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Abstract  

Motivated by nanotechnological coating applications, a theoretical study is presented for the 

laminar, steady-state, incompressible nonlinear boundary layer flow of a non-Newtonian 

nanofluid external to a wedge-shaped configuration. The wedge surface is assumed to be 

isothermal. The Eringen micropolar model is deployed for rheological properties of the 

nanofluid. A Tiwari-Das nanoscale formulation is utilized in order to study specific nanoparticles 

and volume fraction effects. The dimensionless, transformed, coupled momentum, angular 

momentum (micro-rotation) and thermal perimeter layer equations are solved with the efficient 

MATLAB bvp4c numerical scheme. Validation with earlier studies is conducted. Aqueous-based 

nano-polymers are examined with either metallic/metallic oxide (copper, silver, titania) or 

carbon-based (diamond) nanoparticles. The influence of Hartree pressure gradient parameter 

( )m , Eringen vortex viscosity (micropolar) parameter ( )K , nanoparticle volume fraction ( ) , 

heat absorption (sink) parameter ( ) , Prandtl number ( )Pr  and nanoparticle type on velocity 

( )F  , angular velocity ( )H , temperature ( ) , skin friction function and Nusselt number 

function are visualized graphically and in tables. Temperature is strongly elevated with 

increasing micropolar parameter and nanoparticle volume fraction. Angular velocity (micro-

rotation) is damped near the wedge surface with increment in volume fraction but further from 

the wall the reverse effect is observed. Velocity is boosted with increasing nanoparticle volume 

fraction. Temperatures are elevated with heat source (generation) but suppressed with heat sink 
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(absorption). Increasing Eckert number (dissipation) strongly enhances temperature and thermal 

boundary layer thickness. Temperatures are a maximum for silver and progressively lower for 

copper, diamond and with a minimum for titania. Skin friction is boosted with pressure gradient 

parameter whereas Nusselt number is depleted. Nusselt number is observed to be a maximum for 

diamond whereas it is a minimum for silver.  

 

Keywords: Nanofluids; Micropolar model; rheology; Tiwari-Das model; volume fraction; 

silver; copper; diamond; titania; viscous heating; heat source/sink; MATLAB bvp4c, Coating 

systems; Wedge.  

 

1.  Introduction 

Nanotechnology has revolutionized numerous applications in the 21st century. It has infiltrated 

into renewable energy systems (e. g. solar, geothermal), propulsion fuels, medicine, marine and 

manufacturing technology [1]. Numerous materials are being engineered at the nanoscale, in 

order to provide enhanced functionality, durability and ecologically- compatibility. 

Nanomaterials feature a diverse range of techniques for embedding nanoscale properties such as 

carbon nanotubes, graphene sheets, nano-shells, nanowires and nanoparticles.  A subset of 

nanomaterials known as nanofluids [2] were introduced by doping conventional working fluids 

with metallic or carbon nanoparticles. These colloidal suspensions were demonstrated to enhance 

thermal conductivity and achieve superior thermal performance in a range of applications in 

automotive and industrial systems. Nanoparticles have more recently been implemented in 

designing more robust coatings for engineering components. Many different combinations have 

been studied including indium tin oxide nanoparticles with polymer base fluid [3]  and 

TiO2 nanoparticle layers [4], SnO2: Sb (ATO) and In2O3: Sn (ITO) nanoparticles [5], clay and 

zinc oxide nanoparticles for plastic coatings [6] and polycaprolactone nanocomposites for thin 

film sheets [7]. These studies have shown that with judicious volume fraction selection, 

significant improvement in the stability and protective characteristics (e. g. anti-bacterial, anti-

corrosion, abrasion resistance etc) can be achieved in nanofluid coatings. In conjunction with 

extensive laboratory-based studies, mathematical modelling of nanofluid coating flows has also 

stimulated much attention in recent years. Two popular approaches have been embraced in this 
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context. The first utilizes Buongiorno’s model [8] which is a two-component nanoscale 

formulation and includes both heat and mass (nanoparticle) diffusion equations in addition to a 

momentum equation. However, while several important nanoscale mechanisms are included in 

this approach (e. g. Brownian dynamics and thermophoretic body force effects), it does not 

provide a framework for investigating specific nanoparticle materials and doping percentages. 

Tiwari and Das [9] introduced an alternative formulation based on Maxwell-Garnetts theory in 

which relationships were given for density, viscosity and thermal conductivity as functions of 

nanoparticle volume fraction. Although only momentum and heat transfer can be simulated with 

the Tiwari-Das model (since it neglects a nanoparticle species diffusion equation), nevertheless it 

provides a good framework for modelling the relative performance of different nanoparticle (and 

base fluids) in realistic flows. Both methodologies have been lucidly reviewed for many 

technological systems by Minkowycz et al. [10]. External coating flows frequently feature 

boundary layers which may be steady or unsteady, and many different types of systems arise 

such as stagnation flow deposition, stretching/contracting substrates, curved walls and wedges. 

In the context of nanofluid coating flows, Khaliq et al. [11] used the Tiwari-Das model to 

understand  roll-coating of viscous nanofluid from a flat porous sheet. They showed that with 

increasing nanoparticle volume fraction, thermal characteristics and pressure gradient are 

enhanced. Ahmadian et al. [12] used the homotopy analysis method (HAM) to investigate the 

Ag-MgO hybrid nanoliquid coating flow on a wavy spinning disk, noting that the combination of 

hybrid nanoparticles (silver and magnesium-oxide) achieves a substantial improvement in 

thermal properties and heat transmission rate at the disk surface. Karim et al. [13] used 

COMSOL Multiphysics finite element software to simulate the heat transfer performance of 

graphite-dispersed Li2CO3-K2CO3 nanoparticles in saline base fluid for solar collector systems. 

They observed that a higher operating temperature is achieved compared to other working fluids. 

The above studies considered nanofluids to be Newtonian in nature. However, many studies have 

identified that depending on the volume fraction of nanoparticles in base fluids, rheological 

characteristics may arise. Kim et al. [14] identified significant modifications in thermal and 

viscosity characteristics of nanofluids due to rheological properties including shear-thinning, 

viscoplasticity and volume fraction dependence. To accurately simulate the rheological 

behaviour of nanofluids, therefore, a non-Newtonian model is required. Many such models are 
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available. Rawat et al. [15] investigated the non-Fourier viscoelastic nanofluid convective 

reactive flow  with the Oldroyd-B non-Newtonian model.   Further studies include Umavathi and 

Bég [16] who applied the Stokes polar (couple stress) model for thermal stability in nanofluid-

saturated porous media. With the exception of the couple stress model, the above non-Newtonian 

model are unable to represent the micro-structural characteristics of nanofluids, nano-polymers 

etc. The presence of suspended particles which can spin independently requires a more 

sophisticated rheological framework. A Special case of micromorphic fluid was developed by 

Eringen [17]. This model enables features microelements with a micro-rotation (gyration) vector 

which allows angular momentum to be simulated at the microscale. The micro-elements are 

small rigid cells which cannot deform but can spin and support surface and couple stresses. 

Micropolar theory has been deployed in an impressive range of applications since it robustly 

simulates actual behavior of complex liquids including lubricants, polymeric coatings, bacterial 

slime, blood, paints, liquid crystal suspensions, and also geomorphological fluids (muds, 

sediments). It is also ideal for boundary layer flows and produces a separate angular momentum 

(micro-rotation) boundary layer, distinct from the linear momentum boundary layer (velocity).  

Some recent applications of micropolar fluid mechanics include Ali et al. [18] (on bacterial 

gliding slime dynamics), Bég et al. [19] (on coating flows with magneto-micropolar functional 

materials), and Shamshuddin et al. [20] (on reactive periodic coating heat transfer). All these 

studies have utilized numerical methods such as spectral and finite element methods, MATLAB 

and finite difference techniques to accommodate the strong nonlinearity of micropolar boundary 

layer transport. They have also shown that the Newtonian classical case may be retrieved from 

the general micropolar model by neglecting vortex viscosity effects. Other studies have 

combined the micropolar model with various non-Newtonian formulations to expand the range 

of rheological behaviour which can be simulated in a single model. Micropolar convective heat 

transfer using Jeffery’s through a cone was discussed by Madhavi et al. [21].  Abdul Gaffar et al. 

[22] developed Eyring-Powell model combining with Eringen micropolar to study coatings.   

More recently engineers have combined micropolar and nanofluid models to provide a more 

comprehensive framework for simulating the rheological behaviour of nanofluids. The time-

dependent bioconvection of micropolar nanofluid fluid was researched by Latiff et al. [22]. 

Higher volume fraction however boosts temperatures, micro-rotation and skin friction. Gumber 
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et al. [24] used 45th/5th order Runge-Kutta methods to compute the magneto-convective 

micropolar CuO-Ag/water hybrid nanofluid. They also studied the influence of different 

nanoparticle shape factors, wall suction/injection and micro-element wall concentration. Further 

studies include Das and Duari [25] who studied chemically reacting micropolar nanofluid 

transport with Buongiorno’s model. Hussanan et al. [26] used the Tiwari-Das nanoscale model to 

derive Laplace transform solutions for boundary layer flow of micropolar nanofluids in order to 

study the performance of five oxide nanoparticles. The grapheme oxide micropolar nanofluid 

generated higher temperature when compared with other oxide nanopartilces.  

Falkner and Skan [27] introduced for the first time a boundary layer framework for two-

dimensional wedge flows. This type of flow also arises in chemical engineering processing and 

coating dynamics [28] and based on this formulation a number of special cases can be studied, 

namely, flat plate (Blasius) flow, rear stagnation point flow, forward stagnation point flow, etc. 

Many studies have therefore examined non-Newtonian wedge flows in order to simulate 

different industrial coating materials. Reddy et al. [29] deployed a tangent hyperbolic shear-

thinning model and Keller’s box method to analyse non-Newtonian mixed convective boundary 

layer flow from an isothermal wedge with entropy generation. Uddin et al. [30] and Bég et al. 

[31] investigated the micropolar convection flow external to a wedge. All these investigations 

elaborated in detail the influence of the Hartree pressure gradient parameter and other effects on 

skin friction and Nusselt number. More recently several works have addressed the nanofluid 

dynamics external to a wedge. These include Gaffar et al. [32] (who considered a non-isothermal 

wedge surface and used the Buongiorno model), Xu and Chen [33] (who included wall 

suction/injection effects), Uddin et al. [34] (who included electromagnetic induction and wall 

slip effects). Tulu et al. [35] implemented a spectral quasilinearization method (SQLM) and the 

Tiwari-Das model to study the unsteady two-dimensional reactive dissipative heat and mass 

transfer flow of nanofluid from a moving wedge. They showed that local Nusselt number is 

depleted with increment in nanoparticle volume fraction, Prandtl number and Eckert number 

whereas local Sherwood number is boosted with a rise in nanoparticle volume fraction, 

unsteadiness, pressure gradient and chemical reaction parameters. Further investigations of 

nanofluid boundary layer flows from a wedge with the Tiwari-Das model include Khan et al. 

[36] (for aluminum alloy nanoparticle-water nanofluids) and Ullah et al. [37] (for viscoplastic 
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nanofluid convection from a translating wedge). The steady-state, incompressible, laminar, and 

axi-symmetric flow of micropolar nanofluid flowing between two porous disks was analysed by 

Rauf et al. [38]. They observed that micropolar fluids were beneficial in the enhancement of 

couple stresses and in the reduction of shear stresses. They also showed that thermophoretic and 

Brownian motion parameters exhibit opposite effects on concentration profiles and that the 

concentration field is enhanced by the activation energy parameter. Numerical and correlation 

analysis for flow of micropolar fluid induced by two rotating disks was also studied by Rauf et 

al. [39]. They established that the micro-rotational profiles along the tangential direction are 

initially reduced in the left half plane and then enhanced in the right half plane of the central 

region with elevation in Eringen’s vortex viscosity parameter. The magnitude of the couple 

stresses along radial and tangential directions were also shown to be modified at the surface of 

the upper and lower disk with increased values of the microinertia inertial density parameter, 

whereas these couple stresses were reduced with an increment in values of the spin gradient 

viscosity parameter.  Rauf et al. [40] further considered the unsteady three-dimensional MHD 

flow of the micropolar fluid over an oscillatory disk with Cattaneo-Christov double diffusion. 

They noted that micro-rotational axial velocity increases when the magnetic parameter increases 

and when the swirl parameter increases, the radial velocity increases. The dynamics of 

micropolar nanofluid slip flow from a stretchable disk with Arrhenius activation energy was 

investigated by Nawaz et al. [41]. They identified that the temperature is augmented by 

increasing the thermophoresis and Brownian movement parameters while the heat transport rate 

is reduced with both these nanoscale parameters. Concentration field was also found to be 

reduced with larger Brownian movement parameter while it was enhanced with higher 

thermophoresis parameter. 

 

“A scrutiny of the scientific literature has proved that  the micropolar nanofluid convection from 

a wedge with the collective effects of viscous heating, multiple carbon/metallic nanoparticles and 

heat generation or absorption effects, has not been addressed. This problem is of direct relevance 

to rheological nano-polymer coating flows and the formulation presented significantly extends 

previous works with several novelties. In the present article therefore, motivated by providing a 

more generalized formulation for complex nano-coating external transport phenomena, a 

mathematical model is developed for the laminar, steady-state, incompressible nonlinear 
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convective boundary layer flow of a micropolar nanofluid external to an isothermal wedge 

configuration. Viscous dissipation [42] and heat generation/absorption effects are included which 

are known to be significant in actual nano-polymeric flow processing. The assessment of both 

carbon-based and metallic nanoparticles also furnishes deeper insight into their relative benefits 

for coating operations and tuning the properties of finished products for deployment in a range of 

industries including biomedical and aerospace.” A Tiwari-Das nanoscale formulation is utilized 

in order to study specific nanoparticles and volume fraction effects. The Eringen micropolar 

theory is perfectly compatible with nanofluid dynamics. Microelements are at the micron scale 

and spin. However, the nanoparticles are at the nanoscale, a thousandth smaller than micro-

elements. There is no interference between the nanoparticles and microelements. Micropolar 

fluid mechanics is therefore compatible with nanofluid dynamics. The dimensionless, 

transformed, coupled momentum, angular momentum and thermal boundary layer equations with 

associated wall and free stream conditions are solved with the efficient MATLAB bvp4c 

numerical scheme. Verification with prior studies is included. The focus is aqueous-based nano-

polymers. Several metallic/metallic oxides (copper, silver, titania) or carbon-based (diamond) 

nanoparticles are considered [43, 44, 45] since these offer enhanced anti-bacterial benefits for 

modern coatings. The influence of Hartree pressure gradient parameter (m), Eringen vortex 

viscosity (micropolar) parameter (K), nanoparticle volume fraction (), sink parameter (), 

Prandtl number (Pr) and nanoparticle material type on velocity, angular velocity, temperature, 

skin friction function and Nusselt number function are visualized graphically and in tables. The 

novelty of the present work is therefore the consideration of a range of different nanoparticles 

(silver, diamond, copper and titania) for micropolar nanofluids and the inclusion of simultaneous 

viscous heating and heat source/sink effects. 

 

2.  Mathematical formulation 

2.1 Micropolar constitutive equations   

The flow equations describing micropolar fluid (body couples and body forces are absent) which 

is incompressible, may be stated, following Eringen [17] as: 

.V                                                                                                                                                (1) 

( ) ( ) ( )2.V V V p W    = +  − +                                                                                (2) 
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( ) ( ) ( ) ( ) ( ). 2 .j V W W W W W        =  − + + +   −                               (3) 

Here   is the micropolar fluid density, p  is the fluid pressure, j  is the micro-gyration and 

other parameters are same as in Uddin et al. [30]. 

 

 

 

2.2 Tiwari-Das nanoscale model  

The Tiwari-Das nanofluid model [9] defines the modified dynamic viscosity, specific heat 

capacity and thermal conductivity using the following relations where ( )
f

 represents the base 

fluid, ( )
nf

 denotes the nanofluid and ( )
s
  corresponds to the solid nanoparticles e.g. diamond, 

copper, titania and silver:  

( )( )
1

2.5
1nf f  

−

= −                 (4) 

( ) ( ) ( ) ( )1p p pnf s f
C C C    = + −                          (5) 

( )
( )

2 2

2

f s f s

nf f

f s f s

K K K K
K K

K K K K





 + − −
 =
 + + −
 

                         (6) 

Here   denotes density and   represents the volume fraction of nanoparticles. The modified 

properties appear in the model developed in the next section.  

 

2.3 Governing equations for micropolar nanofluid convection from a wedge  

The regime under study is displayed in Fig. 1. Steady, two-dimensional, viscous, incompressible, 

forced convective boundary layer flow of a micropolar nanofluid external to a two-dimensional 

wedge is studied. An ( ),x y  coordinate system is adopted where the x− coordinate is along the 

wedge face and the y-coordinate is perpendicular to it. The nanofluid is assumed dilute and the 

nanoparticles and microelements do not interact. Local thermal equilibrium is assumed between 

the nanoparticles and the base fluid (micropolar liquid). Viscous heating and heat generation or 

absorption are included. The external velocity is defined as  
mU c x= , where 0c , 
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( )2
m








=

−
 is the Hartree pressure gradient parameter which corresponds to  



 
=  for a 

vertex angle   of the wedge.  

Under the above approximations, the boundary layer equations for the coating flow are [31, 42] 

Continuity  

0
u v

x y

 
+ =

 
                             (7) 

 

x − directional linear momentum equation (primary): 

2

2

nf

nf nf

u v u N dU
u v U

x y y y dx

  

 

 +     
+ = + +        

                        (8) 

 

z −directional linear momentum equation (secondary): 

2

2

nf

nf

w w w
u v

x y y

 



 +    
+ =        

                                                                                                    (9) 

Angular momentum conservation equation (micro-rotation): 

2nf nf

N N N u
j u v N

x y y y y
  

         
+ = − +     

         
                                                                    (10) 

 

Energy (heat) conservation: 

( ) ( )
2 22

2
( )p nf nfnf

T T T u w
c u v K Q T T

x y y y y
   

           
 + = + + + + −                   

                        (11) 

 

The wall and free stream boundary conditions are: 

  0u v w= = = ,  
u

N n
y


= −


,    w nf

T
q K

y


= −


  at  0y =           (12) 

u U→ , 0w→ , 0N → ,            T T→             as  y →                                                       (13) 
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Here: 
nfK  is the nanofluid thermal conductivity, ( )p nf

C  is the specific heat capacity of the 

micropolar nanofluid, nf  is density, T  is temperature, Q  heat generation/absorption parameter, 

T  is free stream temperature, 
wq  is wall heat flux,  1

2 2
nf nf nf

K
j j


  

   
= + = +   
   

  where 

f
K




=   is the Eringen micropolar material parameter and the other parameters are same as in 

Uddin et al. [30].  

The primitive Eqns. (7)-(11) with associated boundary conditions (12) and (13) are strongly 

nonlinear. Their numerical solutions can be found by using the similarity variables 

( )1

2 nf

U m
y

x




+
= ; 

( )

2
( )

1

nfxU
F

m


 =

+
,  ( )w U G = ,  

( 1)
( )

2 nf

m U
N U H

x




+
=  

( ) ( 1)
( )

2

nf

w nf

K T T m U

q x
 



− +
= ,  

( )
2 ( )

p nf

xQ x

c U
 =                                                                        (14) 

Here   (transverse coordinate),   (stream function), ( )H   (micro-rotation velocity), ( )F   

(stream function), ( )G   (secondary velocity), ( )   (temperature) and   (heat source/sink). 

Implementing the transformations (14) in Eqns. (7)-(11), the following self-similar coupled 

boundary layer equations emerge:  

( )( ) ( ) ( )( )2.5 2.5 22
1 1 1 1 0

1

m
K F F F K H F

m
    + − + + − − − =

+
                                         (15) 

( )( )2.5 2
1 1 0

1

m
K G F G G F

m
   + − + − =

+
                       (16) 

( )
( )

( )
2.5 52 3 1

1 1 2 0
2 1 1

KI CK m
H H F H F F H

m m


−   
   + − − + − − =   

+ +   
                                   (17) 

( ) ( ) ( )( )2 21 2 3 3
1 2

1
1 0

Pr 1 1

C C C C m
Ec K C C F G F F

m m
   

 −   
    + + + + + + =  + +  

      (18) 

 

The resulting boundary conditions (12, 13) in dimensionless form are: 

(0) 0F = ; (0) 0F =  ; (0) 0G = ; (0) 0.5 (0)H F= − ; 1 = −                                                    (19) 

 ( ) 1F   → ; ( ) ( ) ( ) 0G H  =  =  →                                                                                        (20) 
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Here (') represents the derivative with respect to  ,  u
y


=


 and v

x


=−


, (which 

automatically satisfies the mass conservation Eqn. (7))  

2

2

Ref
I

j U


=  (inertial parameter) , 

Re
f

f

U x 


=  (Reynolds number)  and 

( ) ( )

2

p f

U
Ec

C T T

=
−

 (Eckert  number). Furthermore, the 

nanofluid property constants are defined as:  

( )
( )

( )

( )

( )
2.5

1 2 3 4 51 , , , ,
p pf nf nf f

f nfp pnf f

C C K
C C C C C

KC C

 



= − = = = = .   (21)  

In Eqn. (19), the micro-rotation boundary condition, ( ) ( )0 0.5 0H F = −  corresponds to the 

scenario of weak concentration of micro-elements at the wall (Eringen, [17]; Bég et al. [19]). 

Although other surface conditions are possible e. g. n = 0 and n = 1 which imply strong near-wall 

micro-element concentrations and turbulent flows, respectively, they are not considered in this 

study. The angular velocity boundary condition deployed is most suitable for laminar coating 

boundary layer flows. Characteristics at the wedge surface are critical in coating flow operations. 

Specifically, the gradients of primary and secondary velocity and temperature provide a good 

insight into momentum and heat transfer characteristics. The local skin friction coefficients and 

local Nusselt number are: 

21

2

w
fx

nf

C

U





= , 
21

2

z
fz

nf

C

U





=  and 
( )

w

nf

xq
Nu

K T T

=
−

    (22) 

Here: 

   
0

( )w nf

y

u
N

y
   

=

 
= + + 

 
  ,  

0

( )z nf

y

w

y
  

=

 
= + 

 
 and    w nf

T
q K

y


= −


   (23) 

Therefore, the desired dimensionless primary, secondary skin frictions, and Nusselt number 

expressions emerge as: 
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5

1

2( 1)
1 (0)

Re 2
fx

m C K
c F

C

+  
= + 

 
        (24) 

( )5
1

1

2( 1)
1 (0)

Re
fz

m C
c K C G

C

+
= +         (25) 

( )
1

5

( 1) Re 1

2 0

m C
NU

C 

+
=          (26) 

 

3. Numerical MATLAB solutions and validation  

The nonlinear ordinary differential boundary value problem defined by Eqns. (15)-(20) can be  

solved by using various numerical methods including finite elements, finite difference, 

homotopy analysis, Adomian decomposition etc. Here we elect the MATLAB BVP4C (boundary 

value problems)) routine which uses the exceptionally accurate and stable Runge–Kutta–Merson 

numerical quadrature (“RK45 algorithm”). This technique has been applied to many multi-

physical fluid dynamics problems e. g. triple diffusive convection [46]  and magnetic squeeze 

films [47] in recent years and can accommodate any order of derivative. In MATLAB this 

quadrature is used to obtain solutions for stream function, secondary velocity, micro-rotation and 

temperature. BVP4C uses stepping formulae which are summarized in Umavathi et al. [47]. 

Further details are given in Kattan [48].  

The algorithm relies on an iteration structure. BVP4C is a numerical platform that 

implements the Lobatto IIIa three-stage formula. This is a collocation formula which is formed 

by a polynomial collocation. It provides a C1-continuous solution that is fourth-order accurate 

uniformly in  ,x a b . The fourth-order formulae are given below: 

( )1 ,n nk L f x y=  

1

2 ,
2 2

n n

kL
k L f x y

 
= + + 

 
 

2

3 ,
2 2

n n

kL
k L f x y

 
= + + 

 
 

( )4 3,n nk L f x L y k= + +  
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( )531 2 4

1
6 3 3 6

n n

kk k k
y y O L+ = + + + + +                                                                                   (27) 

where ( )1i iL x x+= −  represents the size of each subinterval.  

The crucial part in solving the bvp4c is the variation step and early guessing of the mesh 

point. Besides, the efficiency will eventually depend on the programmer ability in providing the 

algorithm with an initial guess for the solution. We created two folders, namely, “code a” and 

“code b”, for the trial-and-error initial guess and continuous iterations that approximate closely 

to the initial guess, respectively. The above-described computing approach cannot be used 

without transforming the higher-order differential equations to differential equations of order 

one. The mathematical process is described as follows: 

1 2 3

4 5

6 7

8 9

, ,

,

,

,

F y F y F y

G y G y

H y H y

y y 

 = = = 
= = 


= = 
= = 

                                                                                               (28)                                                       

( )2

1 7 2 1 3

1

21
1

(1 ) ( 1)

m
F K C y y y y

K C m

 
 = − − − + 

+ + 
                                                      (29) 

( ) ( ) 4 2 1 5

1

21

1 1

m
G y y y y

K C m

 
 = − − + 

+ + 
                                                                         (30) 

( ) ( )
( )

( )

( )5 6 3 2 6 1 7

1

3 121
2

1 0.5 1 1

mK I
H C y y y y y y

K C m m

 −
 = − − + − + 

+ + + 
                        (31)                                                    

( ) ( )2 2 2 5

1 9 2 1 2 3 5 8

4 2 1

1Pr
1

1 1

C Cm
y y y K C C Ec y y y

C C C m m
 

  −
 = − + + + +  

+ +  
           (32)

 

The corresponding boundary conditions become 

( ) ( ) ( ) ( )
( )

( )3

1 2 4 6 9

0
0 0; 0 0; 0 0 ; 0 ; 0 1 0

2

y
y y y y y at 


= = = = − = − =


          (33)                                                                      

( ) ( ) ( ) ( ) 2 4 6 81; 0; 0; 0y y y y as  →  →  →  → →                                        (34) 

Some commands in handling the function such as “@odeBVP” and “@odeBC” are from the 

syntax of the solver “sol = bvp4c” (@OdeBVP, @OdeBC, solinit, options). The iterative process 

is carried out until an accuracy of 610−  is achieved which is obtained for the values of 5 =  
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(infinity boundary condition) and 0.001 =   (step size). The numerical results obtained from 

the solver are then plotted as graphs.  

To validate the MATLAB bvp4c solutions, a comparison has been made with several previous 

studies from the literature [30, 50, 51, 52]. In these benchmark studies viscous heating, nanofluid 

and heat source/sink effects were neglected. The comparisons are shown in Tables 1 and 2 for 

primary skin friction 
Re

2

fxC 
 
 
 

 and reduced Nusselt number 
Re

Nu 
 
 

 respectively. A very 

wide range of Prandtl numbers is included in Table 2. In both Tables, the case 0m=  is examined 

(Blasius flow). Excellent agreement is captured and confidence in the MATLAB bvp4c is highly 

justifiably. In Tables 1 and 2 the values chosen are 

1 2 3 4 50.5, 0, 0, 0, 1.0, 0.0, 0.0, Pr 6.0I K m C C C C C Ec= = = = = = = = =  = = =   

 

 

4. Results and discussion 

Extensive visualization of MATLAB solutions is given in Figs. 2-7. Table 3 also documents the 

values of 
Re

2

fxC 
 
 
 

  and   
Re

Nu 
 
 

  for all key parameters. In all the plots, the following data is 

prescribed (unless otherwise indicated): 

0.5, 0.01, 0.5, 0.3333, 0.5, 0.5, Pr 6.0I K m Ec= = = =  = − = = . This corresponds to 

water as base fluid and copper nanoparticles (Hussain [1]). Generalized wedge flow is 

considered ( )0.3333m =  and heat sink ( )0.5 = −  strong dissipation ( )0.5Ec =  and these 

correspond closely to actual nano-polymer flow coating data (Hussain and  Thomas [65]).  

Figures 2a-c exhibit (a) primary velocity ( )F   (b) angular velocity ( )H and (c) temperature ( )  

for various pressure gradient parameter values ( )m . The case 0m =  implies Blasius flow past a 

flat horizontal surface (for which  mU c x U c= → = ) and 1m =  corresponds to forward 

stagnation point flow adjacent to a vertical surface (i. e. linear free stream velocity variation with 
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axial distance (for which mU c x U c x= → = ). Figure 2a shows that former ( )0m =  linear 

primary velocity is a minimum whereas for the latter ( )1m =  it is a maximum.  

Velocity is generally elevated with increase in pressure gradient parameter since pressure 

gradient assists the momentum development on the wall and encourages boundary layer growth. 

Wedge flow ( )0m   therefore produces strong flow acceleration relative to flat plate flow 

whereas maximum flow acceleration is only achieved with 1m = . The trend in profiles is 

sustained at all values of  .  There is no cross-over of profiles anywhere in the boundary layer. 

The parameter m   features in the modified shear terms in the primary momentum Eqn. (15),  

( )( )2.5
1 1K F + −  and ( )( )22

1
1

m
F

m
− −

+
, and will evidently modify shear characteristics 

considerably. Momentum boundary layer thickness is generally reduced with increasing pressure 

gradient parameter values ( )m . It is also delightful to figure that as the value of m  is increased 

the profiles evolve from a linear growth to increasingly parabolic i. e. nonlinear topologies. This 

has also been observed in other wedge flow boundary layer nanofluid studies e.g. [36, 37]. In all 

cases the magnitudes of primary velocity are positive indicating that flow reversal never occurs 

in the boundary layer. Figure 2b shows that angular velocity is also strongly influenced by 

pressure gradient parameter values ( )m . Initially near the wall (wedge surface) there is a very 

strong decrement in micro-rotation ( )H  indicating that micro-elements rotate increasingly in the 

reverse direction. The implication is that for flat plate scenario ( )0m =   and also wedge 

geometries ( )0 1m   and the forward stagnation flow case ( )1m = , close to the wall there is 

increasing reverse spin and angular deceleration. However, with further distance from the wall, 

angular acceleration is achieved and sustained into the free stream. The pressure gradient 

parameter ( )m  arises in the terms, 
( ) ( )

( )
( )

5 52 2 3 1
2

1 1 1

K I C K I C m
H F H F

m m m

   −
 − − + −      + + +   

 in 

the angular momentum boundary layer Eqn. (17). These terms are also strongly coupled with the 

primary momentum Eqn. (15). Micro-rotation therefore exhibits considerable sensitivity to the 

pressure gradient parameter. Maximum angular velocity corresponds to the flat plate case nearer 

the wall and to the forward stagnation flow case further from the wall. The wedge cases 
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( )0 1m   fall in between these two extremities. Figure 2c depicts the distribution of 

temperature with various m values. There are several terms in the energy Eqn. (18) which also 

feature this parameter. Increment in m is observed to markedly boost the temperature magnitudes 

at all locations from the wall to the free stream.  Profiles become increasingly parabolic in nature 

with higher m. For vanishing pressure gradient (flat plate case, 0m = ) temperature is 

minimized. However, it is maximized for the 1m =  for which pressure gradient is strongest. The 

wedge case ( )0 1m    are intercalated between these other two cases. Thermal boundary layer 

thickness is therefore a maximum for the forward stagnation flow case and a minimum for the 

flat plate (Blasius) case.   

Figure 3  illustrates the effect of  K  on (a) F  (b) H  and (c)    with transverse coordinate,  . 

Figure 3a reflect the decrease in F  with increment in K  values. The Newtonian case i. e. 

0K =  achieves maximum acceleration. With greater values of K  there is stronger 

micropolarity of the nanofluid i. e. vortex viscosity is enhanced. This contributes to a reduction 

in momentum diffusion in F  which decelerates the flow. Therefore, the inclusion of micropolar 

effects produces more accurate predictions for the primary velocity; the Newtonian model over-

predicts the velocity and under-predicts the momentum boundary layer thickness. The drag-

reducing properties of micropolar nanofluids are therefore confirmed and these have been 

identified also in Eringen [17] and many other studies [24]. Figure 3b, depicts a strong 

enhancement in H ,  H  is induced near the wedge surface i.e. wall with a rise in Eringen 

micropolar material parameter values ( )K . Profiles also grow linearly with transverse 

coordinate. However further from the wedge face, the pattern is opposite and there is a strong 

deceleration induced in angular velocity with increasing K  values and profiles assume a 

parabolic form. The micropolar vortex viscosity effect is therefore dependent on the location in 

the boundary layer. Closer to the wedge surface the boost in micropolar material parameter 

encourages spin of the micro-elements, whereas further away the rotary motions are damped. 

Figure 3c shows that a strong boost in temperatures accompanies an increment in K . The 

Newtonian case ( )0K =  produces the minimal temperature i. e. a cooling effect relative to 

micropolar nanofluids. Increasing micropolar vortex viscosity strongly heats the regime, 

implying a hike in thermal diffusion and an associated elevation in thermal boundary layer 
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thickness. This will simultaneously produce a decrease in heat transfer rate to the wall with 

increasing micropolarity. Therefore, wall cooling of the coating flow will be achieved with 

micropolar nanofluids (this is desirable in polymer processing coatings as noted in Hussain 

and Thomas [52]) whereas Newtonian nanofluids will induce undesirable heating at the wall.  

Figure 4 visualize the profiles for (a) primary velocity ( )F   (b) angular velocity ( )H and (c) 

temperature ( )  for various nanoparticle volume fractions ( )  (copper nanoparticles in water). 

A distinct enhancement in primary velocity (Fig. 4a) is computed with increasing volume 

fraction at some distance from the wedge surface i. e., with increment in percentage doping of 

nanoparticles in the nano-polymer, there is clear acceleration in primary flow and associated 

reduction in momentum boundary layer thickness. The increasing presence of nanoparticles 

therefore assists momentum diffusion in the regime. The modification in nanofluid viscosity is 

therefore beneficial for coating flow dynamics. The case where nanoparticles are absent ( )0 =   

produces the lowest magnitude of velocity and the maximum boundary layer thickness. A steady 

growth in primary velocity is computed from the wall to the free stream and backflow (negative 

velocity) is never witnessed. Near the wedge face, Fig. 4b reveals that increment in nanoparticle 

volume fraction produces a weak deceleration in micro-rotation i. e. angular velocities becoming 

increasingly negative and micro-elements spin faster in the reverse direction. Further into the 

boundary layer regime, transverse to the wedge surface, there is however a switchover in 

behavior. Beyond the critical point at 1.1 , the angular velocity is accentuated with 

increasing volume fraction. The greater space available for gyratory motions enables a boost in 

angular velocity beyond the critical location with higher values of nanoparticle volume fraction. 

All angular velocity profiles tend smoothly to the free stream (maximum) value confirming 

excellent convergence in the MATLAB bvp4c computations. A significant elevation in 

temperature is observed with greater nanoparticle volume fractions ( )  in Fig. 4c. The thermal 

conductivity is significantly increased with nanoparticles. Thermal diffusion is assisted, and 

thermal boundary layer thickness is strongly increased. The nanoparticles therefore achieve the 

fundamental objective of thermal enhancement in the regime, as confirmed in numerous studies 

[1, 36, 37]. At higher volume fractions there is also a more parabolic nature to the temperature 
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distribution; at lower values it is generally a linear decay from the wall (wedge face) to the free 

stream. 

Figure 5 displays the influence of heat source/sink parameter ( )   on temperature ( ) . This 

parameter arises in the term, 
( )

3

1

C

m


 
  + 

  in the energy boundary layer Eqn. (18). This is an 

important effect in nanomaterials processing wherein a hot spot or cooling spot are present on 

the substrate being coated to enable manipulation of thermal energy. With increment in positive 

values of ( ) ,  heat generation effect is amplified so that the term, 
( )

3

1

C

m


 
  + 

 makes a more 

prominent contribution to thermal diffusion. This significantly enhances temperatures throughout 

the regime. The converse effect is induced with elevation in negative values of ( ) , the heat 

sink (absorption) effect is amplified. The case of 0 →  implies an absence of either heat 

source or sink. This profiles naturally falls in between the heat source and heat sink cases. There 

is overall a marked enhancement in thermal boundary layer thickness with heat generation 

( )0   i. e. heating effect in the micropolar nanofluid coating and a decrement in thermal 

boundary layer thickness ( )0   i. e. cooling effect. It is also noteworthy that sharper gradients 

in temperature are observed at higher values of positive or negative    although again all 

profiles converge smoothly in the free stream at maximum value of the transverse coordinate. 

Figure 6 illustrates the evolution in temperature in the regime with increment in Ec.  This 

parameter signifies the relative contribution of kinetic energy dissipated via internal friction in 

the micropolar nanofluid. It features in the term, ( ) ( ) ( )
2 2

1 21Ec K C C F G   + +
 

 in the 

heat Eqn. (18). Elevation in Ec  amplifies this term and leads to a strong increment in 

temperatures throughout the boundary layer. Thermal boundary layer thickness is therefore 

substantially enhanced also with greater Eckert number. In the absence of viscous heating 

0Ec =  and minimum temperatures are computed. The neglection of viscous dissipation 

therefore strongly underestimates actual temperatures arising in micropolar nanofluid coating 

flows. Viscous heating is known to be significant in polymer processing (Hussain and Thomas 

[52]) and the inclusion of this effect is therefore justified for more accurate simulations.  
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Figure 7 depicts the distribution in temperature for various nanoparticle types (silver, copper, 

diamond and titania). Maximum temperatures are observed for silver and are sustained at all 

values of transverse coordinate, although the greatest enhancement is at the wedge face. As 

nanoparticles are changed to copper, diamond and titania there is a progressive decrease in 

temperature and also thermal boundary layer thickness. Copper achieves the second highest 

temperatures. Diamond nanoparticles produce a weakly greater temperature than titania (titanium 

oxide metallic) nanoparticles. The latter are associated with the minimal temperatures. Overall 

thermal enhancement in the boundary layer coating regime is best with silver nanoparticles 

although copper is also quite effective, and these trends are attributable to the impressive thermal 

conductivities of these nanoparticles relative to diamond and titania.  

Table 3 shows that with an increase in pressure gradient parameter ( )m , primary skin friction    

i. e. 
Re

2

fxC
 is strongly enhanced whereas Nusselt number 

Re

Nu
 is strongly suppressed. 

Highest heat transfer rate to the wall is therefore computed for 0m =  whereas the minimum heat 

transfer rate to the wall is produced for 1m = . The wedge case lies between these two 

extremities. An increase in micropolar material parameter, K  induces a strong increase in 

primary skin friction 
Re

2

fxC
 whereas it depletes the Nusselt number 

Re

Nu
 magnitudes for the 

wedge case ( 0.3333m = with 1% nanoparticle doping). Strongly micropolar nanofluids therefore 

shear faster along the wedge face whereas they produce a decrement in heat transfer to the wall 

(cooling effect). Both primary skin friction and Nusselt number are depleted with increment in  

 . Stronger doping of nanoparticles therefore decelerates the flow along the wedge wall and also 

suppresses the rate of heat transferred to the wall i. e. cooling is produced (since temperatures 

within the boundary layer are increased). Maximum primary skin friction is computed for 

diamond, followed by titania, then copper and a minimum for silver. A similar trend is computed 

for the Nusselt number i. e. the highest magnitude is for diamond, followed by titania, then 

copper and again the lowest magnitude is observed for silver. 
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Figure 1.  Schematic diagram for micropolar nanofluid flow external to a wedge 
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Figure 2.      Profiles for (a) primary velocity ( )F   (b) angular velocity ( )H and (c) temperature 

( )  for various pressure gradient parameter values ( )m  



22 

 

 

(a) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 K =  0.0, 0.5,1.0, 2.0



F'

 

(b) 

0 1 2 3 4 5 6
-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0



H

K = 0.0, 0.5, 1.0, 2.0

 

 

 



23 

 

(c) 

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

K = 0.0, 0.5, 1.0, 2.0





 

 

Figure 3.     Profiles for (a) primary velocity ( )F   (b) angular velocity ( )H and (c) temperature 

( )  for various Eringen micropolar material parameter values ( )K  
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Figure 4.      Profiles for (a) primary velocity ( )F   (b) angular velocity ( )H and (c) temperature 

( )  for various nanoparticle volume fractions ( )  (copper nanoparticles in water) 
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Figure 5.      Profiles for temperature ( )  for various heat source/sink parameter values ( )  
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Figure 6.      Profiles for temperature ( )  for various Eckert number values ( )Ec  
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Figure 7.      Profiles for temperature ( )  for various nanoparticle types ( 0.01 =  i. e. 1% 

doping)  

Table 1:  Comparison of solutions for  
Re

2

fxC
 with  

Yi Chamkha 

et al. [49] 

Ishak et al. 

[50] 

Uddin et 

al. [30] 

Present 

0.332057 0.332206 0.3321 0.3466 0.332057 

 

Table 2:  Values of 
Re

Nu
 for  

 

Pr Lin and Lin [51]  Ishak et al. [50] Uddin et al. [30] Present 

1 0.45897 0.4590 0.460439 0.458981 

10 0.99789 0.9980 1.00012 0.997893 

100 2.15197 2.1520 2.163009 2.15201 

1000 4.63674 4.6367 4.647032 4.63707 
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Table 3:  Values of 
Re

2

fxC
  and  

Re

Nu
  for  

0.5, 0.01, 0.5, 0.3333, 0.5, 0.5, Pr 6.0I K m Ec= = = =  = − = =  

 (water as base fluid, copper nanoparticles, unless otherwise indicated) 

 

 Re

2

fxC
 

Re

Nu
 

m   

0.0 0.360924 1.26459 

0.3333 0.823263 0.945399 

1.0 1.33973 0.218181 

K   

0.0 0.738176 1.09174 

0.5 0.823263 0.945399 

1.0 0.900336 0.830457 

   

0.0 1.01618 0.95743 

0.01 0.823263 0.945399 

0.1 0.817408 0.827865 

Nano 

Particles 

Water as Base fluid 

Copper 0.823263 0.945399 

Silver 0.817336 0.944306 

Diamond 0.844818 0.949622 

TiO2 0.841777 0.947498 

 

5. Conclusions  

As a simulation of nano-polymeric coating flow, laminar, steady-state, incompressible nonlinear 

convective boundary layer flow of a non-Newtonian nanofluid external to a wedge-shaped 

configuration has been studied theoretically. The wedge surface is assumed to be isothermal. 
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Viscous dissipation and heat generation/absorption effects are included. The Eringen micropolar 

model is deployed for rheological characteristics of the nanofluid. A Tiwari-Das nanoscale 

formulation is utilized in order to study specific nanoparticles and volume fraction effects. The 

dimensionless, transformed, coupled momentum, angular momentum (micro-rotation) and 

thermal boundary layer equations with associated wall and free stream conditions are solved with 

the efficient MATLAB bvp4c numerical scheme. Excellent correlation with previous studies 

from the literature for special cases of the general model is achieved. Aqueous-based nano-

polymers are examined with either metallic/metallic oxide (copper, silver, titania) or carbon-

based (diamond) nanoparticles. The main findings of the present computations can be 

summarized as follows: 

(i)Temperature is strongly elevated with increasing micropolar parameter and nanoparticle 

volume fraction.  

(ii)Angular velocity (micro-rotation) is damped near the wedge surface with increment in volume 

fraction but further from the wall the reverse effect is observed.  

(iii) Primary velocity is boosted throughout the boundary layer transverse to the wall with 

increasing nanoparticle volume fraction.  

(iv)Temperatures and thermal boundary layer thicknesses are elevated with heat source 

(generation) but suppressed with heat sink (absorption).  

(v)Increasing Eckert number (dissipation) markedly boosts temperature and thermal boundary 

layer thickness.  

(vi)Temperatures are a maximum for silver and progressively lower for copper, diamond and 

with a minimum computed for titania.  

(vii) Skin friction is boosted with pressure gradient parameter whereas Nusselt number is 

depleted.  

(viii) Highest heat transfer rate to the wall is achieved for the Blasius flow case   whereas the 

minimum heat transfer rate to the wall is produced for the forward stagnation flow case. The 

wedge case lies between these two extremities.  

(ix) An increase in micropolar material parameter, induces a strong increase in primary skin 

friction whereas it depletes the Nusselt number magnitudes for the wedge case ( 0.3333m =  with 

1% nanoparticle doping).  
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(x) Both primary skin friction and Nusselt number are depleted with increment in nanoparticle 

volume fraction,  .  

(xi)Nusselt number is maximum for diamond whereas it is a minimum for silver. Copper 

however also achieves quite high Nusselt number whereas titania produces much lower 

magnitudes than diamond or copper nanoparticles.   

 

The present study has revealed some interesting insights into micropolar (rheological) nanofluid 

coating flows with both metallic/oxide and carbon (diamond) nanoparticles using MATLAB 

bvp4c and the Tiwari-Das nanoscale and Eringen non-Newtonian models. Future studies may 

consider alternative non-Newtonian models e. g. viscoelastic model, and also different 

nanoparticles such as magnesium oxide, silicon carbide and zinc oxide. Efforts in these 

directions will be reported imminently. 

 

Conflict of Interest:  The authors do not have any conflict of interest. 

Nomenclature 

c  Positive constant 

ic  Arbitrary constants 

pc  Specific heat at constant pressure 

fxc  Dimensionless primary skin friction 

fzc  Dimensionless secondary skin friction 

Ec  Eckert number 

( )F   Dimensionless stream function 

( )G   Dimensionless secondary velocity 

( )H   Dimensionless angular velocity 

I  Dimensionless Micro-inertia density 

j  Micro-inertia density 

K  Thermal conductivity  

fK  Thermal conductivity of the fluid 
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sK  Thermal conductivity of the solid particle 

m   Hartree pressure gradient 

N  Angular velocity  

NU  Nusselt number 

Pr  Prandtl number 

Q  Heat sink parameter 

wq  Rate of heat transfer 

Re  Reynolds number 

T  Fluid temperature 

T  Ambient fluid temperature 

u  Velocity along the x − direction 

mU c x=  External velocity 

v  Velocity along y − direction 

, ,x y z  Cartesian coordinates 

Greek Symbols 

,   Spin gradient viscosity co-efficients 

2
j


 

 
= + 
 

 Eringen spin gradient viscosity 

  Dynamic viscosity 

  Eringen second order viscosity coefficient 

  Mass density of micropolar fluid 

  Vortex viscosity 

( )   Dimensionless temperature 

  Pseudo similarity coordinate in the y − direction 

x  Primary dimensional wall shear stress 

z  Secondary dimensional wall shear stress 

  Heat sink parameter 

  =  Total vertex angle of the wedge 
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Subscripts 

nf  Nanofluid 

f  Base fluid  

s  Solid nanoparticles 

w  Wall condition 

  Ambient condition  

Superscript 

‘ Prime denotes the derivative with respect to   
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