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Abstract: This article presents validation and conformity testing of the Sentinel-3 Ocean Land Colour
Instrument (OLCI) green instantaneous fraction of absorbed photosynthetically active radiation
(FAPAR) and OLCI terrestrial chlorophyll index (OTCI) canopy chlorophyll content (CCC) products
with fiducial reference measurements (FRM) collected in 2018 and 2021 over two sites (Las Tiesas—
Barrax, Spain, and Wytham Woods, UK) in the context of the European Space Agency (ESA) Fiducial
Reference Measurement for Vegetation (FRM4Veg) initiative. Following metrological principles,
an end-to-end uncertainty evaluation framework developed in the project is used to account for
the uncertainty of reference data based on a two-stage validation approach. The process involves
quantifying uncertainties at the elementary sampling unit (ESU) level and incorporating these
uncertainties in the upscaling procedures using orthogonal distance regression (ODR) between
FRM and vegetation indices derived from Sentinel-2 data. Uncertainties in the Sentinel-2 data are
also accounted for. FRM-based high spatial resolution reference maps and their uncertainties were
aggregated to OLCI’s native spatial resolution using its apparent point spread function (PSF). The
Sentinel-3 mission requirements, which give an uncertainty of 5% (goal) and 10% (threshold), were
considered for conformity testing. GIFAPAR validation results revealed correlations > 0.95, RMSD
~0.1, and a slight negative bias (~−0.06) for both sites. This bias could be partly explained by the
differences in the FAPAR definitions between the satellite product and the FRM-based reference. For
the OTCI-based CCC, leave-one-out cross-validation demonstrated correlations > 0.8 and RMSDcv
~0.28 g·m−2. Despite the encouraging validation results, conclusive conformity with the strict mission
requirements was low, with most cases providing inconclusive results (driven by large uncertainties
in the satellite products as well as by the uncertainties in the upscaling approach). It is recommended
that mission requirements for bio-geophysical products are reviewed, at least at the threshold level.
It is also suggested that the large uncertainties associated with the two-stage validation approach
may be avoided by directly comparing with spatially representative FRM.

Keywords: fiducial reference measurements; OLCI; uncertainty; upscaling; conformity testing

1. Introduction

Earth observation (EO) satellite sensors provide a unique way to monitor essential
climate variables and surface properties over the globe that are required to understand our
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climate and Earth system processes [1]. The need for post-launch calibration and validation
(Cal/Val) of satellite sensors and derived products is well-established [2–4]. While post-
launch calibration against independent reference data ensures that unforeseen changes are
accounted for, validation is essential to deliver satellite-derived products to users assessing,
in an independent way, their uncertainties and confirming the expected performance of
a mission [5]. The conformity testing process determines if the estimated quantity falls
within the range of tolerable values (i.e., mission/user requirements) or not [6].

The Quality Assurance Framework for Earth Observation (QA4EO) guidelines state
that EO data and derived products should be provided with an indicator of quality trace-
able to reference standards (preferably SI) so that users can assess suitability for their
application (i.e., their fitness for purpose) [7]. A key element of QA4EO relates to valida-
tion through independent reference data. Consequently, the reference data must also be
characterised following QA4EO principles [5]. The need to evidence these principles for
Cal/Val was the basis for the term ‘Fiducial Reference Measurement (FRM)’. FRMs are ‘a
suite of independent, fully characterised, and traceable (to a community agreed reference,
ideally SI) measurements of a satellite relevant measurand, tailored specifically to address
the calibration/validation needs of a class of satellite-borne sensor and that follow the
guidelines outlined by the QA4EO’ [5].

Within the ESA FRM programme, the Fiducial Reference Measurements for Vegetation
(FRM4Veg) (http://www.frmveg.org/, accessed on 18 July 2024) initiative aims, for the
first time, to apply metrological principles to the validation and conformity testing of vege-
tation bio-geophysical products initially derived from Copernicus Sentinel-2, Sentinel-3,
and PROBA-V missions [8]. An end-to-end evaluation framework has been established
for surface reflectance [9], for the fraction of absorbed photosynthetically active radiation
(FAPAR), and for canopy chlorophyll content (CCC) [10]. For FAPAR and CCC, the process
involves the quantification of the uncertainty associated with each individual measurement
at the elementary sampling unit (ESU) level (i.e., at Sentinel-2 spatial resolution) and incor-
porating these uncertainties within the upscaling process for the validation of Sentinel-3
vegetation products [10]. Whilst the methodology for upscaling in-situ reference measure-
ments of vegetation bio-geophysical variables is well-established [4,11], until this point,
the incorporation of uncertainties was not. Consequently, validation of satellite vegetation
bio-geophysical products has been largely conducted through comparison with upscaled
in situ reference data without explicitly accounting for the uncertainties associated with
these data (e.g., [12–17]). Through incorporation of per-pixel uncertainties in the reference
maps has facilitated both validation and conformity testing with respect to mission/user
requirements of medium spatial resolution satellite bio-geophysical variables.

This work focuses on validation and conformity testing of two of Sentinel-3’s Ocean
and Land Colour Instrument (OLCI) Level 2 (L2) land products, the green instantaneous
FAPAR (so-called GIFAPAR) and the CCC derived from OLCI terrestrial chlorophyll in-
dex (OTCI) with the FRM-based high-resolution reference maps generated from FRMs
collected in four campaigns over agricultural (Las Tiesas—Barrax, Spain) and deciduous
forest (Wytham Woods, UK) sites. Section 2 describes the FRM data collected during the
campaigns, the FRM-based reference maps, the satellite products under evaluation, and
the validation and conformity testing methods. Section 3 presents the results. Section 4 dis-
cusses the results, and finally, conclusions and recommendations are presented in Section 5.

2. Materials and Methods
2.1. Campaigns and Fiducial Reference Measurements

During FRM4Veg Phases 1 and 2, field campaigns were carried out in the summers of
2018 and 2021 over two study sites: Las Tiesas—Barrax (1–8 June 2018 and 19–22 July 2021)
and Wytham Woods (3–12 July 2018 and 20–23 July 2021) (Figure 1). Las Tiesas–Barrax
(39.0549◦N, 2.1010◦W) lies approximately 10 km west of Albacete, Spain and is managed
by the Instituto Técnico Agronómico Provincial (ITAP). It is comprised of irrigated crops,
including alfalfa, garlic, rapeseed, onion, sunflower, poppy, wheat and rainfed cereals

http://www.frmveg.org/
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crops, and has been widely used for ESA Cal/Val activities. Wytham Woods (51.7734◦N,
1.3384◦W) is located approximately 5 km west of Oxford, UK, and is managed by the
University of Oxford. It is comprised of ancient seminatural woodland (oak, ash, beech,
hazel, and sycamore are the dominant species) and is one of the CEOS Working Group on
Calibration and Validation (WGCV) Land Product Validation (LPV) supersites [18].
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Figure 1. Location of the Las Tiesas—Barrax and Wytham Woods study sites and ESUs sampled in
2018 and 2021 campaigns. Background images for Wytham Woods and Barrax correspond to the
Sentinel-2/MSI RGB colour composition in mid-July 2021.

FRMs were collected within ESUs of 20 m × 20 m containing 13 to 15 sampling
locations following a regular pattern [10]. Between 48 and 79 ESUs were characterised
at Las Tiesas—Barrax following stratified sampling per crop type (Figure 1 and Table 1),
whereas at Wytham Woods, between 29 and 47 ESUs were characterised following a random
sampling scheme (Figure 1 and Table 1). At Las Tiesas—Barrax, up to three different
instruments were used to derive FAPAR and leaf area index (LAI) from measurements of
gap fraction or transmittance. These included digital hemispherical photography (DHP)
using either a Canon EOS 6D or 60D digital single-lens reflex camera equipped with a Sigma
8 mm F3.5 or 4.5 mm F2.8 EX DG fisheye lens, the LI-COR LAI-2200 Plant Canopy Analyser
instrument [19], and the Meter Group AccuPAR LP-80 ceptometer [20]. At Wytham Woods,
where the height of the woodland prevented reliable above-canopy reference readings, only
DHP was used to characterise both the understory (downward-looking) and the overstory
(upward-looking). DHP images were processed using CAN-EYE V6.49 [21].

Table 1. Number of ESUs sampled during each campaign.

2018 2021

Study Site FIPAR CCC FIPAR CCC

Las Tiesas—Barrax 52 48 79 63
Wytham Woods 47 30 29 29
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It should be noted that measurements of gap fraction or transmittance strictly provide
estimates of the fraction of intercepted PAR (FIPAR) rather than FAPAR. However, due to
the dominant absorption of the leaves in the PAR domain, FIPAR is considered a very good
approximation of the FAPAR with minor differences in most conditions [22,23]. Similarly,
gap fraction measurements lead to an estimate of the Plant Area Index (PAI) rather than
LAI, as there is no distinction between leaves and other elements in the canopy. PAI is
very close to the LAI for crops in the early stages of maturity [22]; however, in forests, the
difference can be larger due to the presence of woody material, including branches and
stems, as the tree trunks are masked during the DHP processing.

Uncertainty was estimated considering several components, including instrument
levelling, sampling, and image classification, as described in [10]. In addition, where
reliable measurements of the same variable from more than one instrument were available
(see Appendix A for an intercomparison of estimates from different instruments), the
mean value was computed, and its final uncertainty was derived as the quadratic addition
of (i) the uncertainty of each estimate propagated through the calculation of the mean,
and (ii) the standard error of the mean (to account for the variability due to the use of
different instruments).

CCC was determined as the product of LAI and leaf chlorophyll concentration (LCC),
which was assessed using a Konica Minolta SPAD-502 chlorophyll meter [24,25]. Six
replicate measurements were made for each sampled leaf. Relative values provided by
the SPAD-502 were converted to absolute units through calibration against destructively
determined LCC. At Wytham Woods, dedicated SPAD-502 calibration data were obtained,
involving the collection of 60 leaves for each species [10]. At Las Tiesas—Barrax, a similar
procedure was adopted using calibration data collected during a previous campaign over
a similar agricultural site, in which 105 leaves were collected from a range of different
crops [26]. In terms of individual in-situ LCC measurements, two sources of uncertainty
were considered: those inherent to the SPAD-502 and those related to the calibration
function [10]. As the mean of multiple in-situ measurements was taken to represent
each ESU, the uncertainties associated with each individual observation were propagated
through the calculation of the mean, whilst the standard error of the mean was calculated
to reflect uncertainty due to sampling. Thus, the combined standard uncertainty in SPAD-
derived LCC at the ESU level was determined by adding these two terms in quadrature [10].
Finally, the uncertainties of LCC and LAI were propagated through the calculation of the
CCC. It should be noted that a reprocessing of the 2018 dataset (version 2) with the same
calibration data was performed to generate a fully consistent dataset in both (2018 and
2021) campaigns.

FRMs collected at Las Tiesas—Barrax and Wytham Woods demonstrated substantial
variability in FAPAR and CCC between the two sites, whilst differences between years were
less pronounced (Figure 2). For FAPAR, higher and less variable values were observed
at Wytham Woods, whereas at Barrax, large variability (range of variation close to 1) was
observed during both years (Table 2). Whilst average CCC values were also higher at
Wytham Woods than at Las Tiesas—Barrax, greater variability was observed at the former
as opposed to the latter site (Figure 2 and Table 3). Regarding the uncertainties, for FAPAR,
higher absolute uncertainties were observed at Las Tiesas—Barrax (mean = 0.04 to 0.10)
than at Wytham Woods (mean = 0.04) across both years (Figure 2 and Table 2). This is likely
a result of the increased homogeneity (and therefore reduced spatial variability) of the latter
site. As expected, the same pattern was evident when the uncertainties were expressed in
relative terms. It was noted that the large maximum relative uncertainty in Las Tiesas—
Barrax is derived from one crop where large differences between DHP and LAI-2200 were
found in 2018; the median value of 9% was representative of this site in 2018. In contrast to
FAPAR, absolute CCC uncertainties were relatively consistent between the two sites and
across all years (median = 0.34 g·m−2 to 0.40 g·m−2) (Figure 2 and Table 3), except for Las
Tiesas—Barrax in 2021 (median = 0.15 g·m−2). However, due to the larger CCC values
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experienced at Wytham Woods, relative CCC uncertainties were smaller (median = 21% to
22%) than at Las Tiesas—Barrax (median = 29% to 25%) (Figure 2 and Table 3).
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Figure 2. Box plots of fiducial reference values and their absolute and relative uncertainties (at the
k = 2 coverage factor) for the 2018 and 2021 campaigns at Las Tiesas—Barrax agricultural site and
Wytham Woods deciduous forest site for (a) FAPAR and (b) CCC. These values correspond to version
2 for the 2018 data with consistent LAI processing and chlorophyll calibration coefficients with the
2021 campaign.

Table 2. Summary statistics for fiducial reference FAPAR values and their associated absolute and
relative uncertainties (at the k = 2 coverage factor, which indicates 95.4% confidence) from the 2018
and 2021 field campaigns at Las Tiesas—Barrax and Wytham Woods.

FAPAR (Dimensionless) U(FAPAR) (Dimensionless)

Barrax
2018

Barrax
2021

Wytham
2018

Wytham
2021

Barrax
2018

Barrax
2021

Wytham
2018

Wytham
2021

Minimum 0.00 0.00 0.81 0.34 <0.01 (2.0%) <0.01 (2.0%) 0.02 (2.0%) 0.02 (1.7%)
Maximum 0.99 0.98 0.99 0.99 0.39 (143.0%) 0.16 (47.1%) 0.08 (9.1%) 0.08 (11.8%)

Mean 0.61 0.42 0.92 0.87 0.10 (27.0%) 0.04 (14.8%) 0.04 (4.7%) 0.04 (5.4%)
Median 0.88 0.35 0.92 0.94 0.06 (8.8%) 0.04 (11.1%) 0.04 (4.4%) 0.03 (3.5%)

STD 0.36 0.38 0.04 0.18 0.10 (35.3%) 0.04 (11.8%) 0.02 (2.2%) 0.02 (3.4%)

Table 3. Summary statistics for fiducial reference CCC values and their associated absolute and
relative uncertainties (at the k = 2 coverage factor) from the 2018 and 2021 field campaigns at Las
Tiesas—Barrax and Wytham Woods.

CCC (g·m−2) U(CCC) (g·m−2)

Barrax
2018

Barrax
2021

Wytham
2018

Wytham
2021

Barrax
2018

Barrax
2021

Wytham
2018

Wytham
2021

Minimum 0.00 0.00 0.47 0.23 0.00 (9.5%) 0.00 (9.7%) 0.12 (18.3%) 0.07 (18.2%)
Maximum 2.43 2.76 4.27 4.84 0.85 (132.2%) 0.68 (88.9%) 0.85 (26.3%) 0.96 (31.5%)

Mean 1.11 0.56 1.88 1.94 0.32 (40.6%) 0.15 (34.7%) 0.39 (21.3%) 0.41 (23.6%)
Median 1.10 0.23 1.62 2.16 0.26 (28.9%) 0.06 (24.8%) 0.34 (20.8%) 0.40 (21.5%)

STD 0.78 0.75 0.84 1.35 0.23 (35.1%) 0.18 (22.0%) 0.15 (2.1%) 0.26 (4.4%)
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2.2. FRM-Based Sentinel-2 Reference Maps

FRMs collected in the 2018 and 2021 campaigns were upscaled using Sentinel-2 Multi-
spectral Instrument (MSI) imagery, acquired within one week of the in situ data collection,
to generate FRM-based high-spatial resolution reference maps for validation and confor-
mity testing. The upscaling approach incorporates the estimation of the uncertainties
in the FRM-based reference maps as described in [10]. First, the Sentinel-2 Radiometric
Uncertainty Tool (RUT) [27,28] was adopted to estimate per-pixel uncertainties associated
with the L1C top-of-atmosphere reflectance values. Orthogonal distance regression (ODR)
was then used to derive the transfer function for upscaling, accounting for uncertainties in
both satellite and in-situ reference data. Transfer functions were derived between FRMs
and two vegetation indices: the normalised difference vegetation index (NDVI) for FAPAR
and the Sentinel-2 terrestrial chlorophyll index (S2TCI) for CCC [10]. Finally, a categorical
quality flag layer was produced to identify areas in which the transfer function was acting
as an extrapolator (and, therefore, might provide less reliable outputs) [29]. The comparison
of upscaled values with the FRM data shows relative RMSD of between 6% and 28% for
FAPAR and between 43% and 72% for CCC, with systematic differences for some crops (see
Appendix B). The higher discrepancies for CCC are expected due to the larger uncertainties
in the CCC measurements (as these incorporate the uncertainties in both the LAI and
LCC measurements).

The FRM-based high-resolution reference maps for FAPAR (Figure 3) and CCC
(Figure 4) over the study sites allow the easy identification of crop patterns at Las Tiesas—
Barrax and cultivated and forest areas at Wytham Woods. Las Tiesas—Barrax demonstrates
a mix of large areas with very low values (bare soil or fallow fields) and irrigated crops
with dense to very dense vegetation. On the other hand, at Wytham Woods, the forest area
is located at the centre of the image, and it is surrounded by crops, grassland and some
water bodies. For comparative purposes, the propagated uncertainty at a coverage factor
k = 2 (i.e., 95.4% confidence) and the relative uncertainty of reference maps over the ESUs
are shown for FAPAR (Table 4) and CCC (Table 5). Median uncertainties over the ESUs
range between 0.02 and 0.03 for FAPAR and between 0.18 g·m−2 and 0.57 g·m−2 for CCC.
Median relative uncertainties range between 2.6% and 6.4% for FAPAR and between 24%
to 43% for CCC. The uncertainties associated with the FAPAR reference maps are relatively
low (typically lower than the FRM data) mainly because the linear relationship shows very
low uncertainty, as does the TOA NDVI used for upscaling. However, for CCC, reference
map uncertainties are larger than the uncertainties of FRM data.

Remote Sens. 2024, 16, 2698 7 of 27 
 

 

Barrax 13 June 2018 Barrax 19 July 2021 Wytham 06 July 2018 Wytham 18 July 2021 

    

   
 

Figure 3. FAPAR FRM-based reference maps (top) and uncertainties at the k = 2 coverage factor 
(bottom) over Las Tiesas—Barrax agricultural and Wytham Woods  deciduous forest sites (5 km × 
5 km). Imagery Sentinel-2A/MSI. 

Barrax 13 June 2018 Barrax 19 July 2021 Wytham 06 July 2018 Wytham 18 July 2021 

    

    

Figure 4. CCC FRM-based reference maps (top) and uncertainties at the k = 2 coverage factor 
(bottom) over Las Tiesas—Barrax agricultural and Wytham Woods deciduous forest sites (5 km × 5 
km). Imagery Sentinel-2A/MSI. 

Table 4. Summary statistics for FAPAR FRM-based reference maps and their associated absolute and 
relative uncertainties (at the k = 2 coverage factor) over ESU locations from the 2018 and 2021 field 
campaigns at Las Tiesas—Barrax and Wytham Woods. Maximum uncertainties are restricted to 50%. 

 FAPAR (Dimensionless) U(FAPAR) (Dimensionless) 

 Barrax 
2018 

Barrax 
2021 

Wytham 
2018 

Wytham 
2021 

Barrax  
2018 

Barrax  
2021 

Wytham  
2018 

Wytham  
2021 

Minimum 0.00 0.00 0.00 0.20 0.00 (2.5%) 0.00 (2.0%) 0.00 (2.3%) 0.02 (2.3%) 
Maximum 0.98 1.00 0.98 1.00 0.03 (50.0%) 0.04 (50.0%) 0.04 (50.0%) 0.04 (21.0%) 

Figure 3. FAPAR FRM-based reference maps (top) and uncertainties at the k = 2 coverage fac-
tor (bottom) over Las Tiesas—Barrax agricultural and Wytham Woods deciduous forest sites
(5 km × 5 km). Imagery Sentinel-2A/MSI.



Remote Sens. 2024, 16, 2698 7 of 27

Remote Sens. 2024, 16, 2698 7 of 27 
 

 

Barrax 13 June 2018 Barrax 19 July 2021 Wytham 06 July 2018 Wytham 18 July 2021 

    

   
 

Figure 3. FAPAR FRM-based reference maps (top) and uncertainties at the k = 2 coverage factor 
(bottom) over Las Tiesas—Barrax agricultural and Wytham Woods  deciduous forest sites (5 km × 
5 km). Imagery Sentinel-2A/MSI. 

Barrax 13 June 2018 Barrax 19 July 2021 Wytham 06 July 2018 Wytham 18 July 2021 

    

    

Figure 4. CCC FRM-based reference maps (top) and uncertainties at the k = 2 coverage factor 
(bottom) over Las Tiesas—Barrax agricultural and Wytham Woods deciduous forest sites (5 km × 5 
km). Imagery Sentinel-2A/MSI. 

Table 4. Summary statistics for FAPAR FRM-based reference maps and their associated absolute and 
relative uncertainties (at the k = 2 coverage factor) over ESU locations from the 2018 and 2021 field 
campaigns at Las Tiesas—Barrax and Wytham Woods. Maximum uncertainties are restricted to 50%. 

 FAPAR (Dimensionless) U(FAPAR) (Dimensionless) 

 Barrax 
2018 

Barrax 
2021 

Wytham 
2018 

Wytham 
2021 

Barrax  
2018 

Barrax  
2021 

Wytham  
2018 

Wytham  
2021 

Minimum 0.00 0.00 0.00 0.20 0.00 (2.5%) 0.00 (2.0%) 0.00 (2.3%) 0.02 (2.3%) 
Maximum 0.98 1.00 0.98 1.00 0.03 (50.0%) 0.04 (50.0%) 0.04 (50.0%) 0.04 (21.0%) 

Figure 4. CCC FRM-based reference maps (top) and uncertainties at the k = 2 coverage factor (bottom)
over Las Tiesas—Barrax agricultural and Wytham Woods deciduous forest sites (5 km × 5 km).
Imagery Sentinel-2A/MSI.

Table 4. Summary statistics for FAPAR FRM-based reference maps and their associated absolute and
relative uncertainties (at the k = 2 coverage factor) over ESU locations from the 2018 and 2021 field
campaigns at Las Tiesas—Barrax and Wytham Woods. Maximum uncertainties are restricted to 50%.
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Wytham
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Table 5. Summary statistics for CCC FRM-based reference maps and their associated absolute and
relative uncertainties (at the k = 2 coverage factor) over ESU locations from the 2018 and 2021 field
campaigns at Las Tiesas—Barrax and Wytham Woods. Maximum relative uncertainties are restricted
to 50%.

CCC (g·m−2) U(CCC) (g·m−2)

Barrax 2018 Barrax 2021 Wytham
2018

Wytham
2021

Barrax
2018

Barrax
2021

Wytham
2018

Wytham
2021

Minimum 0.00 0.00 0.00 0.10 0.00 (17.3%) 0.00 (16.8%) 0.00 (22.0%) 0.05 (19.2%)
Maximum 2.32 3.36 3.01 3.50 0.52 (50.0%) 0.99 (50.0%) 0.78 (50.0%) 0.96 (50.0%)

Mean 0.83 0.73 2.06 1.84 0.22 (34.7%) 0.23 (38.1%) 0.52 (26.5%) 0.47 (30.4%)
Median 0.75 0.37 2.31 2.20 0.22 (34.1%) 0.18 (42.7%) 0.56 (24.0%) 0.57 (26.0%)

STD 0.78 0.92 0.72 1.09 0.18 (13.0%) 0.27 (12.6%) 0.16 (7.3%) 0.27 (10.3%)
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2.3. Sentinel-3 OLCI Bio-Geophysical Products

OLCI instruments are currently operational aboard two Copernicus Sentinel-3 (A and
B) satellites, orbiting the Earth on sun-synchronous polar orbits with a mean altitude of
815 km and a local equatorial crossing time of 10:00 am. The spectral range of the OLCI
instrument is 400–1040 nm, divided into 21 spectral bands [30]. Two different Sentinel-3
OLCI L2 land products are considered: (i) the green instantaneous FAPAR (GIFAPAR)
(Section 2.3.1) and (ii) the OLCI terrestrial chlorophyll index (OTCI) (Section 2.3.2), a
surrogate of CCC. The GIFAPAR and OTCI products are provided at the native Sentinel-3
OLCI resolution (300 m, i.e., full resolution) and at degraded spatial resolution (1 km, i.e.,
reduced resolution).

2.3.1. GIFAPAR

The GIFAPAR (so-called OLCI Global Vegetation Index—OGVI) product is designed
to provide continuity to the Medium Resolution Imaging Spectrometer (MERIS) Global
Vegetation Index (MGVI). GIFAPAR exploits the fact that live green vegetation strongly
absorbs solar radiation in the red region of the electromagnetic spectrum and strongly
scatters it in the near-infrared region. The product is designed to maximise sensitivity
to instantaneous green FAPAR whilst minimising sensitivity to perturbing factors such
as atmospheric contamination and the soil background. The underlying algorithm, de-
veloped by the Joint Research Centre (JRC), consists of two main steps [31]. In the first,
‘rectified’ reflectance values are computed from OLCI bands 17 (865 nm) and 10 (681.25 nm).
The rectification procedure uses information from OLCI band 3 (442.5 nm) to suppress
atmospheric effects, whilst directional normalisation is carried out using the parametric
Rahman-Pinty-Verstraete (RPV) model [32]. In the second step, the ‘rectified’ reflectance
values are used to derive FAPAR following an optimisation procedure. Both steps are
achieved with ratios of polynomials, making use of sensor-specific coefficients (see de-
tails at [33]). The GIFAPAR is provided with per-pixel uncertainties. Two main terms
are considered for the uncertainty: the propagation error and the optimisation error [33].
Note that L1 uncertainty is not implemented in the OLCI processing chain yet, hence the
current uncertainty budget should correspond to the optimisation error. Figure 5 shows the
Sentinel-3B GIFAPAR values and its uncertainty for Las Tiesas—Barrax agricultural and
Wytham Woods sites over the study area of 5 km × 5 km for the 2018 and 2021 campaigns.
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2.3.2. OTCI—CCC

The OTCI is a unique chlorophyll index for OLCI data designed to provide conti-
nuity to the MERIS Terrestrial Chlorophyll Index (MTCI). The interaction of incoming
radiation with a vegetated surface results in a distinctive reflectance spectrum. As the key
photosynthetic pigment in plants, chlorophyll absorbs much of the incoming radiation
in the visible region of the electromagnetic spectrum, leading to low reflectance. In the
near-infrared, optical properties are mostly controlled by leaf structure, and reflectance in
this region of the electromagnetic spectrum is high due to internal scattering within the leaf.
The boundary between strong absorption due to the presence of chlorophyll and strong
reflectance due to leaf structure is known as the red edge, and its position (i.e., the location
of the maximum rate of change) is strongly related to CCC [34]. As CCC increases, the red
edge moves towards longer wavelengths.

Taking advantage of the MERIS red-edge bands, the MTCI was designed to provide a
computationally efficient surrogate of CCC that remains sensitive to high CCC values [35].
Based on the MTCI, the OTCI is calculated from equivalent OLCI bands in and around the
red edge as

OTCI =
Rb12 − Rb11
Rb11 − Rb10

, (1)

where Rb12, Rb11, and Rb10 are reflectance values in the OLCI bands centred at 753.75 nm,
708.75 nm, and 681.25 nm, respectively, after correction for gaseous absorption and Rayleigh
scattering [36]. As for OGVI, the OTCI algorithm can provide per-pixel uncertainties, which
are derived by propagating uncertainties in the input quantities through its calculation. At
the time of writing this manuscript, however, L1 uncertainties are yet to be implemented in
the OLCI processing chain and therefore, it is not possible to estimate uncertainty for L2
OTCI products. This is expected to be available in a future reprocessing of the product.

Sentinel-3 CCC maps were derived by calibrating the OTCI product with CCC FRM-
based reference maps according to a linear function, using ODR to account for uncertainties.
The FRM-based Sentinel-2 reference maps were aggregated to OLCI’s native spatial res-
olution using its effective point spread function (PSF) as described in Section 2.5. Due
to the differences introduced by vegetation type, the calibration of OTCI was achieved
per site using the CCC reference maps from both campaigns. The slope (α) and intercept
(β) values and their uncertainties provided by the ODR regression method are shown in
Table 6. Finally, the uncertainties of the slope and intercept are propagated through the
calibration function to obtain the uncertainty of the CCC as follows:

OTCI = α CCC + β (2)

CCC =
OTCI − β

α
(3)

u(CCC) =

√(
OTCI − β

α2

)2
u2(α) +

(
1
α

)2
u2(β) (4)

The resulting CCC maps and their uncertainties are displayed in Figure 6 for Sentinel-
3B acquisitions.
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no data, mostly related to soil and no vegetation, are displayed in white.

Table 6. Sentinel-3B CCC calibration coefficients derived from Sentinel-3B OTCI and FRM-based
reference maps using ODR.

α β

Las Tiesas—Barrax 1.70 ± 0.13 1.23 ± 0.08
Wytham Woods 0.87 ± 0.08 1.48 ± 0.10

2.4. Validation and Conformity Testing

Validation is the process of independently assessing and evaluating the quality of
the data products from the system outputs [3]. In the satellite-based land product context,
validation refers to the assessment and quantification of the accuracy and uncertainties of
the product with respect to reference datasets. The accuracy, precision, and uncertainty
of the Sentinel-3 OLCI bio-geophysical products under study are evaluated by several
metrics. The accuracy, which represents the systematic errors, is often computed as the
statistical mean bias (B) or the median deviation (MD). Precision, which represents the
dispersion of the retrievals around their expected value, is often computed using standard
deviation (STD) or the median absolute deviation (MAD). Uncertainty, a nonnegative
parameter associated with the result of a measurement that characterises the dispersion of
the quantity values being attributed to a measurand [37], is often characterised using the
root mean square deviation (RMSD). In addition to these metrics, the Pearson correlation
coefficient and the ODR slope and intercept line are included as indicative of the correlation
between both datasets and the bias, respectively. It should be noted that for the evaluation
of OTCI-based CCC products, a leave-one-out cross-validation (denoted by “cv”) method
was used.

Conformity testing is the process that determines if the estimated quantities are within
the range of tolerable values or not [6]. In this work, Sentinel-3 OLCI bio-geophysical
products are evaluated with respect to Sentinel-3’s mission requirements [38]. In partic-
ular, the goal (<5%) and threshold (<10%) requirements on accuracy are considered for
both GIFAPAR and CCC at full resolution, even though, strictly speaking, the threshold
requirements are defined at 1 km spatial resolution. It should be noted that in the case of
chlorophyll products, mission requirements indicate that OTCI from Sentinel-3 should be
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within 5% of OTCI measured on the ground (not CCC). However, as OTCI is used as a sur-
rogate measure of CCC (which is a key bio-geophysical variable), the mission requirements
for OTCI are being tested as if they were applicable for CCC (as for FAPAR or LAI). This
should be clarified in future mission requirements for Sentinel-3 Next Generation.

Traditionally, uncertainties in satellite and reference data were assumed negligible in
conformity testing (i.e., it was assumed that all data points within the tolerance interval
defined by the requirements conform, and all data points outside this tolerance interval do
not conform). This decision rule is known as simple acceptance. However, when satellite
and reference data uncertainties are well characterised, conformity can be asserted if a
data point and its uncertainty are fully contained within the tolerance interval (in order to
reduce the risk of accepting a non-conforming entity). In this case, the decision rule is called
guarded acceptance, as the probability of false acceptance or false rejection is reduced [39].

Thus, given a candidate satellite product, (Qi ± u(Qi), and a best estimate or reference,
(Ri ± u(Ri)), the apparent error (εi) and its uncertainty u(εi) can be estimated as follows [6]:

εi = Qi − Ri, (5)

u(εi) =

√
u(Qi)

2 + u(Ri)
2, (6)

The distribution of the uncertainty is assumed to be Gaussian, and the coverage factor
(k) is typically set to 2 to obtain an expanded uncertainty with a confidence interval of
95.4%. In this study, k = 2 is used. ∆ represents the maximum permissible error, given by
the Sentinel-3 mission requirements, during the conformity test and each pixel i can be
classified into four categories (Figure 7):

• Conclusively conforming (guarded acceptance): If the apparent error absolute value
and its expanded uncertainty are lower or equal to the maximum permissible error:

|εi ± ku(εi)| ≤ ∆ (7)

• Conclusively non-conforming (guarded rejection): If the apparent error absolute value
and its expanded uncertainty are greater than the maximum permissible error:

|εi| > ∆ & |εi ± ku(εi)| > ∆ (8)

• Inconclusively conforming: If the apparent error absolute value is lower or equal
to the maximum permissible error, but the expanded uncertainty is greater than the
maximum permissible error:

|εi| ≤ ∆ & (|εi + ku(εi)| or |εi − ku(εi)|) > ∆ (9)

• Inconclusively non-conforming: If the apparent error absolute value is greater than
the maximum permissible error, but the expanded uncertainty is lower or equal to the
maximum permissible error:

|εi| > ∆ & |εi ± ku(εi)| < ∆ (10)
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2.5. Aggregation of FRM-Based Reference Maps to OLCI’s Native Resolution

Finally, to be able to compare the Sentinel-3 L2 products with the FRM-based Sentinel-2
reference maps, the reference maps at 20 m spatial resolution must be aggregated to OLCI’s
native spatial resolution (i.e., 300 m). In order to partly account for the PSF of the OLCI
sensor and the adjacency effects, an iterative data-driven method was used. Weighted
averages of high spatial resolution pixels were computed by the convolution of a two-
dimensional Gaussian function [40]. The weights represented the apparent PSF, considering
that each hectometric pixel is composed of a limited number of decametric pixels. The
method accounts for several factors that introduce differences in the comparison of satellite
products (including the sensor’s PSF, viewing geometry and geolocation uncertainty, as
well as the effects of reprojection and atmospheric scattering) [41]. To characterise OLCI’s
apparent PSF, different combinations of the full-width (extension of the pixel size given
by Xmax and Ymax) and the full-width at half-maximum (FWHMx and FWHMy) of the
Gaussian function in both x and y directions, are iteratively tested as in [42], considering
a maximum full-width in both directions of 900 m (i.e., 3 OLCI full resolution pixels).
Finally, the Gaussian function, which maximises the correlation coefficient between the
aggregated reference maps and Sentinel-3 products, is chosen. Two Gaussian functions
were finally selected, one per site under study (Table 7). Uncertainties of each observation
in the reference maps were propagated through the calculation of the mean using the same
PSF functions, whilst the standard error of the mean was calculated to account for the
uncertainty due to the spatial heterogeneity. The standard uncertainty of the reference
maps aggregated to 300 m was finally computed by adding these two terms in quadrature.

Table 7. Optimal apparent PSF parameters used to aggregate FRM-based high spatial reference maps
(20 m) to Sentinel-3 OLCI’s native spatial resolution (300 m) per site and variable. Xmax (respectively
Ymax) represents the full width of the PSF in the east-west direction (respectively north–south).
FWHMx (respectively FWHMy) represents the full-width at half-maximum in the east–west direction
(respectively north–south).

Xmax (m) Ymax (m) FWHMx (m) FWHMy (m)

Barrax 900 450 540 450

Wytham 900 750 720 450
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3. Results

Both Sentinel-3A and -3B products were evaluated against FRM-based reference maps
over the Las Tiesas—Barrax agricultural and Wytham Woods deciduous forests sites. For
the sake of brevity, only the validation and conformity testing results for Sentinel-3B
are presented here, as those obtained from Sentinel-3A products are very similar (see
Appendix C).

3.1. Agricultural Site
3.1.1. GIFAPAR

Validation of GIFAPAR over Las Tiesas—Barrax (Figure 8) demonstrates a good corre-
lation of 0.91 with an overall RMSD of 0.11 (Table 8). GIFAPAR products tend to provide
systematically negative bias (−0.06) with a slope of the linear fit of 0.69. Similar scattering
is observed for both campaigns (2018 and 2021). Conformity testing (at coverage factor
k = 2) reveals large uncertainties in the apparent error (Figure 8), with most cases classed
as inconclusively non-conforming (73.7% and 70.9% for goal and threshold requirements,
respectively) and with no cases conclusively conforming with the Sentinel-3 mission re-
quirements (Table 8). However, conclusively, non-conforming pixels represent between
15% and 17% of the total number of cases, depending on the requirement.
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Figure 8. (a) Scatterplot between Sentinel-3B GIFAPAR and FRM-based reference maps over Las
Tiesas—Barrax. Vertical and horizontal bars display expanded uncertainties at coverage factor k = 2.
The dashed green and blue lines display the 5% and 10% requirement, the brown line displays the
ODR fit. (b) Conformity testing (at k = 2) results regarding the Sentinel-3 mission requirements on
accuracy. The dashed green line displays the 10% threshold requirement.

Table 8. Summary of validation metrics (relative values between brackets) and conformity testing
according to the Sentinel-3 mission requirements on accuracy for Sentinel-3B GIFAPAR over Barrax
at coverage factor k = 2.

Validation Metric Requirement on Accuracy Compliance (%)

N 494

Goal (5%)

Conclusively conforming 0.0
R 0.91 Inconclusively conforming 8.9

ODR Y = 0.69x Inconclusively non-conforming 73.7
B −0.06 (−28.7%) Conclusively non-conforming 17.4

MD −0.03 (−13.3%)

Threshold (10%)

Conclusively conforming 0.0
STD 0.09 (44.8%) Inconclusively conforming 14.6

MAD 0.04 (17.9%) Inconclusively non-conforming 70.9
RMSD 0.11 (53.2%) Conclusively non-conforming 14.6
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3.1.2. CCC

Validation results of the Sentinel-3 OTCI-based CCC products over Las Tiesas—Barrax
demonstrates a good correlation (0.82) (Figure 9), with an RMSDcv of 0.29 g·m−2 and
no mean bias, as expected for empirically calibrated relationships (Table 9). However,
the bias seems to be slightly positive for the 2021 campaign and negative for the 2018
campaign. The slope of the ODR fit is 0.79, which indicates an overall negative bias in
agreement with the median deviation (MD = −0.04). Conformity testing (Figure 9 and
Table 9) shows that between 45% and 51% of pixels are conclusively non-conforming,
depending on the requirement, and the rest of the cases are inconclusive. In the case of
inconclusive cases, most of them are inconclusively non-conforming (around 45% of cases),
and only between 6% and 10% are inconclusively conforming. This is a clear indication of
the very strict requirements.
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Figure 9. (a) Scatterplot between Sentinel-3B OTCI-based CCC and FRM-based reference maps over
Las Tiesas—Barrax. Vertical and horizontal bars display expanded uncertainties at coverage factor
k = 2. The dashed green and blue lines display the 5% and 10% requirement, the brown line displays
the ODR fit. (b) Conformity testing (at k = 2) results regarding the Sentinel-3 mission requirements
on accuracy. The dashed green line displays the 10% threshold requirement.

Table 9. Summary of validation metrics (cv stands for cross-validation) and conformity testing
according to the Sentinel-3 mission requirements on accuracy for Sentinel-3B OTCI-based CCC over
Barrax at coverage factor k = 2.

Validation Metric Requirement on Accuracy Compliance (%)

N 357

Goal (5%)

Conclusively conforming 0.0
Rcv 0.82 Inconclusively conforming 5.6

ODR Y = 0.03 + 0.79x Inconclusively non-conforming 43.7
Bcv 0.00 (0.7%) Conclusively non-conforming 50.7

MDcv −0.04 (−7.1%)

Threshold (10%)

Conclusively conforming 0.0
STDcv 0.29 (56.3%) Inconclusively conforming 10.1

MADcv 0.15 (28.8%) Inconclusively non-conforming 44.5
RMSDcv 0.29 (56.3%) Conclusively non-conforming 45.4



Remote Sens. 2024, 16, 2698 15 of 27

3.2. Deciduous Forest Site
3.2.1. GIFAPAR

Validation results of Sentinel-3B GIFAPAR over Wytham Woods (Figure 10 and
Table 10) demonstrate a correlation of 0.85, RMSD of 0.1 and mean negative bias (and
MD) of −0.06 (approximately 9% in relative terms). Similar scatterplots are observed
for the two campaigns with systematic deviations from the 1:1 line for the highest values,
which corresponds to the wooded areas. Conformity testing reveals very large uncertainties
(at k = 2) in the apparent error, mostly coming from the large uncertainties from the satellite
product (Figure 10). Consequently, almost all cases (around 99%) are inconclusive, with
none of the samples conclusively conforming to the mission requirements. For the incon-
clusive samples, around half of the samples are inconclusively conforming and the other
half are inconclusively non-conforming with respect to the 10% threshold requirement.
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Figure 10. (a) Scatterplot between Sentinel-3B GIFAPAR and FRM-based reference maps over Wytham
Woods. Vertical and horizontal bars display expanded uncertainties at coverage factor k = 2. The
dashed green and blue lines display the 5% and 10% requirement, the brown line displays the ODR
fit. (b) Conformity testing (at k = 2) results regarding the Sentinel-3 mission requirements on accuracy.
The dashed green line displays the 10% threshold requirement.

Table 10. Summary of validation metrics and conformity testing according to the Sentinel-3 mission
requirements on accuracy for Sentinel-3B GIFAPAR over Wytham Woods at coverage factor k = 2.

Validation Metric Requirement on Accuracy Compliance (%)

N 579

Goal (5%)

Conclusively conforming 0.0
R 0.85 Inconclusively conforming 24.0

ODR Y = 0.13 + 0.73x Inconclusively non-conforming 74.8
B −0.06 (−8.7%) Conclusively non-conforming 1.2

MD −0.06 (−9.0%)

Threshold (10%)

Conclusively conforming 0.0
STD 0.08 (11.6%) Inconclusively conforming 48.4

MAD 0.07 (10.1%) Inconclusively non-conforming 50.6
RMSD 0.10 (14.5%) Conclusively non-conforming 1.0

3.2.2. CCC

The validation of OTCI-based CCC products over Wytham Woods (Figure 11) demon-
strates a high correlation of 0.88 and RMSD of 0.28 g·m−2. As observed for Las Tiesas—
Barrax, almost no mean bias is found, but MD is also close to zero, and the slope of the
linear fit is close to 0.9 (Table 11). The conformity testing shows again that most cases are
inconclusive, with inconclusively non-conforming cases accounting for 69.7% and 57.4%,
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considering goal and threshold uncertainty requirements of 5% and 10%, respectively. Con-
clusively, non-conforming pixels represent between 10% and 15% of the total, depending
on the requirement.
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Figure 11. (a) Scatterplot between Sentinel-3B OTCI-based CCC and FRM-based reference maps over
Wytham Woods. Vertical and horizontal bars display expanded uncertainties at coverage factor k = 2.
The dashed green and blue lines display the 5% and 10% requirement, the brown line displays the
ODR fit. (b) Conformity testing (at k = 2) results regarding the Sentinel-3 mission requirements on
accuracy. The dashed green line displays the 10% threshold requirement.

Table 11. Summary of validation metrics (cv stands for cross-validation) and conformity testing
according to the Sentinel-3 mission requirements on accuracy for Sentinel-3B OTCI-based CCC over
Wytham Woods at coverage factor k = 2.

Validation Metric Requirement on Accuracy Compliance (%)

N 580

Goal (5%)

Conclusively conforming 0.0
Rcv 0.88 Inconclusively conforming 15.3

ODR Y = 0.07 + 0.89x Inconclusively non-conforming 69.7
Bcv <0.01 (<0.1%) Conclusively non-conforming 15.0

MDcv 0.01 (1.2%)

Threshold (10%)

Conclusively conforming 0.0
STDcv 0.28 (24.3%) Inconclusively conforming 31.9

MADcv 0.17 (14.7%) Inconclusively non-conforming 57.4
RMSDcv 0.28 (24.3%) Conclusively non-conforming 10.7

3.3. Overall Results
3.3.1. GIFAPAR

Overall validation results of Sentinel-3B GIFAPAR with all FRM-based reference maps
demonstrate a remarkably high correlation of 0.96, even though some scatter is observed
mainly for the more heterogeneous Las Tiesas—Barrax site (Figure 12). The GIFAPAR
product demonstrates an overall RMSD of 0.1 (23%) and accuracy (bias) of −0.06 (−13%)
(Table 12). The systematic negative bias is also observed in the linear fit with a slope
of 0.84. Very similar results were obtained from Sentinel-3A observations (Appendix C).
The overall conformity testing shows inconclusive results in more than 90% of cases
(Table 12). Considering the 10% threshold level, up to 32% of the samples are inconclusively
conforming, but only 17% of the samples are inconclusive conforming in the case of the
5% goal requirement. None of the samples conclusively conform to the Sentinel-3 mission
requirements on accuracy.
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Figure 12. (a) Scatterplot between Sentinel-3B GIFAPAR and FRM-based reference maps for Las
Tiesas-Barrax (crosses) and Wytham Woods (stars) sites. Vertical and horizontal bars display ex-
panded uncertainties at coverage factor k = 2. The dashed green and blue lines display the 5% and
10% requirement, the brown line displays the ODR fit. (b) Conformity testing (at k = 2) results
regarding the Sentinel-3 Mission Requirements on accuracy. The dashed green line displays the 10%
threshold requirement.

Table 12. Summary of validation metrics and conformity testing according to the ESA Sentinel-3
Mission requirements on accuracy for Sentinel-3B GIFAPAR at coverage factor k = 2.

Validation Metric Requirement on Accuracy Compliance (%)

N 1073

Goal (5%)

Conclusively conforming 0.0
R 0.96 Inconclusively conforming 17.1

ODR Y = 0.84x Inconclusively non-conforming 74.3
B −0.06 (−12.8%) Conclusively non-conforming 8.7

MD −0.05 (−10.3%)

Threshold (10%)

Conclusively conforming 0.0
STD 0.09 (18.5%) Inconclusively conforming 32.8

MAD 0.06 (12.6%) Inconclusively non-conforming 59.9
RMSD 0.10 (22.5%) Conclusively non-conforming 7.3

3.3.2. CCC

The overall validation of Sentinel-3 OTCI-based CCC products with reference maps
for both sites also demonstrates a high correlation of 0.9 (as for GIFAPAR). The RMSD
is 0.28 g·m−2, and there is almost no bias (mean bias and MD close to zero). The linear
fit shows a slope of 0.9, which reveals a slight tendency to underestimate the ground
reference data, even though the OTCI-based CCC displays the opposite trend for high
values (>2 g·m−2) (Figure 13). The conformity testing (Table 13) shows that most of the
cases are inconclusive (>70%). As observed for GIFAPAR, none of the samples conclusively
conform to the Sentinel-3 mission requirements, and conclusively, non-conforming samples
represent between 24% and 29% of the total, depending on the requirement.



Remote Sens. 2024, 16, 2698 18 of 27Remote Sens. 2024, 16, 2698 18 of 27 
 

 

  
(a) (b) 

Figure 13. (a) Scatterplot between Sentinel-3B OTCI-based CCC and FRM-based reference maps for 
Las Tiesas—Barrax (crosses) and Wytham Woods (stars) sites. Vertical and horizontal bars display 
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Figure 13. (a) Scatterplot between Sentinel-3B OTCI-based CCC and FRM-based reference maps for
Las Tiesas—Barrax (crosses) and Wytham Woods (stars) sites. Vertical and horizontal bars display
expanded uncertainties at coverage factor k = 2. The black line corresponds to the 1:1 and the brown
line displays the ODR fit. (b) Conformity testing (at k = 2) results regarding the Sentinel-3 mission
requirements on accuracy. The dashed green line displays the 10% threshold requirement.

Table 13. Summary of validation metrics and conformity testing according to the Sentinel-3 mission
requirements on accuracy for Sentinel-3B OTCI-based CCC at coverage factor k = 2.

Validation Metric Requirement on Accuracy Compliance (%)

N 937

Goal (5%)

Conclusively conforming 0.0
R 0.90 Inconclusively conforming 11.6

ODR Y = 0.90x Inconclusively non-conforming 59.8
B <0.01 (0.2%) Conclusively non-conforming 28.6

MD −0.01 (−0.6%)

Threshold (10%)

Conclusively conforming 0.0
STD 0.28 (31.0%) Inconclusively conforming 23.6

MAD 0.16 (17.5%) Inconclusively non-conforming 52.5
RMSD 0.28 (31.0%) Conclusively non-conforming 23.9

4. Discussion
4.1. Performance of the Products

The GIFAPAR products derived either from Sentinel-3A or -3B show a good overall
performance compared with the FRM-based reference maps, with a high correlation (>0.9)
and an RMSD of 0.1 (0.11) for Sentinel-3A (-3B). However, there is a systematic underestima-
tion of the reference values (median deviation of −0.05, slope of the linear fit of 0.84), which
is more evident for high FAPAR values. These results are in agreement with the evaluation
of the Sentinel-3 GIFAPAR using Copernicus Ground-Based Observations for Validation
(GBOV) upscaled FIPAR reference data, among others [43]. Part of this underestimation is
explained by the differences in the FAPAR definition between satellite estimates and in-situ
values. GIFAPAR is defined as green instantaneous FAPAR, whereas our FRMs, derived
from DHP, LAI-2200 PCA or ceptometers, are defined as instantaneous FIPAR (“green”
only in case of DHP downward-looking images, i.e., over crops). It is well-known that
FIPAR is a good proxy of FAPAR [22,23]; however, it may overestimate it. The difference
between FIPAR and FAPAR depends on illumination, soil background and the amount
of chlorophyll in the leaves. Wojnowski et al. [44] reported low differences (about 6–9%)
at high chlorophyll levels for all background and illumination conditions considered for
individual trees. In comparison, FIPAR can be up to 20–25% higher than FAPAR for leaves
with low chlorophyll content [44]. Similarly, the differences between FIPAR and FAPAR
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should be higher in forests due to the impact of the woody material in the ground mea-
surements. It can be observed in Wytham Woods that the systematic differences between
our FRM-based references and the GIFAPAR are larger for the highest values correspond-
ing to the wooded areas. The differences between the total absorbed value and that of
the foliage can be simulated by the use of three-dimensional radiative transfer (3D-RT)
models in order to correct the bias due to the presence of woody material [43,45], but this
requires additional effort to collect spectral and structural measurements to parameterise
the 3D-RT model. Recent work has also demonstrated the potential of near-infrared DHP
for assessing woody material [46], and the use of this technique would allow the PAR
intercepted by woody material to be subtracted from the total FIPAR to derive foliage
FIPAR. Conformity testing against Sentinel-3 mission uncertainty requirements provides
mostly inconclusive results, with around half of the cases inconclusively non-conforming
and the other half inconclusively conforming regarding the threshold level, with not a
single case conclusively conforming with mission requirements. These results are partly
due to the large uncertainties provided with the GIFAPAR product when compared to
the strict mission requirements, particularly for very low values. As such, the product
uncertainty requirements and attainable reference data uncertainty are discussed hereafter.

There was a strong correlation between CCC derived from OTCI and the FRM-based
reference maps for the four dedicated campaigns. Sentinel-3A CCC has a slightly lower
performance in terms of RMSD than Sentinel-3B, largely due to the systematic differences
of CCC in Sentinel-3A at the Wytham Woods site (see Appendix C). The reason for this is
still under investigation. It is worth noting that the ground measurements of CCC have a
much larger inherent uncertainty associated with them, in some cases more than 50% of
the measured values. This is because CCC is a product of LAI and LCC, and uncertainty
from both of these measurements propagates through to the final uncertainty of CCC, thus
making the overall uncertainty larger (details are provided in [23]). This large ground
data uncertainty impacts the upscaling function and the corresponding Sentinel-2-derived
FRM map. For conformity testing, the uncertainty requirements for OTCI (and FAPAR)
are interpreted as the same for CCC, and, therefore, it is tested against 5% (goal) and 10%
(threshold). No Sentinel-3A or -3B pixels conclusively met those requirements, with most
of them falling into the inconclusively non-conforming category.

4.2. Mission Requirements and Attainable Reference Data Uncertainty

Uncertainty requirements are associated with the majority of bio-geophysical products,
in the form of mission requirements [38], as well as user or community requirements, such
as those specified by the Global Climate Observing System (GCOS) and Sentinels for Science
(SEN4SCI) programmes [15,47]. For FAPAR and CCC (OTCI), current requirements range
from 5% to 20% relative uncertainty and should be expressed with an absolute uncertainty
requirement (as in GCOS) for very small values. If compliance with these requirements is
to be reliably assessed, the reference data used for conformity testing must have an equal
(or ideally lower) uncertainty to these requirements [6].

Our results indicate that the expanded uncertainties (at 95.4% confidence) associated
with FRM could exceed product uncertainty requirements, with median relative expanded
uncertainties of between 4% and 11% for FAPAR and 21% to 29% for CCC (see Section 2.1).
These results reflect similar claims made in previous studies for bio-geophysical variables
such as LAI [13,15,48,49]. It is worth noting that these ESU level uncertainties are further
increased by upscaling (due to the addition of radiometric uncertainty associated with the
high spatial resolution imagery and the uncertainty associated with the transfer function
used in upscaling itself), with median relative uncertainties between 3% and 6% for FAPAR
and 24% to 43% for CCC (see Section 2.2). In the case of FAPAR, similar uncertainties
compared to the in situ data are obtained because of the low radiometric uncertainties of
the TOA NDVI (<1%) used as input to the transfer function for upscaling. However, the
large uncertainties associated with the CCC high spatial resolution reference maps lead
to a situation in which compliance cannot be conclusively confirmed or denied. Even if
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the random uncertainties are significantly reduced during the aggregation to hectometric
resolution, the systematic uncertainties remain. Further, additional sources of uncertainties
should be considered in the high spatial resolution reference maps, such as those introduced
by the upscaling approach (e.g., regressions with vegetation indices versus calibrated RT
models [50]) or by the sampling of the site [51]. Moreover, uncertainties related to the
validation approach, including those introduced by geolocation errors and the mismatch
between satellite pixels and the reference maps, can be larger than requirements over
heterogenous landscapes [51].

This is even more problematic, considering that the uncertainty associated with satel-
lite products can also exceed the mission requirements. For GIFAPAR, the expanded
uncertainties over densely vegetated targets are larger than 30%, which explains by itself
that conformity testing against 5–10% requirements provides inconclusive results. The
uncertainties of the GIFAPAR product need to be further evaluated [43]. On the other hand,
OTCI uncertainties were not yet disseminated at the time of this research, and the results
presented here correspond only to the uncertainties in the CCC estimation.

5. Conclusions

In this work, FRM data from four campaigns over two vegetated sites (Las Tiesas—
Barrax and Wytham Woods), coupled with an end-to-end uncertainty estimation procedure,
have been utilised to validate two Sentinel-3 L2 bio-geophysical products: GIFAPAR and
OTCI-based CCC. For the first time, it is performed conformity testing to evaluate if
these products meet Sentinel-3 mission requirements (i.e., 5% goal, and 10% threshold).
In the absence of any specific requirements for a CCC product, it is assumed that the
requirements for OTCI are similar to those for a CCC product. In general, both GIFAPAR
and CCC (derived from OTCI) were strongly related to upscaled ground measurements,
with little variation between Sentinel-3A and -3B products. GIFAPAR shows correlations
>0.95, RMSD ~ 0.1 and a slight negative bias (~−0.06) for both sites. This bias could be
partly explained by the differences in the FAPAR definitions between satellite estimates and
FRMs references. For the OTCI-based CCC, leave-one-out cross-validation demonstrated
correlations >0.8 and RMSDcv ~0.28 g·m−2. However, despite de encouraging validation
results, none of the products conclusively met the mission requirements on accuracy set by
ESA, with most cases providing inconclusive results (typically in more than 90% of cases
for GIFAPAR and more than 75% of cases for CCC). Considering the complexity of the
ground measurements, heterogeneity at the moderate resolution pixel scale, and challenges
with the upscaling, the existing mission requirements are strict and would be difficult to
confirm with the two-stage validation approach. Moreover, the uncertainties attached to
the satellite product can be larger than the requirements.

Therefore, as a next step in EO-based vegetation product validation and conformity
testing, it is recommended: (i) reviewing the current mission requirements and setting more
realistic requirements at least at the threshold level using both absolute (for very low values)
and relative terms, (ii) setting procedures to undertake conformity testing at the decametric
and the hectometric scales by directly comparing with spatially representative FRM to
avoid the two-stage validation approach uncertainties, and (iii) using innovative ground
measurement techniques such as terrestrial laser scanning, which avoids dependency on
illumination conditions, subjective classification and levelling to a large extent, and explore
the potential of UAV-mounted hyperspectral instrument to reduce reference measurement
uncertainty. Phase 3 of FRM4Veg will allow these latter two points to be explored.
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Appendix A. Intercomparison of FAPAR and LAI Retrieved from LAI 2200 PCA,
AccuPAR and DHP

During the Las Tiesas—Barrax campaign in 2021, FAPAR and LAI (for CCC retrievals)
were estimated using DHP, LAI-2200 PCA and AccuPAR LP-80 instruments. The average
value of the quality-controlled data was used for the upscaling. Figure A1 shows the
scatterplots for FAPAR retrievals, and Figure A2 shows the scatterplots for LAI retrievals
between the three instruments.
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Appendix B. Performance of the FRM-Based Upscaled Reference Maps with
In-Situ FRM

The FRM-based high spatial resolution upscaled values are compared against the
in-situ FRM, and validation metrics are computed for the four campaigns: two over Las
Tiesas—Barrax (Figure A3) and two over Wytham Woods (Figure A4).
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Appendix C. Overall Validation and Conformity Testing Results for Sentinel-3A
GIFAPAR and OTCI-Based CCC

This appendix shows the overall validation and conformity testing results for the
Sentinel-3A products. The same procedure as for the Sentinel-3B products was followed
but using the calibration coefficients of Table A1.

Table A1. Sentinel-3A CCC calibration coefficients derived from Sentinel-3B OTCI and FRM-based
reference maps using ODR.

α β

Las Tiesas—Barrax 1.66 ± 0.14 1.25 ± 0.09
Wytham Woods 0.66 ± 0.08 1.61 ± 0.10
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Figure A5. (a) Scatterplot between Sentinel-3A GIFAPAR and FRM-based reference maps for Las 
Tiesas—Barrax (crosses) and Wytham Woods (stars) sites. Vertical and horizontal bars display ex-
panded uncertainties at coverage factor k = 2. The brown line displays the ORD fit. (b) Conformity 
testing (at k = 2) results regarding the Sentinel-3 mission requirements on accuracy. The dashed 
green line displays the 10% threshold requirement. 
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for Las Tiesas—Barrax (crosses) and Wytham Woods (stars) sites. Vertical and horizontal bars dis-
play expanded uncertainties at coverage factor k = 2. The brown line displays the ODR fit. (b) Con-
formity testing (at k = 2) results regarding the Sentinel-3 mission requirements on accuracy. The 
dashed green line displays the 10% threshold requirement. 
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requirements on accuracy for Sentinel-3A GIFAPAR at coverage factor k = 2. 
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MAD 0.06 (13.3%) Inconclusively non-conforming 63.3 
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testing (at k = 2) results regarding the Sentinel-3 mission requirements on accuracy. The dashed green
line displays the 10% threshold requirement.
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Table A2. Summary of validation metrics and conformity testing according to the Sentinel-3 mission
requirements on accuracy for Sentinel-3A GIFAPAR at coverage factor k = 2.

Validation Metric Requirement on Accuracy Compliance (%)

N 1070

Goal (5%)

Conclusively conforming 0.0
R 0.96 Inconclusively conforming 12.2

ODR Y = 0.83x Inconclusively non-conforming 78.7
B −0.07 (−14.5%) Conclusively non-conforming 9.1

MD −0.06 (−12.2%)

Threshold (10%)

Conclusively conforming 0.0
STD 0.09 (18.9%) Inconclusively conforming 29.6

MAD 0.06 (13.3%) Inconclusively non-conforming 63.3
RMSD 0.11 (23.8%) Conclusively non-conforming 7.1
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Table A3. Summary of validation metrics and conformity testing according to the Sentinel-3 mission
requirements on accuracy for Sentinel-3A OTCI-based CCC at coverage factor k = 2.

Validation Metric Requirement on Accuracy Compliance (%)

N 884

Goal (5%)

Conclusively conforming 0.0
R 0.78 Inconclusively conforming 7.7

ODR Y = 0.86x − 0.00 Inconclusively non-conforming 56.6
B 0.00 (0.2%) Conclusively non-conforming 35.7

MD −0.04 (−4.2%)

Threshold (10%)

Conclusively conforming 0.0
STD 0.46 (47.6%) Inconclusively conforming 16.0

MAD 0.23 (24.5%) Inconclusively non-conforming 53.8
RMSD 0.46 (47.6%) Conclusively non-conforming 30.2
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