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ABSTRACT  

A theoretical study is presented for the coupled thermo-solutal free convection two-

dimensional boundary layer flow of a of a magnetized fluid from an exponentially stretched 

magnetic sensor (Riga plate) surface.  Heat generation/absorption, nonlinear thermal radiation 

and thermophoretic body force effects are included. Furthermore, thermal and solutal 

stratification are also featured in the boundary layer model. The derived nonlinear partial 

differential equation system with associated wall (sensor surface) and free stream boundary 

conditions is transformed to system of ordinary differential equations (ODE) via applicable 

similarity variables. A numerical solution is developed with the efficient Runge–Kutta–

Fehlberg (RKF) technique with a shooting numerical method, in MATLAB software using the 

RKF-45 method. The graphical profiles were represented to examine the impacts of physically 

parameterics on the important physical stream features. Streamline and isotherm plots are also 

included for thermal buoyancy effect (Grashof number).Validation of solutions with earlier 
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simpler models is included. A relatively well agreement is achived between model prediction 

and the benchmark value. Values for skin friction factor, Nusselt number and Sherwood 

numbers are also tabulated to quantify momentum, heat and mass (species) transfer 

characteristics at the sensor surface. The results indicate that the significant depletion in 

temperature accompanies accumulation in magnetization and thermal stratification parameters. 

Significant accumulation in mixed convection and Riga plate electrode width parameter 

enhance the concatenation profiles. Nusselt number grows substantially as thermal 

stratification and radiative parameter increases. Sherwood number grows substantially as 

solutal stratification, thermophoresis and Schmidt parameter increases. The present study 

generalizes previous models to include simultaneously exponential stretching, thermophoresis, 

thermal and solutal (mass) stratification and heat source/sink effects. 

 

KEYWORDS: Magnetohydrodynamics (MHD); Riga sensor; Thermal radiation; Heat 

source/sink Thermal stratification; Solutal stratification; Thermophoresis; Boundary layers. 

 

1. INTRODUCTION  

Electromagnetic sensors are complex, precision-engineered actuator devices which enable 

monitoring and measurement of delicate processes in numerous technologies including smart 

energy grids [2], surface crack detection in materials fabrication [3], bio-microfluidics [4], 

flexible electronics [5], earthquake disaster monitoring [6], naval drag control, 

electromechanical devices, robotics etc. They offer many advantages to conventional sensor 

systems including better operational ranges and tunable responsivity, isolation between 

components, and robust performance under intense loading and durable deployment in 

hazardous applications [4]. Many types of such sensors have been developed which exploit 

different magnetic phenomena including ferrofluid sensors [7], (which use a ferrofluid mass to 

convert the flow rate into quantifiable mass displacement), electromagnetic traps [8], Hall-

sensors [9], magneto-resistive sensors [10], hybrid polymer foil magnetic micro-sensors [11]. 

An alternative system known as the Riga plate [12] was developed to exploit a wall-parallel 

Lorentz force and comprises a system of permanent magnets arranged with a series of aligned 

spanwise alternating electrodes. This electromagnetic actuator has been originally designed for 

skin friction and pressure drag minimization in hydronautics but has more recently been 

utilized in biomedical and other technical applications (e.g. submarines [13]).  The design of 

Riga plate magnetic sensors involves a combination of fluid mechanics, electromagnetics and 

also heat and mass transfer. In mathematical models, to achieve robust flow control, crossed 
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electric and magnetic fields are applied to generate the wall-parallel Lorentz force and this 

permits modification of the boundary layer flow, pressure gradient etc. Boundary layer control 

is achieved with regulation of the electrical and magnetic field strengths. The rich arena of 

multi-physical transport phenomena inherent to Riga plate sensor flows has stimulated 

considerable interest in mathematical modelling, which provides an important compliment to 

experimental testing. These studies have considered different working fluids and also a wide 

range of thermophysical effects. Ganesh et al. [14] studied the transient squeezing dynamics 

of non-Newtonian (tangent hyperbolic) liquid in a Riga sensor with thermal conductivity 

variation. Islam et al. [15] used MATLAB explicit finite difference routines to compute the 

magnetized flow along a rotating Riga plate, presenting solutions for primary velocity, 

secondary velocity, temperature, local shear stress and Nusselt number. Loganathan and Deepa 

[16] presented numerical solutions for the effects of chemical reaction and heat source/sink on 

viscoplastic magnetized flow along a permeable Riga-plate. They noted increment in modified 

Hartmann number and heat generation accelerates the flow. Ahmad et al. [17] used a 

perturbation technique to study the mixed convection boundary layer flow of a nanofluid past 

a vertical porous Riga plate with strong suction, using a Grinberg-term for the wall parallel 

Lorentz force. Further studies include Ahmad et al. [18] (on nanofluid transport from Riga 

plate) and Ramesh et al. [19] (who considered viscoelastic convective nanofluid flow from a 

Riga sensor surface). These investigations all confirmed the considerable manipulation 

possible with magnetic forces in boundary layer characteristics on a magnetic Riga sensor. In 

numerous biomedical and emerging energy applications, high temperatures may arise which 

invoke radiative heat transfer in addition to conduction and convection heat transfer [20]. These 

include biotechnological radiation pumps [21], metamaterial devices [22], thermophotovoltaic 

fuel cells [23], hyperthermia treatments [24]. Mass transfer is also featured in numerous 

medical applications such as aerosolized drug delivery [25-26] and intraperitoneal drug 

delivery [27]. In many of these processes, magnetic sensors may be deployed.  Although many 

approaches are available for simulating thermal radiation effects including photon transport 

models, Monte Carlo simulation and discrete ordinates models, a simpler methodology is the 

use of an algebraic flux model which avoids the need to solve the full radiative heat transfer 

equation. Several works have explored therefore the impact of thermal radiation in Riga plate 

electromagnetic fluid dynamics using a flux model, of which the Rosseland diffusion model is 

the most popular. Rosseland’s model is generally valid for optically thick fluids and considers 

absorption but not scattering effects. It is very suitable for implementation in boundary layer 

flows. Ramzan et al. [28] examined the combined influence of effects of chemical reaction and 
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Rosseland radiative flux on viscoelastic nanofluid flow from a variable thickness convectively 

heated Riga plate with wall slip and zero mass flux conditions. Mishra et al. [29] used the 

variational parameter method (VPM) to compute the effects of thermal relaxation, thermal 

radiation, viscous heating and Ohmic dissipation in electromagnetic squeezing thermo-solutal 

flow between Riga plate sensors. They presented extensive solutions for velocity, temperature, 

concentration distributions and also reduced skin friction, Nusselt number and Sherwood 

number, observing a strong elevation in temperature with radiative effects. Rooman et al. [30] 

implemented a homotopy analysis method (HAM) to simulate the collective effects of 

Rosseland radiative flux, variable thermal conductivity and chemical reaction on entropy 

generation in magnetized. Williamson rheological nanofluid flow from a vertical Riga sensor 

plate. They noted that stronger magnetic field accelerates the flow whereas elevation in 

radiative flux intensity and temperature ratio parameter enhance entropy generation (Bejan 

number). Shafiq et al. [31] used the optimal homotopy analysis method (OHAM) coded in 

BVPh2.0 in MATLAB, to study the radiative-convective stagnation point flow of Walters-B 

viscoelastic magnetic flow along a Riga plate with Newtonian heating. They observed a strong 

enhancement in temperatures and a decrease in Nusselt number at the sensor surface with 

stronger radiative flux. Additional studies include Zainal et al. [32] (on radiative hybrid 

nanofluid magnetized Hiemenz stagnation flow from a porous contracting/expanding Riga 

plate) and Rawat et al. [33] (on radiative convective copper/silver-aqueous nanofluid boundary 

layer flow from a vertical Riga sensor surface). 

In many magnetic sensor systems (and other applications including optical fiber and 

semiconductor wafer fabrication), micro-particle transport due to a temperature gradient may 

arise. This temperature gradient generates a net force on particles arising from a disparity in 

forces due to molecular collisions from the hotter and colder regions in the fluid. This effect is 

known as thermophoresis [34] and is important in aerosols, magnetic fluids, high temperature 

radiative systems etc. It leads to the deposition of small micron sized particles on cold surfaces 

and the repulsion of particles from hotter regions (or surfaces) with a particle-free layer arising 

in the vicinity of hotter surfaces bodies [35-36]. A number of investigations of thermophoretic 

effects in both non-magnetic and magnetohydrodynamics (MHD) boundary layer flows have 

been reported in recent years. These include Ganesan et al. [37] who considered free 

convection. Das et al. [38] used a shooting numerical method to analyse MHD slip from with 

wall transpiration and variable viscosity and thermal conductivity. They noted that 

concentration is depleted with greater thermophoretic body force. Zueco et al. [39] deployed 

an electrothermal network simulation code (PSPICE) to study the combined effects of Joule 
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heating and thermophoresis on magnetized boundary layer convection flow from a porous wall. 

They observed that mass diffusion to the wall is enhanced with thermophoresis whereas 

concentration boundary layer thickness is reduced. Several articles have also addressed 

thermophoresis effects in Riga plate sensor boundary layer flow. Madhukesh et al. [40] used a 

Runge–Kutta–Fehlberg 45 shooting scheme to compute the thermophoretic magnetic nanofluid 

flow from a Riga sensor wall with Newtonian heating. They noted an increment in velocity 

with modified Hartmann (magnetic) number and a boost in concentration magnitudes with 

Schmidt number. However, a strong depletion in concentration was observed with increasing 

thermophoretic parameter. Abo-Elkhair et al. [41] used semi analytic solutions for magnetic 

force effects acting on peristaltic transport of hybrid bio-nanofluid. Madhukesh et al. [42] also 

investigated the laminar, steady thermophoretic viscoplastic (Casson) hybrid magnetized 

nanofluid boundary layer flow from a Riga plate surface adjacent to a porous medium. 

Fatunmbi et al. [43] presented power series homotopy and Galerkin weighted residual method 

solutions for entropy generation in reactive non-Newtonian dissipative nanofluid MHD flow 

from a permeable vertical Riga surface embedded in a porous medium with radiative, 

thermophoresis and variable thermal conductivity effects. They showed that temperature and 

thermal boundary layer thickness are elevated with thermophoretic parameter whereas the flow 

is accelerated with increasing magnetic field strength. They also observed an elevation in 

entropy generation (Bejan number) with Biot and Eckert numbers and a decrease with porous 

media (Darcy) parameter. 

The above studies generally considered a stagnant (stationary) sensor surface or a linear 

stretching surface. However more complex stretching dynamics may arise where the surface is 

extended quadratically or exponentially which permits more sophisticated manipulation of the 

wall transport characteristics. Several researchers have considered flows from exponential 

stretching surfaces.  Bég et al. [44] used an explicit finite difference method to compute the 

transient MHD mixed convective boundary layer flow of a nanofluid from an exponentially 

stretching sheet in porous media. They noted that exponential stretching velocity strongly 

modifies the momentum and thermal characteristics and that temperature and nanoparticle 

concentration are significantly modified with thermophoresis effect and strongly boosted with 

elapse in time. Partha et al. [45] studied the mixed convective Newtonian dissipative flow from 

an exponentially stretching vertical surface. They highlighted the strong modification in 

transport characteristics for both aiding and opposing flow buoyancy cases and a morphing in 

velocity and temperature with Gebhart number and exponential stretching velocity. Further 

works on exponential stretching surface flows include Akbar et al. [46] (for magnetic 
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nanofluids), Shamshuddin et al. [47] and Sajid and Hayat [48] (on radiative-convective non-

Newtonian magnetic slip flows with Hall current and Joule heating) and Bidin and Nazar [49] 

(on radiative heat transfer in convective boundary layers). 

The above studies did not simultaneously consider exponential stretching and 

thermophoresis for the case of a Riga plate. In the present article we therefore examine the 

incompressible stead-state two-dimensional thermo-solutal free convective magnetized 

boundary layer fluid flow from an exponentially stretched magnetic sensor (Riga Plate) surface. 

The novelty of the current study is that effects of heat generation/absorption, nonlinear thermal 

radiation and thermophoretic body force are included. Furthermore, thermal and solutal 

stratification are also incorporated [50-51] which have also been neglected thus far in Riga 

plate electromagnetic actuator flows. A numerical solution is developed using a Runge–Kutta–

Fehlberg (RKF) with shooting [52] for the transformed conservation equations under 

physically appropriate wall (sensor surface) and free stream conditions. The present study 

therefore generalizes previous Riga plate mathematical models to include simultaneously 

exponential stretching, thermophoresis, thermal and solutal (mass) stratification and heat 

source/sink effects. Extensive visualization of the influence of emerging parameters such as 

thermal Grashof number, magnetic interaction  number, electrode parameter, thermal radiation 

parameter, heat source/sink parameter, Schmidt number, thermal and solutal stratification 

parameters and thermophoretic parameter on velocity, temperature, concentration are 

presented. Streamline and isotherm plots are also included for thermal buoyancy effect 

(Grashof number).Validation of solutions with earlier simpler models is included. Values for 

skin friction factor, Nusselt number and Sherwood numbers are also plotted to quantify 

momentum, heat and mass (species) transfer characteristics at the sensor surface. 

 

2. MATHEMATICAL MODEL  

The two-dimensional steady-state, incompressible, free convective magnetized fluid flow from 

an exponentially stretched Riga plate electromagnetic actuator sensor surface with heat and 

mass transfer is considered in an ( , )x y coordinate system, as shown in Fig. 1.  
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Figure 1. Geometry of the exponentially stretched Riga plate surface   

 

The effects of heat source/sink, thermal radiation and thermophoresis are included. Thermal 

and solutal (mass) stratification are also considered. Hall current is neglected. The Riga plate 

is orientated in the x-direction. Gravity is also in the x-direction so that the Riga plate is actually 

vertical. The Riga plate has magnetization 0M M x=  at 0y = , with uniform temperature and 

concentration at the surface ,w wT C  which exceed the ambient temperature and concentration 

,T C 
. The stretching velocity of the Riga plate along x-axis is /

0

x Lu U e= , where 0U signifies 

a reference velocity. On the Riga plate surface, the thermophoresis produces mass deposition 

variation. Under the above approximations, amalgamating the models of Hayat et al. [53] and 

Supian et al. [54], the governing conservation boundary layer equations i. e. mass, momentum, 

energy (heat) and concentration (species) for the regime under consideration may be stated as:  

0,
u v

x y

 
+ =

 
                       (1) 

( ) 1

2

0 0
02

,
8

y
aJ Mu u u

u v g T T e
x y y




 


−



  
+ = + − +

  
                                                                  (2) 

( )2
0

2

1
,r

Q T TqT T T
u v

x y y Cp y Cp


 

−  
+ = − +

   
                                                 (3) 

( )
2

2
,B T

C C C
u v D V C C

x y y y


   
 + = − −    

                              (4)  

gravity 



8 
 

The associated wall and free stream boundary conditions are: 

2 2
0 0 0

2 2
0 0

0 :     ,  0,   ,    ,

:  0,  0,  , .

x x x

L L L
w w

x x

L L

y u U e v T T T be C C C ae

y u v T T T ce C C C de 

= = = = = + = = +

→ = = = = + = = +

    (5)

 

Here u and v  represent velocity components in the x, y directions, respectively, kinematic 

viscosity is  , fluid density is  , plate surface magnetization associated with the permanent  

magnets is 0 ,M  current density applied to electrodes is 0 ,j thermal diffusivity is , thermal 

expansion is
0 , specific heat capacity is ,pC  internal heat source/sink is 

0 ,Q  and species mass 

(molecular) diffusivity is BD . To simulate the thermal radiative flux in the energy Eqn. (3), the 

Rosseland approximation is deployed [28,29, 54] for which: 

4

1
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4

3
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T
q

k y
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= −


.                                                                                                                       (6) 

Here 1  designates Stefan-Boltzmann constant and 1k represents the absorption factor. 

Expanding 4T  using Taylor series about T  and neglecting terms of higher order, leads to

4 3 44 3 .T T T T  −  

The thermophoretic term featured in the concentration boundary layer Eqn. (4)  

 

Introducing TV  according to Alam et al. [55]: 
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Here thk denotes thermophoretic coefficient which is defined as: 
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Here the constant terms are 1 2 3, , , ,t sC C C C C and mC . ,g p    are the fluid thermal 

conductivities and  nK is Knudsen number. The thermophoretic parameter ( )  is defined by  

 w

ref

k T T

T
 −
= − .                                                                                                                      (9) 

Introducing a stream function 
/2

0( ) 2 x Lx U L e = defined in terms the Cauchy-Riemann 

equations, /u y=    and /v x= −   Eqn. (1) is automatically satisfied. For simplification of 
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the current model, the following similarity transformations are utilized, following Hayat et al. 

[53]: 

( ) ( ) ( )0 02 2
0

0 0

,   = ' , ' ,
2 2
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                             (10) 

Substitution of Eqn. (10) into Eqns. (2)-(4) leads to the dimensionless self-similar momentum, 

energy and concentration boundary layer Eqns.:   
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The emerging transformed boundary conditions (5) assume the form: 
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Here the primes refer to differentiation regard to similarity variable   and the following 

dimensionless parameters arise:  

( )

( )

2
0 0 0

2 2

2 20
0 0

3
00

0

2g 2
,  ,  = ,  ,  ,

4

2 4 *
,  = ,  ,  Pr= , .

*

x
w L

x x

L L

w th

x

B refL

T T L J M Lc d L
St Sm A e Q

b a a U
U e U e

T T kQ L T
Sc S R

D kk T
CpU e

  




 







− −
= = = =

− −
= = =

                            (15) 

In Eqn. (15), ,t mS S  denote thermal and solutal stratification parameters,   is represented by 

thermal Grashof number, A indicates dimensionless parameter associated with the magnetic 

surface electrode width, Q indicates modified magnetic interaction  number, Sc  stands for 

Schmidt number, S indicates thermal heat source/sink parameter, R  stands for thermal 

radiation parameter, Pr designates Prandtl number and  symbolizes thermophoretic 

parameter. To compute momentum, heat and mass transfer characteristics at the exponentially 

elongated Riga sensor surface (wall), skin friction factor (non-dimensional shear stress), 

Nusselt number and Sherwood number can be expressed as:  
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Here the dimensional wall shear stress, thermal flux and solutal flux take the form: 
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Invoking the non-dimensional transformations (10), the following relations emerge:  
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Here /

0Re /x L

x U e x =  indicates local Reynolds number.  

 

3. NUMERICAL SOLUTION AND VALIDATION 

The transformed ordinary differential boundary value problem defined by Eqns. (11)-(13) 

along with boundary conditions (14) are strongly nonlinear and coupled. A numerical solution 

is therefore sought using the fourth order Runge–Kutta–Fehlberg (RKF) with the shooting 

method. This method converts the equations to the set of IVPs (Initial Value Problems) with 

unknown initial conditions, which can be dealt with suitable guesses. In this present situation, 

we substituted the variables , ,  p q r and s so that the collective 7th order system of equations 

(11)-(13) are transformed to linear first order differential equations (19)-(25) as: 
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The associated boundary conditions are: 
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To solve equations (21), (23), (25) with (26) as an initial value problem the values of 

(0),  (0) and (0)q r s are needed. Since these values are not available, hence, the suitable guesses 

for (0),  (0) and (0)q r s are made and generated by the shooting scheme with other boundary 

conditions at → . A step size of , is adopted, and an accuracy up to the fifth 

decimal place, is taken as the criterion of convergence. 

 

3.1. Validation  

To verify the RKF solution validity, we have extracted the reduced Nusselt number ( )0−

values for various values of R and Pr ,and compared these with earlier solutions of Bidin & 

Nazar [49] and Mathur & Mishra [56]. The numerical outcomes are listed in Table 1. Evidently 

the solutions correlate very closely, and this confirms the accuracy of RKF approach.  

 

 

 

Table 1: Comparison of ( )0−  for different values of Pr and R  when 0Q S St = = = = . 

 

Pr  

0R =  0.5R =  

Bidin & 

Nazar [49] 

Mathur & 

Mishra [56] 

Present RKF 

results 

Bidin &  

Nazar [49] 

Mathur & 

 Mishra [56] 

Present 

RKF results 

1 0.9548 0.9576 0.95478 0.6765 0.6936 0.67651 

2 1.4714 1.4708 1.47146 1.0735 1.0744 1.07352 

3 1.8691 1.8685 1.86907 1.3807 1.3802 1.38075 

 

4. RESULTS AND DISCUSSION  

Extensive computations have been conducted with the RKF method and shooting algorithm in 

MATLAB symbolic software. Figs 2-5 illustrate the influence of selected parameters on 

velocity, temperature and concentration profiles. Additionally, streamline and isotherm contour 

plots are visualized in Figs 6-7. All data utilized is selected from [40], [42], [53], [54] and is 

physically representative of actual Riga plate actuator systems. 

0.01 =
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Fig. 2. Variation of velocity with (a) Q  and   (b) St  and A  

 

 

Fig. 3. Variation of temperatures with (a) Q  and   (b) St  and A  (c) R  and S    
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Fig. 4. Variation of concentration with (a) Q  and   (b) St  and A  (c) Sm  and Sc    
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Fig. 6 Countour plots for streamlines with variation in   

 

 

Fig. 7 Countour plots for isotherms with variation in   
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Fig. 2a shows the evolution in velocity through the boundary layer regime transverse to 

the sensor surface with increment in Q  and  . As Q  is increased there is a strong elevation 

in velocity i.e. the flow is accelerated and the momentum boundary layer thickness is reduced.

2 2 /

0 0 0/ 4 x LQ J M L U e = and is directly properitional to the magnitization in the Riga sensor 

surface. However the resulting magnetic body force is not retarding in nature, and is aligned 

with the sensor surface. This asssists momentum development and enhances velocities, a trend 

which is sustained at all   − values. Velocity is therefore minimized when magnetization 

vanishes i.e. 0 0M =  and therefore 0Q =  for which momentum boundary layer thickness is a 

maximum.  An increase in mixed convection parameter, ,  however induces the reverse effect 

to magnetic parameter. Higher values of  damp the boundary layer flow and lead to a 

reduction in velocities. Thermal convection current therefore inihibit momentum development 

and decelerate the flow, causing an increase in momentum boundary layer thickness. The 

mixed convection parameter, + arises in the momentum Eqn. (11) and couples this equation 

to the energy (thermal boundary layer) eqn. (12). When 0, = these equations are decoupled 

and forced convection is present in the regime. This achieves the maximum velocity. Fig. 2b 

shows that with increasing thermal stratifcation parameter, St  and  greater magnetic and 

electrode width parameter, A , the velocity is significantly depleted. The parameter, /St c b=  

and features in the term, Pr( )St f − in the energy Eqn. (12) and also the modified wall 

temperature boundary condition, (0) 1 St = −  in Eqn. (14). Increment in St  increases the 

inhibiitve force Pr( )St f − which opposes momentum development and decelerates the 

boundary layer flow. Momentum boundary layer thickness will however be increased. The case 

where thermal stratification is absent i.e. 0St = , achieves the maximum velocity and minimal 

momentum (hydrodynamic) boundary layer thickness. The parameter, 

2 /

02 / /x LA L U e a = −  and arises in the exponent of the term, 
AQ e −+ in Eqn. (11). As A  

is increased, the electrode width is decreased, and the overall assistive term, 
AQ e −+ , is 

decreased  and this generates greater drag at the Riga plate surface. Momentum boundary layer 

thickness is therefore also enhanced. Clearly a substantial modification in velocity distribution 

is achieved with alteration in the electrode width parameter.  

Fig. 3 illustrates the evolution in temperatures with (a) Q  and   (b) St  and A  (c) R  

and S . With increment in the  magnetization parameter Q , as observed in Fig. 3a, there is a 

strong decrement in temperature, which descend very sharply from the sensor surface and 
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eventually reach the symptotically smooth convergent values in the freestream. Although Q 

does not feature in the energy eqn. (12), it is coupled to this eqn. via the mixed convective 

(thermal buoyancy) term, + . Furthermore the momentum eqn. (11) is coupled to the energy 

eqn. (12) via the thermal convection terms, Pr ( )f f  − and the thermal stratification term, 

Pr ( )St f − .Temperature will therefore be substantially modified indirectly by magnetizationn 

effect. Thermal boundary layer thickness is suppressed in the regime with increasing Q. 

Conversely there is a marked elevation in temperature with enhancement in mixed convection 

parameter, 𝜆. With greater values of this parameter the thermal buoyancy effect is accentuated 

and thermal diffusion is intensified. This heats the boundary layer and also boosts thermal 

boundary layer thickness. Fig. 3b shows that an increase in thermal stratification parameter, St 

significantly depresses temperature i.e. induces cooling, whereas the contrary effect is observed 

with elevation in the electrode width parameter, A. Thermal boundary layer thickness is 

therefore depleted with more intense thermal stratfificaton since heat transfer is delaysed in the 

boundary layer, whereas thermal boundary layer thickness is boosted with  electrode parameter 

elevation. Thermal diffusion in the boundary layer on the magnetic Riga sensor is therefore 

very sensitive to  both stratification and electrode width changes. For the non-thermally 

stratified scenario, St = 0, temperatures are maximized. Fig 3c shows that a substantial 

enhancment in temperature is computed with increasing radiative parameter (R) whereas a 

reduction is observed with larger heat sink parameter, S. The thermal diffusion term is 

augmented with the radiative parameter,  in the term, Pr (1+ (4 / 3))R  in the energy Eqn. 

(12). The intensification in radiative flux with greater R values energizes the boudnary layer 

which absorbs more thermal radiation releative to thermal conduction. When 0R = , radiative 

effects vanish and only conduction and convection are present. Thermal boundary layer 

thickness is therefore much greater with radiative heat flux present than when it is absent.  The 

increment in thermal sink effect with greater S value simplies increased releval of heat from 

the system. This cools the regime and decreases thermal boundary layer thickness. 

Fig. 4 depicts the plots for concentration with transverse coordinate for (a) Q  and   (b) 

St  and A  (c) Sm  and Sc . With an upsurge in Q (Fig. 4a) there is a significant plummet in the 

concentration ( 𝜙) magnitudes. Concentration (species) boundary layer thickness is therefore 

suppressed with stronger magnetization effect in the boundary layer along the sensor surface. 

Although magnetization parameter is absent in the species boundary layer Eqn. (13), this 

equation is strongly coupled to the momentum Eqn. (11) via the convective diffusion ters, 

( )Sc f f  − and solutal stratification terms, ( )Sc Sm f − . An indirect efect is therefore 
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experienced in the solutal field with modification in magnetization parameter, Q. Increasing 

mixed convection parameter,   (see Fig. 4b) also exerts an indirect effect on concentration via 

coupling with the energy Eqn. (12) through the thermophoresis terms, ( )     − +  in eqn. 

(13). Thermal buoyancy when altered in the momentum eqn. (11) influences the temperature 

field which cia coupling modifies the concentration distributions. While the flow is decelerated 

with greater thermal buoyancy, there is a weak elevation in concentration magnitudes. Mass 

diffusion is therefore encouraged with mixed convection effect and concentration boundary 

layer thickness is enhanced. An increase in thermal stratification parameter, St,  also affects the 

concentration field via coupling between the thermal and species boundary layer eqns. While 

temperature is reduced with greater thermal stratification, the mass diffusion of species is 

assisted and particles disperse more effectively in the boundary layer. Concentration boundary 

layer thickness is therefore least for the case where there is no thermal stratification in the  

regime (St =0). An increase in electrode width parameter, 
2 /

02 / /x LA L U e a = −  also 

considerably boosts the concentration magnitudes. Again the influence is indirect and due to 

coupling between the different conservation equations which enables the magnetic and 

electrode terms to exert an effect on mass transfer. Concentration elevation is in particular 

pronounced at intermediate distances from the sensor surface. Fig 4c shows that with an 

increment in Schmidt number, Sc, there is progressive reduction in concentration. Similarly 

larger values of solutal stratification parameter, Sm, also result in a significant depletion in 

concentration values. Schmidt number relates the momentum diffusivity to the molecular 

(solute) diffusitivity. For Sc = 0.6, the solutal diffusiion rate therefore exceeds the momentum 

diffusion rate (vorticity)which leads to higher values of concentration. However when Sc = 1 

(oxygen difusing through aqueous solution) and the diffusion rates are the same (implying an 

equivalence in momentum and species boundary layer thicknesses), the mass diffusion is 

inhibited and there is a plummet in concentration magnitudes through the boundary later 

transverse to the magnetic Riga sensor surface. The solutal stratification parameter, Sm arises 

in the modified terms in the species conservation Eqn. (13), viz, ( )Sc Sm f −  and also appears 

in the agmented wall concentration boundary condition (14), viz (0) 1 Sm = − . Larger values 

of Sm imply a more disperse regime and particle diffusion (mass transfer) is inhibited. For the 

case Sm = 0, solutal stratification is negated and maximum concentration is observed with a 

corresponding maximum species boundary layer thickness on the magnetic sensor surface. 

Fig 5 displays the distributions in (a) skin-friction with Q  and   (b) Nusselt number 

with St  and R  (c) Sherwood number with Sm  and Sc . Fig 5a shows that with greater values 
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of mixed convection parameter,   there is significant elevation in skin friction at the Riga 

plate surface. The profiles also grow linearly with increment in magnetization parameter, Q. 

However increment in electrode width parameter, A, leads to a depression in skin friction. The 

boundary layer flow is therefore accelerated at th Riga surface with stronger thermal buoyancy 

effect and greater magnetic field, whereas it is decelerated with greater electrode width effect.  

Fig. 5b shows that greater thermal stratification parameter, St and radiative parameter, R, both 

boost the Nusselt number, although at higher values of R the profiles become increasingly 

parabolic (nonlinear) in nature indicating a very strong modification in heat transfer to the plate 

surface with high radiative flux intensity. At lower values the profiles are approximately linear. 

An increment in mixed convection parameter   significantly  enhances Nusselt number 

magnitudes, since natural thermal convection currents intensify the heat transferred to the Riga 

plate surface. Fig. 5c illustrates that substantial enhancment in Sherwood number is induced 

with a rise in soutal stratification parameter, Sm, thermophoresis parameter,  and also Schmidt 

number. Greater migration of particles under strong thermal gradient is encouraged with higher 

thermophoretic body force. The mass transfer to the wall is therefore elevated, as a result of 

the amplification in the terms,  ( )Sc      − + in the species boundary layer Eqn. (13). 

However since concentration values will be depeleted (greater species diffusion is produced 

towards the plate surface) in the boundary layer regime, the concentration boundary layer 

thickness will be suppressed with stronger thermophoretic effect. The reduction in 

concentration values with increment in Schmidt number (computed earlier) due to a reduction 

in molecular diffusivity, results in greater transport of particles via mass diffusion to the Riga 

sensor surface. This manifests in a boost in Sherwood numbers. Also the depeltion in 

cocentration values in the boundary layer regime with higher solutal stratification parameter 

(also computed earlier) produces an upsurge in particles migrating to the sensor surface, which 

effectively elevates the Sherwood number values at the Riga sensor plate wall. 

Figs. 6 and 7 visualize the streamline and isotherm contour plots with a change in mixed 

convection parameter, with all other parameters constrained. Fig. 6 shows that with increasing 

 values, the thermal buoyancy force is elevated and this causes an expansion in theright hand 

side yellow zone. However the streamlines in the central zone ( 0)x = are constricted and the 

blue zone ( 40 0)x−   is intensified, indicating a strong deceleration in the regime with 

greater thermal buoyancy effect. The gradient in the streamlines at lower   values is also 

reduced and overall the left blue and right yellow zones are expanded laterally. There is also 

considerable contraction in the central zones especially at higher values of transverse 
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coordinate ( ) which is absent for the forced convection case ( 0) = .  The flow on the Riga 

plate sensor surface is therefore strongly modiifed with amplification in thermal buoyancy 

(natural convection currents). Fig. 7 indicates that with increasing mixed convection parameter, 

( ) 2 2 /L

0 02 / x

wg T T L U e = −  the isotherms are progressively constricted (intensified) from the 

left zone to the right zone and morph from a parabolic topology to a vertical pattern especially 

in the core region (x ~0). A hotter (red) zone and also an adjacent warm yellow zone emerge at 

the extremity of the right zone (x = 40) and is present at all values of transverse coordinate, . 

These hotter (yellow and red) regions are absent for the forced convection case ( 0) =  and 

also the weaker mixed convection case ( 0.1) = . With maximum thermal buoyancy effect 

( 0.2) = , the heat transfer is significantly intensified in the regime and  temperatures are 

boosted mainly in the  right zone but also elevated throughout the domain. 

 

5. CONCLUDING REMARKS  

A mathematical model has been developed for the coupled thermo-solutal free convection two-

dimensional boundary layer flow of a of a magnetized fluid from an exponentially stretched 

magnetic sensor (Riga plate) surface.  Heat generation/absorption, nonlinear thermal radiation 

and thermophoretic body force effects have been incorporated. Furthermore, thermal and 

solutal stratification are also studied. The dimensionless transformed ordinary differential 

boundary value problem is solved computationally with the efficient Runge–Kutta–Fehlberg 

(RKF) technique and a shooting algorithm, in MATLAB software. The impact of emerging 

parameters such as mixed convection parameter (thermal Grashof number), magnetic 

interaction  number, electrode parameter, thermal radiation parameter, heat source/sink 

parameter, Schmidt number, thermal and solutal stratification parameters and thermophoretic 

parameter on velocity, temperature, concentration are visualized graphically. Streamline and 

isotherm plots are also included for thermal buoyancy effect (Grashof number).Validation of 

solutions with earlier simpler models is included. Values for skin friction factor, Nusselt 

number and Sherwood numbers are also tabulated to quantify momentum, heat and mass 

(species) transfer characteristics at the sensor surface. The main findings from the simulations 

may be summarized as follows:  

• Velocity and momentum boundary layer thickness are respectively reduced and increased 

with increasing thermal stratification parameter, St  and greater electrode width parameter,

A . 
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• A significant depletion in temperature and thermal boundary layer thickness accompanies a 

rise in magnetization parameter Q and thermal stratification parameter, St. 

• Incressing mixed convection parameter,  ,  thermal stratification parameter, St ,  and Riga 

plate electrode width parameter, ,A  all enhance concentrations and species boundary layer 

thickness. 

• Increasing thermal stratification parameter, St and radiative parameter, R, substantially 

enhance Nusselt number. 

• A marked enhancment in Sherwood number is produced with an increment in soutal 

stratification parameter, Sm, thermophoresis parameter,  and also Schmidt number. 

• With increasing  values, there is an expansion in the right zone, whereas the streamlines 

in the central zone ( 0)x = become increasingly  constricted, indicating a strong deceleration 

in the regime with greater thermal buoyancy effect. Also a hotter (red) zone and warmer 

yellow zone are observed in the isotherm plots at the right extremity of the regime, which 

are not present for the forced convection case ( 0) = and also the weaker mixed convection 

case ( 0.1) = . 

The present investigation has revealed some interesting flow phenomena in Riga 

electromagnetic plate actuator boundary layer flows. However attention has been confiend to 

Newtonian fluids. Future studies may consider for example Eringen’s micropolar model for 

non-Newtonian effects and will be communicated imminently.  
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NOMENCLATURE 

 

A         Riga plate electrode width parameter 
a         constant  

1a        width of concentration of the solute [ m ] 

b         constant 

c         constant 

C   concentration of the solute [ 3
mol m

− ] 

fC   skin friction coefficient 

pC   specific heat at constant pressure [ 1 1
J Kg K

− − ] 

1C   constant term 

2C   constant term 

3C   constant term 

tC   constant term 

sC   constant term 

mC   constant term 

wC   concentration at the stretching surface [ 3
mol m

− ] 

C   ambient concentration [ 3
mol m

− ] 

d   constant 

BD    species mass diffusion [ 2 /m s ] 

g   gravitational acceleration [ 2
/m s ] 
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0j   current density applied to electrode [ 2
/A m ] 

1k     absorption factor [ 1
m
− ] 

thk   thermophoretic coefficient 

nK   Knudsen number 

L        reference length [ m ] 

M   modified Hartmann number 

0M  Plate surface magnetization [ /NA m ] Telsa 

Nu   Nusselt number 

Pr   Prandtl number 

qr    Radiative heat flux [ 2
Wm

− ] 

Q    modified magnetic interaction number 

0Q   internal heat source/sink 

R   Radiation parameter 

Rex  local Reynolds number 

S   heat source/sink parameter 

Sc   Schmidt number  

Sh   Sherwood number 

St    thermal stratification parameter 

Sm  solutal stratification parameter 

T    temperature of the field in the boundary layer [ K ] 

wT   temperature at the stretching surface [ K ] 

T    ambient temperature [ K ] 

u    stretching velocity [ /m s ] 

0U   reference velocity [ /m s ] 

v    velocity component in y-direction [ 1
ms

− ] 

, ,x y z  Cartesian coordinates   

                                               

GREEK SYMBOLS 

   thermal diffusivity [ 2
/m s ] 

0   thermal expansion coefficient [1/ K ] 

  kinematic viscosity [ 12 −sm ] 

  density of base fluid [ 3−mkg ] 

1  Stefan-Boltzmann constant [ 2 4
Wm K

− − ] 

  mixed convection parameter 

,g p   fluid thermal conductivities [W/m/K] 

  thermophoretic parameter 

  dimensionless temperature 

  dimensionless concentration 

  similarity variable 

  stream function 

 


