Dr Oliviu Sugar-Gabor O.Sugar-Gabor@salford.ac.uk
Senior Lecturer
Unsteady nonlinear lifting line model for applied aerodynamics studies
Sugar-Gabor, O
Authors
Abstract
The lifting line theory is widely used for obtaining aerodynamic performance results in various engineering fields, from aircraft conceptual design to wind power generation. Many different models were proposed, each tailored for a specific purpose, thus having a rather narrow applicability range. This paper presents a general lifting line model capable of accurately analysing a wide range of engineering problems involving lifting surfaces, both steady-state and unsteady cases. It can be used for lifting surface with sweep, dihedral, twisting and winglets and includes features such as nonlinear viscous corrections, unsteady and quasi-steady force calculation, stable wake relaxation through fictitious time marching and wake stretching and dissipation. Possible applications include wing design for low speed aircraft and unmanned aerial vehicles, the study of high-frequency avian flapping flight or wind turbine blade design and analysis. Several validation studies are performed, both steady-state and unsteady, the method showing good agreement with experimental data or numerical results obtained with more computationally-expensive methods.
Citation
Sugar-Gabor, O. (2018, May). Unsteady nonlinear lifting line model for applied aerodynamics studies. Presented at Advances in Aerospace Structures, Systems and Technology (AASST 2018), London, UK
Presentation Conference Type | Other |
---|---|
Conference Name | Advances in Aerospace Structures, Systems and Technology (AASST 2018) |
Conference Location | London, UK |
Start Date | May 6, 2018 |
End Date | May 8, 2018 |
Acceptance Date | May 8, 2018 |
Deposit Date | May 16, 2018 |
Publisher URL | https://aasst.co.uk/ |
Additional Information | Event Type : Conference |
You might also like
Non-intrusive reduced-order model for unsteady fluid flow and fluid-structure interaction problems
(2022)
Presentation / Conference
Active flux scheme for time-dependent, viscous, compressible flows
(2022)
Presentation / Conference
Aircraft modeling and simulation
(2022)
Book
Improving the efficiency of unmanned aerial systems through wing morphing: a case study for the Hydra Technologies S4 Éhecatl UAS
(2021)
Presentation / Conference
Downloadable Citations
About USIR
Administrator e-mail: library-research@salford.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search