Dr Oliviu Sugar-Gabor O.Sugar-Gabor@salford.ac.uk
Senior Lecturer
Application of a morphing wing technology on Hydra Technologies unmanned aerial system UAS-S4
Sugar-Gabor, O; Simon, A; Koreanschi, A; Botez, R
Authors
A Simon
A Koreanschi
R Botez
Abstract
The paper describes the application of a morphing wing technology on the wing of an Unmanned Aerial System (UAS). The morphing wing concept works by replacing a part of the rigid wing upper and lower surfaces with a flexible skin whose shape can be dynamically changed using an actuation system placed inside the wing structure. The aerodynamic coefficients are determined using the fast and robust XFOIL panel/boundary-layer codes, as the optimal displacements are calculated using an original, in-house optimisation tool, based on a coupling between the relatively new Artificial Bee Colony Algorithm, and the classical, gradient-based Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. All the results obtained by the in-house optimisation tool have been validated using robust, commercially available optimization codes. Three different optimization scenarios were performed and promising results have been obtained for each. The numerical results have shown substantial aerodynamic performance increases obtained for different flight conditions, using the proposed morphing wing concept.
Citation
Sugar-Gabor, O., Simon, A., Koreanschi, A., & Botez, R. (2014). Application of a morphing wing technology on Hydra Technologies unmanned aerial system UAS-S4. In ASME 2014 International Mechanical Engineering Congress and Exposition. Volume 1: Advances in Aerospace Technology. ASME. https://doi.org/10.1115/IMECE2014-37619
Publication Date | Jan 1, 2014 |
---|---|
Deposit Date | Mar 10, 2017 |
Book Title | ASME 2014 International Mechanical Engineering Congress and Exposition. Volume 1: Advances in Aerospace Technology |
ISBN | 9780791846421 |
DOI | https://doi.org/10.1115/IMECE2014-37619 |
Publisher URL | http://dx.doi.org/10.1115/IMECE2014-37619 |
Additional Information | Additional Information : Montreal, Quebec, Canada, November 14–20, 2014 Event Type : Conference |
You might also like
Non-intrusive reduced-order model for unsteady fluid flow and fluid-structure interaction problems
(2022)
Presentation / Conference
Active flux scheme for time-dependent, viscous, compressible flows
(2022)
Presentation / Conference
Aircraft modeling and simulation
(2022)
Book
Improving the efficiency of unmanned aerial systems through wing morphing: a case study for the Hydra Technologies S4 Éhecatl UAS
(2021)
Presentation / Conference
Downloadable Citations
About USIR
Administrator e-mail: library-research@salford.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search