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Abstract 12 

Dietary rice consumption can assume a significant pathway of the carcinogenic arsenic (As) 13 

in the human system. In search of a viable mitigation strategy, a field experiment was 14 

conducted with rice (cv. IET-4786) at geogenically arsenic-contaminated areas (West Bengal, 15 

India) for two consecutive years. The research aimed to explore irrigation management 16 

(saturation and alternate wetting and drying), and organic amendments (vermicompost, 17 

farmyard manure, and mustard cake) efficiencies in reducing As load in the whole soil-plant 18 

system. A thrice replicated strip plot design was employed and As content in the soil, plant 19 

parts, and the associated soil physicochemical properties were determined through a standard 20 

protocol. Results revealed that the most negligible As accumulation in the edible grains was 21 

accomplished by vermicompost amendment along with alternate wetting and drying (0.318 22 

mg kg-1) over farmer’s practice of continuous submergence with no manure situation (0.895 23 

mg kg-1). Interestingly, an increase in the grain yield by 25% was also observed. The risk of 24 

dietary exposure to As through rice was assessed through target cancer risk (TCR) and 25 
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severity adjusted margin of exposure (SAMOE) mediated risk thermometer. The adopted 26 

strategy made all the risk factors benign to ensure a better standard of health. The Machine 27 

Learning algorithm revealed that Random Forest performed better in predicting grain As 28 

concentration than k-Nearest Neighbour and Generalized Regression Model. Hence, if 29 

properly calibrated and validated, the former can represent an effective tool for predicting 30 

grain As concentration in rice. 31 

Keywords: Rice grain, arsenic concentration, alternate wetting and drying, vermicompost, 32 

dietary risk assessment, Random Forest. 33 

1. INTRODUCTION 34 

The ubiquitous toxic metalloid arsenic (As) has sparked a number of public concerns. Its 35 

increased occurrence in the biosphere (Sanyal, 2017) is concerning from an environmental 36 

and human health perspective (Guha Mazumder et al., 2013), particularly as a persistent and 37 

group 1 human carcinogen (Menon et al., 2020). The problem of As toxicity is more severe in 38 

India and Bangladesh with groundwater As concentration several orders higher than WHO 39 

permissible limits of 0.01 mg L-1 (Sanyal, 2017). The drinking of contaminated water is not 40 

the sole pathway of exposure. Recent investigations have revealed that food crops, especially 41 

rice, cultivated with As contaminated irrigation water can also be a potential route of As 42 

exposure (Carrijo et al., 2019). In India and Bangladesh, daily consumption of rice is high 43 

around 68.2 and 173.3 kg person-1 day-1 respectively. Approximately 69.6% of the calorific 44 

intake is from rice in Bangladesh and for India it is 29.1% (GRiSP, 2013). Rice cultivation in 45 

As-contaminated soils under anaerobic conditions results in much higher As than other crops 46 

(Awasthi et al., 2017). 47 

The high irrigation requirement of rice contributes to the soil As build-up when 48 

irrigation water has elevated As levels (Kumarathilaka et al., 2018); thus devising a 49 

mitigation strategy should encompass both the sources. To alleviate commonly practiced 50 
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flood irrigation, any drying pattern (e.g. alternate wetting and drying, AWD) can be adopted 51 

(Bakhat et al., 2017). Under AWD, flooded soils are intermittently dried to introduce periods 52 

of oxic conditions which decreases As(III) concentration in soil solution (Rahman et al., 53 

2015). The results are highly variable unless properly adopted (Carrijo et al., 2018). Organic 54 

amendments, on the other hand, reduce As bioavailability in soils through organo-As 55 

chelation, and thus in plants, as previously stated for sesame (Sinha et al., 2011), wheat, and 56 

maize (Mandal et al., 2019b), and vegetables (Bhattacharyya et al., 2021). Since there are 57 

currently no research on the effectiveness of organic amendments in the rice environment, we 58 

decided to conduct a study that combined irrigation and organic management. 59 

The concentration of As in rice grain should not be the only criterion for evaluating 60 

the effectiveness of interventions. The soil-crop-food transfer of As to human is vehement, so 61 

health risk assessment can be a better indicator. The risk of As to human health through food 62 

consumption can be determined by target cancer risk (TCR) and severity adjusted margin of 63 

exposure (SAMOE) (Antoine et al., 2017; Chowdhury et al., 2020). 64 

 It is necessary to determine the relationship between As in rice grain and soil 65 

properties (variables) such as pH, organic carbon (OC), available phosphorus (P), and 66 

available As. Machine learning (ML) algorithms such as k-Nearest Neighbors (KNN), 67 

Random Forest (RF) etc. can be used for this purpose. The KNN, a non-parametric 68 

classification method considers output as the average of the values of k nearest neighbors. RF 69 

as a supervised ML algorithm is widely used for classification and regression with its primary 70 

focus centered on the principle of recursive partitioning (Breiman, 2001). It is independent of 71 

the perception of functional relationships between the response and predictor variables. A 72 

comprehensive narrative of the RF algorithm can be found in Hoffman et al. (2018). RF can 73 

overcome the problem of overfitting unlike the Linear Models (LM), generalized linear 74 

model (GLM), and stepwise regression as they are less sensitive to outlier data. 75 
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With such priorities, the present study was undertaken (i) to investigate the efficacy of 76 

water management and organic amendment in lowering As levels in soil and rice edibles, (ii) 77 

to evaluate the treatments' efficacy in lowering human health risks, and (iii) to compare the 78 

efficacy of ML algorithms in predicting As in rice grain. 79 

2. MATERIALS AND METHODS 80 

2.1. Site features and experimental design 81 

The field experiment was conducted in an As contaminated village, Dakshin Panchpota 82 

(23ο00’N, 88ο60’E) of Chakdah block of Nadia district of West Bengal, India. The site was 83 

selected based on the As the concentration of the groundwater (0.42 mg L-1) used for 84 

irrigation (Referring the Village Summary of Tube-well Test Results under JPOA with 85 

UNICEF; http://www.dngmresfoundation.org). A typical sub-tropical climate exists in the 86 

study area with 1125-1500 mm rainfall, 40-80% relative humidity, and average maximum 87 

and minimum temperature being 37⁰C and 10⁰C. The investigated soil was classified as Aeric 88 

Haplustepts. The soil is of alluvial origin and characterized by physicochemical parameters 89 

of silty clay texture, neutral pH, and available N and K of medium/moderate concentration, 90 

high in available soil P and with high levels of As in soil and water (values of parameters are 91 

provided in subsequent section 3.1. The ratings of availability of nutrients are determined 92 

based on Supplementary Table-S1). The local popular rice (Oryza sativa) variety (IET-4786) 93 

was grown in experimental plots replicated thrice and laid in strip plot design with one factor 94 

as irrigation (I1= Saturation, I2= Alternate wetting and drying, I3= Continuous 95 

submergence) and the other factor as organic amendments (F1=Mustard cake, 96 

F2=Vermicompost, F3= FYM, F4=No manure) in vertical and horizontal strips respectively. 97 

The experimental design is schematically represented in Supplementary Fig-S1. 98 

2.2. Agronomic management   99 
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The experimental layout comprised of 36 plots, each 3m × 4m in size. After 3 plowings, 100 

bunds were prepared for the stagnation of water in the plots. The organic amendments 101 

(vermicompost at 3.0 t ha-1, FYM at 10.0 t ha-1, and mustard cake at 1.0 t ha-1) were applied 102 

to 27 plots during puddling or land preparation for proper mixing with soil. In the remaining 103 

9 plots, no organic treatments were applied. The rice seeds (cv. IET-4786) were sown in a 104 

nursery bed in the middle of December and thereafter transplanted to the main plot under the 105 

puddled condition in the last week of January with 20cm x 15cm spacing at 3-4 cm depth 106 

with 2-3 plant per hill (planting density 3,33,333 plants per hectare). In both the 2016-17 and 107 

2017-18 study years, the same protocol was followed. The recommended dose of fertilizer of 108 

the cultivated rice variety (130:65:65 kg ha-1 of N: P: K) was applied. A full dose of P and K 109 

and half amount of N were applied as basal and rest N in two splits at maximum tillering and 110 

panicle initiation stage. Three levels of irrigation were applied to the respective treatment 111 

combinations as continuous submergence (by maintaining 4 cm standing water throughout), 112 

alternate wetting & drying (AWD) (irrigation given on visual appearance of hair crack in 113 

experimental field), and saturation (irrigation applied when soil matric potential at 15 cm 114 

depth reached -0.03 MPa after the disappearance of ponding water). Frequent weeding and 115 

necessary pest control measures were adopted to ensure proper growth and production of the 116 

crop. The crop was harvested in the last week of April and plant parts and root zone soils 117 

were collected from each plot leaving the edges to minimize the border effect.  118 

2.3. Collection and preparation of soil, organics and plant samples 119 

The initial, as well as post-harvest (PH) soil samples (0–15 cm) from the experimental sites, 120 

were collected, air-dried, ground, sieved (2-mm sieve), and finally stored in pre-marked 121 

airtight polythene packets. Standard analytical processes were adopted for physicochemical 122 

characterization. The pH of the soil was determined in 1:2 (soil: water) suspension using a 123 

combined electrode (glass and calomel electrodes) by digital pH meter (Datta et al., 1997). 124 
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Soil electrical conductivity was measured in 1:2.5 soil: water suspension (Jackson, 1973). 125 

Soil organic C was determined by Walkley and Black (1934) method; while for determining 126 

soil N, P, and K the standard methods of Subbiah and Asija (1956), Olsen and Sommers 127 

(1982), and Knudsen et al. (1982) respectively were adopted. The hydrometer method was 128 

employed for clay content determination (Bouyoucos, 1962). Soil available As concentration 129 

was determined by Olsen (NaHCO3) extraction (Johnston and Barnard, 1979); while the total 130 

As was determined by following Sparks et al. (2006). The organic treatments used in the 131 

study were analyzed for their C, N, P, K, and As concentration based on the standard protocol 132 

following Page et al. (1982). 133 

The plant (rice) samples were collected at harvest, washed initially by tap water 134 

followed by dilute hydrochloric acid, and finally with double-distilled water. The samples 135 

were then appropriately labeled, chopped, separated into the root, shoot, and grain, and dried 136 

in an air-oven at 105°C for 24 hours. The dried samples after cooling were ground and 137 

digested with a mixture of acids i.e. HNO3, HClO4, and H2SO4 in a proportion of 10:4:1 (v/v) 138 

(Jackson, 1973) and filtered using Whatman No. 42 filter paper.  139 

2.4. Instrumental analysis 140 

Standard analytical procedures were adopted for the determination of As in plant digest and 141 

soil extract by sequentially diluting with distilled water, reacting with concentrated HCl, KI, 142 

and ascorbic acid for 45 minutes, and then analyzing through Atomic Absorption 143 

Spectrophotometer (AAS) (Sparks et al., 2006).  144 

Validation of the analytical methodology of As determination was made through the 145 

National Institute of Standards and Technology (NIST) prepared standard reference material 146 

of rice (SRM1568a). In comparison to the certified value of 290 ± 30 μg kg−1 for SRM1568a, 147 

the current Perkin Elmer AAnalyst 200 AAS attached with Flow Injection for Atomic 148 

Spectroscopy (FIAS) Systems at λmax=193.7 nm exhibited As concentration as 287 ± 8.1 μg 149 
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kg−1, thereby showing good agreement. Accuracy validation was done in triplicates and in 150 

every batch of 30 samples, two blank reagents and one standard reference material were 151 

analyzed. 152 

2.5. Risk assessment of dietary exposure to As through rice grain 153 

2.5.1. Target Cancer Risk (TCR) 154 

TCR assumes great significance in dietary risk assessment as it categorizes the lifetime 155 

exposure of carcinogenic As for human individual. The TCR calculation is based on the 156 

following equation (Antoine et al., 2017; Bhattacharyya et al., 2021): 157 

TCR=𝐄𝐟𝐫	×	𝐄𝐝	×	𝐅𝐢𝐫	×	𝐂	×	𝐂𝐏𝐒𝐨
𝐁𝐖𝐚	×	𝐀𝐓𝐜

 x 10-3 158 

where, 159 

Efr = the exposure frequency to As (365 days),  160 

Ed = the exposure duration (70 yrs) 161 

FIR = the food ingestion rate in grams per day 162 

C = the inorganic As concentration 163 

CPSo = the oral cancer slope for arsenic as 1.5 (mg kg-1) day-1 164 

BWa= the body weight of 68 kg 165 

ATc= the averaged carcinogenic exposure time (365days*70yrs) 166 

10−3= the unit conversion factor (Antoine et al., 2017).  167 

The acceptable range of TCR varies from 10-4 to 10-6, (i.e. 1 in 10,000 to 1 in 1,000,000) 168 

(Shaheen et al., 2016). 169 

2.5.2. Risk thermometer and SAMOE (Severity Adjusted Margin of Exposure) 170 

According to the Swedish National Food Agency, a risk thermometer is an established 171 

holistic and new protocol on risk characterization (Sand et al., 2015). The risk thermometer 172 

mainly estimates the exposure of As in food and compares the health-based Tolerable Daily 173 
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Intake (TDI). The human dietary exposure of As through rice consumption is calculated using 174 

the following equation (Chowdhury et al., 2020): 175 

SAMOE = TDI / (AFBMR x AF x SF x E) 176 

where,  177 

TDI = 3.0 μg kg-1 bodyweight-1day-1 value for As 178 

AFBMR = Non-linear relation in dose range (1/10; BMR - Benchmark response) 179 

AF (Assessment factors) = a factor of 10 (conservative assessment) 180 

SF (Severity factor) = 100 (For cancer, the most severe category) 181 

E= Different exposure factor (here, inorganic As concentration). 182 

Based on the SAMOE value, the classes of risk in risk thermometer are prescribed, as, class 1 183 

(no risk, >10); class 2 (no to low risk, 1-10); class 3 (low risk, 0.1-1); class 4 (moderate to 184 

high risk, 0.01-0.1) and class 5 (high risk, <0.01) (Sand et al., 2015). 185 

2.6. Statistical Analysis and Machine Learning 186 

The data collected for two years on soil and grain chemical properties were initially subjected 187 

to Shapiro-Wilk normality test. On confirmation of normalization, the mean effects were 188 

compared with Duncan’s multiple range test. Apart from these, simple descriptive statistics 189 

(mean, standard deviation, etc.), prediction modeling, risk assessment of As through rice 190 

were performed using Microsoft Excel 2016 and R-Studio (Version 1.3.1093 2.3.1). 191 

2.6.1. Random Forest 192 

Random forest algorithm creates decision trees on data samples and then gets the prediction 193 

from each of them and finally selects the best solution using voting. It is an ensemble method 194 

that is better than a single decision tree because it reduces the over-fitting by averaging the 195 

result. The variable importance function within the RF algorithm ranks predictor variables 196 

based on the increase in model error by randomly permuting the values of the predictor 197 

variables. Briefly, the mean square error (MSE) for each tree is the average squared 198 
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deviations of MSE observations from the predictions. Here we have used the 199 

package Random Forest (version 4.6-14) for analysis. The whole data set (n=36) was used for 200 

the purpose with 10-fold cross-validation repeated 5 times by using the package caret 201 

(version 6.0-86). The mtry=4 and ntree=1000 resulted in the minimum Root mean Squared 202 

Error (RMSE) and maximum R2 value and was selected as the final model. 203 

2.6.2. k-Nearest Neighbors 204 

In non-parametric KNN regression, the output is the property value for the object (Evelyn 205 

and Hodges, 1951; Altman, 1991). This value is the average of the values of k nearest 206 

neighbors. Given a value for k and a prediction point x0, KNN regression first identifies the k 207 

training observations that are closest to x0, represented by N0. It then estimates f(x0) using the 208 

average of all the training responses in N0. Mathematically it can be represented as follows 209 

(Song et al., 2017): 210 

f(𝑥0) =
1
𝑘 ) 𝑦𝑖
3€56

 211 

The whole data set (n=36) was used for the purpose with 10-fold cross-validation repeated 5 212 

times by using the package caret (version 6.0-86). The k=3 resulted in minimum Root mean 213 

Squared Error (RMSE) and maximum R2 value and was selected as the final model. 214 

2.6.3. Generalized Linear Models 215 

Generalized linear models (GLM) allow the extension of linear modeling ideas to a wider 216 

class of response types, such as count data or binary responses. GLM fits models of the form 217 

g(Y) = XB + e, where the function g (Y) and the sampling distribution of e need to be 218 

specified. The GLM unifies various other statistical models, including linear regression, 219 

logistic regression, and Poisson regression (Nelder and Wedderburn, 1972). The whole data 220 

set (n=36) was used for the purpose with 10-fold cross-validation repeated 5 times by using 221 

the package caret (version 6.0-86). The minimum Root means Squared Error (RMSE) and 222 

maximum R2 value were selected as the final model. 223 
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2.6.4 Model Performance metrics 224 

In this study, coefficient of determination (R2), root mean square error (RMSE), and mean 225 

absolute error (MAE) were calculated to assess the performance of the models. The objective 226 

is to develop a model with high performance and less error.  227 

𝑅7 = 1 −	
∑(𝑎8 − 𝑏8)7

∑(𝑎8 − 𝜇9)7
 (1) 

Where a denotes the output values, b denotes the real values, and 𝜇9 is the mean value of the 228 

𝑎 values, ith is the number of observations such as 1,2,3…, n. 229 

𝑅𝑀𝑆𝐸 = 6
1
𝑛)

(𝑎8 − 𝑏8)7
:

;<=

 (2) 

𝑀𝐴𝐸 =
1
𝑛)|𝑎8 − 𝑏8|

>

;<=

 (3) 

3. RESULTS AND DISCUSSION 230 

3.1. Characteristics of experimental site and organic amendments 231 

The experimental soil had a neutral pH (6.96), a low soluble salt concentration (EC- 0.42 dS 232 

m-1), medium organic carbon content (0.55 %), 49 percent clay, moderate in available 233 

nitrogen (260 kg ha-1) and available potassium (227 kg ha-1) content, and a high available 234 

phosphorus content (32.9 kg ha-1). The values of total and Olsen extractable As were 235 

relatively higher corresponding to 28.78 and 4.07 kg ha−1, respectively. Normally rice is 236 

grown here by irrigating using shallow tube-well drafted As contaminated underground water 237 

(0.42±0.09 mg L-1) and As concentrations in rice grain ranges from 0.785±0.164 mg kg-1. 238 

Further the organic treatments were characterized for their C-N-P-K concentrations (on a 239 

percent dry weight basis), with the results of FYM, vermicompost and mustard cake used in 240 

the experiment were 14.75-0.56-0.30-0.46, 22.5-1.2-0.21-0.59 and 25.4-3.9-1.93-1.67 241 

respectively. The C:N ratios of the treatments were 26.3:1, 18.7:1 and 6.5:1 respectively. The 242 
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organic treatments used in the present study were previously tested for their As concentration 243 

before field application. The As concentration in all the organics was found to be below the 244 

detectable limit. The study area is a previously reported As contaminated site 245 

(Mukhopadhyay and Sanyal, 2004) and As uptake via rice having associated dietary risk has 246 

been confirmed by Sinha and Bhattacharyya (2014) and Chowdhury et al. (2018). 247 

3.2. Arsenic accumulation in rice  248 

Arsenic accumulation in rice (IET-4786) reduced significantly with a lesser extent of 249 

irrigation. It was observed that ensuring a longer dry spell by keeping the field saturated and 250 

using an alternative wetting and drying moisture regime resulted in lower accumulation of 251 

As. Arsenic in rice grain of 0.741 mg kg-1 (saturation) and 0.655 mg kg-1 (alternate waiting 252 

and drying) were recorded as opposed to the higher concentration of 0.885 mg kg-1 253 

(continuous submergence) for pooled data of two years (Table 1). Under various realms of 254 

deficit irrigation, the concentration of As in the plant's root and shoot was also found to be 255 

lower (Table 1). Percent reduction in As accumulation in rice grain is depicted in Fig. 1. 256 

 According to previous reports, when rice is grown in anoxic (flooded) conditions, it 257 

takes up 10-15 times more As than when it is grown in oxygen-rich conditions (Hua et al., 258 

2011). Reduced As in rice grain can be achieved as a result of the periodic oxidized condition 259 

caused by AWD (Li et al., 2019). Deficit irrigation mediated As reduction has been 260 

established in earlier studies. According to Mukherjee et al. (2017), the As content of 261 

polished rice decreased by 17.6–25% due to deficit irrigation. Fernández-Baca et al (2021) 262 

recorded a similar reduction of 25% As in rice grain under AWD. Shrivastava et al. (2020) 263 

put forward the reason for the low entry of As in plant due to the lower frequency of plant 264 

exposure to As by irrigation water under AWD. 265 

 The use of organic amendments was also found to significantly reduce As 266 

accumulation in rice grain as well as in root and shoot over no manure condition. The 267 
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efficiency of the organic amendments to reduce As load followed the trend of vermicompost 268 

> mustard cake > FYM with values of 0.534, 0.669, and 0.768 mg kg-1 As, as against 0.844 269 

mg kg-1 for the no-manure condition, as evident in Table-1 and through percentage in Fig 1. 270 

Organic amendment stability over the two-year period was critical. To address this issue 271 

similar treatments (organic amendments) were applied on the same plots for both years at a 272 

uniform rate. The comparison between the two years was found to be statistically non-273 

significant in a paired T-test (Fig. 2). 274 

 Efficacy of various types of organic amendments in reducing As load in plant edibles 275 

was documented in a variety of crops in previous studies. Mandal et al. (2019b) found similar 276 

cases of reduction in As in wheat and maize grain with sugarcane bagasse > paddy husk > 277 

rice straw > vermicompost > FYM. Organic treatments were also effective in lowering the 278 

amount of As in cauliflower, spinach and tomato in the trend of vermicompost > mustard 279 

cake > FYM (Bhattacharyya et al., 2021). In all cases, a possible organo- As complexation in 280 

soil was propounded as the underlying reason for reduced uptake in plant edibles. 281 

 The interaction of the different moisture regimes and the organic amendments brought 282 

about significant changes in As accumulation in crop edibles over their controlled 283 

counterparts. The least As accumulation in the edible grains was facilitated by vermicompost 284 

amendment along with alternate wetting and drying (0.318 mg kg-1) over farmer’s practice 285 

(0.895 mg kg-1). Such effect was also evident from the studies of Rahaman et al. (2011) and 286 

maybe adopted as a successful mitigation strategy. The current study primarily focused on the 287 

effect of the treatments on the As in grain, while the year effects on the rice grain As was 288 

found to be statistically non-significant (Fig. 2). 289 

3.3. Dietary risk assessment to As contaminated rice grain intake  290 

The toxicity reported in the non-endemic areas has been a growing threat and the critical 291 

evaluation of its pathway through the food chain has necessitated a thorough assessment of 292 
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exposure to dietary risk. Rice is the principal dietary component in the study area and usually 293 

consumed three times a day along with vegetables (Signes-Pastor et al., 2008). The presence 294 

of As in food especially in rice samples from the West Bengal region and its health effects 295 

have already been envisaged, especially when cooked using contaminated water (Upadhyay 296 

et al., 2019). The dietary As risk is more emphasized on inorganic As (iAs) concentration 297 

which depends on variety and location. The genetic basis of As tolerance and accumulation in 298 

the early seedling stage of rice are the primary reasons behind the varietal differences as 299 

evident from the quantitative trait locus (QTL) mapping study (Murugaiyan et al., 2019). The 300 

current variety IET-4786 was reported to contain 86.6% iAs (out of total As) in the study area 301 

by the same research group (Sinha and Bhattacharyya, 2020), and the same data was used 302 

here to derive holistic expressions of human dietary risk through consumption of the 303 

contaminated rice grain. The assessment was primarily carried out in brown rice thus all risk 304 

parameters were derived based on the Joint FAO/WHO Expert Committee on Food Additives 305 

recommended maximum level of 0.4 mg kg-1. 306 

3.3.1. Target Cancer Risk (TCR) of As through rice grain 307 

The results reported in Table-2 and details in Supplementary Table S2 about TCR through 308 

consumption of contaminated rice grain suggest that in all cases the risk associated with 309 

cancer is high. The traditionally followed farmer’s practice, as mentioned earlier, has risk 310 

(TCR- 6.64x10-3), much higher than the tolerable limit of 10-4 (Shaheen et al., 2016). Even 311 

after the adoption of all sorts of irrigation and organic interventions through the present 312 

study, the lowest value (TCR- 2.36x10-3), was, still higher than the tolerable limit. Still, 313 

AWD adoption along with vermicompost application could significantly curtail the load of 314 

As and thus ensure some safeguard against the carcinogen. The higher risks of cancer 315 

occurrence through dietary As exposure have earlier been reported (Mondal et al., 2010; 316 

Halder et al., 2014).  317 
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3.3.2. Risk thermometer and SAMOE (Severity Adjusted Margin of Exposure) 318 

The ‘Risk thermometer’ and the calculated ‘SAMOE’ value for As toxicity through cultivated 319 

rice under water and organic management protocols showed varying concern levels of risk 320 

from class 4 (moderate-high) to class 3 (low risk) depending on As concentration (Table 2 321 

and Fig. 3; and in details in Supplementary Table-S3). The farmer’s practice of continuous 322 

submergence without manure showed the highest SAMOE (0.04) while managing AWD with 323 

vermicompost had the least (0.112). The varying levels and origin of As in the rice grains 324 

under different interventions can cumulatively aggravate the toxic load when they enter the 325 

dietary pathways by cooked, parboiled, or even raw grain (Chowdhury et al., 2020). 326 

Consumption of contaminated rice grain as a major staple diet in conjunction with other 327 

dietary ingredients on a prolonged basis leads to As poisoning in the contaminated belts of 328 

West Bengal (Chowdhury et al., 2018; Biswas et al., 2019). 329 

3.4. Effect of irrigation management and organic amendments on yield of rice grain 330 

The adoption of any intervention to curtail the As load faces the major hurdle in terms of how 331 

far it is adaptable in the farmer’s field in terms of yield or the monetary return. In the current 332 

study, the applied irrigation management and organic amendments significantly increased the 333 

grain yield of the variety IET-4786, although the variations were less conspicuous than the 334 

As load curtailment. In comparison to the conventional practice of continuous submergence 335 

without manure (2.589 t ha-1), AWD in conjunction with vermicompost application resulted 336 

in a higher grain yield (3.506 t ha-1). Such an increase in grain yield was also observed in the 337 

single effects of water management and organic interventions (Table 1). 338 

 AWD can augment crop yield (Carrijo et al., 2018) when deeper soil layers (25–35 339 

cm depth) have sufficient water supplying capacity during the drying periods to meet 340 

transpiration demands. The use of organics sustains soil fertility through the release of 341 

nutrients (Reddy and Reddy, 1999) and thus favor crop yield.   342 
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3.5. Effect of irrigation management and organic amendments on post-harvest soil 343 

The effect of organic amendments and irrigation management on the post-harvest soil 344 

parameters can be observed in Table 3. The pH of the soil ranged from 6.81 for treatment I2F2 345 

to 7.01 for treatment I3F4 and was found to be statistically different. The decrease in pH after 346 

submergence is probably due to the accumulation of CO, produced by the respiration of 347 

aerobic bacteria because CO depresses the pH even of acid soils (Kumari et al., 2021). The 348 

OC concentration of the post-harvest soil varied significantly across the treatments. The 349 

treatment I2F2 having OC of 0.59% recorded the highest and I3F4 (0.47%) recorded the 350 

lowest. Regardless of the irrigation management techniques used, the highest OC percent was 351 

found in vermicompost, followed by FYM, and Mustard Cake. The available soil P also 352 

varied significantly across the treatments. The maximum, 36.2 kg ha-1 was recorded in I2F2, 353 

and the lowest, 30.1 kg ha-1 was recorded in I3F4. The increase in available P was observed in 354 

all the treatments as the organic amendments served as a potent source of P. The nutrient 355 

status of the organic amendment as described earlier justified the above fact. 356 

A significant reduction in the soil As was observed across the treatments. The efficacy 357 

of the organic amendments and irrigation management techniques in reducing the available 358 

As in soil followed the order I2F2>I1F2>I2F1=I3F2>I1F1=I2F3>I2F4= I1F3>I1F4>I3F1> I3F3>I3F4. 359 

A large number of studies established that the application of organic manure immobilizes, 360 

adsorbs, binds, or co-precipitates As in-situ which in turn can influence the presence, 361 

availability, and mobility in soils and aquatic environments. The complexation of Arsenite 362 

(As3+) with the Humic Acid (HA) through phenolic, carboxylic, amino, and sulfhydryl 363 

functional groups, may serve as the binding sites for As by forming negatively charged 364 

adducts (Mandal et al., 2019a; Kumar et al., 2021). The direct association of As with these 365 

functional moieties may exhibit varying strength and thus represent different binding 366 

mechanisms. Furthermore, these functional groups in HA may bind As via a cation (e.g., Fe) 367 
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bridge binding mechanism by forming Dissolved Organic Matter (DOM)-cation–As 368 

complexes (Ritter et al., 2006). In 2012, Ghosh et al. observed that HA/FA extracted from 369 

compost was found to be better in scavenging arsenate, and Sinha and Bhattacharyya (2011) 370 

observed higher stability of As-HA/FA complexes with vermicompost rather than FYM or oil 371 

cakes along with the formation of complexes with particulate organic matter. 372 

3.6. Performance of the Machine Learning based Models 373 

A comparison of the performance matrices of the models was depicted in Table 4. The results 374 

showed that RF (0.065) had the lowest RMSE, followed by KNN (0.066), and GLM (0.086). 375 

The MAE also followed the same trend as RMSE. The MAE of RF (0.055) was minimum 376 

followed by KNN (0.056) and GLM (0.070). In terms of R2, the models followed the order 377 

KNN (0.88) > RF (0.86) > GLM (0.77). It was observed that the RF performed better in 378 

terms of RMSE and MAE compared to KNN and GLM although the R2 of KNN was greater 379 

than RF. The RMSE measures indicate the absolute fit of the model to the data, that is how 380 

close the model's predicted values are to the actual or observed data points. While R2 is a 381 

relative measure of fit, RMSE provides an absolute measure. As the square root of the 382 

variance, RMSE can be interpreted as the standard deviation of the unexplained variance and 383 

has the useful property of being in the same units as the response variable. Lower values of 384 

RMSE indicate a better fit. RMSE is thus the best measure of the prediction model. The 385 

significance of RMSE exists in a way that even a model with low R2 can be practically useful 386 

if the RMSE is low (Tropsha, 2010; Alexander et al., 2015) thereby establishing the 387 

importance and significance of cross-validation (Saha et al., 2021). The same explanation 388 

goes for the MAE. The less the MAE or MAPE, the better will be the prediction by a model. 389 

MAE is the mean or average of all absolute errors between the observed and the predicted 390 

values. Hence in terms of predictability, the RF can be used for predicting the As 391 

concentration in rice grain over KNN and GLM models. The variable importance plot from 392 
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RF as can be observed from Figure 4 revealed that among the soil parameters, the soil As has 393 

the highest importance followed by pH, OC, and soil P concentration. The importance 394 

parameter was calculated in terms percentage increase in Mean Squared Error of predicting 395 

the dependent variable. This shows how much our model accuracy decreases if we leave out 396 

that variable. The top variables contribute more to the model than the bottom ones and also 397 

have high predictive power (Kuhn, 2008). The significant effect of soil As on rice grain As as 398 

observed was because As from soil was translocated to root and finally grains. So the order of 399 

As concentration in the rice plant parts were as follows root > shoot > grain (Table 1). 400 

Several authors have reported the fact that irrigation water significantly contributes towards 401 

the build-up of As in soil and in turn increases the bioavailability (Golui et al., 2017; 402 

Mukherjee et al., 2017). 403 

4. CONCLUSION 404 

The widespread use of As contaminated water for irrigating the crops results in the 405 

substantial entry of the contaminant in the human food chain and leads to severe health 406 

hazards. Rice, being the predominant dietary component, it's cooking with contaminated 407 

water further escalates the problem. The dietary risk parameters, that have been calculated 408 

here, envision the aggravating health hazards associated with its consumption. The traditional 409 

agricultural practice of continuous submergence and no manure application resulted in 410 

substantial entry of the carcinogen in rice grain and human diet. On the contrary, mitigation 411 

techniques in the form of irrigation management and organic amendments reduced 412 

accumulation of As in crop edibles and post-harvest soils and precisely in some of the 413 

treatment combinations made risk parameters (TCR, SAMOE) somewhat benign. Adoption 414 

of AWD and vermicompost application appeared most effective. The use of ML algorithms 415 

revealed the fact that in terms of model performance matrices RF > KNN > GLM. So, 416 

Random Forest (RF) algorithm can be used for the prediction of grain As concentration. The 417 
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soil As was observed as the most important variable affecting the grain As concentration. 418 

This study will serve as proof of the efficacy and applicability of ML algorithms in field-419 

based experiments. The first and foremost challenge is to increase the model’s 420 

generalizability so that its application is not limited. It would be unwise to believe that our 421 

models will be applicable for every contaminated rice-growing site of the world as the 422 

models have been trained with a limited set of data and the predictor variables may change on 423 

basis of bio-geographical context. However, some points should be taken into consideration 424 

as the use of paired soil (rhizosphere soil) and plant samples may be considered for the 425 

purpose. The use of huge data set collected from different locations and also, the use of a 426 

large number of rice varieties for further studies will enhance the robustness of the model and 427 

thereby strengthen the calibration of the model and also its validation. 428 
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Table-1: Arsenic concentration (mg kg-1) and grain yield (t ha-1) of rice under simulated 
irrigation situations and organic amendment (pooled data of two year study) 

Interventions Root As Shoot As Grain As Grain yield 

Irrigation situations 

I1 58.465b 5.491b 0.741b 3.075b 

I2 53.687c 4.359c 0.655c 3.209a 

I3 65.619a 6.724a 0.885a 2.905b 

Organic amendments 

F1 55.772c 4.946c 0.669c 3.118ab 

F2 48.907d 2.586d 0.534d 3.267a 

F3 63.087b 6.324b 0.768b 3.184ab 

F4 69.262a 8.243a 0.844a 2.626b 

Interaction 

I1F1 54.410d 4.317e 0.662ef 3.194b 

I1F2 48.417e 2.840h 0.522h 3.233ab 

I1F3 64.450c 6.537d 0.726d 3.232ab 

I1F4 68.583b 8.630b 0.755c 2.622e 

I2F1 50.650e 3.983f 0.416i 3.196b 

I2F2 43.137f 2.123i 0.318j 3.506a 

I2F3 57.777d 4.577e 0.559g 3.311ab 

I2F4 63.183c 6.754d 0.602f 2.826de 

I3F1 62.257c 6.537d 0.751c 2.966d 

I3F2 55.167d 3.153g 0.696de 3.061c 

I3F3 69.033b 7.860c 0.828b 3.010c 

I3F4 76.020a 9.437a 0.895a 2.589e 

Here, I1= Saturation, I2= Alternate wetting and drying, I3= Continuous submergence and 
F1=Mustard cake, F2=Vermicompost, F3= FYM, F4=No manure. Means followed by a 
different letter are significantly different (otherwise statistically at par) at P < 0.05 by 
Duncan’s multiple range tests. 



 

Table-2: Dietary risk (TCR and SAMOE) of arsenic through the pooled data of 
contaminated rice under the applied irrigation management and organic amendments 

Treatment iAs (mg kg-1) TCR SAMOE 
I1F1 0.56 4.91x10-3 0.054 
I1F2 0.44 3.87 x10-3 0.068 
I1F3 0.61 5.38 x10-3 0.049 
I1F4 0.63 5.59 x10-3 0.047 
I2F1 0.35 3.08 x10-3 0.086 
I2F2 0.27 2.36 x10-3 0.112 
I2F3 0.47 4.14 x10-3 0.064 
I2F4 0.51 4.46 x10-3 0.059 
I3F1 0.63 5.57 x10-3 0.048 
I3F2 0.58 5.16 x10-3 0.051 
I3F3 0.70 6.14 x10-3 0.043 
I3F4 0.75 6.64 x10-3 0.040 

Here, I1= Saturation, I2= Alternate wetting and drying, I3= Continuous submergence and 
F1=Mustard cake, F2=Vermicompost, F3= FYM, F4=No manure. Inorganic arsenic (iAs) is 
obtained by multiplying total arsenic (as in Table-1, pooled data) by 0.866, referring to Sinha 
and Bhattacharyya (2020), who opined~86.6% of total As in IET-4786 is inorganic. TCR, 
indicating target cancer risk of the carcinogenic As is computed based on exposure frequency 
to arsenic (365 days) over an exposure duration (70 yrs) accruing averaged carcinogenic 
exposure time (365days*70yrs). Further it includes 400 g rice consumption daily by an 
individual of 68 kg and oral daily cancer slope for As (1.5 mg/kg). Any value above 10-4 is 
detrimental for health. SAMOE (Severity Adjusted Margin of Exposure) has its expression 
using the assumptions that 3.0 μg kg-1 bodyweight-1 is the threshold daily intake of As,  a 
value of 10 for assessment factors, 1/10 of Benchmark response and a severity factor of 100; 
values below 0.1 are risky for human.  
 
 
 

  



 

Table-3: Effect of organic amendments and irrigation management on post harvest soil 
properties under cultivation of rice (pooled for two years) 

 
pH OC  

(%) 
Available P  

(mg kg-1) 
Available As  

(mg kg-1) 
I1F1 6.88g 0.51de 14.05f 6.557f 
I1F2 6.84h 0.57b 15.55c 6.013h 
I1F3 6.92f 0.53c 14.59d 7.027e 
I1F4 6.93e 0.51de 14.36de 7.697d 
I2F1 6.94e 0.52d 14.50de 6.157gh 
I2F2 6.81i 0.59a 16.45a 5.623i 
I2F3 6.96d 0.52d 14.32e 6.667f 
I2F4 6.97c 0.51de 14.32e 7.070e 
I3F1 6.97c 0.49e 14.18ef 7.987c 
I3F2 6.92f 0.57b 16.23b 6.293g 
I3F3 6.99b 0.53c 16.00b 8.820b 
I3F4 7.01a 0.47f 13.68g 9.430a 

 

Here, I1= Saturation, I2= Alternate wetting and drying, I3= Continuous submergence and 
F1=Mustard cake, F2=Vermicompost, F3= FYM, F4=No manure. Means followed by a 
different letter are significantly different (otherwise statistically at par) at P < 0.05 by 
Duncan’s multiple range tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table -4: Comparison between the performance matrices of the models (n=36) 

Machine Learning Algorithms RMSE MAE R2 

Random Forest (RF) 0.065 0.055 0.86 

k-Nearest Neighbour (KNN) 0.066 0.056 0.88 

Generalized Linear Model (GLM)  0.086 0.070 0.77 

Here, coefficient of determination (R2), root mean square error (RMSE) and mean absolute 
error (MAE) have been estimated to compare the model performances 

 

 



 

Fig-1. Percent reduction in arsenic recoveries of rice grain through irrigation 
management and organic amendment (pooled data) in comparison to farmer’s practice 

of continuous submergence and no manure situation 

Here, SAT=Saturation, AWD= Alternate wetting and drying, MC=Mustard cake, 
VC=Vermicompost, FYM= Farm Yard Manure 
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Figure-2. Year wise effect of treatments on organic carbon (%) and grain As (mg/kg) 
through paired T-test exhibited as mixed plot. 

 

 



 

Fig-3. Risk thermometer scale showing the class of arsenic toxicity through intake of 
rice cultivated under different water and organic management regimes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Fig-4. Variable importance plot with Random Forest algorithm 
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Table S1: Ratings of fertility status of soil (Muhr et al., 1965; Rattan et al.,2015) 

Nutrient 
(kg ha-1) 

Fertility Rating 

Low Medium/ Moderate High 

Nitrogen ≤ 280 281-560 > 560 

Phosphorus ≤ 10 11-25 > 25 

Potassium ≤ 120 121-280 > 280 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Table S2: Target cancer risk (TCR) of arsenic through the contaminated rice grain 

Treatment Efr 
(days) 

Ed 
(years) 

Fir 
(g/day) 

C 
(mg/kg) 

CPSo 
(mg/kg day−1) 

BWa 
(kg) 

ATc 
(days) 

TCR 

I1F1 365 70 400 0.56 1.5 68 25550 4.91x10-3 

I1F2 365 70 400 0.44 1.5 68 25550 3.87 x10-3 

I1F3 365 70 400 0.61 1.5 68 25550 5.38 x10-3 

I1F4 365 70 400 0.63 1.5 68 25550 5.59 x10-3 

I2F1 365 70 400 0.35 1.5 68 25550 3.08 x10-3 

I2F2 365 70 400 0.27 1.5 68 25550 2.36 x10-3 

I2F3 365 70 400 0.47 1.5 68 25550 4.14 x10-3 

I2F4 365 70 400 0.51 1.5 68 25550 4.46 x10-3 

I3F1 365 70 400 0.63 1.5 68 25550 5.57 x10-3 

I3F2 365 70 400 0.58 1.5 68 25550 5.16 x10-3 

I3F3 365 70 400 0.70 1.5 68 25550 6.14 x10-3 

I3F4 365 70 400 0.75 1.5 68 25550 6.64 x10-3 

Here, I1= Saturation, I2= Alternate wetting and drying, I3= Continuous submergence and 
F1=Mustard cake, F2=Vermicompost, F3= FYM, F4=No manure. 

Inorganic As obtained by multiplying total As by 0.866, referring to Sinha and Bhattacharyya 
(2020), who opined~86.6% of total As in IET-4786 is inorganic 

 

 

 

 

 

 

 

 

 

 

 



Table- S3: SAMOE for As toxicity through the contaminated rice grain 

Treatment TDI AFBMR AF SF E SAMOE 
I1F1 3 0.1 10 100 0.56 0.054 
I1F2 3 0.1 10 100 0.44 0.068 
I1F3 3 0.1 10 100 0.61 0.049 
I1F4 3 0.1 10 100 0.63 0.047 
I2F1 3 0.1 10 100 0.35 0.086 
I2F2 3 0.1 10 100 0.27 0.112 
I2F3 3 0.1 10 100 0.47 0.064 
I2F4 3 0.1 10 100 0.51 0.059 
I3F1 3 0.1 10 100 0.63 0.048 
I3F2 3 0.1 10 100 0.58 0.051 
I3F3 3 0.1 10 100 0.70 0.043 
I3F4 3 0.1 10 100 0.75 0.040 

Here, I1= Saturation, I2= Alternate wetting and drying, I3= Continuous submergence and 
F1=Mustard cake, F2=Vermicompost, F3= FYM, F4=No manure. 

Inorganic As obtained by multiplying total As by 0.866, referring to Sinha and Bhattacharyya 
(2020), who opined~86.6% of total As in IET-4786 is inorganic 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Here, I1= Saturation, I2= Alternate wetting and drying, I3= Continuous submergence and F1=Mustard cake, F2=Vermicompost, F3= FYM, 
F4=No manure. The experimental layout comprised of 36 plots, each of 3m × 4m in size, replicated thrice and laid in strip plot design 

 

Fig-S1. Experimental design of the study on rice for both the study years under employed irrigation management and organic 
interventions. 
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