RMK M Ali
Risk of radiation-induced cancer from screening mammography
M Ali, RMK
Authors
Abstract
Background and Objectives: When the benefits and risks of mammography are considered, the risk of radiation-induced cancer is calculated only for the breast using the mean glandular dose (MGD). Whilst MGD is a useful concept, it has many limitations. This thesis aims to establish a novel method to determine and convey radiation risk from full field digital mammography (FFDM) screening using lifetime effective risk.
Method: For effective risk calculations, organ doses as well as examined breast MGD are required. Screening mammography was simulated by exposing a breast phantom for cranio-caudal and medio-lateral oblique for each breast using 16 FFDM machines. An anthropomorphic dosimetry phantom loaded with thermo-luminescent detectors (TLDs) was positioned in contact with the breast phantom to simulate the client’s body. Once the risk per individual was calculated, total effective lifetime risk across 48 worldwide screening programmes was calculated. The total effective risk data sets were analysed to establish a regression model to predict the effective risk of any screening programme. Graphs were generated to extrapolate the total effective risk of any screening programme of specific screening commencement age and frequency considering the MGD differences of different FFDM machines. Since the highest radiation dose after examined breast was received by contralateral breast, the effect of a contralateral breast lead shield on effective risk was also investigated.
Results: Large differences in the effective lifetime risk exist between worldwide screening programmes. The effective lifetime risk varied from approximately 50 cases/106 to more than 1000 cases/106. These differences were mainly attributed to the commencement age and frequency of screening. Since tissue radio-sensitivity reduces with age, the cessation age of screening mammography does not result in a noteworthy effect on the total effective risk. The use of contralateral breast shield reduces the total effective risk by about 1.5% for most worldwide screening programmes.
Conclusion: A novel method has been proposed to assess radiation-induced cancer risk from FFDM screening which considers the radiation dose received by all body tissues in addition to the examined breast. Using effective risk, the data is more likely to be understandable by screening clients and referring clinicians, unlike MGD which is not readily available or understandable by the general populace. This novel method and the data are compatible with the incoming European Commission legislation about giving the patient information on radiation risk.
Citation
M Ali, R. Risk of radiation-induced cancer from screening mammography. (Thesis). University of Salford
Thesis Type | Thesis |
---|---|
Deposit Date | Jan 12, 2018 |
Publicly Available Date | Jan 12, 2018 |
Files
Raed M.Ali thesis.pdf
(9.2 Mb)
PDF
Downloadable Citations
About USIR
Administrator e-mail: library-research@salford.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search