) 

4.  As a finite quantity of solute is released in the flow field, therefore, the solute cannot be dispersed 

far away from the point of injection, i.e., 

( , , ) 0.C t r    =solute  (11) 

3. Non-Dimensionalisation of Model 

For the present problem, it is pertinent to invoke the following dimensionless quantities: 
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3

2
, , , , ,r

hs

C aD t r z u
t r z C u

ma a a U

     

   
= = = = =

eff
solute

 
(12) 

where  * * * */hs w zU E= −   is the Helmholtz Smoluchowski velocity (which features the axial electrical 

field) and w
  denotes the zeta potential on the wall of the tube. 

Using Eq. (12), the momentum Eq. (4) with a given pressure gradient (Eq. (3)) is reduced to: 

( )
2 Sc 2 21 1 1 1

1 1 ,
Sc

i tu u
F Re e r M u

t r r r

 


       = + + + − + +               Da  
(13) 

2
2

2

1

r rr


  
 = +

  
(14) 

Here 2/K a =Da , 0 /M B a     = ,  /a   = , and Sc / rD  = eff  denotes the Darcy number 

(dimensionless permeability), Hartmann number (ratio of Lorentz magnetic body force to viscous 

hydrodynamic force), Womersley number (dimensionless parameter relating pulsatile frequency to 

viscous force) and Schmidt number (ratio of momentum and solute species diffusivities) respectively. 

2( / )F P a U  = indicates the steady component of the pressure gradient (also known as the Poiseuille 

number), and F  designates the amplitude of the oscillatory component of the pressure gradient, 

2 2 2a  =  symbolizes the non-dimensional form of the electro-osmotic parameter or Debye–Hückel 

parameter and / w
  =    is the dimensionless electrical potential function. The transformed boundary 

conditions along the tube axis (r = 0) and the wall (r = 1) emerge as: 

0 1u r= =at  (15) 

0 0
u

r
r


= =


at

 
(16) 

1 1r = =at  (17) 

0 0r
r


= =


at

 
(18) 

In a similar fashion, the solute convective diffusive-dispersion transport equation Eq. (7) and the 

respective initial and boundary conditions (Eqs. (8) and (9)-(11)) can be expressed as: 

2

2

1
Pe ( , ) ,D

C C C C
u r t r R C

t z r r r z

     
+ = + − 

     

solute solute solute solute
solute

 
(19) 

( )
(0, , ) , (0 1),

z
C r z r




=  solute

 
(20) 

0 0,
C

r
r


= =



solute at
 

(21) 

0 1,
C

r
r


= =



solute at
 

(22) 
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( , , ) 0,C t r  =solute  (23) 

 

Here 2 / ra D   =  eff  is the reaction rate, /D z rR D D = eff eff  denotes the ratio of axial and radial 

dispersion coefficients and Pe( / )rUa D = eff  is the effective Péclet number that measures the relative 

impact of the convection to dispersion in the saturated porous medium regime (it is also a representation 

of advective transport rate to mass diffusion rate). 

4. Analytical Solution for the Velocity Profile 

Using the boundary conditions (17) and (18), the solution of Eq. (14) is obtained as: 

0

0

( )
( ) .

( )

I r
r

I




 =

 
(24) 

where 0I  denotes the first kind modified Bessel function of order zero. 

Substituting Eq. (24) into Eq. (13), we get: 

 
( )

2 Sc 2 2 0

0

( )1 1 1 1
1 Re 1

Sc ( )

i t I ru u
F e r M u

t r r r I

 
 

 

       = + + + − + +              Da  
(25) 

To solve the given boundary value problem, i.e., Eqs. (15), (16) and (25), we assume a solution of the 

form: 

( ) ( )
2 Sc

1, Re i t
su r t u u e = +

 
(26) 

Substituting Eq. (26) in Eq. (25) subject to the boundary condition (15) and (16), the following solution 

emerges:  

( )

( )

( )

( )

( )

( )

2
0 0 1 0 1

2 2 2 2
0 0 1 0 11 1

/ /
1

/ /
s

I r I M r N I M r NF
u

I I M N I M NM N M





   
= − + −   

−         

(27) 

( )
( )

2 2
0 1

1 2 2 2 2
1 0 1

/

1

/

I M i r N
F

u
M i I M i N



 

 +
 

= − 
+ + 

   

(28) 

where ( )2 2
1 1/M M= +Da  and 2 (1 1/ )N = + . 



10 

 

5. Generalized Dispersion Model 

Following Gill [43], we can also express the species concentration in terms of average concentration 

1

0

2 ( , , )C rC t r z dr= mean solute  as: 

0

( , , ) ( , ) ,
i

i i
i

C
C t r z C g r t

z



=


= +


 mean

solute mean

 

(29) 

Also, the average species concentration Cmean  is diffusive in nature right from the beginning, and hence, 

the average concentration can be expressed as follows: 

1

( ) ,
i

i i
i

C C
K t

t z



=

 
=

 
mean mean

 

(30) 

The time-dependent coefficients, 1K  and 2K  in Eq. (30) are referred to as the convection and dispersion 

coefficient, respectively. The higher-order coefficients, 3K and onwards are neglected (see Gill and  

Sankarasubramanian [44], Roy and Bég [45]) in our study. Substituting Eq. (29)  into Eqns. (19) and 

(20), and after some algebraic simplification, we obtain the following set of partial differential 

equations:  

( )1 1
1 1

1
Pe ,

g g
r g u K

t r r r

   
= − − + 

     
(31) 

( )2 2
2 1 1 2

1
Pe (1 )

g g
r g u K g K

t r r r

   
= − − + + − 

     
(32) 

 

( )2 2
2 1 1 2

2

2

3

1
Pe (1 )

( 1,2, )

k k
k k k

k

i k i

i

g g
r g u K g K g

t r r r

K g k

+ +
+ +

+

+ −

=

   
= − − + + − 

   

− =                             

 

(33) 

The initial and boundary conditions on 's
kg  are prescribed as follows: 

(0, ) 0, ( 1,2, )ig r i= =  (34) 

0 ( 1,2, ) 1,ig
i r

r


= = =


 at 

 
(35) 

0, ( 1,2, ) 0,ig
i r

r


= = =


 at 

 
(36) 

It follows from Eq. (29) that: 

1

0

( , ) 0irg r t dr =
 

(37) 

The convection coefficient 1( )K  and dipersion coefficient 2( )K  can be derived as: 
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1( ) Pe ,K t u= −  (38) 

1

2 1
0

( ) 1 2Pe .K t rg udr= − 
 

(39) 

1

2 1
0

( ) 2Pe .i iK t rg udr+ += − 
 

(40) 

Furthermore, u  in Eq. (38) is the mean velocity which is defined as: 

1

0

2u rudr= 
 

(41) 

With the help of Eqs. (26) and (41), we eventually obtain: 

( )

( )

( )

( )

( )

( )

( )
( )

2

2
1 1 1 1 1

2 2 2 2
0 1 0 1 1 0 11 1

2 2
1 1

Sc

2 2 2 2 2 2
1 1 0 1

/ 2 /2
1

/ /

2 /

Re 1

/

i t

I NI M N NI M NF
u

I M I M N M I M NM N M

NI M i N
F

e
M i M i I M i N





 




  

   
= − + −   

−       

  +  
+ −  

+ + + 
    

(42) 

5.1. Analytical Expressions for 1( )K t   and 
2( )K t  

To solve Eq. (31) under the initial and boundary conditions expressed in Eqs. (34)-(37), finite Hankel 

transforms can be deployed and these are defined as follows: 

 
1

1 1 1 0
0

( ; ) ( ) .i ig t p g rg J p r dr= = H
 

(43) 

where 0J  is the Bessel function of order zero and ip are the positive roots of 1( ) 0iJ p =  . The 

corresponding inverse transform is defined thus: 

 1 0
1 1 12

00

2 ( )
( , ) ( ; ) ( ; ).

( )

i
i i

ii

J p r
g r t g t p g t p

J p


−

=

= =H

 

(44) 

Taking the Hankel transform of Eqs. (31) and (34) with the aid of Eqs. (35) and (36) gives: 

( )21
1 1,i

g
p g I

t



+ + = −

  
(45) 

1(0; ) 0.ig p =  (46) 

where 

1

1 0

0

( ) ( ) .iI r u u J p r dr= −Pe

 

(47) 

The solution of Eq. (45)  can be obtained using Eq. (46) as follows: 
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2 22( ) ( )

1 2 2 2

1
( ; ) Re ,

i ip t p ti t

i i i

i i

e e e
g t p A B

p p i






− + − +  − − 
 = −  +  
  +  + +   

Sc

Pe
Sc

 

(48) 

 

( )

( )

( )

( )

( )

( )

2
1 1 11

02 2 2 2 2 2 2 2
0 0 11 1

1 1
02 2 2

1 0 11

/
( )

/

/
( )

/

i i

i i

i

i

I I M NM N
A J p

I I M NM N p M N p

I M NF N
J p

M I M NM N p

 

 

 
= − 

− + +  

−
+

        

 

(49) 

( )
( )

2 2
1 1

02 2 2 22 2 2 2
11 0 1

/

( )

/
i i

i

I M i N
F N

B J p
M i N pM i I M i N



 

+

= −
+ ++ +

 

(50) 

Substituting Eq. (26) into Eq. (38) yields: 

( )

( )

( )

( )

( )

( )

( ) ( )
( )

2

2
1 1 1

1 2 2 2
0 1 0 11

1 1

2
1 0 11

2 2Sc
1 1

2 2 2 2 2 2
1 1 0 1

/2
( ) Pe

/

2 /
1

/

2 /Re
1

/

i t

I NI M N
K t

I M I M NM N

NI M NF

M I M NM

NI M i NF e

M i M i I M i N





 



  

  
= − − +  

−   

 
−  

  


 +
 

+ − + + + 
 

            

 

(51) 

Implementing Eqs. (26) and (44) in Eq. (39), we obtain: 

( )

( )
( ) 

21
2 2

00

;
( ) 4Pe Re

i i t
D i i

ii

g t p
K t R A B e

J p




=

= − + Sc

 

(52) 

5.2. Mean Concentration 

To estimate the mean concentration (cross-sectional average concentration), we have recalled Eq. (30) 

by truncating the third term onwards from the infinite series. By solving this truncated equation with 

the aid of initial and boundary conditions, following Debnath et al. [46], we obtain: 

( )
2

1
exp ,

4 ( )2 ( )

z ut
C

tt 

 −
 = −
 
 

mean

Pe 

 

(53) 

2

0

( ) ( ) .

t

t K s ds = 
 

(54) 

6. Results and Discussion 

In the present study, we have investigated the integrated effect of axially applied pressure, axial electric 

field, and transverse magnetic field on the solute dispersion process. To deal with the problem, we 

estimate the velocity distribution, dispersion coefficient, and mean concentration coefficient in terms 
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of the following dimensionless variables: Schmidt number ( )Sc , Peclet number ( )Pe , Debye–Hückel 

parameter ( ) , Darcy number ( )Da , Hartmann number ( )M , Womersley number ( ) , Casson 

viscoplastic parameter ( ) , chemical reaction parameter ( )  and time ( )t . The range of these 

parameters are displayed in Table 1. 

Table.1. Range of controlling parameter in the present study 

Parameter Range or values Reference 

Womersely number ( )  0,  0.5,  1, 1.5,  2 [16] 

Poiseuille number ( )F  1 [37] 

Schmidt number ( )Sc  1000 [47, 51] 

Amplitude factor ( )  0 (Steady flow), 1.5 (Unsteady flow) [37, 47] 

Darcy number ( )Da  0.01,  0.1,  0.5,  1,  5,  10 [47] 

Hartmann number ( )M  0,   0.5,    1,    1.5,    2 [47] 

Péclet number ( )Pe  100 [47] 

Debye–Hückel parameter ( )  0, 0.25, 0.5, 0.75, 1 (Small value), 5, 10, 

100 (large value) 

[23, 48] 

Porosity ( )  0.6, 0.75, 0.9 [47] 

Bulk flow reaction rate ( )  0, 10, 20, 50, 100 [38, 47] 

6.1. Velocity distribution 

The radial distribution of the velocity at a time instance 1t =  with various underlying parameters is 

shown in Figs. 2a-c. Figure 2a reveals that with the increase of  Darcy number, velocity will increase; 

however, the increment rate is gradually reduced with an increase of Darcy number; this fact is also 

identified by Roy et. al.  [47]. A higher Darcy number implies a depletion in the Darcian drag force 

since progressively less solid fibers arise in the medium. This accelerates the radial flow. The magnetic 

number, i.e., the Hartmann number, also influences the flow velocity as outlined by Fig. 2(b). It is 

evident that elevation in Hartmann number amplifies the Lorentz magneto-hydrodynamic drag force, 

which serves to damp the axial velocity i.e., induces radial flow deceleration. From Fig. 2(c), it is 

apparent that as the Debye–Hückel parameter ( )  increases, there is a boost in the velocity, i.e., radial 

flow acceleration is induced. It is also evident that the rate of increment in velocity gradually increases 

with the Debye–Hückel parameter. Moreover, for the small Debye–Hückel parameter ( 1)  , the flow 

profile is parabolic. In Fig. 2, for all plots, smooth parabolic axial velocity profiles are computed across 

the microtube cross-section.  
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Fig. 2.Velocity distribution at time 1( 1000, 1.5, 0.5, 0.5)t   = = = = = Sc  for (a) different Darcy 

number ( )Da  and fixed 1, 0.5M = =  and; (b) different Hartmann number and fixed 1, 0.5= =Da  

(c) different Debye–Hückel parameter ( )  and fixed 1, 1M= =Da . 

Fig. 3a-c visualize axial velocity evolution for (a) different Darcy number ( )Da  with 1, 0.5M = = , 

(b) different Hartmann number and fixed 1, 0.5= =Da  (c) different Debye–Hückel parameter ( )  and 

fixed 1, 1M= =Da . Inspection of the plots shows that in the absence of pressure field, the velocity 

gradient sharply increases at the wall vicinity for the large Debye–Hückel parameter (Fig. 3(a) and 

3(c)). However, this sharp velocity gradient becomes weak in the absence of the magnetic field ( 0)M =  

and will disappear with high Darcy number 1Da  i.e., very large permeability of the porous medium 

(Fig. 3(c)). It is important to note that, in contrast to small Debye–Hückel parameter ( 1)   where 

velocity profile is nearly parabolic, the topology is morphed into plug flow in the core region, for large

( 5)  and Darcy number in the absence of pressure and magnetic field ( 0, 0)F M= = and, . This result 

is consistent with the computations of Paul and Ng [48].  
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Fig. 3.Velocity distribution at time 1,( 1000, 1.5, 0.5, 0.5)t   = = = = =Sc  for different Debye–

Hückel parameter ( ) , (a) without pressure field ( )0, 1, 1F M= = = Da ; (b) without pressure and 

magnetic field ( )0, 0, 1F M= = = Da ; (c) without pressure and magnetic field and high Darcy number 

( )0, 0, 10F M= = = Da  

Figures 4a-c show the responses of axial velocity distribution for various values of Casson parameter 

( ) at time t =1 for (a) without pressure field ( )0, 1, 1F M= = = Da ; (b) without pressure and magnetic 

field ( )0, 0, 1F M= = = Da ; and (c) without pressure and magnetic field and high Darcy number 

( )0, 0, 10F M= = = Da . In all cases, with the increase of the Casson parameter, the velocity magnitude 

is enhanced. As   increases, the yield stress of the ionic viscoplastic blood decreases, which leads to 

an elevation in velocity, i.e., radial flow acceleration, and the effect is understandably most prominent 

in the core region. 

6.2. Dispersion Coefficient 

In this section, the effective dispersion coefficient defined by 2
2( ) /E DD K R Pe= − is computed and 

illustrated. Consistent with previous studies, the current study also shows the oscillatory nature of the 

dispersion coefficient (see Figs. 5, 6, 9, 11, and 12); this is due to the pulsatile pressure gradient. The 

amplitude of the oscillation gradually increases and reaches its steady limit at large times, generally 

after 0.4t  . Figure 5 shows that in the absence of an electric field, i.e., 0 = , the effective dispersion 

coefficient decreases with increasing Hartmann number ( )M , which is consistent with the earlier study 

of Roy et al. [47]. Evidently, therefore larger transverse (radial) magnetic field suppresses 
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hydrodynamic dispersion in the regime. However, an increment in Darcy number (Da) enhances the 

dispersion coefficient (see Fig. 6) since a reduced porous medium impedance (Darcian linear bulk drag) 

is present, which permits better dispersion of the solute in the tube. Figs. 6 and 7 confirm this trend. 

Figure 7 indicates that the effective dispersion coefficient monotonically decreases with elevation in 

the Hartmann number and decays to zero for 5M  , which concurs with earlier investigations, 

including Sarojamma and Ramana [28]. The decrement of the effective dispersion coefficient is 

associated with the deceleration in radial flow induced by an increase in Hartmann number (average 

velocity decreases with stronger magnetic field). Figure 8 depicts that with an increase in Darcy number, 

the effective dispersion coefficient increases but eventually assumes an invariant magnitude. The 

increase of Darcy number enhances the permeability of the medium, which initially encourages solute 

dispersion, but eventually, this attains a steady behaviour.  

  

 

Fig. 4.Velocity distribution at time 1,( 1000, 1.5, 0.5, 0.5)t   = = = = =Sc  for different Casson 

parameter ( ) , (a) without pressure field ( )0, 1, 1F M= = = Da ; (b) without pressure and magnetic 

field ( )0, 0, 1F M= = = Da ; (c) without pressure and magnetic field and high Darcy number 

( )0, 0, 10F M= = = Da . 
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Fig. 5. Effective dispersion coefficient without electric field with (a) small and (b) large time, for 

different Hartmann number ( )M  when 1F = , 0.5 = , 1.5 = , 0.5 = , 1000=Sc , 100Pe = , 20 = , 

1=Da . 

 

  

Fig. 6.Effective dispersion coefficient without electric field with (a) small and (b) large time, for 

different Darcy number ( )Da  when 1F = , 0.5 = , 1.5 = , 0.5 = , 1000=Sc , 100Pe = , 20 = , 

1.M =  

The effective dispersion coefficient is also observed to be increased with a boost in Debye–Hückel 

parameter in the initial range (see Fig. 9a,b); however, for large value of Debye–Hückel parameter, this 

dependency assumes the opposite trend (see Fig. 9c, d). This behaviour is also captured in Fig. 10. This 

is attributable to the following effect- as the average velocity increases with Debye–Hückel parameter 

(stronger electrical axial field), this produces an initial elevation in dispersion coefficient. However, a 

subsequent further increase in Debye–Hückel parameter will lead to uniform velocity in the core region, 

which results in a depression in the dispersion coefficient. Figure 10 further elucidates that the 

maximum dispersion is achieved initially with increasing Debye–Hückel parameter with the lower 

value of Hartmann number. Table 2 is summarizes these computations. It is important to mention here 

that for high Debye–Hückel parameter, the oscillatory behaviour of the effective dispersion coefficient 

is eliminated, i.e., stifled (see Fig. 9c, d). The influences of Casson parameter on the dispersion 

coefficient is depicted in Fig. 11, and it is apparent that with the increase in the Casson parameter, for 

all times, the dispersion coefficient  is boosted. Physically, with an increase in  , there is a reduction 
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in flow resistance which results in a concomitant elevation in dispersion coefficient. Figure 12 reveals 

that the increment in the first-order chemical reaction parameter inhibits the dispersion mechanism in 

the tube both for small and large time circumstances. Physically,  improvement in chemical reaction 

parameter ( )  leads to an increasing number of moles of solute undergo the chemical reaction and this 

mechanism control  the solute distribution process. This result agrees with the result of Roy and Bég 

[45]. 

 

Fig. 7. Effective dispersion coefficient at time 0.5 with Hartmann number ( )M  for different Darcy 

number ( )Da  when 1F = , 0.5 = , 1.5 = , 0.5 = , 1000=Sc , 100=Pe , 0.5 = , 20 = . 

 

 

Fig. 8. Effective dispersion coefficient at time 0.5 with Darcy number (Da) for different Hartmann 

number ( )M  when 1F = , 0.5 = , 1.5 = , 0.5 = , 1000=Sc , 100=Pe , 0.5 = , 20 = . 
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Fig. 9. Effective dispersion coefficient with (a, c) small and (b, d) large time, for different Debye–

Hückel parameter ( )  (small (a, b) and large (c, d)), when 1F = , 0.5 = , 0.5 = , 1.5 = , 1000=Sc

, 100=Pe , 20 = , 1=Da  and 1M = . 

 

Table 2 Maximum dispersion values as they appear in Fig. 9 

Hartmann 

number 

Debye–Hückel 

parameter 

Maximum dispersion 

coefficient 

𝟎 4.5 4.4 410−  

𝟎. 𝟐𝟓 4.6 4.238 410−  

𝟎. 𝟓 4.4 3.787 410−  

𝟎. 𝟕𝟓 4.4 3.175 410−  

𝟏 4.3 2.52 410−  

 

 

 

Fig. 10. Effective dispersion coefficient at time 0.5 with Debye–Hückelparameter ( )  for different 

Hartmann number ( )M  when 1F = , 0.5 = , 1.5 = , 0.5 = , 1000=Sc , 100=Pe , 20 = . 
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Fig. 11. Effective dispersion coefficient with (a) small and (b) large time, for different casson 

parameter ( )  when 1F = , 0.5 = , 1.5 = , 0.5 = , 1000=Sc , 100=Pe , 0.5 = , 1M = , 1=Da . 

 

  

Fig. 12. Effective dispersion coefficient with (a) small and (b) large time, for different reaction 

parameter ( )  when 1F = , 0.5 = , 1.5 = , 0.5 = , 1000=Sc , 100=Pe , 0.5 = , 1M = , 1=Da . 

6.3. Mean concentration 

Figures 13-15 illustrate the mean concentration distribution, i.e., C mean Pe  at a time instance 0.5t =  

for various parameters. As anticipated, the profiles exhibit a Gaussian distribution symmetric about the 

centre of the gravity of the injected slug. Figure 13a also highlights the fact that with the increase of 

porosity of the medium, the peak of mean concentration is suppressed; however, an increment in 

chemical reaction parameter increases the peak mean concentration. These observations have also been 

made by  Roy et al. [47]. 
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Fig. 13. Mean concentration distribution at time 0.5t =  (a) for various porosity ( )  and fixed reaction 

rate 20 = ; (b) for various reaction rate ( )  and fixed porosity 0.75 =  when 1F = , 0.5 = , 1.5 =

, 0.5 = , 1000=Sc , 100=Pe , 0.5 = , 1=Da , 1DR = , and 1M = . 

 

 

  

Fig. 14. Mean concentration distribution at time 0.5t =  (a) for different Hartmann number ( )M  and 

fixed Darcy number 1=Da ; (b) for different Darcy number ( )Da  and fixed Hartmann number 1M =  

when 1F = , 0.5 = , 1.5 = , 0.5 = , 1000=Sc , 100=Pe , 0.75 = , 20 =  and 0.75 = . 
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Fig. 15. Mean concentration distribution at time 0.5t =  (a) for different Debye–Hückel parameter 

( )  and fixed Casson parameter 0.5 = ; (b) for different Casson Parameter ( )  and fixed Debye–

Hückelparameter 0.5 =  when 1F = , 0.5 = , 1.5 = , 0.5 = , 1000=Sc , 100=Pe , 0.75 = , 

20 =  and 0.75 = . 

Figure 14a shows that an increase in the Hartmann number increases the peak of the Gaussian curve, 

whereas a rise in the Darcy number reduces the peak (Fig. 14b). This may be attributable to the 

modification in flow velocity with the Darcy number and Hartmann number. Figure 15a illustrates how 

C mean Pe  behaves with both small and large value of Debye–Hückel parameter. Furthermore, the mean 

concentration also shows a dual nature with Debye–Hückel parameter. For the small value peak of the 

mean concentration is decreased, whereas, for the large value of this parameter, the reverse trend is 

computed. This has already been explained earlier. Figure 15b depicts that with the increase of the 

Casson parameter, the mean peak of the mean concentration is noticeably suppressed. 

7. Conclusions 

Motivated by developments in bionic microfluidics and smart biochemical systems, the present article 

has described a mathematical study of the solute dispersion in electro-magneto-hydrodynamic pulsatile 

ionic blood flow in a vessel (tube) containing a porous medium. The Casson viscoplastic model has 

been adopted, and first-order chemical reaction included. The transformed boundary value problemhas 

been methodically solved to derive analytical expressions for solute dispersion via a generalized 

dispersion method and finite Hankel transforms. A detailed parametric study of the impact of Hartmann 

(magnetic) number, Debye–Hückel (electrokinetic) parameter, Darcy number, and chemical reaction 

parameter on dispersion characteristics, velocity, and concentration profiles has been conducted. The 

principal findings of the simulations may be summarized as follows: 

I. An enhancement in the magnitude of the Darcy number ( )Da  boosts the velocity profile as well 

as effective dispersion coefficient ( )ED  values. The amplitude of the oscillation of the effective 

dispersion coefficient ( )ED  gradually increases in early time and reaches its steady limit at a 

larger time. 

II. Increasing the Hartmann number decelerates the radial flow and decreases the value of ( )ED . 

For any value of the Darcy number, the effective dispersion coefficient ( )ED  reaches zero when 

the value of the Hartmann number exceeds 5. 

III. An increase in the electro-osmotic Debye–Hückel parameter encourages radial flow; however, 

the Debye–Hückel parameter shows a dual effect on the effective dispersion coefficient ( )ED . 

For the lower magnitudes of Debye–Hückel parameter, the value of ED  is increased with 

largerDebye–Hückel parameter; however, at the same time there is an inverse response in ED  

for the higher values of Debye–Hückel parameter. 
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IV.  Increasing the first-order chemical reaction parameter weakens the dispersion mechanism, 

which reduces the values of the effective dispersion coefficient ( )ED . 

V. Elevation in the Casson viscoplasticparameter helps to increase the effective dispersion 

coefficient but manifests in a suppression in the peak of the mean concentration. 

VI. An increment in the first-order chemical reaction parameter produces a higher peak of the 

average concentration profile. 

VII. The peak of the average concentration tends to be increased for higher magnitudes of Debye–

Hückel parameter while it is diminished for lower magnitudes of Debye–Hückel parameter. 

The current study has overall revealed some interesting characteristics of hydrodynamic dispersion in 

reactive non-Newtonian electro-magnetic pulsatile blood flow. However magnetic induction and heat 

transfer effects have been neglected, which are important in more generalized bioelectromagnetic 

dispersion transport phenomena [49] and also bio-inspired energy systems [50]. These provide an 

interesting pathway for future studies as do alternative rheological models e.g., viscoelastic, couple 

stress [51], micropolar [45], microstretch, etc. Efforts in this direction are currently being explored and 

will be communicated imminently. 

Author Contributions: All the authors contributed to performing the study. 

Funding: No funding. 

Availability of data and material: Not applicable 

Declarations 

Conflict of interest: On behalf of all authors, the corresponding author states that there is no conflict 

of interest. 

Appendix. Magnetic and Electric field Expressions 

Magnetic field in equation (4) and Poisson- Boltzmann equation (5), which are expressed as follows: 

Maxwell's equations are a set of four partial differential equations that describe the force of 

electromagnetism in an electromagnetic field. The electromagnetic theory depends on Gauss’ law, 

Faraday’s law, Ampere’s law, and the current continuity equation. These equations are stated 

mathematically as: 

0. 0B  =  (A.1) 

0B
E

t







 = −

  
(A.2) 

M J  =  (A.3) 

. 0J =  (A.4) 
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Where 0B  denotes the magnetic flux, E  indicates the electric field, M   represents the magnetic field 

and J   designates the current density. 

Here 0 1 2B B B  = +
 
(Sum of external and induced magnetic field) 

Under a small magnetic Reynolds number induced magnetic field ( )2B 

 
is negligibly small compared 

to the external magnetic field ( )1B  . 

Further, the electric field due to the polarization change is also negligible. By Ohm’s law 

( )0J E u B    = + 
 

(A.5) 

Where    denotes the electrical conductivity. 

The electric fields imposed and induced are presumed to be negligible. 

Hence, the term 0J B 
 
is simplified as 

2

0B u
 −

 

According to the theories of Electrohydrodynamics and Navier-Stokes equations for an incompressible 

viscous dielectric fluid, the Electrohydrodynamics equations can be summarized as. 

( )w.    Gaus s  laeE





 =

 

(A.6) 

( )Relation between irrotational field and scalar potential .    E  = −
 

(A.7) 

. 0eJ
t

 





 + =

  

(A.8) 

. 0u =  (A.9) 

2
e z

du
p u E

dt
  


     


= − +  +

 

(A.10) 

Substituting Eqn. (A.7) into Eqn. (A.6), we get the following Poisson’s equation 

2 e



 
 = −

 

(A.11) 

Where e
  denotes the net charge density,   designates the permittivity of the free space (dielectric 

constant),   represents the electric potential and zE 

 
indicates the component of external electric field 

applied in the axial direction. 

Nomenclature 

 

Symbols Name Unit 

𝒕∗ Time s 

𝑲∗ Permeability 𝑚2 

∅ Porosity Dimensionless 
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𝑪∗ Solute Concentration kg𝑚−3 

𝝀∗ Concentration diffusivity 𝑚2𝑠−1 

𝒌 Tortuosity Dimensionless 

𝑫𝒛
∗, 𝑫𝒓

∗ Axial and transverse diffusion coefficients 𝑚2𝑠−1 

𝜷∗ Debye–Hückel parameter 𝑚−1 

𝒖∗  Velocity 𝑚𝑠−1 

𝚪∗ Bulk flow reaction rate 𝑠−1 

𝑱∗ Current density 𝐶𝑚−2 

𝒑∗ Superficial pressure including gravity 𝑁𝑚−2 

𝑩∗ Total magnetic field 𝑇(𝑇𝑒𝑠𝑙𝑎) 

Table 3. List of variable and parameters 
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