S Barry
Highly sensitive detection of nitroaromatic explosives at discrete nanowire arrays
Barry, S; Dawson, K; Correa, E; Goodacre, R; O'Riordan, A
Authors
K Dawson
E Correa
R Goodacre
A O'Riordan
Abstract
We show a photolithography technique that permits gold nanowire array electrodes to be routinely fabricated at reasonable cost. Nanowire electrode arrays offer the potential for enhancements in electroanalysis such as increased signal-to-noise ratio and increased sensitivity while also allowing quantitative detection at much lower concentrations. We explore application of nanowire array electrodes to the detection of different nitroaromatic species. Characteristic reduction peaks of nitro groups are not observed at nanowire array electrodes using sweep voltammetric methods. By contrast, clear and well-defined reduction peaks are resolved using potential step square wave voltammetry. A Principle Component Analysis technique is employed to discriminate between nitroaromatic species including structural isomers of DNT. The analysis indicates that all compounds are successfully discriminated by unsupervised cluster analysis. Finally, the magnitude of the reduction peak at −671 mV for different concentrations of TNT exhibited excellent linearity with increasing concentrations enabling sub-150 ng mL−1 limits of detection.
Citation
Barry, S., Dawson, K., Correa, E., Goodacre, R., & O'Riordan, A. (2013). Highly sensitive detection of nitroaromatic explosives at discrete nanowire arrays. Faraday Discussions, 164, 283. https://doi.org/10.1039/C3FD00027C
Journal Article Type | Article |
---|---|
Online Publication Date | Jun 21, 2013 |
Publication Date | Jun 21, 2013 |
Deposit Date | Feb 10, 2017 |
Journal | Faraday Discussions |
Print ISSN | 1359-6640 |
Electronic ISSN | 1364-5498 |
Publisher | Royal Society of Chemistry |
Volume | 164 |
Pages | 283 |
DOI | https://doi.org/10.1039/C3FD00027C |
Publisher URL | http://dx.doi.org/10.1039/C3FD00027C |
Related Public URLs | http://pubs.rsc.org/en/Journals/JournalIssues/FD#!recentarticles&adv |