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ABSTRACT: Reactive electro-conductive non-Newtonian (gel) duct flows arise in a 

variety of industrial applications including hybrid propulsion, smart rheological 

manufacturing systems, complex geothermal systems and chemical process 

engineering. Motivated by these technological applications, a mathematical model is 

developed to simulate the steady, laminar exothermic reactive electro-magneto-

hydrodynamic combustible non-Newtonian natural convective transport in a vertical 

duct. Static uniform axial electrical field and transverse magnetic field are imposed. 

The Frank-Kamenetskii thermal explosion theory is utilized and also the Carreau 

fluid model, the latter due to its ability to simulate shear-thinning, Newtonian and 

shear-thickening behaviour. The duct contains a homogenous, isotropic porous 

medium and to accomodate Forchheimer inertial drag effects, a non-Darcian model 

is deployed. The duct walls are permeable enabling suction and injection effects to be 

studied. Viscous and Joule heating (Ohmic dissipation) are also featured in the model. 

Following a scaling transformation, the dimensionless emerging non-linear ordinary 

differential boundary value problem is solved with a robust numerical method 

(Mathematica shooting algorithm). Validation with an Adomian decomposition 

method (ADM) is included. Velocity, temperature, duct wall skin friction and Nusselt 

number are computed for the influence of all key parameters and depicted in graphs 

and tables. Detailed physical interpretations are provided and some pathways for 

future investigations are briefly outlined. 

 

KEYWORDS: EMHD gel propellants; F-K thermal explosion theory; Darcy-

Brinkman-Forchheimer porous medium; Carreau non-Newtonian fluid; Numerical 

simulation. 
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1. INTRODUCTION 

 

Heat transmission and thermal ignition in porous media feature in an extensive 

range of applications spanning geological and chemical energy storage (i.e., packed 

beds), environmental engineering (i.e., groundwater flow and soil remediation), 

building materials (i.e., design and optimization of construction industry insulation 

materials), chemical process engineering (i.e., catalysis, filtration, and adsorption) 

and propulsion (i.e., hybrid rheological gel propellants, detonation-based propulsion 

etc) [1-5]. The major breakthrough in thermal explosion (ignition) theory was made 

by Russian scientist, Frank-Kamenetskii [6] who generalized the earlier Semenov 

model [7] (which assumed a linear model for the heat conduction process instead of 

the Laplacian operator). F-K model provides a good framework for simulating 

thermal explosions of a homogeneous mixture of reactants, under isothermal 

boundary conditions. It deploys Arrhenius chemical kinetics and intrinsic to this 

approach is that during the early stages of ignition, negligible reaction consumption 

occurs. Based on a single step global reaction, only the energy equation is modified to 

include an exponential term embodying the quantity of heat released per unit mas of 

fuel consumption. In modern propulsion systems e.g. automotive and aerospace, the 

catalytic converter is made up of precisely separated platinum-iridium catalyst 

(creating a porous matrix) that serves as a platform for exothermic chemical processes 

in which unburned hydrocarbons entirely combust. This helps to reduce hazardous 

automobile pollutants, such as carbon monoxide, from entering the environment. As 

a result, the thermal criticality of a burner based on combustion by means of a porous 

material, such as a catalytic converter, must be researched in order to stabilize, 

ignite, and drive under steady-state circumstances. Mathematical models of heat 

transmission and thermal ignition via porous media initiate a non-linear diffusion 

problem, and the long-term behavior provides useful insight into the intrinsically 

complicated physical mechanism of thermal runaway in the system. Moreover, in 

certain reactive flows, variations in fluid density induce natural convection, which 

arises from the exothermic heat release of a reaction, subsequently influencing the 
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reaction rate. The intricate interplay between convection and reaction is often 

regarded as a significant contributing element to the many instabilities found in 

these flows characterized by chemical reactions. In certain instances, such as the 

containment of self-igniting substances, these non-homogeneous flows are 

hypothesized to play a role in impeding (or prolonging) thermal explosions. 

Conversely, in other scenarios, such as a reaction occurring within a densely packed 

container, these non-homogeneous flows may result in the creation of localized areas 

of high temperature, which should be mitigated. The progression of an exothermic 

chemical reaction may be significantly impacted by the influence of natural 

convection. Chemical vapor deposition systems, the synthesis of ceramic materials 

through self-propagating reactions, tubular laboratory reactors, geochemical 

processes in reservoirs, and the oxidation of solid materials in large containers are a 

few notable instances that exemplify the interplay between chemical reactions and 

free convection flows. In recent years, many investigations have been conducted using 

the Frank-Kamenetskii thermal explosion model. Law and Law [8] used matched 

asymptotic expansions to calculate the igniting process in a constant laminar 

boundary-layer flow of a combustible mixture across a hot, isothermal, non-

permeable, non-catalytic flat plate with a significant activation energy. In their 

study, Li et al. [9] developed a locally comparable solution to analyze the thermal 

ignition of a reactive boundary-layer flow over a heated wedge/cone surface. In their 

study, Bég et al. [10] used a multi-step differential transform approach and Padé 

approximants to model the thermal ignition in a combusting flow originating from a 

slanted slope, which serves as a representation of the spread of forest fires. The 

researchers conducted a comprehensive analysis of the influence of the Frank-

Kamenetskii parameter on the thermal buoyancy effects. Additional investigations of 

the Frank-Kamenetskii theory have been conducted by Martínez-Ruiz et al. [11] in 

the field of flame spray dynamics, as well as by Bég et al. [12] in the realm of elastico-

viscous hypergolic bi-propellant rocket fuel conduction-convection, specifically 

examining various Biot numbers. The Frank–Kamenetskii theory has also been 

deployed in porous media simulation using Darcy, Darcy-Forchheimer and Darcy-
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Brinkman models.  In their study, Hashmi et al. [13] used homotopy solutions to 

analyze the impact of heat source/sink effects on mixed convection in the flow of an 

axisymmetric hydromagnetic viscoelastic Oldroyd-B fluid between two infinite 

isothermal stretching disks. The heat and momentum characteristics were calculated 

for a broad spectrum of Frank-Kamenetskii parameter values. In a scholarly manner, 

Gordon [14] conducted a comprehensive analytical investigation on the phenomenon 

of thermal explosion occurring inside Darcy porous medium. Thermal ignition in 

natural convection inside porous media saturated with nanofluids has also been 

investigated by many researchers. In their study, Rahman et al. [15] used a Galerkin 

weighted residual finite element approach to analyze the characteristics of natural 

magneto-convection flow inside an inclined nanofluid saturated porous square cavity. 

The investigation also included the presence of a Frank-Kamenstkii exothermic 

chemical reaction and Arrhenius kinetics. The authors observed that the convective 

patterns are significantly affected by both the Rayleigh and Frank-Kamenetskii 

numbers. They found that the average Nusselt number is increased when the Frank-

Kamenetskii parameter (indicating a more exothermic response) is higher, while it is 

decreased with higher Rayleigh numbers. Further investigations include Makinde 

[16] who studied exothermic explosions in a slab using the series summation 

approach. Salawu et al. [17] addressed an identical problem utilizing the Oldroyd 8-

constant fluid model and the weighted residual approach to resolve the nonlinear 

formulation. Adesanya et al. [18] generalized these studies [16, 17] to 

consider entropy generation minimization in thermal ignition of third grade Reiner-

Rivlin gel propellants in a horizontal duct with wall Biot number effects. They noted 

that entroby generation rate is elevated with Frank-Kamenetskii parameter (since 

exothermic chemical interactions amplify the heat transfer rate from the combustion 

zone to the cool wall) whereas it is suppressed with increment in third grade material 

(non-Newtonian) parameter. 

The above studies did not consider electrohydrodynamics (EHD) or 

magnetohydrodynamics (MHD) effects. In recent years, new electroconductive 

rheological propellants have emerged, in for example, space propulsion which contain 
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metallic particles and achieve greater burn efficiency than conventional fuels [19-22]. 

These complex liquids exhibit both rheological [23] and electromagnetic properties- 

the latter enables their manipulation with external electrical and/or magnetic fields. 

These complex liquids can be deployed in electrothermal, electrostatic or magneto-

static thrusters [19] and may also be utilized with lasers to boost combustion 

characteristics. The non-Newtonian characteristics of these electromagnetic gel fuels 

have been determined experimentally to range from shear thinning to shear 

thickening [24-27]. Accurate simulation of the fluid dynamics of these gels therefore 

can be achieved with appropriate rheological models, including Cross, power-law and 

in particular the Carreau model [28]. The latter has been originally developed for 

polymer dynamics and later applied to blood and other complex suspensions. It is a 

generalization of simpler power-law models featuring five parameters, namely a zero-

shear viscosity, infinite shear viscosity, time constant, transition parameter, and 

power law exponent. An advantage of this model is the clearly delineated upper (zero 

shear viscosity) and lower (infinite shear viscosity) limits for the polymer viscosity. 

To simulate the dynamics of electromagnetic non-Newtonian gels in combustion 

systems, a generalized formulation is required featuring electrical body force, 

magnetohydrodynamic body force, modified viscosity (rheology) and thermal 

explosion based on Arrhenius kinetics [29]. While a number of studies have examined 

magnetohydrodynamic rheological duct and boundary layer flows, thus far 

electrohydrodynamic non-Newtonian duct flows have not been explored using the 

Frank-Kamenetskii exothermic reaction model. Salawu and Okedoye [30] conducted a 

thermodynamic optimization study of two-step exothermic chemically reacting 

hydromagnetic flow with heat transfer in a channel using the second law of 

thermodynamics. The entropy generation rates in a duct flow of couple stress fluid 

with hydrodynamic slip effects at the wall were estimated by Salawu et al. [31]. In 

their study, Makinde and Bég [32] used a perturbation method combined with a 

modified Hermite-Padé approximation technique to evaluate the volumetric 

generation of entropy and thermal stability in a reactive magnetohydrodynamic 

isothermal duct flow. The researchers conducted an analysis to ascertain the velocity, 
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temperature distribution, and thermal criticality conditions associated with the 

influence of the Frank-Kamenetskii parameter.  

Another major development in recent years has been the deployment of porous media 

in combustion systems. A popular porous medium deployed in for example rocket fuel 

injectors is Rigimesh which is a relatively dense, non-uniform, fibrous porous 

medium. This provides an excellent control mechanism in both duct flows and injector 

plates in liquid-based rocket combustion [33-36]. The established approach in 

simulating hydrodynamics of porous media is the Darcy model, which assumes 

laminar flow in the formation and assumes a linear relationship between flow rate 

and pressure drop. At higher velocities, as encountered in propulsion systems, 

inertial effects become prominent. The flow departs from the classical Darcy model 

and non-Darcy effects emerge [37, 38]. Motivated by both rocket duct and other e. g. 

chemical engineering processing applications, a number of ivestigators have studied 

theoretically Newtonian or non-Newtonian and electro/magnetc fluid dynamic 

transport in ducts containing either Darcian or non-Darcy porous media. Frequently 

used non-Darcy formulations include the Darcy-Brinkman model (which accounts for 

vorticity diffusion), Darcy-Forchheimer model and the combined Darcy-Brinkman-

Forchheimer drag force model. These approaches are based on a volume averaging of 

porous medium effects and ignore tortuosity and anisotropy of the medium. Bég and 

Makinde [39] used MATLAB to compute the mass transfer and flow in a Maxwell 

viscoelastic fluid saturated porous medium duct with Darcy’s model. Umavathi and 

Bég [40] obtained perturbation solutions for homogenous reactions in thermo-solutal 

transport in anon-Darcy porous medium upright duct with asymmetric convective 

wall boundary conditions, noting the strong deceleration induced at higher 

Forchheimer numbers. The Darcy-Forchheimer formulation has also been 

implemented recently in hydromagnetic non-Newtonian flows in porous media. Nasir 

et al. [41] deployed Liao’s HAM approach to derive higher-order (up to 30) power 

series solutions for non-Fourier, non-Fickian electroconductive Reiner–Rivlin second-

grade rheological nanofluid flow in Darcy-Forchheimer porous media under a 

transverse magnetic field. Rawat et al. [42] used a variational finite element method 



7 

 

 

(FEM) to simulate the unsteady hydromagnetic buoyancy-driven thermo-solutal 

convection in a geothermal duct with heat generation and thermal conductivity 

variation effects. Geindreau and Aurialut [43] conducted a rigorous analysis of 

creeping magnetohydrodynamic (MHD) transport in a Darcian porous medium. They 

used upscaling at the pore level to derive the magnetic version of the Darcy seepage 

law with macroscopic magnetic field and electric flux. They used asymptotic 

expansions to show that there is a strong coupling of the macroscopic mass flow and 

electric current and that both are influenced by the macroscopic pressure gradient in 

addition to the electric field. They also showed that Hartmann magnetic number 

strongly modifies the permeability tensor. Further investigations of MHD flows in 

porous media with heat and mass transfer include McWhirter et al. [44] 

(experimental works in fusion propulsion systems), Yih [45] (transpiring stagnation 

flow boundary layers), Ghosh et al. [46] (unsteady spinning of magnetic Stokesian 

polar liquids), Zueco et al. [47] (Hall magneto-gas dynamic accelerator flows 

deploying non-Darcy duct designs) and Maqbool et al. [48] (revolving and oscillating 

duct fractional viscoelastic MHD flows).  

Significantly less work has been reported in electrohydrodynamic (EHD) flows in 

purely fluid regimes or porous media ducts [49]. Different formulations are available 

for electrofluid dynamics and can feature either electrical body forces, electro-osmotic 

body forces and ion diffusion and other electrical field phenomena. Narla et al. [50] 

presented a novel model for electrokinetic insect respiratory-inspired microfluidic 

membrane pumping by solving the Poisson–Boltzmann electrical potential equation.  

They noted that axial electrical field has different effects depending on its orientation. 

In the aligned case, wall shear stress is reduced whereas in the reverse orientation 

case it is boosted. They also showed that volumetric flow rate and wall shear stress 

are both elevated with a reduction in electrical double layer (EDL) thickness. Bég et 

al. [51] studied EHD ion drag duct pumping dynamics in aerospace flow control using 

spectral codes. They computed the impact of electrical Hartmann number, electrical 

Reynolds number, electrical slip and source parameters on electrical field, potential 

and charge density distributions. Tripathi et al. [52] derived analytical solutions for 
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electrokinetic polar (couple stress) peristaltic propulsion in a microchannel. Bedolla 

et al. [53] evaluated the corona-discharge-induced electrohydrodynamic flow in a 

high-voltage asymmetric capacitor duct system with reference to electrostatic space 

propulsion. Bég et al. [54] derived analytical solutions for fluctuating dielectric 

hydrogen gas transport in a duct using Adomian decomposition and homotopy 

methods. They considered both static and alternating electrical and magnetic fields 

in addition to Maxwell displacement current effects. Further studies include 

Granados et al. [55] (electrostatic thrusters) and Bouef et al. [56] (on high strength 

electrical fields in plasma thrusters). All these investigations confirmed that in 

multiple situations, judicious use of electrical fields can achieve significant benefits 

in efficiency and flow control. Several researchers have also studied 

electrohydrodynamic flows in porous media, notably del Río &  Whitaker [57] and 

Auriault and Strzelecki [58]. However, their formulations are very heavily focused on 

tensorial analysis and yield limited results of value in engineering analysis. An 

alternative approach has been developed in recent years which focuses on the 

dominant effects of magnetic body force (Lorentz) and the Gaussian electrical body 

force within the framework of engineering fluid dynamics. Bhatti et al. [59] studied 

the collective effects of axial electrical field and transverse magnetic field on 

peristaltic propulsion in a two-dimensional deformable duct containing a two-phase 

viscoelastic fluid with radiative flux effects.  They showed analytically that 

temperatures are reduced with higher particle volume fraction and also the pumping 

rate in retrograde pumping region whereas the contrary response is induced in the 

co-pumping region. They also found that an elevation in magnetic field intensity i. e. 

greater Hartmann number depletes the magnitude of the trapping bolus but not the 

quantity. Vargas et al. [60] studied the influence of variable zeta potential on Taylor 

dispersion in EMHD microchannel transport. Further studies include Jian and 

Chang [61] and Si and Jian [62] who respectively considered variable magnetic fields 

and Jeffreys viscoelastic models. 

An inspection of the literature on electromagnetic gel propellant and chemical gel 

duct flows has revealed that thus far the influence of Joule and viscous dissipation on 

https://link.springer.com/article/10.1023/A:1010762226382#auth-S_-Whitaker-Aff2
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thermal ignition in a reactive Carreau electro-magneto-hydrodynamic transport with 

non-Darcy effects has not been addressed. Previous studies have ignored thermal 

explosions (Frank-Kamenetskii reactions) and either considered 

electrohydrodynamics with Joule heating alone [62], considered both Joule and 

viscous heating but neglected non-Newtonian and porous medium effects [63], utlized 

alternate non-Newtonian models e.g. Williamson viscoelastic model [64] and 

Bingham viscoplastic model [65] or included viscous heating but neglected Joule 

heating, non-Darcy and non-Newtonian effects [66]. The present work therefore 

significantly generalizes previous studies by considering non-Darcy drag force, wall 

suction/injection, Carreau rheological model [67, 68], Joule and viscous heating, 

thermal explosion (Arrhenius kinetics), orthogonal electrical and magnetic fields and 

thermal buoyancy (natural convection) simultaneously. A modified formulation for 

both porous media Darcian and Forchheimer drag forces is deployed in which the 

effects are also included in the energy conservation equation (quadratic Darcy and 

cubic inertial drag). The normalized ordinary differential boundary value problem is 

solved using a robust shooting technique with numerical quadrature. Validation with 

previous studies and additionally a finite element method (FEM) is included. 

Graphical and tabulated distributions for axial velocity, temperature, skin friction 

and Nusselt number are presented for the effects of all key emerging parameters. The 

current study, while limited to laminar flow, provides a solid theoretical benchmark 

for future extensions to 3-D flows with computational fluid dynamics (CFD) and 

turbulence aspects.  

 

2. MATHEMATICAL FORMULATION 

 

Let us assume a fully developed flow of an electro-magneto-hydrodynamic Carreau 

rheological fluid (gel propellant) propagating through a vertical duct (channel) 

comprising parallel plates located at a finite distance apart. The duct contains a two-

dimensional isotropic porous medium with constant permeability which is saturated 

with the EMHD Carreau fluid. Both walls of the duct are stationary relative to the 

fluid motion. The Darcy-Brinkman-Forchheimer model is used to simulate drag force 
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effects in the permeable medium. Furthermore, an exothermic-reaction is assumed 

and Frank-Kamenetskii chemical kinetics considered. A Cartesian coordinate system 

is deployed with the 𝑦 −axis located in the vertical direction and the 𝑥 −axis 

orientated  perpencular to this, in the direction of the flow. Both duct walls are 

separated by a distance ℎ .  

 

 
 

Figure 1: Geometrical model for non-Newtonian thermal explosive EMHD duct 

flow. 

Fig. 1 illustrates the physical model. At the lower duct wall (plate) 𝑦 = 0, fluid 

injection occurs with a uniform rate 𝑣0, and is matched with a corresponding suction 

of the fluid at the upper duct 𝑦 = ℎ. Both of the duct walls are held at a constant 

temperature 𝑇𝑐. A uniform static external vertical magnetic and orthogonal axial 

electric field is applied, while the induced magnetic field is ignored. Fig. 2 

summarizes the many components of multi-physics featured in the present fluid 

dynamics formulation. 

gravity 
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Figure 2: Multi-physical aspects of the present model 

 

2.1 Hydrodynamic equations 

The governing mass and momentum conservation equations in view of Ohm’s law and 

the Darcy-Brinkman-Forchheimer model can be written in vectorial form (neglecting 

magnetic induction, Maxwell displacement and Hall current effects) as:  

∇ ⋅ 𝐔 = 0, 

 (1) 

𝜌
𝑑𝐔

𝑑𝑡
= ∇ ⋅ 𝑝 − ∇𝒞 − 𝐽 × 𝐵 + ℛ + 𝜌𝐠𝛽(𝑇 − 𝑇𝑐), 

(2) 

Here 𝐔 (= [𝑢(𝑦),0,0]) denotes the velocity field, 𝜌 indicates the density, 𝑝 the 

pressure, 𝐽[= 𝜎(𝐔 × 𝐵 + 𝐸)] the current density [62], 𝜎 the electrical conductivity, 𝐸 

the electric field, 𝐵 the magnetic field, ℛ the composite body force term for Darcy and 

Forchheimer drag, 𝛽 the thermal expansion coefficient, 𝑔 gravity. 𝒞 denotes the stress 

tensor of the Carreau fluid model (originally derived using molecular network theory) 

which may be defined [68] as:  

𝒞 = 𝜇(𝜉̇)𝒜1, 
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 (3) 

where 𝜇(𝜉̇) indicates the apparent viscosity and 𝒜1 represents the first Rivlin-

Ericksen tensor. They are defined as:  

𝜇(𝜉̇) = 𝜇inf + (𝜇 − 𝜇inf)[1 + (Γ𝜉̇)2]
𝑛−1

2 , 𝜉̇ = √2tr(𝒟2), 𝒟 =
1

2
(∇𝐔 + (∇𝐔)𝑡) =

1

2
𝒜1, 

  (4) 

 

The Carreau model is a five-parameter rheological model in which 𝜇 denotes the 

viscosity associated with zero shear rate and 𝜇inf the viscosity associated with infinite 

shear rate, Γ the time constant, 𝜉̇ the strain rate tensor and 𝑛 the power-law 

(rheological) index. The fluid exibits shear-thinning (pseudoplasticity) behavior when 

0 < 𝑛 < 1, Newtonian behavior for 𝑛 = 1 and shear-thickening (dilatancy) for 𝑛 > 1. 

Carreau fluid exhibits Newtonian behavior at low shear rates and transforms into a 

power-law fluid at high shear rates. We adopt the assumption that viscosity at an 

infinite shear rate is zero in the suggested mathematical formulation. Therefore:  

𝜇(𝜉̇) = 𝜇[1 + (Γ𝜉̇)2]
𝑛−1

2 . 

 (5) 

The porous medium drag force ℛ comprises contributions from a linear Darcy drag 

term and a quadratic inertial Forchheimer term, and may be written as [64]:  

  

                                                     ℛ = −
𝜇(𝜉̇)

𝑘
𝐔 −

𝜌𝐶𝑓

√𝑘
|𝐔|𝐔, (6) 

where 𝑘 is the isotropic permeability of the porous medium and 𝐶𝑓 represents the 

Forchheimer coefficient. 

 

2.2 Heat transfer 

The energy equation incorporating the effects of Joule heating and viscous dissipation 

assuming the classical Fourier heat conduction law, can be stated as [63, 81-82] :  

 

𝜌𝐶𝑝

𝑑𝑇

𝑑𝑡
= 𝒞: 𝑔𝑟𝑎𝑑𝑈 − ∇ℋ +

𝐽 ⋅ 𝐽

𝜎
− ℛ + 𝒬𝒮𝒦, 
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 (7) 

Here 𝐶𝑝 indicates the specific heat, ℋ(= −𝜅∇𝑇) is the Fourier heat flux vector, 𝜅 the 

thermal conductivity, 𝒬 the heat of reaction term, 𝒮 the reactant species, and 𝒦 is the 

temperature dependent reaction rate which is described by [69]:  

  

𝒦 = 𝒜 (
𝐾𝑇

𝜈ℒ
)

𝑚

exp (−
𝐸

𝑅𝑇
) , 

 (8) 

Here the exponent 𝑚 ∈ (−2; 0; 0.5), which indicates the chemical kinetics for 

sensitized, Arrhenius and bimolecular reactions, and 𝒜 is the 𝑚th order rate constant 

for chain branching, 𝐾 represents the Boltzmann’s constant, 𝜈 represents the 

vibration frequency, ℒ is Planck’s number, 𝐸 is activation energy, and 𝑅 the gas 

constant. 

 

The momentum and energy equations can be shown to assume the following forms in 

light of the aforementioned equations and presumptions:  

  

𝑣0𝜌
𝑑𝑢

𝑑𝑦
= −

𝑑𝑝

𝑑𝑥
+

𝑑

𝑑𝑦
(𝜇 [1 + (Γ

𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1
2 𝑑𝑢

𝑑𝑦
) − 𝜎𝐵0

2𝑢 + 𝜎𝐵0𝐸 − [1 + (Γ
𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1
2 𝜇

𝑘
𝑢

−
𝐶𝑓𝜌

𝑘1/2
𝑢2 + 𝑔𝜌𝛽(𝑇 − 𝑇𝑐), 

  (9) 

  

𝑣0𝜌𝐶𝑝

𝑑𝑇

𝑑𝑦
= 𝑘

𝑑2𝑇

𝑑𝑦2
+ 𝜇 [1 + (Γ

𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1
2

(
𝑑𝑢

𝑑𝑦
)

2

+ 𝜎𝐵0
2𝑢2 + 𝜎𝐸2 − 2𝜎𝐸𝐵0𝑢

+ [1 + (Γ
𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1
2 𝜇

𝑘
𝑢2 +

𝐶𝑓𝜌

𝑘1/2
𝑢3 + 𝒬𝒮𝒜 (

𝐾𝑇

𝜈ℒ
)

𝑚

exp (−
𝐸

𝑅𝑇
). 

  (10) 
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The boundary conditions at the left and right duct walls are prescribed as:  

𝑢 = 0, 𝑇 = 𝑇𝑐 , 𝑦 = 0, 

 (11) 

𝑢 = 0, 𝑇 = 𝑇𝑐 , 𝑦 = ℎ. 

 (12) 

In the framework of the mathematical modeling, the following dimensionless 

variables are invoked: 

𝑢 =
𝑢

𝑣0
, 𝑦 =

𝑦

ℎ
, 𝑇 =

(𝑇 − 𝑇𝑐)𝐸

𝑇𝑐
2𝑅

. 

  (13) 

Here u is non-dimensional axial velocity, y is scaled transverse coordinate and T is 

dimensionless temperature. Utilizing eqn. (13) in eqns. (11), (12), leads to the 

following form of the coupled, nonlinear dimensionless ordinary differential 

equations for monetum and heat (energy):  

  

𝛼
𝑑𝑢

𝑑𝑦
= 𝑃 + [1 + (𝑊𝑒

𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1
2 𝑑2𝑢

𝑑𝑦2
+ (𝑛 − 1) (𝑊𝑒

𝑑𝑢

𝑑𝑦
)

2

[1 + (𝑊𝑒
𝑑𝑢

𝑑𝑦
)

2

]

𝑛−3
2 𝑑2𝑢

𝑑𝑦2
− 𝐻𝑎

2𝑢

+ 𝐸𝑙 − [1 + (𝑊𝑒
𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1
2

𝐷𝑎𝑢 − 𝐷𝑓𝑢2 + 𝐺𝜃, 

 (14) 

𝛼Pr
𝑑𝑇

𝑑𝑦
=

𝑑2𝑇

𝑑𝑦2
+ 𝜉1 [1 + (𝑊𝑒

𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1
2

(
𝑑𝑢

𝑑𝑦
)

2

+ 𝜉1𝐻𝑎
2𝑢2 − 𝜉2𝑢 + 𝜉3

+ [1 + (𝑊𝑒
𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1
2

𝜉1𝐷𝑎𝑢2 + 𝜉1𝐷𝑓𝑢3 + 𝜆(1 + 𝛽𝑟𝜃)𝑚exp (
𝜃

1 + 𝛽𝑟𝜃
) , 

 (15) 

 

Here the following dimensionless parameters are featured: 𝛼 represents the wall 

injection/suction, 𝑊𝑒 the Weissenberg number (ratio of elastic to viscous forces), 𝐻𝑎 

the Hartmann number (ratio of Lorentz magnetic to viscous forces), 𝐸𝑙 the electric 

field parameter (ratio of modified electrical body force to viscous force), 𝐷𝑎 the Darcy 
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number (dimensionless permeability parameter), 𝐷𝑓 the Forchheimer number 

(dimensionless inertial drag force parameter), 𝑃 the dimensionless pressure gradient 

parameter, 𝐺 the thermal Grashof number (ratio of thermal buoyancy to viscous 

forces), 𝛽𝑟 the activation energy parameter, 𝜉1 the Brinkman (viscous dissipation) 

number, 𝜉2 is heat generation parameter expressing the relative contribution of  the 

interaction of magnetic and electric fields to heat conduction in the regime, 𝜉3 

represents the Joule heating (Ohmic dissipation) parameter, Pr is the Prandtl 

number and 𝜆 is the Frank-Kamenetskii parameter [5]. These parameters are all 

defined as follows: 

𝛼 =
𝑣0ℎ

𝜇
, 𝑊𝑒 =

Γ𝑣0

ℎ
, 𝐻𝑎

2 =
𝜎ℎ2𝐵0

2

𝜇
, 𝐸𝑙 =

𝜎𝐵0𝐸ℎ2

𝜇𝑣0
, 𝐷𝑎 =

ℎ2

𝑘
, 𝐷𝑓 =

𝐶𝑓𝑣0ℎ2

𝜈√𝑘
, 𝑃 = −

ℎ2

𝜇𝑣0

𝑑𝑝

𝑑𝑥
, 𝐺

=
𝑔𝛽ℎ2𝑇𝑐𝛽𝑟

𝜈𝑣0
, 𝛽𝑟 =

𝑅𝑇𝑐

𝐸
, 𝜉1 =

𝜇𝑣0
2

𝜅𝑇𝑐𝛽𝑟
, 𝜉2 =

2𝜎𝐵0𝐸𝑣0ℎ2

𝑇𝑐𝜅𝛽𝑟
, 𝜉3 =

𝜎𝐸2ℎ2

𝑇𝑐𝜅𝛽𝑟
, Pr =

𝜇𝐶𝑝

𝜅
, 

 𝜆 =
𝒬𝒮𝒜𝐸ℎ2𝐾

𝑛
𝑇𝑐

𝑛exp (−
1
𝛽𝑟

)

𝜈𝑛ℒ𝑛𝑇𝑐
2𝑅𝜅

. 

 (16) 

The boundary conditions may be expressed in a dimensionless form as follows:  

𝑢 = 0, 𝑇 = 0, 𝑦 = 0, 

  (17) 

𝑢 = 0, 𝑇 = 0, 𝑦 = 1. 

 (18) 

The dimensionless wall shear stress (coefficient of skin friction) and Nusselt number 

and the can be expressed using the following definitions: 

  

𝑆𝑓 =
𝑑𝑢

𝑑𝑦
[1 + (𝑊𝑒

𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1
2

|

𝑦=0

, 𝑁𝑢 =
𝑑𝑇

𝑑𝑦
|

𝑦=0

. 

 (19) 

3. NUMERICAL SOLUTION AND VALIDATION 

Using the shooting technique, we acquired numerical solutions using the symbolic 

software Mathematica for the boundary value problem defined by Eqns. (14) and (15) 



16 

 

 

subject to boundary conditions (17) and (18). The NDSOLVE numerical shooting 

methodology [70] is a versatile and effective technique for solving coupled non-linear 

differential equations. The technique in problem is designed to model boundary 

conditions by treating them as a multivariate function that depends on initial 

conditions at a particular point. Consequently, the boundary value issue is 

deconstructed into the objective of identifying the beginning circumstances that 

provide a root. The NSOLVE approach exhibits high efficiency, however with a lower 

level of accuracy compared to finite difference or collocation methods. Nevertheless, 

it is worth noting that NDSOLVE has remarkable stability and convergence 

properties when applied to nonlinear fluid dynamics equation systems that are well-

posed [70]. The adaptive approach is used to ascertain the magnitude of the step size. 

Typically, when the solution exhibits significant fluctuations within a certain 

location, NDSolve will adjust the step size in order to enhance the accuracy of solution 

tracking. The NDSolve tool provides the capability to specify the desired precision or 

accuracy of the results. The method used is shown in Fig. 3. 

 

 

Fig. 3: NDSOLVE algorithm [73] 

 

Validation of the proposed model, which incorporates several physical effects, is 

accomplished by a comparative analysis with an alternate numerical approach. The 

Adomian decomposition technique (ADM) has been widely used in many complicated 
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multi-physical boundary value problems [71]. The ADM involves the decomposition 

of an unknown function, denoted as 𝑢(𝑥, 𝑡), which appears in ordinary or partial 

differential equations. This decomposition is achieved by using a recursive method 

that separates 𝑢(𝑥, 𝑡) into a sum of linear and nonlinear components, with a finite 

number of terms.  Efficient assessment of these components may be accomplished by 

the use of recursive relations that include simple integrals. After the process of 

decomposition is carried out, the linear operator in the differential equation is 

inverted, specifically targeting the highest-order derivative operator present on both 

sides. Subsequently, the starting and/or boundary conditions are discerned as 

expressions only reliant on the independent variable, serving as an initial 

approximation. The formulation of the nonlinear function decomposition is expressed 

in relation to a set of specialized polynomials known as Adomian polynomials. The 

terms of the series solution are generated using a recurring relation employing 

Adomian polynomials. Symbolic software MATLAB v 19 was deployed to compute the 

Adomian polynomials in the in-house code “ADSIM” and monitor convergence of the 

series of the function. Convergence is excellent with this technique as noted in 

Cherruault [72]. Further details on the construction of Adomian polynomials is given 

in Bég et al. [73] and Shamshuddin et al. [74] and in Appendix 1. To execute the 

numerical procedure in both MATHEMATICA NDSOLVE and in the MATLAB 

“ADSIM” inhouse code, the following parameter values have been chosen: 𝐷𝑎 =

0.5; 𝐻𝑎 = 1; 𝐸𝑙 = 1; 𝑊𝑒 = 0.1; 𝐷𝑓 = 0.5; 𝜉1 = 3; 𝜉2 = 0.3; 𝜉3 = 0.1; 𝑃 = 1; 𝐺 = 3; 𝛼 = 1; 𝑃𝑟 =

3; 𝑚 = 0.3; 𝛽𝑟 = 0.1; 𝜆 = 0.02; 𝑛 = 3. All data is selected to reflect actual 

electromagnetic gel propellants [62-67].  Tables 1 and 2 document the comparison 

of the NDSOLVE and ADSIM semi-numerical solutions. Very close correlation  

between the two solutions is achieved.   
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Table 1: Skin friction comparison for NDSOLVE and ADSIM with various 

parameters  

 

𝑛 𝐷𝑎 𝐷𝑓 We Ha G 𝜆 ξ1 ξ2 m βr 𝛼 𝑆𝑓 
(NDSOL

VE) 

𝑆𝑓  
(𝐴𝐷𝑆𝐼𝑀) 

0.1            0.801148 0.801201 

1            0.801338 0.801357 

10            0.803206 0.803197 

 0.5           0.801757 0.801743 

 1           0.776311 0.776295 

 2           0.73076 0.73084 

  0.5          0.801757 0.801721 

  4          0.772299 0.772283 

  7          0.751146 0.751205 

   0         0.801338 0.801352 

   0.2         0.803002 0.803000 

   0.4         0.807631 0.807644 

    0        0.858892 0.858879 

    0.5        0.843746 0.843756 

    1        0.801757 0.801737 

     0       0.749741 0.749728 

     1       0.765249 0.765256 

     2       0.782452 0.782438 

      0.3      0.826493 0.826530 

      0.4      0.835762 0.835722 

      0.5      0.845281 0.845266 

       3     0.801757 0.801751 

       4     0.82187 0.821863 

       5     0.845316 0.845323 

        0.1    0.804619 0.804646 

        0.3    0.801757 0.801751 

        0.5    0.798928 0.798921 

         -2   0.801734 0.801743 

         0   0.801754 0.801761 

         0.5   0.80176 0.801754 

          0.1  0.801757 0.801754 

          0.3  0.801762 0.801774 

          0.5  0.801767 0.801773 

           -0.5 1.05082 1.05092 

           0 0.972825 0.972794 

           0.5 0.887331 0.887353 
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Table 2: Nusselt number comparison for NDSOLVE and ADSIM with various 

parameters. 

 

𝑛 𝐷𝑎 𝐷𝑓 We Ha G 𝜆 ξ1 ξ2 m βr 𝛼 𝑁𝑢 
(NDSOL

VE) 

𝑁𝑢 
(𝐴𝐷𝑆𝐼𝑀) 

0.1            0.319313 0.319322 

1            0.318696 0.318684 

10            0.312945 0.312303 

 0.5           0.317353 0.317356 

 1           0.303406 0.303421 

 2           0.278922 0.278944 

  0.5          0.317353 0.317401 

  4          0.299557 0.299588 

  7          0.28701 0.287022 

   0         0.318696 0.318722 

   0.2         0.313595 0.313604 

   0.4         0.30143 0.301423 

    0        0.349329 0.349355 

    0.5        0.340769 0.340811 

    1        0.317353 0.317394 

     0       0.273027 0.273035 

     1       0.285839 0.285844 

     2       0.300452 0.300491 

      0.3      0.42446 0.42452 

      0.4      0.464237 0.464265 

      0.5      0.504892 0.504932 

       3     0.317353 0.317377 

       4     0.439708 0.439728 

       5     0.580665 0.580661 

        0.1    0.327083 0.327076 

        0.3    0.317353 0.317381 

        0.5    0.307731 0.307744 

         -2   0.317274 0.317288 

         0   0.317343 0.317421 

         0.5   0.31736 0.317451 

          0.1  0.317353 0.317449 

          0.3  0.317369 0.317501 

          0.5  0.317386 0.317403 

           -0.5 0.692313 0.692505 

           0 0.571681 0.571692 

           0.5 0.436304 0.436422 
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4. GRAPHICAL NDSOLVE SOLUTIONS 

Figures 4-22 depict the distributions in velocity, temperature profiles, skin friction, 

and Nusselt number profiles for all key rheological, thermophsyical, porous media 

and electromagnetic parameters.  

               

Figure 4: Velocity profile for influence of rheological Carreau power-law index 𝑛. 

 

 

Figure 5: Velocity distribution with influence of Darcy number 𝐷𝑎. 
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Figure 6: Velocity distribution with variation in Forchheimer number 𝐷𝑓. 

 

 

Figure 7: Velocity distribution with influence of Weissenberg number 𝑊𝑒. 
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Figure 8: Velocity distribution with influence of Hartmann (magnetic) number 𝐻𝑎. 

 

 

 

Figure 9: Velocity distribution with influence of Grashof number 𝐺. 
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Figure 10: Velocity distribution with various values of Frank-Kamenetskii 

parameter 𝜆. 

 

 

Figure 11: Velocity distribution with influence of Brinkman number 𝜉1. 
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Figure 12: Velocity distribution with suction/injection parameter 𝛼. 

 

 

Figure 13: Temperature distribution with Carreau rheological power-law index 𝑛. 
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Figure 14: Temperature distribution with Darcy number 𝐷𝑎. 
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Figure 15: Temperature distribution with Forchheimer number 𝐷𝑓. 

 

Figure 16: Temperature distribution with Weissenberg number 𝑊𝑒. 
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Figure 17: Temperature distribution with Hartmann number 𝐻𝑎. 

 

Figure 18: Temperature distribution with Grashof number 𝐺. 
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Figure19: Temperature distribution with Frank-Kamenetskii parameter 𝜆. 

 

Figure 20: Temperature distribution with Brinkman number 𝜉1. 

 

 

Figure 21: Temperature distribution with heat generation parameter 𝜉2.  



29 

 

 

 

Figure 22: Unveiling temperature variations by exploring the effect of 

suction/injection 𝛼. 

 

 
Figure 23: Skin friction profile for different values of Carreau rheological power law 

index 𝑛, Darcy number 𝐷𝑎, Forchheimer number 𝐷𝑓, Weissenberg number We, 

Hartmann number 𝐻𝑎 and Grashof number G. 

  

 
Figure 24: Skin friction profile for different values of Frank-Kamenetskii parameter 

𝜆, Brinkman number 𝜉1, heat generation 𝜉2, exponent m, activation energy parameter 

𝛽𝑟 and wall injection/suction 𝛼.  
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Figure 25: Nusselt number profile for for different values of rheological power-law 

index 𝑛, Darcy number 𝐷𝑎, Forchheimer number 𝐷𝑓, Weissenberg number We, 

Hartmann number 𝐻𝑎 and  Grashof number G. 

 

Figure 26: Nusselt number profile for for different values of Frank-Kamenetskii 

parameter 𝜆, Brinkman number 𝜉1, heat generation 𝜉2, exponent m, activation 

energy parameter 𝛽𝑟 and wall injection/suction 𝛼. 

 

4.1 Velocity profiles 

Variations of velocity profile are depicted for different values of rheological power law 

index 𝑛, Darcy number 𝐷𝑎, Forchheimer number 𝐷𝑓, Weissenberg number 𝑊𝑒, 

Hartmann number 𝐻𝑎, Grashof number 𝐺, Frank-Kamenetskii parameter 𝜆, 

Brinkman number 𝜉1 and suction/injection parameter 𝛼 in Figures 4-12.  

It is evident from Figure 4 that by increasing the power-law index, the velocity 

profile decreases. The velocity distribution is plotted for three different behaviors: 

shear-thinning 0 < 𝑛 < 1, Newtonian 𝑛 = 1, and shear-thickening 𝑛 > 1. For n <1, 

pseudoplasticity is present indicating that viscous shear resistance in the fluid is 

diminished. This manifests in axial flow acceleration in the duct. This trend concurs 

with the findings of Yoon et al. [67] on gel shear-thinning gel propellants. A noticeable 

asymmetry is observed in the inverted parabolic profiles with skweness towards the 

upper duct wall (y = 1) i.e. the peak veocity arises some distance into the upper half 

space rather than along te centre line. This is attributable to the  presence of wall 
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suction at the duct which displaces the peak from the centreline. As n is increased 

the pseudoplasticity of the fluid is increased and viscosity is curtailed. Clearly strong 

dilatancy (n > 1), produces the reverse effect i.e. induces deceleration, and this is 

amplified in the core zone across the channel cross-section. Clearly momentum 

distributon in the duct is markedly influenced by the rheological nature of the gel. 

Designers can therefore manipulate the duct gel fluid dynamics and therefore the 

propulsion effeciency by modifying the characteristics of the gel via shear 

thinning/thickening. Fig. 4 also shows the comparison of the NDSOLVE solution 

with the ADSIM solution for the case n = 0.1. Very close correlation is observed 

further confirming the accuracy of both approaches. Newtonian gels (n = 1) clearly 

achieve intermediate velocity in between the pseudoplastic (n = 0.1) and dilatant 

cases (n =10). As noted in Padwal et al. [24] and Rahimi et al. [27], the classical 

Newtonian model however is inadequate for correctly representing the actual 

rheology of gel propellant lqiuids. This is confirmed in our results which indicate that 

Newtonian liquids either over-predict flow acceleration relative to dilatant liquids (n 

> 1) or under-predict velocityy magnitudes relative to pseudoplastic liquids (n < 1). 

Despite the strong flow deceleration induced there is never any backflow i.e. flow 

reveral never arises anywhere in the duct.    

Figure 5 visualizes the evolution in velocity across the duct cross-section with Darcy 

number.The permeability effect is simulated via the Darcy number. In the present 

model a modified formulation has been deployed in which porous media effects are 

simulated in both the momentum (14) and heat eqns. (15) following Al Hadrahmi et 

al. [75].This invokes Darcian contributions not only in the momentum eqn. (14) but 

also in the energy eqn. (15). These terms are respectively, − [1 + (𝑊𝑒
𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1

2

𝐷𝑎𝑢 i.e. 

the modified linear term in the former (14) and an additional  quadratic term, 

+ [1 + (𝑊𝑒
𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1

2

𝜉1𝐷𝑎𝑢2 in the latter (15). The classical model is captured only in 

the momentum field whereas a new contribution is observed on the temperature field 

(discussed later). 𝐷𝑎 =
ℎ2

𝑘
 is actually an inverse Darcy number since it is inversely 



32 

 

 

proportional to the medium permeability. As Da is increased, medium permeability 

is reduced and the Darcian drag force in the momentum eqn. (14) will be diminished. 

This manifests in a supression (damping) in axial velocity in the duct. Again the 

profiles are skewed (at all Darcy numbers) towards the upper duct. Maximum flow 

velocity is computed off-centre. A modification in porous medium permeability 

therefore clearly achieves a significant alteration in the flow distribution in the duct, 

encouraging the use of porous materials in for example in liquid rocket fuel gel 

injector applications [34, 36]. The duct flow velocity is damped strongly with lower 

permeabilities since greater concentration of solid fibers are present for this scenario. 

This ramps up the impedance to the percolating electromagnetic Carreau fluid 

inhibiting momentum development and achieving excellent flow control. Again 

negative velocity is never observed anywhere in the duct i.e. flow reversal is never 

present. 

Figure 6  displays the influence of Forchheimer (inertial porous drag) number on the 

evolution in velocity across the duct cross-section (0 y  1). This parameter, 𝐷𝑓 =

𝐶𝑓𝑣0ℎ2

𝜈√𝑘
, features not only in the momentum eqn. (14) (as in conventional Darcy-

Forchheimer-Brinkman models) via the classical quadratic term, −𝐷𝑓𝑢2, but also in the 

heat eqn. (15), in the cubic term, +𝜉1𝐷𝑓𝑢3. With increment in 𝐷𝑓 there is a substantial 

corresponding elevation in Forchheimer impedance which leads to a decrement in 

axial velocity. When 𝐷𝑓 → 0, Forchheimer effects are negated and the Darcy model is 

retrieved. There are however 4 confirmed regimes in porous medium hydrodynamics. 

These have been elaborated in detail by for example, Scheidegger [38]. The initial 

regime when inertial forces are totally dominated by viscous forces and the local 

geometry of the porous medium dictates the velocity behaviour is known as the 

creeping or Darcy regime. The accepted limit for this regime is pore Reynolds 

numbers of up to unity. When unity value of pore Reynolds number is achieved, the 

flow is characterized by the emergence of boundary layers in the vicinity of  the solid 

boundaries of the pores within the permeable material. As pore Reynolds number 

grows up to around 10, with greater momentum development, these boundary layers 
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also grow and an inertial core to the flow develops. This is usually defined as the 

inertial regime. This results in a departure from the lienar Darcy law to a nonlinear 

relationship between prssure gradient and flow rate, and is attributable to the 

Forchheimer drag and steady flow can be maintained upto pore Reynolds numbers of 

around 150. At this stage a third regime emerges which is sustained upto pore 

Reynolds number of 300 and may be termed the unsteady laminar nonlinear regime 

characterized by periodic behaviour of the wake zones of the pores and the shedding 

of vortex structures from around pore Reynolds numbers of 250 up to 300. A fourth 

and final regime is present for  pore Reynolds number exceeding 300 which features 

increasingly time-dependent chaotic effects and the emergence of turbulent 

behaviour. As Forchheimer number is enhanced, the peak velocty is displaced 

progressively closer to the right duct wall (y = 1). Backflow does not feature in the 

duct however even at very high Forchheimer numbers.  

Figure 7 depicts the distribution in axial velocity in the duct with modification in  

Weissenberg number. The Weissenberg number 𝑊𝑒 =
Γ𝑣0

ℎ
 and is required to simulate 

the nonlinear relation between shear stress and strain rate in the non-Newtonian 

propellant. The electromagnetic gel may be characterized by the ratio of elastic forces 

to viscous forces. Furthermore, it denotes the proportion between the relaxation time 

of the fluid and a certain time. When the Weissenberg number is very high, the fluid 

relaxation period will considerably surpass the time scale of the flow, resulting in the 

predominance of elastic stresses. The occurrence of reverse behavior is seen when the 

time scale of the flow surpasses the relaxation period, leading to a dominance of 

viscous effects and a decrease in elastic effects. As a result of reducing the We, the 

fluid experiences less tensile stress impedance, leading to an observed acceleration in 

axial flow. Specifically, a lower We value corresponds to a higher estimated axial 

velocity. Weissenberg  arises in multiple terms in the dimensionless momentum eqn. 

(14), + [1 + (𝑊𝑒
𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1

2 𝑑2𝑢

𝑑𝑦2 , (𝑛 − 1) (𝑊𝑒
𝑑𝑢

𝑑𝑦
)

2

[1 + (𝑊𝑒
𝑑𝑢

𝑑𝑦
)

2

]

𝑛−3

2 𝑑2𝑢

𝑑𝑦2 , − [1 +

(𝑊𝑒
𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1

2

𝐷𝑎𝑢. It exerts a profound influence on the shear stress-strain 
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characteristics of the fluid. When We → 0, the classical Newtonian case is retrieved, 

and elastic effects are eliminated in the regime. As in other plots, distributions are 

skewed towards the duct wall at y = 1 and no instability is observed in profiles even 

at high We. Although power-law rheological effects have been examined in rocket gel 

propellants by several authors [23-28], they have not explicitly addressed 

Weissenberg number. Although our simulations are of course limited to laminar flow, 

nevertheless they provide at least some foundation for future extension to turbulent 

cases, which are being presently explored with ANSYS FLUENT software and other 

codes.  

Figure 8 illustrates the impact of Hartmann (magnetic) parameter on axial velocity 

profiles. This parameter is defined as 𝐻𝑎
2 =

𝜎ℎ2𝐵0
2

𝜇
 and arises in the single linear 

Lorentz drag term, −𝐻𝑎
2𝑢 in eqn. (14). When M = 0 magnetic field effects vanish, and 

the gel becomes electrically non-conducting. This produces the maximum flow 

acceleration in the duct since magnetic drag is not present. As M increases there is a 

strong damping effect on the velocity field. Peak velocity migrates gradually closer to 

the right duct wall (y =1) with increment in magnetic field intensity (higher 

Hartmann number). For M = 1 the Lorentzian and viscous forces are exactly balanced 

in the duct (Hartmann number expresses the ratio of these forces).  Asymmetry of the 

velocity distributions is again present at all M values. Even with strong magnetic 

field present (Ha = 1.5), however, flow reversal is not induced in the duct.  

Figure 9 depicts the impact of thermal Grashof number, G, on velocity profiles. This 

is another critical parameter influencing the flow characteristics in the duct. 𝐺 =

𝑔𝛽ℎ2𝑇𝑐𝛽𝑟

𝜈𝑣0
 and expresses the relative contribution of thermal buoyancy force to viscous 

hydrodynamic force in the regime. When G = 0 natural convection effects are negated 

and forced convection is present. The thermal buoyancy force, +𝐺𝜃, therefore 

vanishes in eqn. (14) and momentum diffusion is no longer affected by the 

temperature field. This leads to a significant deceleration in the duct flow, across the 

entire cross-section (0 y  1)). As G is increased, significant momentum is imparted 

to the vertical duct flow via natural convection currents which produces strong axial 
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flow acceleration. Peak velocity is therefore associated with maximum value of G (= 

3.0). There is no oscillatory nature to the flow, steady responses are sustained at any 

value of G across the duct. This is not to say that topologies will not be affected at 

much higher G values (>100). However in the present study we have confined 

attention to relatively weak thermal buoyancy effects. 

Figure 10 depicts the response in axial duct velocity to variation in the Frank-

Kamenetskii parameter. In the present regime, density differences within the 

electromagnetic gel fluid mobilize natural convection which is produced by the release 

of heat of an exothermic reaction and this in turn affects the rate of the reaction. This 

complex interaction between convection and reaction can lead to instabilities 

observed in reacting duct flows. The Frank-Kamenetskii parameter 𝜆 =

𝒬𝒮𝒜𝐸ℎ2𝐾
𝑛

𝑇𝑐
𝑛exp(−

1

𝛽𝑟
)

𝜈𝑛ℒ𝑛𝑇𝑐
2𝑅𝜅

 is an exponential parameter and does not feature explicitly in the 

momentum eqn. (14). However it appears in the energy eqn. (15) in the term, 

+𝜆(1 + 𝛽𝑟𝜃)𝑚exp (
𝜃

1+𝛽𝑟𝜃
).  Via the thermal buoyancy coupling term, +𝐺𝜃, in eqn. (14), 

therefore the exothermic reaction exerts an indirect influence on the velocity field. 

This assists momentum development and generates a marked flow acceleration in 

the duct. Maximum flow velocity therefore corresponds to largest value of Frank-

Kamenetskii parameter since the stronger the exothermic reaction, the more 

intensified the flow field. This confirms the benefits of using energetic materials with 

reactive properties in gel propellant design [34].  

Figure 11 visualizes the evolution in velocity across the duct span with different 

values of  Brinkman number, 𝜉1. It features in a number of linear and nonlinear terms 

in the energy eqn. (15), +𝜉1 [1 + (𝑊𝑒
𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1

2

(
𝑑𝑢

𝑑𝑦
)

2

, +𝜉1𝐻𝑎
2𝑢2, + [1 +

(𝑊𝑒
𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1

2

𝜉1𝐷𝑎𝑢2, +𝜉1𝐷𝑓𝑢3. The first of these terms, +𝜉1 [1 + (𝑊𝑒
𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1

2

(
𝑑𝑢

𝑑𝑦
)

2

 

corresponds to viscous heating. The second term is associated with magnetic Ohmic 

(Joule) dissipation,+𝜉1𝐻𝑎
2𝑢2. The third term, + [1 + (𝑊𝑒

𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1

2

𝜉1𝐷𝑎𝑢2 is connected to 
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Darcy dissipation effects in the porous medium. The final term, +𝜉1𝐷𝑓𝑢3 relates to 

Forchheimer non-linear dissipation effects. [It is very important to note that the 

magnetic Joule dissipation relates to 𝜉1 (Brinkman number) whereas the electrical 

Joule dissipation, relates to the parameter, 𝜉3 =
𝜎𝐸2ℎ2

𝑇𝑐𝜅𝛽𝑟
 (described later in the 

discussion on temperature profiles)]. All these four terms will contribute to a 

modification in velocity field also due to the very strong coupling via the free 

convection thermal buoyancy term, +𝐺𝜃, in eqn. (14). 𝜉1 =
𝜇𝑣0

2

𝜅𝑇𝑐𝛽𝑟
 and embodies the 

relative contribution of viscous effects to heat conduction effects in the duct. It can 

also be considered as representing the ratio between heat generated via viscous 

dissipation and heat conveyed through molecular conduction. Larger Brinkman 

number indicates that thermal conduction is slower due to viscous heating and 

temperatures are higher. Smaller Brinkman number implies faster thermal 

conduction and lower temperatures. A significant elevation in velocity corresponds to 

an increase in Brinkman number. Even though the conventional interpretation is 

that kinetic energy is destroyed with strong viscous heating, the other contributions 

from Joule heating and Darcy and Forchheimer effects in fact dominate and this 

results in a net flow acceleration. The behaviour of the gel propellant in the presence 

of electromagnetic fields and porous media is therefore very different to 

characteristics computed in classical thermal convection of purely viscous fluids.  

Velocity is minimized in the duct with minimal Brinkman number (𝜉1=3) and vice 

versa for maximum Brinkman number (𝜉1=6). Peak velocity migrates towards the 

right duct (y =1) with increment in Brinkman number. Clearly the contribution of 

dissipation effects is significant. Exclusion of these effects in the mathematical model 

leads to a substantial under-prediction in axial velocity and of course incorrect 

estimates in temperature magnitudes (discussed later). Propulsion designers 

therefore are recommended to include viscous heating effects in achieving more 

robust estimates of flow and thermal characteristics in duct systems. 

Figure 12 plots the distribution in axial velocity in the duct (channel) for the 

ifnleucne of wall transpiration i.e. suction or injection (𝛼). 𝛼 < 0 correponds to suction 
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and 𝛼 < 0 is associated with wall injection (blowing). Unlike the other velocity 

distributions, a dual influence is computed in the two half spaces of the duct. In the 

left hapf space approximately,  axial velocity is maximized with suction at that wall 

whereas strong flow deceleration is induced with injection. A cross-over effect is 

however computed in the early zone of the rigth half space (around y ~0.6) in which 

suction decelerates the flow whereas injection accentuates it.  The transpiration effect 

is not modelled via the duct wall boundary conditions, and is instead simulated via 

the modified velocity gradient term in the momentum eqn. (14), viz, 𝛼
𝑑𝑢

𝑑𝑦
 and the 

modified temperature gradient term in the heat eqn. (15), viz, 𝛼Pr
𝑑𝑇

𝑑𝑦
. This creates 

strong asymmetry in the flow field. Effectively different flow characteristics can be 

generated in the electromagnetic gel duct regime via manipulating these terms. 

Physically suction will corespond to a stronger adherence of the duct wall boundary 

layer to the wall due to the systematic removal of fluid via pores, whereas injection 

will introduce supplementary fluid into the duct. These techniques are also of great 

use in manipulating heat transfer rates and achiving cooling at the duct walls, as will 

be described shortly. The injection effect is markedly stronger in the left half space 

than the right half space even with the same values of positive 𝛼. 

 

4.2 Temperature distributions  

 

Temperature profiles computed with the Mathematica NDSOLVE routine are 

visualized in Figs. 13- 22. The influence of rheological power-law index 𝑛, inverse 

Darcy number 𝐷𝑎, Forchheimer number 𝐷𝑓, Weissenberg number 𝑊𝑒, Hartmann 

number 𝐻𝑎, Grashof number 𝐺, Frank-Kamenetskii parameter 𝜆, Brinkman number 

𝜉1, suction/injection parameter 𝛼 and heat generation parameter 𝜉2 are examined.  

Figure 13 demonstrates that when the Carreau power-law index (n) is elevated, the 

ttemperature magnitudes are consistently reduced, primarily in the core region of the 

duct. Although the parameter, n, is a hydrodynamic parameter, it features, as noted 

earlier also in the temperature eqn. (15), in the terms, +𝜉1 [1 +
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(𝑊𝑒
𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1

2

(
𝑑𝑢

𝑑𝑦
)

2

, + [1 + (𝑊𝑒
𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1

2

𝜉1𝐷𝑎𝑢2. It therefore exerts a direct effect on 

temperature field by virtue of the Carreau non-Newtonian formulation and modified 

porous media model utilized here. In many other studies this effect has been ignored 

and confined only to the momentum eqn. (14), see for example Yoon et al. [67]. Similar 

to the velocity response, an increment in power-law index suppresses temperatures. 

Shear-thinning fluids (n = 0.1 i.e weakly pseudoplastic) attain the maximum 

temperature across the duct cross-section. Strongly dilatant liquids produce a cooling 

effect and the lowest temperatures. Newtonian liquids are associated with slightly 

lower temperatures than the pseudoplastic case, but significantly greater 

temperatures than the dilatant case, in particular in the core region of the duct. 

Thermal characteristics of the propellant are therefore non-trivially influenced by the 

rheology, an observation which has also been made by Arnold et al. [25] who consider 

JP-8 and RP-1 fuels and utilized a Herschel-Bulkley model. However they neglected 

viscoelastic charecteristics, specifically Weissenberg number effects which have been 

considered for the first time in the present study.  

Figure 14 visualizes the influence of inverse Darcy number on temperature evolution 

in the duct. The response is varied across the channel cross-section. In the left half-

space and right half space, increment in Da strongly suppresses temperatures; 

however in a small section of the core zone it has the opposite effect, although much 

weaker. As elaborated earlier, with the modified non-Darcy model formulation, a 

supplementary terms appears in the energy eqn. (15), viz,  + [1 + (𝑊𝑒
𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1

2

𝜉1𝐷𝑎𝑢2 

which is quadratic in velocity. Since an inverse Darcy number is used which is larger 

for smaller permeability and smaller for larger permeability of the porous medium, 

the implication is that larger Da values will produce a reduced concentration of solid 

fibers in the porous medium. This will deplete thermal conduction and reduce 

temperatures i.e. colling will be induced. Minimal temperatures will therefore be 

produced in the duct for highest inverse Darcy number and vice versa. To maximize 

temperatures in the duct, more densely packed porous media are required which 
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correspond to higher inverse Darcy numbers (lower permeability). In the core zone, a 

slight anomoly arises where there is a brief elevation in temperature with lower 

inverse Darcy number. However the dominant effect across the duct is sustained very 

quickly afterwards in the right half space. Strong skewness in the temperature 

profiles towards the right duct (y = 1) is apparent, which again is due to the presence 

of suction/injection (  0). Th eprimary influence of inverse Darcy number is on the 

momentum characteristics and indirectly via the coupling term, this is exerted on the 

temperature field. Jeigarnik et al. [35] have also noted this characteristic in their 

study of porous media deployment in rocket duct propulsion systems.  

Figure 15, visualizes the evolution in temperature across the duct span with 

Forchheimer number. Agan there is a general decay in temperatures with increment 

in Forchheimer number, Df. The minimum temperature is computed with maximum 

Df of 10 and the maximum temperature correspond to the weak inertial drag case (Df 

= 0.5). Profiles are warped towards the right duct wall (y = 1) at all Df values. A weak 

increase in temperature with larger Df is computed near the centre-line. While not 

present in traditional Darcy-Brinkman-Forchheimer drag force models, the impact of 

Df in the present model is simulated directly in the energy eqn. (15), via the cubic 

velocity term, +𝜉1𝐷𝑓𝑢3. A small change therefore in velocity will be amplified cubically 

to influence the temperature distribution. There is also a significant interplay 

between velocity and thermal fields due to the presence of viscous and Joule 

dissipation. This also contributes increasingly to the net impact of Forchheimer drag 

especially at higher velocities in the duct.  

Figure 16 depicts the influence of the gel viscoelastic parameter, Weissenberg 

number (We) on temperature distributions. Unlike the response to inverse Darcy 

number, Forchheimer number or rheological power-law index, there is a consistent 

decrease across the enture duct with increasing Weissenberg number. The 

Newtonian case (We = 0) achieves the greatest temperatures. Stronger elastic forces 

in the regime therefore contribute to a significant cooling effect which is beneficial for 

thermal management in rocket duct applications. Weakly elastic or vanishing elastic 

effects lead to higher temperatures. Galecki [26] has noted that the viscoelastic 
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nature of rocket gels can be manipulated by doping with specific metallic particles. 

These simultaneously contribute to thermal ignition but do not interfere with the gel 

rheology or induce clogging and agglomeration effects. Arnold et al. [25] have also 

recommended a combined  design using the smallest possible storage volume via 

metallic particles (oxidizers) in combination with energetic gels produces the best 

propulsion performance. They have highlighted the benefits of silica as the gelling 

agent which is also tactically useful for adjusting viscosity of the gel propellant and 

can be exploited to control the heat of vapirozation during ignition.    

Figure 17 illustrates the impact of Hartmann (magnetic) number, Ha, on 

temperature plots. In the left and right half space extremities, surrounding the core 

zone, temperature is strongly reduced with an increment in magnetic field instensity. 

However a distinct zone does arise in the core region of the duct where the classical 

response in temperature is captured i.e. a strong enhancement. In this central zone 

the non-conducting case (Ha =0) produces the minimal temperatures whereas the 

high magnetic field case generates peak temperatures, which are in fact the highest 

computed ay any location across the duct span. The principal contributing factor to 

this temperature elevation in the core zone is the Ohmic dissipation (Joule heating) 

effect, simulated via the term, 𝜉3 in eqn. (15). However this parameter is not the 

conventional magnetic field generated dissipation term. It is related to the electrical 

field, as per the definition, 𝜉3 =
𝜎𝐸2ℎ2

𝑇𝑐𝜅𝛽𝑟
 in eqn. (16) where E is the electrical field. 

Supplementary work is performed by the electromagnetic gel in dragging itself 

against the action of the electrical field. This work is dissipated via the Joule electrical 

resistance and this leads to heating in the core of the duct and the boost in 

temperatures. Since in propulsion applications, the core duct characteristics are 

critical, the inclusion of Ohmic electrical (Joule) heating is as important as magnetic 

Joule dissipation, since it more accurately predicts the higher temperatures present 

which are not represented in mathematical models neglecting either electrical Ohmic 

dissipation (electrical Joule heating) or magnetic dissipation. An under-prediction in 

temperatures will lead to a reduction in estmated thermodynamic efficiency of the 
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duct system and also engineers will not be able to properly assess the design 

temperatures. With excessive temperatures, chemical corrosion effects can be 

induced in the duct walls due to recirculating heat from the core, which can manifest 

in serious downtime, efficency drop and other detrimental effects requiring expensive 

maintenance. High temperature corrosion effects [24] can be more robustly appraised 

with inclusion of Joule dissipation in predictive models. 

Figure 18 reveals the response in temperature profiles with modification in thermal 

Grashof number. The forced convection case (G = 0) produces the minimal 

temperatures in the duct since natural convection currents (associated with gel 

density differences) are eliminated. With increasing Grashof number, thermal 

buoyancy progressively dominates the viscous resistance forces in the regime. This 

encourages strong thermal diffusion through the duct as hotter gel fluid rises and the 

cooler gel fluid descends the duct. This exacerbates free convection currents and 

boosts the temperatures significantly. The peak temperature is always  observed in 

the right half space and is systematically displaced further towards the right duct 

wall (y = 1) with greater values of G. Skewness in the temperature distributions is 

therefore also amplified with greater thermal buoyancy effects. The interaction of 

thrmal buoyancy with porous media effects is also likely to contribute to the 

significant modification in temperatures, which concurs with the earlier fndings of 

Seader et al. [76] on rocket duct heat transmission. 

Figure 19 visualizes the influence of the Frank-Kamenetskii parameter () on 

thermal profiles across the duct span. Significant elevation in temperatures is 

computed over a relatively small increment in this parameter (0.2<<0.6). As noted 

earlier, this parameter embodies the ratio of exothermic activation energy to thermal 

energy in a reactive system. Heat emerges in a reactive system as a result of 

intensification in exothermic chemical reaction, which energizes the duct and boosts 

temperatures. This will in turn influence the so-called real duct thermal efficiency 

which is dependent on viscous properties of the propellant, as documented by Padwal 

et al. [24]. Furthermore, as the Frank-Kamenetskii parameter in the duct is elevated, 
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the exothermic term, +𝜆(1 + 𝛽𝑟𝜃)𝑚exp (
𝜃

1+𝛽𝑟𝜃
) is amplified. This assists the natural 

convection and optimizes heat transmission. Strong asymmetry in the temperature 

profiles is clearly captured in all the plots. The peak temperature in the core region 

of the duct migrates significantly towards the right duct wall with increment in 

Frank-Kamenetskii parameter (). Clearly highly energetic propellants (larger 

values of Frank-Kamenetskii parameter,  ) are justified since they achieve the 

maximum temperatures which are highly desirable for propulsion applications.  

Figure 20 displays the impact of the Brinkman number (viscous heating parameter) 

on temperature evolution in the duct. Brinkman number 𝜉1 =
𝜇𝑣0

2

𝜅𝑇𝑐𝛽𝑟
, as explained 

earlier, is not isolated to a single term in the energy eqn. (15). It features in the 

modified shear term, +𝜉1 [1 + (𝑊𝑒
𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1

2

(
𝑑𝑢

𝑑𝑦
)

2

, in the magnetic dissipation term, 

+𝜉1𝐻𝑎
2𝑢2, in the modified Darcy dissipation term, + [1 + (𝑊𝑒

𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1

2

𝜉1𝐷𝑎𝑢2 and 

fnally in the modified Forchheimer inertial dissipation term, +𝜉1𝐷𝑓𝑢3. Brinkman 

number will therefore substantially interplay with the temperature field and very 

significantly enhances temperatures across the duct span. Internal friction effects are 

maximized with larger Brinkman number relative to thermal conduction effects. The 

scenario of a vanishing Brinkman number, 𝜉1 = 0, clearly correlates to the lowest 

temperature and indicates that the absence of viscous heating leads to temperature 

under-prediction in the bulk fluid in the duct. The inclusion of viscous heating in real 

duct propulsion flows is therefore very important for designers utsing mathematical 

models.  

Figure 21 illustrates the influence of electromagnetic to thermal conduction ratio 

parameter, 𝜉2(=
2𝜎𝐵0𝐸𝑣0ℎ2

𝑇𝑐𝜅𝛽𝑟
). Although only present in a single linear velocity term, 

−𝜉2𝑢 in eqn. (15), it exerts a marked influence on temperature characteristics. 

Increment In this parameter clearly depletes the temperature magnitudes across the 

duct. Maximum temperatures are estimated when this parameter disappears, 𝜉2 →

0, and thermal conduction dominates over electrical and magnetic field heating 
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effects. This parameter fundamentally characterizes the impact of heat production 

on heat conduction inside a duct, arising from the interplay between transverse 

magnetic and axial electric fields. In the absence of this parameter, specifically when 

𝜉2 = 0, the influence of heat production on thermal conduction resulting from the 

combined electromagnetohydrodynamic action becomes negligible, leading to the 

attainment of maximum temperatures. The suggestion is that the aforementioned 

parameter has a cooling influence on the system, as its rise leads to a reduction in 

the alteration of thermal conduction caused by the combined action of electrical and 

magnetic fields. With amplification in this parameter the skewness in temperature 

profiles is also considerably amplified towards the right duct wall (y = 1). Evidently 

the minimal temperatures in the duct are achieved for 𝜉2 =0.7 and the peak 

temperature is computed just off-centre with 𝜉2 = 0.1. 

Fig. 22 plots the distribution in temperature profile across the duct span with 

variation in the suction or injection parameter (). Near the left duct wall 

temperature is maximized with suction ( = -0.5) whereas near the right duct wall it 

is maximized with strong injection ( = 1.0). In the core region, absence of either 

suction or injection ( = 0) produces the highest temperatures. Therefore the 

manipulating of the heat transfer in the duct is possible with alteration in suction 

and blowing conditions. Strong cooling is achieved only in the left half space with 

injection and also in the core duct zone; However cooling is only produced in the  right 

half space with suction.  

Figs. 23-26 visuailize as histograms the relative influence of all parameters on skin 

friction,  𝑆𝑓 =
𝑑𝑢

𝑑𝑦
[1 + (𝑊𝑒

𝑑𝑢

𝑑𝑦
)

2

]

𝑛−1

2

|

𝑦=0

and Nusselt number, 𝑁𝑢 =
𝑑𝑇

𝑑𝑦
|

𝑦=0
 as extracted 

from Tables 1 and 2, at the left duct wall (y = 0). Inspection of these figures shows 

that the maximum elevation in skin friction corresponds to highest inverse Darcy 

number followed by maximum Weissenberg number (Fig. 23). The other parameters 

i.e. Carreau rheological power law index 𝑛, Forchheimer number 𝐷𝑓, Hartmann 

number 𝐻𝑎 and Grashof number G have a comparatively much reduced impact on 
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skin friction at the duct wall. Fig 24 shows that low values of Brinkman number 𝜉1 

and high values of  electromagnetic to conduction heat generation  ratio parameter 

𝜉2, maximize the skin friction. The remaining parameters viz, Frank-Kamenetskii 

parameter 𝜆, reaction exponent m, activation energy parameter 𝛽𝑟 and wall 

injection/suction 𝛼 have a relatively lower influence on skin friction. Fig. 25 shows 

that again the maximum enhancment in Nusselt number is computed with high 

values of the Darcy inverse parameter and large values of the Weissenberg number, 

with other parameters contributing to a much lesser degree. Finally Fig. 26 indicates 

that the maximum elevation in Nusselt number (heat transfer from the bulk fluid to 

the left duct wall) is induced with high values of electromagnetic/conduction heat 

generation 𝜉2, then Brinkman number 𝜉1, followed by Frank-Kamenetskii parameter 

𝜆. Maximum negative Nusselt number (heat transfer from the left duct wall to the 

bulk fluid) accompanies highest value of .reactive  exponent m followed by  wall 

injection/suction 𝛼. High values of the activation energy parameter 𝛽𝑟 produce a 

relatively weak increase in positive Nusselt number.  

 

5.CONCLUSIONS 

To study steady, laminar electromagnetic non-Newtonian gel propellant thermo-fluid 

transport in a vertical duct containing a homogenous porous medium, a mathematical 

model has been developed. The model includes the composite multi-physical effects 

of exothermic reaction, non-Darcy porous media drag forces, suction/injection, 

magnetic Joule dissipation, electrical Joule heating, viscous heating and thermal 

buoyancy. The Carreau rheological model has been deployed which features both 

pseudoplasticity/dislatancy of the gel and viscoelastic effects. A modified Darcy-

Brinkman-Forchheimer porous medium drag force model with dissipation terms in 

the energy balance has been utilized. The Frank-Kamenetskii thermal explosion 

exothermic  chemical kinetic model has been implemented for energetic gel 

propellants. Isothermal duct wall conditions are used. Static uniform axial electrical 

field and transverse magnetic field is considered. Via scaling transformations, a 

nonlinear ordinary differential boundary value problem comprising momentum and 



45 

 

 

energy equations with wall duct boundary conditions is derived. A numerical solution 

is obtained using the Mathematica-based shooting algorithm (NDSOLVE). 

Verification with an Adomian decomposition method (ADM) is included 

demonstrating excellent correlation. Velocity, temperature, duct wall skin friction 

and Nusselt number are computed for the influence of all key parameters and 

depicted in graphs and tables. The present simulations have shown that: 

(i) An increment in Frank-Kamenetskii parameter strongly elevates bulk gel 

fluid  temperatures and accelerates the duct flow indicating that highly 

energetic propellants hold promise for rocket propulsion systems.  

(ii) Elevation in power-law rheological index and Weissenberg number 

produces significant damping in the flow and also temperature reduction 

across the duct, showing that dilatancy and strong elastic force decelerate 

the gel flow but are advantageous for thermal management in duct 

propulsion.  

(iii) Increasing Darcy number and Forchheimer number suppress temperature 

magnitudes in proximity to the duct walls but induce a slight heating effect 

in the core zone. Porous media can therefore be judiviously deployed to 

manipulate heat transfer characteristics in ducted propulsion. 

(iv) A rise in thermal buoyancy parameter i.e. Grashof number accelerate the 

duct flow and boost temperatures significantly.  

(v) Higher magnitudes of magnetic field intensity, as simulated in the 

Hartmann (magnetic) number suppress temperatures near the duct walls 

but elevate them in the core region of the duct. Flow deceleration in the core 

is also computed with higher Hartmann number. Intense magnetic field 

therefore permits strong flow control but contributes to heating in the duct 

regime. 

(vi) Larger Brinkman number strongly acentuates Nusselt number at the left 

duct wall.  

(vii) Increasing values of  electromagnetic to conduction heat generation  ratio 

parameter strongly enhance skin friction at the left duct wall.  
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(viii) A large elevation enhancment in Nusselt number is computed with high 

values of the Darcy inverse parameter and large values of the Weissenberg 

number, with other parameters contributing to a much lesser degree.  

(ix) Significant enhancment in Nusselt number (heat transfer from the bulk 

fluid to the left duct wall) is induced with high values of 

electromagnetic/conduction heat generation although there is also a strong 

elevation with increasing Brinkman number and Frank-Kamenetskii 

parameter (more intense exothermic reaction in the gel propellant). 

(x) Maximum negative Nusselt number (heat transfer from the left duct wall 

to the bulk fluid) accompanies the highest value of .reactive  exponent 

followed by  wall injection/suction 𝛼.  

(xi) High values of the gel activation energy parameter produce a relatively 

weak increase in positive Nusselt number.  

Future work: The present investigation has revealed some intricate hydrodynamic 

and thermal characteristics associated with electromagnetic rheological gel 

propellants exploiting exothermic reactions. Attention has however been confined to 

momentum and Fourier-based conduction heat transfer. Future investigations may 

address non-Fourier (thermal relaxation) and mass transfer (binary species) aspects 

and explore non-Fickian diffusion involving solute relaxation. Additionally 

alternative non-Newtonian models may be deployed to represent a wide range of 

actual gel propellant rheology including finitely extensible nonlinear elastic Peterlin 

models (FENE-P) [79] and Phan-Thein–Tanner (PTT) elastic-viscous models [80]. 

These may also be studied in the context of turbulent duct flows using computational 

fluid dynamics (CFD) codes with appropriate turbulence closure models e. g. K-

epsilon model. It is also noteworthy that the current simulations can also be extended 

to oscillatory propulsion with full duct rotation [81] and hybrid nano-fuels [82]. 

Efforts in these directions are currently underway and will be communicated 

imminently.  
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APPENDIX 1 : ADOMIAN DECOMPOSITION METHOD (ADM) 

 

ADM [71, 73, 74] is quantitative rather than qualitative and furthermore is 

rigorously analytic, requiring neither linearization nor perturbation. It is a 

continuous solution methodology and circumvents the need with other techniques for 

discretization (e. g. the finite element method) and consequent computer-intensive 

calculations. A further advantage of ADM is that since highest ordered derivative are 

easily invertible operators, laborious integrations involving complicated Green 

functions, can be avoided. Consider a general differential equation with V as the 

variable, of the form: 

 

𝐷[𝑉(𝑦)] = 𝑄(𝑦)                                                                                  (A1)  

 

Here, D is the differential operator consists of linear terms ( )L R+   with L  being the 

highest ordered derivative and easily invertible operator and R is the Adomian 

reminder linear component and 𝑁𝑢(𝑦) is the Adomian nonlinear component. Each of 

the transformed governing equations for momentum and energy i. e. Eqns. (14)-(15) 

feature two dependent variables (u, T) and one independent variable (y). For example, 

the momentum Eqn. (14) can be written as: 

 

𝐿𝑢(𝑦) + 𝑅𝑢(𝑦) + 𝑁𝑢(𝑦) = 𝑄(𝑦)                 (A2) 

 

Now the solution 𝑢(𝑦) is obtained by solving the Eqn. (A2) for 𝐿𝑢(𝑦). Since the thn  

order L is the highest ordered derivative and easily invertible, then 1L−  Is the foldn −  

integral operator. Thus, Eqn. (A2) can be written as: 

 

𝑢(𝑦) = 𝐿−1𝑄(𝑦) − 𝐿−1𝑅𝑢(𝑦) − 𝐿−1𝑁𝑢(𝑦)                            (A3) 
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Next, we introduce 1 2&L L as the 3rd and 2nd order differential operators, 𝐿1 =

𝑑3

𝑑𝑦3
(∗)and𝐿2 =

𝑑2

𝑑𝑦2
(∗) respectively. Consequently, 

1 1

1 2&L L− −
are the 3 fold & 2 fold− −  

indefinite integral operators,𝐿1
−1(∗) = ∫ ∫ ∫ (∗)𝑑𝑦𝑑𝑦𝑑𝑦

𝑦

0

𝑦

0

𝑦

0
 and 𝐿2

−1(∗) = ∫ ∫ (∗)
𝑦

0

𝑦

0
𝑑𝑦𝑑𝑦 

respectively. Furthermore, the constants of integration in
1 1

1 2&L L− −
are computed 

from the given initial and boundary conditions. ADM assumes the solution u(y) as an 

infinite series: 

 

𝑢(𝑦) = ∑ 𝑢𝑛
∞
𝑦=0                     (A4) 

 

which is the unknown solution for the velocity field, u(y). Similarly, for temperature, 

the Adomian series solutions take the form: 

 

𝑇(𝑦) = ∑ 𝑇𝑛(𝑦)∞
𝑦=0                                           (A5) 

 

Finally, the non-linear term ( )Nu y  assumed to analytic and by writing as an infinite 

series, we have for the velocity field: 

 

𝑁𝑢(𝑦) = ∑ 𝐴𝑛
∞
𝑦=0                                           (A6) 

 

Here nA  represents the Adomian polynomials which are lengthy expressions and are 

omitted for brevity. Further details are provided in Adomian [71]. 

 


