Skip to main content

Research Repository

Advanced Search

Outputs (56)

Numerical solution of bio-nano-convection transport from a horizontal plate with blowing and multiple slip effects (2019)
Journal Article
Uddin, M., Kabir, M., Alginahi, Y., & Beg, O. (2019). Numerical solution of bio-nano-convection transport from a horizontal plate with blowing and multiple slip effects. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(19-20), 6910-6927. https://doi.org/10.1177/0954406219867985

In this paper, a new bio-nano-transport model is presented. The effects of first and second order velocity slips, thermal slip, mass slip, and gyro-tactic (torque-responsive) microorganism slip of bioconvectivenanofluid flow from amoving plate un... Read More about Numerical solution of bio-nano-convection transport from a horizontal plate with blowing and multiple slip effects.

Thermal slip and radiative heat transfer effects on electro-osmotic magnetonanoliquid peristaltic propulsion through a microchannel (2019)
Journal Article
Prakash, J., Siva, E., Tripathi, D., & Beg, O. (2019). Thermal slip and radiative heat transfer effects on electro-osmotic magnetonanoliquid peristaltic propulsion through a microchannel. Heat Transfer - Asian Research, 48(7), 2882-2908. https://doi.org/10.1002/htj.21522

A mathematical study is described to examine the concurrent influence of thermal radiation and thermal wall slip on
the dissipative magnetohydrodynamic electro-osmotic peristaltic propulsion of a viscous nano-liquid in an asymmetric
microchannel un... Read More about Thermal slip and radiative heat transfer effects on electro-osmotic magnetonanoliquid peristaltic propulsion through a microchannel.

Viscous dissipation and joule heating effects in non-Fourier MHD squeezing flow, heat and mass transfer between Riga plates with thermal radiation : variational parameter method solutions (2019)
Journal Article
Shamshuddin, M., Mishra, S., Beg, O., & Kadir, A. (2019). Viscous dissipation and joule heating effects in non-Fourier MHD squeezing flow, heat and mass transfer between Riga plates with thermal radiation : variational parameter method solutions. Arabian Journal for Science and Engineering, 44, 8053-8066. https://doi.org/10.1007/s13369-019-04019-x

A Riga plate is an electromagnetic actuator which comprises of permanent magnets and alternating electrodes placed on a plane surface. The present article investigates the influence of viscous and Joule heating (Ohmic dissipation) in the magnetohydro... Read More about Viscous dissipation and joule heating effects in non-Fourier MHD squeezing flow, heat and mass transfer between Riga plates with thermal radiation : variational parameter method solutions.

Melting heat transfer analysis on magnetohydrodynamics buoyancy convection in an enclosure : a numerical study (2019)
Journal Article

Therollof melting heat transfer on magnetohydrodynamic natural convection in a square enclosurewithheatingof the bottom wall is examinednumericallyin this article.The dimensionlessgoverning partial differential equations are transformed into vo... Read More about Melting heat transfer analysis on magnetohydrodynamics buoyancy convection in an enclosure : a numerical study.

Magneto-bioconvection flow of a Casson thin film with nanoparticles over an unsteady stretching sheet : HAM and GDQ computation (2019)
Journal Article
Vasu, B., Ray, A., Beg, O., & Gorla, R. (2019). Magneto-bioconvection flow of a Casson thin film with nanoparticles over an unsteady stretching sheet : HAM and GDQ computation. International Journal of Numerical Methods for Heat and Fluid Flow, 29(11), 4277-4309. https://doi.org/10.1108/HFF-02-2019-0158

Purpose – To numerically investigate the two-dimensional unsteady laminar
magnetohydrodynamic (MHD) bioconvection flow and heat transfer of an electrically-conducting non-Newtonian Casson thin film with uniform thickness over a horizontal elastic sh... Read More about Magneto-bioconvection flow of a Casson thin film with nanoparticles over an unsteady stretching sheet : HAM and GDQ computation.

Computational fluid dynamic and thermal stress analysis of coatings for high-temperature corrosion protection of aerospace gas turbine blades (2019)
Journal Article
Kadir, A., Beg, O., El Gendy, M., Beg, T., & Shamshuddin, M. (2019). Computational fluid dynamic and thermal stress analysis of coatings for high-temperature corrosion protection of aerospace gas turbine blades. Heat Transfer - Asian Research, 48(6), 2302-2328. https://doi.org/10.1002/htj.21493

The current investigation presents detailed finite element simulations of coating stress analysis for a 3-dimensional, 3-layered model of a test sample representing a typical gas turbine component. Structural steel, Titanium alloy and Silicon Carbide... Read More about Computational fluid dynamic and thermal stress analysis of coatings for high-temperature corrosion protection of aerospace gas turbine blades.

Computation of melting dissipative magnetohydrodynamic nanofluid bioconvection with second order slip and variable thermophysical properties (2019)
Journal Article

This paper studies the combined effects of viscous dissipation, first and second order slip
and variable transport properties on phase-change hydromagnetic bio-nanofluid convection flow from a
stretching sheet. Nanoscale materials possess a much la... Read More about Computation of melting dissipative magnetohydrodynamic nanofluid bioconvection with second order slip and variable thermophysical properties.

Numerical study of self-similar natural convection mass transfer from a rotating cone in anisotropic porous media with Stefan blowing and Navier slip (2019)
Journal Article
Beg, O., Uddin, M., Beg, T., Kadir, A., Shamshuddin, M., & Babaie, M. (2020). Numerical study of self-similar natural convection mass transfer from a rotating cone in anisotropic porous media with Stefan blowing and Navier slip. Indian Journal of Physics, 94, 863-877. https://doi.org/10.1007/s12648-019-01520-9

A mathematical model is presented for laminar, steady natural convection mass transfer in boundary layer
flow from a rotating porous vertical cone in anisotropic high permeability porous media. The transformed boundary
value problem is solved subje... Read More about Numerical study of self-similar natural convection mass transfer from a rotating cone in anisotropic porous media with Stefan blowing and Navier slip.

Transient analysis of Casson fluid thermo-convection from a vertical cylinder embedded in a porous medium : entropy generation and thermal energy transfer visualization (2019)
Journal Article
Reddy, G., Kethireddy, B., Kumar, M., & Beg, O. (2019). Transient analysis of Casson fluid thermo-convection from a vertical cylinder embedded in a porous medium : entropy generation and thermal energy transfer visualization. Journal of Central South University, 26(5), 1342-1361. https://doi.org/10.1007/s11771-019-4091-x

Thermal transport in porous media has stimulated substantial interest in engineering sciences due to increasing applications in filtration systems, porous bearings, porous layer insulation, biomechanics, geomechanics etc. Motivated by such applicatio... Read More about Transient analysis of Casson fluid thermo-convection from a vertical cylinder embedded in a porous medium : entropy generation and thermal energy transfer visualization.

Transient analysis of third-grade viscoelastic nanofluid flow external to a heated cylinder with buoyancy effects (2019)
Journal Article
Hiremath, A., Reddy, G., & Beg, O. (2019). Transient analysis of third-grade viscoelastic nanofluid flow external to a heated cylinder with buoyancy effects. Arabian Journal for Science and Engineering, 44, 7875-7893. https://doi.org/10.1007/s13369-019-03933-4

Nanotechnology is rapidly embracing numerous areas of manufacturing and process
engineering. New types of nanomaterials are being exploited to improve, for example, coating
integrity, anti-corrosion characteristics and other features of fabricated... Read More about Transient analysis of third-grade viscoelastic nanofluid flow external to a heated cylinder with buoyancy effects.