V A Ndolo
The potential distribution of Bacillus anthracis suitability across Uganda using INLA
Ndolo, V A; Redding, D; Deka, M A; Salzer, J S; Vieira, A R; Onyuth, H; Ocaido, M; Tweyongyere, R; Azuba, R; Monje, F; Ario, A R; Kabwama, S; Kisaakye, E; Bulage, L; Kwesiga, B; Ntono, V; Harris, J; Wood, J L N; Conlan, A J K
Authors
D Redding
M A Deka
J S Salzer
A R Vieira
H Onyuth
M Ocaido
R Tweyongyere
R Azuba
F Monje
A R Ario
S Kabwama
E Kisaakye
L Bulage
B Kwesiga
V Ntono
J Harris
J L N Wood
A J K Conlan
Abstract
To reduce the veterinary, public health, environmental, and economic burden associated with anthrax outbreaks, it is vital to identify the spatial distribution of areas suitable for Bacillus anthracis, the causative agent of the disease. Bayesian approaches have previously been applied to estimate uncertainty around detected areas of B. anthracis suitability. However, conventional simulation-based techniques are often computationally demanding. To solve this computational problem, we use Integrated Nested Laplace Approximation (INLA) which can adjust for spatially structured random effects, to predict the suitability of B. anthracis across Uganda. We apply a Generalized Additive Model (GAM) within the INLA Bayesian framework to quantify the relationships between B. anthracis occurrence and the environment. We consolidate a national database of wildlife, livestock, and human anthrax case records across Uganda built across multiple sectors bridging human and animal partners using a One Health approach. The INLA framework successfully identified known areas of species suitability in Uganda, as well as suggested unknown hotspots across Northern, Eastern, and Central Uganda, which have not been previously identified by other niche models. The major risk factors for B. anthracis suitability were proximity to water bodies (0–0.3 km), increasing soil calcium (between 10 and 25 cmolc/kg), and elevation of 140–190 m. The sensitivity of the final model against the withheld evaluation dataset was 90% (181 out of 202 = 89.6%; rounded up to 90%). The prediction maps generated using this model can guide future anthrax prevention and surveillance plans by the relevant stakeholders in Uganda.
Citation
Ndolo, V. A., Redding, D., Deka, M. A., Salzer, J. S., Vieira, A. R., Onyuth, H., …Conlan, A. J. K. (2022). The potential distribution of Bacillus anthracis suitability across Uganda using INLA. Scientific reports, 12(19967), https://doi.org/10.1038/s41598-022-24281-8
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 14, 2022 |
Publication Date | Nov 19, 2022 |
Deposit Date | Feb 15, 2023 |
Publicly Available Date | Feb 15, 2023 |
Journal | Scientific Reports |
Print ISSN | 2045-2322 |
Publisher | Nature Publishing Group |
Volume | 12 |
Issue | 19967 |
DOI | https://doi.org/10.1038/s41598-022-24281-8 |
Publisher URL | https://doi.org/10.1038/s41598-022-24281-8 |
Additional Information | Funders : Gates Cambridge Trust;Bill and Melinda Gates Foundation;Alborada Trust |
Files
Published Version
(3.6 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Downloadable Citations
About USIR
Administrator e-mail: library-research@salford.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search